2 * bpf_jit_comp64.c: eBPF JIT compiler
4 * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
7 * Based on the powerpc classic BPF JIT compiler by Matt Evans
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
14 #include <linux/moduleloader.h>
15 #include <asm/cacheflush.h>
16 #include <linux/netdevice.h>
17 #include <linux/filter.h>
18 #include <linux/if_vlan.h>
19 #include <asm/kprobes.h>
20 #include <linux/bpf.h>
22 #include "bpf_jit64.h"
24 int bpf_jit_enable __read_mostly
;
26 static void bpf_jit_fill_ill_insns(void *area
, unsigned int size
)
30 /* Fill whole space with trap instructions */
31 while (p
< (int *)((char *)area
+ size
))
32 *p
++ = BREAKPOINT_INSTRUCTION
;
35 static inline void bpf_flush_icache(void *start
, void *end
)
38 flush_icache_range((unsigned long)start
, (unsigned long)end
);
41 static inline bool bpf_is_seen_register(struct codegen_context
*ctx
, int i
)
43 return (ctx
->seen
& (1 << (31 - b2p
[i
])));
46 static inline void bpf_set_seen_register(struct codegen_context
*ctx
, int i
)
48 ctx
->seen
|= (1 << (31 - b2p
[i
]));
51 static inline bool bpf_has_stack_frame(struct codegen_context
*ctx
)
54 * We only need a stack frame if:
55 * - we call other functions (kernel helpers), or
56 * - the bpf program uses its stack area
57 * The latter condition is deduced from the usage of BPF_REG_FP
59 return ctx
->seen
& SEEN_FUNC
|| bpf_is_seen_register(ctx
, BPF_REG_FP
);
63 * When not setting up our own stackframe, the redzone usage is:
65 * [ prev sp ] <-------------
67 * sp (r1) ---> [ stack pointer ] --------------
68 * [ nv gpr save area ] 8*8
71 * [ unused red zone ] 208 bytes protected
73 static int bpf_jit_stack_local(struct codegen_context
*ctx
)
75 if (bpf_has_stack_frame(ctx
))
76 return STACK_FRAME_MIN_SIZE
+ MAX_BPF_STACK
;
78 return -(BPF_PPC_STACK_SAVE
+ 16);
81 static int bpf_jit_stack_tailcallcnt(struct codegen_context
*ctx
)
83 return bpf_jit_stack_local(ctx
) + 8;
86 static int bpf_jit_stack_offsetof(struct codegen_context
*ctx
, int reg
)
88 if (reg
>= BPF_PPC_NVR_MIN
&& reg
< 32)
89 return (bpf_has_stack_frame(ctx
) ? BPF_PPC_STACKFRAME
: 0)
92 pr_err("BPF JIT is asking about unknown registers");
96 static void bpf_jit_emit_skb_loads(u32
*image
, struct codegen_context
*ctx
)
99 * Load skb->len and skb->data_len
102 PPC_LWZ(b2p
[SKB_HLEN_REG
], 3, offsetof(struct sk_buff
, len
));
103 PPC_LWZ(b2p
[TMP_REG_1
], 3, offsetof(struct sk_buff
, data_len
));
104 /* header_len = len - data_len */
105 PPC_SUB(b2p
[SKB_HLEN_REG
], b2p
[SKB_HLEN_REG
], b2p
[TMP_REG_1
]);
107 /* skb->data pointer */
108 PPC_BPF_LL(b2p
[SKB_DATA_REG
], 3, offsetof(struct sk_buff
, data
));
111 static void bpf_jit_build_prologue(u32
*image
, struct codegen_context
*ctx
)
116 * Initialize tail_call_cnt if we do tail calls.
117 * Otherwise, put in NOPs so that it can be skipped when we are
118 * invoked through a tail call.
120 if (ctx
->seen
& SEEN_TAILCALL
) {
121 PPC_LI(b2p
[TMP_REG_1
], 0);
122 /* this goes in the redzone */
123 PPC_BPF_STL(b2p
[TMP_REG_1
], 1, -(BPF_PPC_STACK_SAVE
+ 8));
129 #define BPF_TAILCALL_PROLOGUE_SIZE 8
131 if (bpf_has_stack_frame(ctx
)) {
133 * We need a stack frame, but we don't necessarily need to
134 * save/restore LR unless we call other functions
136 if (ctx
->seen
& SEEN_FUNC
) {
137 EMIT(PPC_INST_MFLR
| __PPC_RT(R0
));
138 PPC_BPF_STL(0, 1, PPC_LR_STKOFF
);
141 PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME
);
145 * Back up non-volatile regs -- BPF registers 6-10
146 * If we haven't created our own stack frame, we save these
147 * in the protected zone below the previous stack frame
149 for (i
= BPF_REG_6
; i
<= BPF_REG_10
; i
++)
150 if (bpf_is_seen_register(ctx
, i
))
151 PPC_BPF_STL(b2p
[i
], 1, bpf_jit_stack_offsetof(ctx
, b2p
[i
]));
154 * Save additional non-volatile regs if we cache skb
155 * Also, setup skb data
157 if (ctx
->seen
& SEEN_SKB
) {
158 PPC_BPF_STL(b2p
[SKB_HLEN_REG
], 1,
159 bpf_jit_stack_offsetof(ctx
, b2p
[SKB_HLEN_REG
]));
160 PPC_BPF_STL(b2p
[SKB_DATA_REG
], 1,
161 bpf_jit_stack_offsetof(ctx
, b2p
[SKB_DATA_REG
]));
162 bpf_jit_emit_skb_loads(image
, ctx
);
165 /* Setup frame pointer to point to the bpf stack area */
166 if (bpf_is_seen_register(ctx
