2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * SGI UV architectural definitions
8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
19 #include <linux/topology.h>
20 #include <asm/types.h>
21 #include <asm/percpu.h>
22 #include <asm/uv/uv_mmrs.h>
23 #include <asm/uv/bios.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/io_apic.h>
29 * Addressing Terminology
31 * M - The low M bits of a physical address represent the offset
32 * into the blade local memory. RAM memory on a blade is physically
33 * contiguous (although various IO spaces may punch holes in
36 * N - Number of bits in the node portion of a socket physical
39 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
40 * routers always have low bit of 1, C/MBricks have low bit
41 * equal to 0. Most addressing macros that target UV hub chips
42 * right shift the NASID by 1 to exclude the always-zero bit.
43 * NASIDs contain up to 15 bits.
45 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
48 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
49 * of the nasid for socket usage.
51 * GPA - (global physical address) a socket physical address converted
52 * so that it can be used by the GRU as a global address. Socket
53 * physical addresses 1) need additional NASID (node) bits added
54 * to the high end of the address, and 2) unaliased if the
55 * partition does not have a physical address 0. In addition, on
56 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
59 * NumaLink Global Physical Address Format:
60 * +--------------------------------+---------------------+
61 * |00..000| GNODE | NodeOffset |
62 * +--------------------------------+---------------------+
63 * |<-------53 - M bits --->|<--------M bits ----->
65 * M - number of node offset bits (35 .. 40)
68 * Memory/UV-HUB Processor Socket Address Format:
69 * +----------------+---------------+---------------------+
70 * |00..000000000000| PNODE | NodeOffset |
71 * +----------------+---------------+---------------------+
72 * <--- N bits --->|<--------M bits ----->
74 * M - number of node offset bits (35 .. 40)
75 * N - number of PNODE bits (0 .. 10)
77 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
78 * The actual values are configuration dependent and are set at
79 * boot time. M & N values are set by the hardware/BIOS at boot.
83 * NOTE!!!!!! This is the current format of the APICID. However, code
84 * should assume that this will change in the future. Use functions
85 * in this file for all APICID bit manipulations and conversion.
89 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
90 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
91 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
95 * l = socket number on board
98 * s = bits that are in the SOCKET_ID CSR
100 * Note: Processor may support fewer bits in the APICID register. The ACPI
101 * tables hold all 16 bits. Software needs to be aware of this.
103 * Unless otherwise specified, all references to APICID refer to
104 * the FULL value contained in ACPI tables, not the subset in the
105 * processor APICID register.
109 * Maximum number of bricks in all partitions and in all coherency domains.
110 * This is the total number of bricks accessible in the numalink fabric. It
111 * includes all C & M bricks. Routers are NOT included.
113 * This value is also the value of the maximum number of non-router NASIDs
114 * in the numalink fabric.
116 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
118 #define UV_MAX_NUMALINK_BLADES 16384
121 * Maximum number of C/Mbricks within a software SSI (hardware may support
124 #define UV_MAX_SSI_BLADES 256
127 * The largest possible NASID of a C or M brick (+ 2)
129 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
131 /* System Controller Interface Reg info */
133 struct timer_list timer
;
134 unsigned long offset
;
136 unsigned long idle_on
;
137 unsigned long idle_off
;
139 unsigned char enabled
;
142 /* GAM (globally addressed memory) range table */
143 struct uv_gam_range_s
{
144 u32 limit
; /* PA bits 56:26 (GAM_RANGE_SHFT) */
145 u16 nasid
; /* node's global physical address */
146 s8 base
; /* entry index of node's base addr */
151 * The following defines attributes of the HUB chip. These attributes are
152 * frequently referenced and are kept in a common per hub struct.
153 * After setup, the struct is read only, so it should be readily
154 * available in the L3 cache on the cpu socket for the node.
