Merge tag 'chrome-platform-for-linus-4.13' of git://git.kernel.org/pub/scm/linux...
[linux/fpc-iii.git] / arch / unicore32 / include / asm / pgtable.h
bloba4f2bef37e70697f215e916118775da8dbc4aad6
1 /*
2 * linux/arch/unicore32/include/asm/pgtable.h
4 * Code specific to PKUnity SoC and UniCore ISA
6 * Copyright (C) 2001-2010 GUAN Xue-tao
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #ifndef __UNICORE_PGTABLE_H__
13 #define __UNICORE_PGTABLE_H__
15 #define __ARCH_USE_5LEVEL_HACK
16 #include <asm-generic/pgtable-nopmd.h>
17 #include <asm/cpu-single.h>
19 #include <asm/memory.h>
20 #include <asm/pgtable-hwdef.h>
23 * Just any arbitrary offset to the start of the vmalloc VM area: the
24 * current 8MB value just means that there will be a 8MB "hole" after the
25 * physical memory until the kernel virtual memory starts. That means that
26 * any out-of-bounds memory accesses will hopefully be caught.
27 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
28 * area for the same reason. ;)
30 * Note that platforms may override VMALLOC_START, but they must provide
31 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
32 * which may not overlap IO space.
34 #ifndef VMALLOC_START
35 #define VMALLOC_OFFSET SZ_8M
36 #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) \
37 & ~(VMALLOC_OFFSET-1))
38 #define VMALLOC_END (0xff000000UL)
39 #endif
41 #define PTRS_PER_PTE 1024
42 #define PTRS_PER_PGD 1024
45 * PGDIR_SHIFT determines what a third-level page table entry can map
47 #define PGDIR_SHIFT 22
49 #ifndef __ASSEMBLY__
50 extern void __pte_error(const char *file, int line, unsigned long val);
51 extern void __pgd_error(const char *file, int line, unsigned long val);
53 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
54 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
55 #endif /* !__ASSEMBLY__ */
57 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
58 #define PGDIR_MASK (~(PGDIR_SIZE-1))
61 * This is the lowest virtual address we can permit any user space
62 * mapping to be mapped at. This is particularly important for
63 * non-high vector CPUs.
65 #define FIRST_USER_ADDRESS PAGE_SIZE
67 #define FIRST_USER_PGD_NR 1
68 #define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
71 * section address mask and size definitions.
73 #define SECTION_SHIFT 22
74 #define SECTION_SIZE (1UL << SECTION_SHIFT)
75 #define SECTION_MASK (~(SECTION_SIZE-1))
77 #ifndef __ASSEMBLY__
80 * The pgprot_* and protection_map entries will be fixed up in runtime
81 * to include the cachable bits based on memory policy, as well as any
82 * architecture dependent bits.
84 #define _PTE_DEFAULT (PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE)
86 extern pgprot_t pgprot_user;
87 extern pgprot_t pgprot_kernel;
89 #define PAGE_NONE pgprot_user
90 #define PAGE_SHARED __pgprot(pgprot_val(pgprot_user | PTE_READ \
91 | PTE_WRITE))
92 #define PAGE_SHARED_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \
93 | PTE_WRITE \
94 | PTE_EXEC))
95 #define PAGE_COPY __pgprot(pgprot_val(pgprot_user | PTE_READ)
96 #define PAGE_COPY_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \
97 | PTE_EXEC))
98 #define PAGE_READONLY __pgprot(pgprot_val(pgprot_user | PTE_READ))
99 #define PAGE_READONLY_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \
100 | PTE_EXEC))
101 #define PAGE_KERNEL pgprot_kernel
102 #define PAGE_KERNEL_EXEC __pgprot(pgprot_val(pgprot_kernel | PTE_EXEC))
104 #define __PAGE_NONE __pgprot(_PTE_DEFAULT)
105 #define __PAGE_SHARED __pgprot(_PTE_DEFAULT | PTE_READ \
106 | PTE_WRITE)
107 #define __PAGE_SHARED_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \
108 | PTE_WRITE \
109 | PTE_EXEC)
110 #define __PAGE_COPY __pgprot(_PTE_DEFAULT | PTE_READ)
111 #define __PAGE_COPY_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \
112 | PTE_EXEC)
113 #define __PAGE_READONLY __pgprot(_PTE_DEFAULT | PTE_READ)
114 #define __PAGE_READONLY_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \
115 | PTE_EXEC)
117 #endif /* __ASSEMBLY__ */
120 * The table below defines the page protection levels that we insert into our
121 * Linux page table version. These get translated into the best that the
122 * architecture can perform. Note that on UniCore hardware:
123 * 1) We cannot do execute protection
124 * 2) If we could do execute protection, then read is implied
125 * 3) write implies read permissions
127 #define __P000 __PAGE_NONE
128 #define __P001 __PAGE_READONLY
129 #define __P010 __PAGE_COPY
130 #define __P011 __PAGE_COPY
131 #define __P100 __PAGE_READONLY_EXEC
132 #define __P101 __PAGE_READONLY_EXEC
133 #define __P110 __PAGE_COPY_EXEC
134 #define __P111 __PAGE_COPY_EXEC
136 #define __S000 __PAGE_NONE
137 #define __S001 __PAGE_READONLY
138 #define __S010 __PAGE_SHARED
139 #define __S011 __PAGE_SHARED
140 #define __S100 __PAGE_READONLY_EXEC
141 #define __S101 __PAGE_READONLY_EXEC
142 #define __S110 __PAGE_SHARED_EXEC
143 #define __S111 __PAGE_SHARED_EXEC
145 #ifndef __ASSEMBLY__
147 * ZERO_PAGE is a global shared page that is always zero: used
148 * for zero-mapped memory areas etc..