, BPF_REG_FP
))
167 PPC_ADDI(b2p
[BPF_REG_FP
], 1,
168 STACK_FRAME_MIN_SIZE
+ MAX_BPF_STACK
);
171 static void bpf_jit_emit_common_epilogue(u32
*image
, struct codegen_context
*ctx
)
176 for (i
= BPF_REG_6
; i
<= BPF_REG_10
; i
++)
177 if (bpf_is_seen_register(ctx
, i
))
178 PPC_BPF_LL(b2p
[i
], 1, bpf_jit_stack_offsetof(ctx
, b2p
[i
]));
180 /* Restore non-volatile registers used for skb cache */
181 if (ctx
->seen
& SEEN_SKB
) {
182 PPC_BPF_LL(b2p
[SKB_HLEN_REG
], 1,
183 bpf_jit_stack_offsetof(ctx
, b2p
[SKB_HLEN_REG
]));
184 PPC_BPF_LL(b2p
[SKB_DATA_REG
], 1,
185 bpf_jit_stack_offsetof(ctx
, b2p
[SKB_DATA_REG
]));
188 /* Tear down our stack frame */
189 if (bpf_has_stack_frame(ctx
)) {
190 PPC_ADDI(1, 1, BPF_PPC_STACKFRAME
);
191 if (ctx
->seen
& SEEN_FUNC
) {
192 PPC_BPF_LL(0, 1, PPC_LR_STKOFF
);
198 static void bpf_jit_build_epilogue(u32
*image
, struct codegen_context
*ctx
)
200 bpf_jit_emit_common_epilogue(image
, ctx
);
202 /* Move result to r3 */
203 PPC_MR(3, b2p
[BPF_REG_0
]);
208 static void bpf_jit_emit_func_call(u32
*image
, struct codegen_context
*ctx
, u64 func
)
210 #ifdef PPC64_ELF_ABI_v1
211 /* func points to the function descriptor */
212 PPC_LI64(b2p
[TMP_REG_2
], func
);
213 /* Load actual entry point from function descriptor */
214 PPC_BPF_LL(b2p
[TMP_REG_1
], b2p
[TMP_REG_2
], 0);
215 /* ... and move it to LR */
216 PPC_MTLR(b2p
[TMP_REG_1
]);
218 * Load TOC from function descriptor at offset 8.
219 * We can clobber r2 since we get called through a
220 * function pointer (so caller will save/restore r2)
221 * and since we don't use a TOC ourself.
223 PPC_BPF_LL(2, b2p
[TMP_REG_2
], 8);
225 /* We can clobber r12 */
226 PPC_FUNC_ADDR(12, func
);
232 static void bpf_jit_emit_tail_call(u32
*image
, struct codegen_context
*ctx
, u32 out
)
235 * By now, the eBPF program has already setup parameters in r3, r4 and r5
236 * r3/BPF_REG_1 - pointer to ctx -- passed as is to the next bpf program
237 * r4/BPF_REG_2 - pointer to bpf_array
238 * r5/BPF_REG_3 - index in bpf_array
240 int b2p_bpf_array
= b2p
[BPF_REG_2
];
241 int b2p_index
= b2p
[BPF_REG_3
];
244 * if (index >= array->map.max_entries)
247 PPC_LWZ(b2p
[TMP_REG_1
], b2p_bpf_array
, offsetof(struct bpf_array
, map
.max_entries
));
248 PPC_CMPLW(b2p_index
, b2p
[TMP_REG_1
]);
249 PPC_BCC(COND_GE
, out
);
252 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
255 PPC_LD(b2p
[TMP_REG_1
], 1, bpf_jit_stack_tailcallcnt(ctx
));
256 PPC_CMPLWI(b2p
[TMP_REG_1
], MAX_TAIL_CALL_CNT
);
257 PPC_BCC(COND_GT
, out
);
262 PPC_ADDI(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], 1);
263 PPC_BPF_STL(b2p
[TMP_REG_1
], 1, bpf_jit_stack_tailcallcnt(ctx
));
265 /* prog = array->ptrs[index]; */
266 PPC_MULI(b2p
[TMP_REG_1
], b2p_index
, 8);
267 PPC_ADD(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], b2p_bpf_array
);
268 PPC_LD(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], offsetof(struct bpf_array
, ptrs
));
274 PPC_CMPLDI(b2p
[TMP_REG_1
], 0);
275 PPC_BCC(COND_EQ
, out
);
277 /* goto *(prog->bpf_func + prologue_size); */
278 PPC_LD(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], offsetof(struct bpf_prog
, bpf_func
));
279 #ifdef PPC64_ELF_ABI_v1
280 /* skip past the function descriptor */
281 PPC_ADDI(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
],
282 FUNCTION_DESCR_SIZE
+ BPF_TAILCALL_PROLOGUE_SIZE
);
284 PPC_ADDI(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], BPF_TAILCALL_PROLOGUE_SIZE
);
286 PPC_MTCTR(b2p
[TMP_REG_1
]);
288 /* tear down stack, restore NVRs, ... */
289 bpf_jit_emit_common_epilogue(image
, ctx
);
295 /* Assemble the body code between the prologue & epilogue */
296 static int bpf_jit_build_body(struct bpf_prog
*fp
, u32
*image
,
297 struct codegen_context
*ctx
,
300 const struct bpf_insn
*insn
= fp
->insnsi
;
304 /* Start of epilogue code - will only be valid 2nd pass onwards */
305 u32 exit_addr
= addrs
[flen
];
307 for (i
= 0; i
< flen
; i
++) {
308 u32 code
= insn
[i
].code
;
309 u32 dst_reg
= b2p
[insn
[i
].dst_reg
];
310 u32 src_reg
= b2p
[insn
[i
].src_reg
];
311 s16 off
= insn
[i
].off
;
312 s32 imm
= insn
[i
].imm
;
318 * addrs[] maps a BPF bytecode address into a real offset from
319 * the start of the body code.
321 addrs
[i
] = ctx
->idx
* 4;
324 * As an optimization, we note down which non-volatile registers
325 * are used so that we can only save/restore those in our
326 * prologue and epilogue. We do this here regardless of whether
327 * the actual BPF instruction uses src/dst registers or not
328 * (for instance, BPF_CALL does not use them). The expectation
329 * is that those instructions will have src_reg/dst_reg set to
330 * 0. Even otherwise, we just lose some prologue/epilogue
331 * optimization but everything else should work without
334 if (dst_reg
>= BPF_PPC_NVR_MIN
&& dst_reg
< 32)
335 bpf_set_seen_register(ctx
, insn
[i
].dst_reg
);
336 if (src_reg
>= BPF_PPC_NVR_MIN
&& src_reg
< 32)
337 bpf_set_seen_register(ctx
, insn
[i
].src_reg
);
341 * Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG
343 case BPF_ALU
| BPF_ADD
| BPF_X
: /* (u32) dst += (u32) src */
344 case BPF_ALU64
| BPF_ADD
| BPF_X
: /* dst += src */
345 PPC_ADD(dst_reg
, dst_reg
, src_reg
);
346 goto bpf_alu32_trunc
;
347 case BPF_ALU
| BPF_SUB
| BPF_X
: /* (u32) dst -= (u32) src */
348 case BPF_ALU64
| BPF_SUB
| BPF_X
: /* dst -= src */
349 PPC_SUB(dst_reg
, dst_reg
, src_reg
);
350 goto bpf_alu32_trunc
;
351 case BPF_ALU
| BPF_ADD
| BPF_K
: /* (u32) dst += (u32) imm */
352 case BPF_ALU
| BPF_SUB
| BPF_K
: /* (u32) dst -= (u32) imm */
353 case BPF_ALU64
| BPF_ADD
| BPF_K
: /* dst += imm */
354 case BPF_ALU64
| BPF_SUB
| BPF_K
: /* dst -= imm */
355 if (BPF_OP(code
) == BPF_SUB
)
358 if (imm
>= -32768 && imm
< 32768)
359 PPC_ADDI(dst_reg
, dst_reg
, IMM_L(imm
));
361 PPC_LI32(b2p
[TMP_REG_1
], imm
);
362 PPC_ADD(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]);
365 goto bpf_alu32_trunc
;
366 case BPF_ALU
| BPF_MUL
| BPF_X
: /* (u32) dst *= (u32) src */
367 case BPF_ALU64
| BPF_MUL
| BPF_X
: /* dst *= src */
368 if (BPF_CLASS(code
) == BPF_ALU
)
369 PPC_MULW(dst_reg
, dst_reg
, src_reg
);
371 PPC_MULD(dst_reg
, dst_reg
, src_reg
);
372 goto bpf_alu32_trunc
;
373 case BPF_ALU
| BPF_MUL
| BPF_K
: /* (u32) dst *= (u32) imm */
374 case BPF_ALU64
| BPF_MUL
| BPF_K
: /* dst *= imm */
375 if (imm
>= -32768 && imm
< 32768)
376 PPC_MULI(dst_reg
, dst_reg
, IMM_L(imm
));
378 PPC_LI32(b2p
[TMP_REG_1
], imm
);
379 if (BPF_CLASS(code
) == BPF_ALU
)
380 PPC_MULW(dst_reg
, dst_reg
,
383 PPC_MULD(dst_reg
, dst_reg
,
386 goto bpf_alu32_trunc
;
387 case BPF_ALU
| BPF_DIV
| BPF_X
: /* (u32) dst /= (u32) src */
388 case BPF_ALU
| BPF_MOD
| BPF_X
: /* (u32) dst %= (u32) src */
389 PPC_CMPWI(src_reg
, 0);
390 PPC_BCC_SHORT(COND_NE
, (ctx
->idx
* 4) + 12);
391 PPC_LI(b2p
[BPF_REG_0
], 0);
393 if (BPF_OP(code
) == BPF_MOD
) {
394 PPC_DIVWU(b2p
[TMP_REG_1
], dst_reg
, src_reg
);
395 PPC_MULW(b2p
[TMP_REG_1
], src_reg
,
397 PPC_SUB(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]);
399 PPC_DIVWU(dst_reg
, dst_reg
, src_reg
);
400 goto bpf_alu32_trunc
;
401 case BPF_ALU64
| BPF_DIV
| BPF_X
: /* dst /= src */
402 case BPF_ALU64
| BPF_MOD
| BPF_X
: /* dst %= src */
403 PPC_CMPDI(src_reg
, 0);
404 PPC_BCC_SHORT(COND_NE
, (ctx
->idx
* 4) + 12);
405 PPC_LI(b2p
[BPF_REG_0
], 0);
407 if (BPF_OP(code
) == BPF_MOD
) {
408 PPC_DIVD(b2p
[TMP_REG_1
], dst_reg
, src_reg
);
409 PPC_MULD(b2p
[TMP_REG_1
], src_reg
,
411 PPC_SUB(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]);