150 extern struct page *empty_zero_page;
151 #define ZERO_PAGE(vaddr) (empty_zero_page)
153 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
154 #define pfn_pte(pfn, prot) (__pte(((pfn) << PAGE_SHIFT) \
155 | pgprot_val(prot)))
157 #define pte_none(pte) (!pte_val(pte))
158 #define pte_clear(mm, addr, ptep) set_pte(ptep, __pte(0))
159 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
160 #define pte_offset_kernel(dir, addr) (pmd_page_vaddr(*(dir)) \
161 + __pte_index(addr))
163 #define pte_offset_map(dir, addr) (pmd_page_vaddr(*(dir)) \
164 + __pte_index(addr))
165 #define pte_unmap(pte) do { } while (0)
167 #define set_pte(ptep, pte) cpu_set_pte(ptep, pte)
169 #define set_pte_at(mm, addr, ptep, pteval) \
170 do { \
171 set_pte(ptep, pteval); \
172 } while (0)
175 * The following only work if pte_present() is true.
176 * Undefined behaviour if not..
178 #define pte_present(pte) (pte_val(pte) & PTE_PRESENT)
179 #define pte_write(pte) (pte_val(pte) & PTE_WRITE)
180 #define pte_dirty(pte) (pte_val(pte) & PTE_DIRTY)
181 #define pte_young(pte) (pte_val(pte) & PTE_YOUNG)
182 #define pte_exec(pte) (pte_val(pte) & PTE_EXEC)
183 #define pte_special(pte) (0)
185 #define PTE_BIT_FUNC(fn, op) \
186 static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
188 PTE_BIT_FUNC(wrprotect, &= ~PTE_WRITE);
189 PTE_BIT_FUNC(mkwrite, |= PTE_WRITE);
190 PTE_BIT_FUNC(mkclean, &= ~PTE_DIRTY);
191 PTE_BIT_FUNC(mkdirty, |= PTE_DIRTY);
192 PTE_BIT_FUNC(mkold, &= ~PTE_YOUNG);
193 PTE_BIT_FUNC(mkyoung, |= PTE_YOUNG);
195 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
198 * Mark the prot value as uncacheable.
200 #define pgprot_noncached(prot) \
201 __pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
202 #define pgprot_writecombine(prot) \
203 __pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
204 #define pgprot_dmacoherent(prot) \
205 __pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
207 #define pmd_none(pmd) (!pmd_val(pmd))
208 #define pmd_present(pmd) (pmd_val(pmd) & PMD_PRESENT)
209 #define pmd_bad(pmd) (((pmd_val(pmd) & \
210 (PMD_PRESENT | PMD_TYPE_MASK)) \
211 != (PMD_PRESENT | PMD_TYPE_TABLE)))
213 #define set_pmd(pmdpd, pmdval) \
214 do { \
215 *(pmdpd) = pmdval; \
216 } while (0)
218 #define pmd_clear(pmdp) \
219 do { \
220 set_pmd(pmdp, __pmd(0));\
221 clean_pmd_entry(pmdp); \
222 } while (0)
224 #define pmd_page_vaddr(pmd) ((pte_t *)__va(pmd_val(pmd) & PAGE_MASK))
225 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
228 * Conversion functions: convert a page and protection to a page entry,
229 * and a page entry and page directory to the page they refer to.
231 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
233 /* to find an entry in a page-table-directory */
234 #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
236 #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
238 /* to find an entry in a kernel page-table-directory */
239 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
241 /* Find an entry in the third-level page table.. */
242 #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
244 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
246 const unsigned long mask = PTE_EXEC | PTE_WRITE | PTE_READ;
247 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
248 return pte;
251 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
254 * Encode and decode a swap entry. Swap entries are stored in the Linux
255 * page tables as follows:
257 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
258 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
259 * <--------------- offset --------------> <--- type --> 0 0 0 0 0
261 * This gives us up to 127 swap files and 32GB per swap file. Note that
262 * the offset field is always non-zero.
264 #define __SWP_TYPE_SHIFT 5
265 #define __SWP_TYPE_BITS 7
266 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
267 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
269 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) \
270 & __SWP_TYPE_MASK)
271 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
272 #define __swp_entry(type, offset) ((swp_entry_t) { \
273 ((type) << __SWP_TYPE_SHIFT) | \
274 ((offset) << __SWP_OFFSET_SHIFT) })
276 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
277 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
280 * It is an error for the kernel to have more swap files than we can
281 * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
282 * is increased beyond what we presently support.
284 #define MAX_SWAPFILES_CHECK() \
285 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
287 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
288 /* FIXME: this is not correct */
289 #define kern_addr_valid(addr) (1)
291 #include <asm-generic/pgtable.h>
293 #define pgtable_cache_init() do { } while (0)
295 #endif /* !__ASSEMBLY__ */
297 #endif /* __UNICORE_PGTABLE_H__ */