413 PPC_DIVD(dst_reg
, dst_reg
, src_reg
);
415 case BPF_ALU
| BPF_MOD
| BPF_K
: /* (u32) dst %= (u32) imm */
416 case BPF_ALU
| BPF_DIV
| BPF_K
: /* (u32) dst /= (u32) imm */
417 case BPF_ALU64
| BPF_MOD
| BPF_K
: /* dst %= imm */
418 case BPF_ALU64
| BPF_DIV
| BPF_K
: /* dst /= imm */
422 goto bpf_alu32_trunc
;
424 PPC_LI32(b2p
[TMP_REG_1
], imm
);
425 switch (BPF_CLASS(code
)) {
427 if (BPF_OP(code
) == BPF_MOD
) {
428 PPC_DIVWU(b2p
[TMP_REG_2
], dst_reg
,
430 PPC_MULW(b2p
[TMP_REG_1
],
433 PPC_SUB(dst_reg
, dst_reg
,
436 PPC_DIVWU(dst_reg
, dst_reg
,
440 if (BPF_OP(code
) == BPF_MOD
) {
441 PPC_DIVD(b2p
[TMP_REG_2
], dst_reg
,
443 PPC_MULD(b2p
[TMP_REG_1
],
446 PPC_SUB(dst_reg
, dst_reg
,
449 PPC_DIVD(dst_reg
, dst_reg
,
453 goto bpf_alu32_trunc
;
454 case BPF_ALU
| BPF_NEG
: /* (u32) dst = -dst */
455 case BPF_ALU64
| BPF_NEG
: /* dst = -dst */
456 PPC_NEG(dst_reg
, dst_reg
);
457 goto bpf_alu32_trunc
;
460 * Logical operations: AND/OR/XOR/[A]LSH/[A]RSH
462 case BPF_ALU
| BPF_AND
| BPF_X
: /* (u32) dst = dst & src */
463 case BPF_ALU64
| BPF_AND
| BPF_X
: /* dst = dst & src */
464 PPC_AND(dst_reg
, dst_reg
, src_reg
);
465 goto bpf_alu32_trunc
;
466 case BPF_ALU
| BPF_AND
| BPF_K
: /* (u32) dst = dst & imm */
467 case BPF_ALU64
| BPF_AND
| BPF_K
: /* dst = dst & imm */
469 PPC_ANDI(dst_reg
, dst_reg
, IMM_L(imm
));
472 PPC_LI32(b2p
[TMP_REG_1
], imm
);
473 PPC_AND(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]);
475 goto bpf_alu32_trunc
;
476 case BPF_ALU
| BPF_OR
| BPF_X
: /* dst = (u32) dst | (u32) src */
477 case BPF_ALU64
| BPF_OR
| BPF_X
: /* dst = dst | src */
478 PPC_OR(dst_reg
, dst_reg
, src_reg
);
479 goto bpf_alu32_trunc
;
480 case BPF_ALU
| BPF_OR
| BPF_K
:/* dst = (u32) dst | (u32) imm */
481 case BPF_ALU64
| BPF_OR
| BPF_K
:/* dst = dst | imm */
482 if (imm
< 0 && BPF_CLASS(code
) == BPF_ALU64
) {
484 PPC_LI32(b2p
[TMP_REG_1
], imm
);
485 PPC_OR(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]);
488 PPC_ORI(dst_reg
, dst_reg
, IMM_L(imm
));
490 PPC_ORIS(dst_reg
, dst_reg
, IMM_H(imm
));
492 goto bpf_alu32_trunc
;
493 case BPF_ALU
| BPF_XOR
| BPF_X
: /* (u32) dst ^= src */
494 case BPF_ALU64
| BPF_XOR
| BPF_X
: /* dst ^= src */
495 PPC_XOR(dst_reg
, dst_reg
, src_reg
);
496 goto bpf_alu32_trunc
;
497 case BPF_ALU
| BPF_XOR
| BPF_K
: /* (u32) dst ^= (u32) imm */
498 case BPF_ALU64
| BPF_XOR
| BPF_K
: /* dst ^= imm */
499 if (imm
< 0 && BPF_CLASS(code
) == BPF_ALU64
) {
501 PPC_LI32(b2p
[TMP_REG_1
], imm
);
502 PPC_XOR(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]);
505 PPC_XORI(dst_reg
, dst_reg
, IMM_L(imm
));
507 PPC_XORIS(dst_reg
, dst_reg
, IMM_H(imm
));
509 goto bpf_alu32_trunc
;
510 case BPF_ALU
| BPF_LSH
| BPF_X
: /* (u32) dst <<= (u32) src */
511 /* slw clears top 32 bits */
512 PPC_SLW(dst_reg
, dst_reg
, src_reg
);
514 case BPF_ALU64
| BPF_LSH
| BPF_X
: /* dst <<= src; */
515 PPC_SLD(dst_reg
, dst_reg
, src_reg
);
517 case BPF_ALU
| BPF_LSH
| BPF_K
: /* (u32) dst <<== (u32) imm */
518 /* with imm 0, we still need to clear top 32 bits */
519 PPC_SLWI(dst_reg
, dst_reg
, imm
);
521 case BPF_ALU64
| BPF_LSH
| BPF_K
: /* dst <<== imm */
523 PPC_SLDI(dst_reg
, dst_reg
, imm
);
525 case BPF_ALU
| BPF_RSH
| BPF_X
: /* (u32) dst >>= (u32) src */
526 PPC_SRW(dst_reg
, dst_reg
, src_reg
);
528 case BPF_ALU64
| BPF_RSH
| BPF_X
: /* dst >>= src */
529 PPC_SRD(dst_reg
, dst_reg
, src_reg
);
531 case BPF_ALU
| BPF_RSH
| BPF_K
: /* (u32) dst >>= (u32) imm */
532 PPC_SRWI(dst_reg
, dst_reg
, imm
);
534 case BPF_ALU64
| BPF_RSH
| BPF_K
: /* dst >>= imm */
536 PPC_SRDI(dst_reg
, dst_reg
, imm
);
538 case BPF_ALU64
| BPF_ARSH
| BPF_X
: /* (s64) dst >>= src */
539 PPC_SRAD(dst_reg
, dst_reg
, src_reg
);
541 case BPF_ALU64
| BPF_ARSH
| BPF_K
: /* (s64) dst >>= imm */
543 PPC_SRADI(dst_reg
, dst_reg
, imm
);
549 case BPF_ALU
| BPF_MOV
| BPF_X
: /* (u32) dst = src */
550 case BPF_ALU64
| BPF_MOV
| BPF_X
: /* dst = src */
551 PPC_MR(dst_reg
, src_reg
);
552 goto bpf_alu32_trunc
;
553 case BPF_ALU
| BPF_MOV
| BPF_K
: /* (u32) dst = imm */
554 case BPF_ALU64
| BPF_MOV
| BPF_K
: /* dst = (s64) imm */
555 PPC_LI32(dst_reg
, imm
);
557 goto bpf_alu32_trunc
;
561 /* Truncate to 32-bits */
562 if (BPF_CLASS(code
) == BPF_ALU
)
563 PPC_RLWINM(dst_reg
, dst_reg
, 0, 0, 31);
569 case BPF_ALU
| BPF_END
| BPF_FROM_LE
:
570 case BPF_ALU
| BPF_END
| BPF_FROM_BE
:
571 #ifdef __BIG_ENDIAN__
572 if (BPF_SRC(code
) == BPF_FROM_BE
)
574 #else /* !__BIG_ENDIAN__ */
575 if (BPF_SRC(code
) == BPF_FROM_LE
)
580 /* Rotate 8 bits left & mask with 0x0000ff00 */
581 PPC_RLWINM(b2p
[TMP_REG_1
], dst_reg
, 8, 16, 23);
582 /* Rotate 8 bits right & insert LSB to reg */
583 PPC_RLWIMI(b2p
[TMP_REG_1
], dst_reg
, 24, 24, 31);
584 /* Move result back to dst_reg */
585 PPC_MR(dst_reg
, b2p
[TMP_REG_1
]);
589 * Rotate word left by 8 bits:
590 * 2 bytes are already in their final position
591 * -- byte 2 and 4 (of bytes 1, 2, 3 and 4)
593 PPC_RLWINM(b2p
[TMP_REG_1
], dst_reg
, 8, 0, 31);
594 /* Rotate 24 bits and insert byte 1 */
595 PPC_RLWIMI(b2p
[TMP_REG_1
], dst_reg
, 24, 0, 7);
596 /* Rotate 24 bits and insert byte 3 */
597 PPC_RLWIMI(b2p
[TMP_REG_1
], dst_reg
, 24, 16, 23);
598 PPC_MR(dst_reg
, b2p
[TMP_REG_1
]);
602 * Way easier and faster(?) to store the value
603 * into stack and then use ldbrx
605 * ctx->seen will be reliable in pass2, but
606 * the instructions generated will remain the
607 * same across all passes
609 PPC_STD(dst_reg
, 1, bpf_jit_stack_local(ctx
));
610 PPC_ADDI(b2p
[TMP_REG_1
], 1, bpf_jit_stack_local(ctx
));
611 PPC_LDBRX(dst_reg
, 0, b2p
[TMP_REG_1
]);
619 /* zero-extend 16 bits into 64 bits */
620 PPC_RLDICL(dst_reg
, dst_reg
, 0, 48);
623 /* zero-extend 32 bits into 64 bits */
624 PPC_RLDICL(dst_reg
, dst_reg
, 0, 32);
635 case BPF_STX
| BPF_MEM
| BPF_B
: /* *(u8 *)(dst + off) = src */
636 case BPF_ST
| BPF_MEM
| BPF_B
: /* *(u8 *)(dst + off) = imm */
637 if (BPF_CLASS(code
) == BPF_ST
) {
638 PPC_LI(b2p
[TMP_REG_1
], imm
);
639 src_reg
= b2p
[TMP_REG_1
];
641 PPC_STB(src_reg
, dst_reg
, off
);
643 case BPF_STX
| BPF_MEM
| BPF_H
: /* (u16 *)(dst + off) = src */
644 case BPF_ST
| BPF_MEM
| BPF_H
: /* (u16 *)(dst + off) = imm */
645 if (BPF_CLASS(code
) == BPF_ST
) {
646 PPC_LI(b2p
[TMP_REG_1
], imm
);
647 src_reg
= b2p
[TMP_REG_1
];
649 PPC_STH(src_reg
, dst_reg
, off
);
651 case BPF_STX
| BPF_MEM
| BPF_W
: /* *(u32 *)(dst + off) = src */
652 case BPF_ST
| BPF_MEM
| BPF_W
: /* *(u32 *)(dst + off) = imm */
653 if (BPF_CLASS(code
) == BPF_ST
) {
654 PPC_LI32(b2p
[TMP_REG_1
], imm
);
655 src_reg
= b2p
[TMP_REG_1
];
657 PPC_STW(src_reg
, dst_reg
, off
);
659 case BPF_STX
| BPF_MEM
| BPF_DW
: /* (u64 *)(dst + off) = src */
660 case BPF_ST
| BPF_MEM
| BPF_DW
: /* *(u64 *)(dst + off) = imm */
661 if (BPF_CLASS(code
) == BPF_ST
) {
662 PPC_LI32(b2p
[TMP_REG_1
], imm
);
663 src_reg
= b2p
[TMP_REG_1
];
665 PPC_STD(src_reg
, dst_reg
, off
);
669 * BPF_STX XADD (atomic_add)
671 /* *(u32 *)(dst + off) += src */
672 case BPF_STX
| BPF_XADD
| BPF_W
:
673 /* Get EA into TMP_REG_1 */
674 PPC_ADDI(b2p
[TMP_REG_1
], dst_reg
, off
);
675 /* error if EA is not word-aligned */
676 PPC_ANDI(b2p
[TMP_REG_2
], b2p
[TMP_REG_1
], 0x03);
677 PPC_BCC_SHORT(COND_EQ
, (ctx
->idx
* 4) + 12);
678 PPC_LI(b2p
[BPF_REG_0
], 0);
680 /* load value from memory into TMP_REG_2 */
681 PPC_BPF_LWARX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
], 0);
682 /* add value from src_reg into this */
683 PPC_ADD(b2p
[TMP_REG_2
], b2p
[TMP_REG_2
], src_reg
);
684 /* store result back */
685 PPC_BPF_STWCX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
]);
686 /* we're done if this succeeded */
687 PPC_BCC_SHORT(COND_EQ
, (ctx
->idx
* 4) + (7*4));
688 /* otherwise, let's try once more */
689 PPC_BPF_LWARX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
], 0);
690 PPC_ADD(b2p
[TMP_REG_2
], b2p
[TMP_REG_2
], src_reg
);
691 PPC_BPF_STWCX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
]);
692 /* exit if the store was not successful */
693 PPC_LI(b2p
[BPF_REG_0
], 0);
694 PPC_BCC(COND_NE
, exit_addr
);
696 /* *(u64 *)(dst + off) += src */
697 case BPF_STX
| BPF_XADD
| BPF_DW
:
698 PPC_ADDI(b2p
[TMP_REG_1
], dst_reg
, off
);
699 /* error if EA is not doubleword-aligned */
700 PPC_ANDI(b2p
[TMP_REG_2
], b2p
[TMP_REG_1
], 0x07);
701 PPC_BCC_SHORT(COND_EQ
, (ctx
->idx
* 4) + (3*4));
702 PPC_LI(b2p
[BPF_REG_0
], 0);
704 PPC_BPF_LDARX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
], 0);
705 PPC_ADD(b2p
[TMP_REG_2
], b2p
[TMP_REG_2
], src_reg
);
706 PPC_BPF_STDCX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
]);
707 PPC_BCC_SHORT(COND_EQ
, (ctx
->idx
* 4) + (7*4));
708 PPC_BPF_LDARX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
], 0);
709 PPC_ADD(b2p
[TMP_REG_2
], b2p
[TMP_REG_2
], src_reg
);
710 PPC_BPF_STDCX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
]);
711 PPC_LI(b2p
[BPF_REG_0
], 0);
712 PPC_BCC(COND_NE
, exit_addr
);
718 /* dst = *(u8 *)(ul) (src + off) */
719 case BPF_LDX
| BPF_MEM
| BPF_B
:
720 PPC_LBZ(dst_reg
, src_reg
, off
);
722 /* dst = *(u16 *)(ul) (src + off) */
723 case BPF_LDX
| BPF_MEM
| BPF_H
:
724 PPC_LHZ(dst_reg
, src_reg
, off
);
726 /* dst = *(u32 *)(ul) (src + off) */
727 case BPF_LDX
| BPF_MEM
| BPF_W
:
728 PPC_LWZ(dst_reg
, src_reg
, off
);
730 /* dst = *(u64 *)(ul) (src + off) */
731 case BPF_LDX
| BPF_MEM
| BPF_DW
:
732 PPC_LD(dst_reg
, src_reg
, off
);
737 * 16 byte instruction that uses two 'struct bpf_insn'
739 case BPF_LD
| BPF_IMM
| BPF_DW
: /* dst = (u64) imm */
740 imm64
= ((u64
)(u32
) insn
[i
].imm
) |
741 (((u64
)(u32
) insn
[i
+1].imm
) << 32);
742 /* Adjust for two bpf instructions */
743 addrs
[++i
] = ctx
->idx
* 4;
744 PPC_LI64(dst_reg
, imm64
);
750 case BPF_JMP
| BPF_EXIT
:
752 * If this isn't the very last instruction, branch to
753 * the epilogue. If we _are_ the last instruction,
754 * we'll just fall through to the epilogue.
758 /* else fall through to the epilogue */
764 case BPF_JMP
| BPF_CALL
:
765 ctx
->seen
|= SEEN_FUNC
;
766 func
= (u8
*) __bpf_call_base
+ imm
;
768 /* Save skb pointer if we need to re-cache skb data */
769 if (bpf_helper_changes_pkt_data(func
))
770 PPC_BPF_STL(3, 1, bpf_jit_stack_local(ctx
));
772 bpf_jit_emit_func_call(image
, ctx
, (u64
)func
);
774 /* move return value from r3 to BPF_REG_0 */
775 PPC_MR(b2p
[BPF_REG_0
], 3);
777 /* refresh skb cache */
778 if (bpf_helper_changes_pkt_data(func
)) {
779 /* reload skb pointer to r3 */
780 PPC_BPF_LL(3, 1, bpf_jit_stack_local(ctx
));
781 bpf_jit_emit_skb_loads(image
, ctx
);
788 case BPF_JMP
| BPF_JA
:
789 PPC_JMP(addrs
[i
+ 1 + off
]);
792 case BPF_JMP
| BPF_JGT
| BPF_K
:
793 case BPF_JMP
| BPF_JGT
| BPF_X
:
794 case BPF_JMP
| BPF_JSGT
| BPF_K
:
795 case BPF_JMP
| BPF_JSGT
| BPF_X
:
798 case BPF_JMP
| BPF_JGE
| BPF_K
:
799 case BPF_JMP
| BPF_JGE
| BPF_X
:
800 case BPF_JMP
| BPF_JSGE
| BPF_K
:
801 case BPF_JMP
| BPF_JSGE
| BPF_X
:
804 case BPF_JMP
| BPF_JEQ
| BPF_K
:
805 case BPF_JMP
| BPF_JEQ
| BPF_X
:
808 case BPF_JMP
| BPF_JNE
| BPF_K
:
809 case BPF_JMP
| BPF_JNE
| BPF_X
:
812 case BPF_JMP
| BPF_JSET
| BPF_K
:
813 case BPF_JMP
| BPF_JSET
| BPF_X
:
819 case BPF_JMP
| BPF_JGT
| BPF_X
:
820 case BPF_JMP
| BPF_JGE
| BPF_X
:
821 case BPF_JMP
| BPF_JEQ
| BPF_X
:
822 case BPF_JMP
| BPF_JNE
| BPF_X
:
823 /* unsigned comparison */
824 PPC_CMPLD(dst_reg
, src_reg
);
826 case BPF_JMP
| BPF_JSGT
| BPF_X
:
827 case BPF_JMP
| BPF_JSGE
| BPF_X
:
828 /* signed comparison */
829 PPC_CMPD(dst_reg
, src_reg
);
831 case BPF_JMP
| BPF_JSET
| BPF_X
:
832 PPC_AND_DOT(b2p
[TMP_REG_1
], dst_reg
, src_reg
);
834 case BPF_JMP
| BPF_JNE
| BPF_K
:
835 case BPF_JMP
| BPF_JEQ
| BPF_K
:
836 case BPF_JMP
| BPF_JGT
| BPF_K
:
837 case BPF_JMP
| BPF_JGE
| BPF_K
:
839 * Need sign-extended load, so only positive
840 * values can be used as imm in cmpldi
842 if (imm
>= 0 && imm
< 32768)
843 PPC_CMPLDI(dst_reg
, imm
);
845 /* sign-extending load */
846 PPC_LI32(b2p
[TMP_REG_1
], imm
);
847 /* ... but unsigned comparison */
848 PPC_CMPLD(dst_reg
, b2p
[TMP_REG_1
]);
851 case BPF_JMP
| BPF_JSGT
| BPF_K
:
852 case BPF_JMP
| BPF_JSGE
| BPF_K
:
854 * signed comparison, so any 16-bit value
855 * can be used in cmpdi
857 if (imm
>= -32768 && imm
< 32768)
858 PPC_CMPDI(dst_reg
, imm
);
860 PPC_LI32(b2p
[TMP_REG_1
], imm
);
861 PPC_CMPD(dst_reg
, b2p
[TMP_REG_1
]);
864 case BPF_JMP
| BPF_JSET
| BPF_K
:
865 /* andi does not sign-extend the immediate */
866 if (imm
>= 0 && imm
< 32768)
867 /* PPC_ANDI is _only/always_ dot-form */
868 PPC_ANDI(b2p
[TMP_REG_1
], dst_reg
, imm
);
870 PPC_LI32(b2p
[TMP_REG_1
], imm
);
871 PPC_AND_DOT(b2p
[TMP_REG_1
], dst_reg
,
876 PPC_BCC(true_cond
, addrs
[i
+ 1 + off
]);
880 * Loads from packet header/data
881 * Assume 32-bit input value in imm and X (src_reg)
885 case BPF_LD
| BPF_W
| BPF_ABS
:
886 func
= (u8
*)CHOOSE_LOAD_FUNC(imm
, sk_load_word
);
887 goto common_load_abs
;
888 case BPF_LD
| BPF_H
| BPF_ABS
:
889 func
= (u8
*)CHOOSE_LOAD_FUNC(imm
, sk_load_half
);
890 goto common_load_abs
;
891 case BPF_LD
| BPF_B
| BPF_ABS
:
892 func
= (u8
*)CHOOSE_LOAD_FUNC(imm
, sk_load_byte
);
896 * Load into r4, which can just be passed onto
897 * skb load helpers as the second parameter
903 case BPF_LD
| BPF_W
| BPF_IND
:
904 func
= (u8
*)sk_load_word
;
905 goto common_load_ind
;
906 case BPF_LD
| BPF_H
| BPF_IND
:
907 func
= (u8
*)sk_load_half
;
908 goto common_load_ind
;
909 case BPF_LD
| BPF_B
| BPF_IND
:
910 func
= (u8
*)sk_load_byte
;
913 * Load from [src_reg + imm]
914 * Treat src_reg as a 32-bit value
916 PPC_EXTSW(4, src_reg
);
918 if (imm
>= -32768 && imm
< 32768)
919 PPC_ADDI(4, 4, IMM_L(imm
));
921 PPC_LI32(b2p
[TMP_REG_1
], imm
);
922 PPC_ADD(4, 4, b2p
[TMP_REG_1
]);
927 ctx
->seen
|= SEEN_SKB
;
928 ctx
->seen
|= SEEN_FUNC
;
929 bpf_jit_emit_func_call(image
, ctx
, (u64
)func
);
932 * Helper returns 'lt' condition on error, and an
933 * appropriate return value in BPF_REG_0
935 PPC_BCC(COND_LT
, exit_addr
);
941 case BPF_JMP
| BPF_TAIL_CALL
:
942 ctx
->seen
|= SEEN_TAILCALL
;
943 bpf_jit_emit_tail_call(image
, ctx
, addrs
[i
+ 1]);
948 * The filter contains something cruel & unusual.
949 * We don't handle it, but also there shouldn't be
950 * anything missing from our list.
952 pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n",
958 /* Set end-of-body-code address for exit. */
959 addrs
[i
] = ctx
->idx
* 4;
964 struct bpf_prog
*bpf_int_jit_compile(struct bpf_prog
*fp
)
971 struct codegen_context cgctx
;
974 struct bpf_binary_header
*bpf_hdr
;
975 struct bpf_prog
*org_fp
= fp
;
976 struct bpf_prog
*tmp_fp
;
977 bool bpf_blinded
= false;
982 tmp_fp
= bpf_jit_blind_constants(org_fp
);
986 if (tmp_fp
!= org_fp
) {
992 addrs
= kzalloc((flen
+1) * sizeof(*addrs
), GFP_KERNEL
);
998 memset(&cgctx
, 0, sizeof(struct codegen_context
));
1000 /* Scouting faux-generate pass 0 */
1001 if (bpf_jit_build_body(fp
, 0, &cgctx
, addrs
)) {
1002 /* We hit something illegal or unsupported. */
1008 * Pretend to build prologue, given the features we've seen. This will
1009 * update ctgtx.idx as it pretends to output instructions, then we can
1010 * calculate total size from idx.
1012 bpf_jit_build_prologue(0, &cgctx
);
1013 bpf_jit_build_epilogue(0, &cgctx
);
1015 proglen
= cgctx
.idx
* 4;
1016 alloclen
= proglen
+ FUNCTION_DESCR_SIZE
;
1018 bpf_hdr
= bpf_jit_binary_alloc(alloclen
, &image
, 4,
1019 bpf_jit_fill_ill_insns
);
1025 code_base
= (u32
*)(image
+ FUNCTION_DESCR_SIZE
);
1027 /* Code generation passes 1-2 */
1028 for (pass
= 1; pass
< 3; pass
++) {
1029 /* Now build the prologue, body code & epilogue for real. */
1031 bpf_jit_build_prologue(code_base
, &cgctx
);
1032 bpf_jit_build_body(fp
, code_base
, &cgctx
, addrs
);
1033 bpf_jit_build_epilogue(code_base
, &cgctx
);
1035 if (bpf_jit_enable
> 1)
1036 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass
,
1037 proglen
- (cgctx
.idx
* 4), cgctx
.seen
);
1040 if (bpf_jit_enable
> 1)
1042 * Note that we output the base address of the code_base
1043 * rather than image, since opcodes are in code_base.
1045 bpf_jit_dump(flen
, proglen
, pass
, code_base
);
1047 #ifdef PPC64_ELF_ABI_v1
1048 /* Function descriptor nastiness: Address + TOC */
1049 ((u64
*)image
)[0] = (u64
)code_base
;
1050 ((u64
*)image
)[1] = local_paca
->kernel_toc
;
1053 fp
->bpf_func
= (void *)image
;
1055 fp
->jited_len
= alloclen
;
1057 bpf_flush_icache(bpf_hdr
, (u8
*)bpf_hdr
+ (bpf_hdr
->pages
* PAGE_SIZE
));
1063 bpf_jit_prog_release_other(fp
, fp
== org_fp
? tmp_fp
: org_fp
);
1068 /* Overriding bpf_jit_free() as we don't set images read-only. */
1069 void bpf_jit_free(struct bpf_prog
*fp
)
1071 unsigned long addr
= (unsigned long)fp
->bpf_func
& PAGE_MASK
;
1072 struct bpf_binary_header
*bpf_hdr
= (void *)addr
;
1075 bpf_jit_binary_free(bpf_hdr
);
1077 bpf_prog_unlock_free(fp
);