156 struct uv_hub_info_s
{
157 unsigned long global_mmr_base
;
158 unsigned long global_mmr_shift
;
159 unsigned long gpa_mask
;
160 unsigned short *socket_to_node
;
161 unsigned short *socket_to_pnode
;
162 unsigned short *pnode_to_socket
;
163 struct uv_gam_range_s
*gr_table
;
164 unsigned short min_socket
;
165 unsigned short min_pnode
;
168 unsigned char gr_table_len
;
169 unsigned char hub_revision
;
170 unsigned char apic_pnode_shift
;
171 unsigned char gpa_shift
;
172 unsigned char m_shift
;
173 unsigned char n_lshift
;
174 unsigned int gnode_extra
;
175 unsigned long gnode_upper
;
176 unsigned long lowmem_remap_top
;
177 unsigned long lowmem_remap_base
;
178 unsigned long global_gru_base
;
179 unsigned long global_gru_shift
;
180 unsigned short pnode
;
181 unsigned short pnode_mask
;
182 unsigned short coherency_domain_number
;
183 unsigned short numa_blade_id
;
184 unsigned short nr_possible_cpus
;
185 unsigned short nr_online_cpus
;
189 /* CPU specific info with a pointer to the hub common info struct */
190 struct uv_cpu_info_s
{
192 unsigned char blade_cpu_id
;
193 struct uv_scir_s scir
;
195 DECLARE_PER_CPU(struct uv_cpu_info_s
, __uv_cpu_info
);
197 #define uv_cpu_info this_cpu_ptr(&__uv_cpu_info)
198 #define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu))
200 #define uv_scir_info (&uv_cpu_info->scir)
201 #define uv_cpu_scir_info(cpu) (&uv_cpu_info_per(cpu)->scir)
203 /* Node specific hub common info struct */
204 extern void **__uv_hub_info_list
;
205 static inline struct uv_hub_info_s
*uv_hub_info_list(int node
)
207 return (struct uv_hub_info_s
*)__uv_hub_info_list
[node
];
210 static inline struct uv_hub_info_s
*_uv_hub_info(void)
212 return (struct uv_hub_info_s
*)uv_cpu_info
->p_uv_hub_info
;
214 #define uv_hub_info _uv_hub_info()
216 static inline struct uv_hub_info_s
*uv_cpu_hub_info(int cpu
)
218 return (struct uv_hub_info_s
*)uv_cpu_info_per(cpu
)->p_uv_hub_info
;
221 #define UV_HUB_INFO_VERSION 0x7150
222 extern int uv_hub_info_version(void);
223 static inline int uv_hub_info_check(int version
)
225 if (uv_hub_info_version() == version
)
228 pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
229 uv_hub_info_version(), version
);
231 BUG(); /* Catastrophic - cannot continue on unknown UV system */
233 #define _uv_hub_info_check() uv_hub_info_check(UV_HUB_INFO_VERSION)
236 * HUB revision ranges for each UV HUB architecture.
237 * This is a software convention - NOT the hardware revision numbers in
240 #define UV1_HUB_REVISION_BASE 1
241 #define UV2_HUB_REVISION_BASE 3
242 #define UV3_HUB_REVISION_BASE 5
243 #define UV4_HUB_REVISION_BASE 7
245 #ifdef UV1_HUB_IS_SUPPORTED
246 static inline int is_uv1_hub(void)
248 return uv_hub_info
->hub_revision
< UV2_HUB_REVISION_BASE
;
251 static inline int is_uv1_hub(void)
257 #ifdef UV2_HUB_IS_SUPPORTED
258 static inline int is_uv2_hub(void)
260 return ((uv_hub_info
->hub_revision
>= UV2_HUB_REVISION_BASE
) &&
261 (uv_hub_info
->hub_revision
< UV3_HUB_REVISION_BASE
));
264 static inline int is_uv2_hub(void)
270 #ifdef UV3_HUB_IS_SUPPORTED
271 static inline int is_uv3_hub(void)
273 return ((uv_hub_info
->hub_revision
>= UV3_HUB_REVISION_BASE
) &&
274 (uv_hub_info
->hub_revision
< UV4_HUB_REVISION_BASE
));
277 static inline int is_uv3_hub(void)
283 #ifdef UV4_HUB_IS_SUPPORTED
284 static inline int is_uv4_hub(void)
286 return uv_hub_info
->hub_revision
>= UV4_HUB_REVISION_BASE
;
289 static inline int is_uv4_hub(void)
295 static inline int is_uvx_hub(void)
297 if (uv_hub_info
->hub_revision
>= UV2_HUB_REVISION_BASE
)
298 return uv_hub_info
->hub_revision
;
303 static inline int is_uv_hub(void)
305 #ifdef UV1_HUB_IS_SUPPORTED
306 return uv_hub_info
->hub_revision
;
313 struct uvh_apicid_s
{
314 unsigned long local_apic_mask
: 24;
315 unsigned long local_apic_shift
: 5;
316 unsigned long unused1
: 3;
317 unsigned long pnode_mask
: 24;
318 unsigned long pnode_shift
: 5;
319 unsigned long unused2
: 3;
324 * Local & Global MMR space macros.
325 * Note: macros are intended to be used ONLY by inline functions
326 * in this file - not by other kernel code.
327 * n - NASID (full 15-bit global nasid)
328 * g - GNODE (full 15-bit global nasid, right shifted 1)
329 * p - PNODE (local part of nsids, right shifted 1)
331 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
332 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
333 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
335 #define UV1_LOCAL_MMR_BASE 0xf4000000UL
336 #define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
337 #define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
338 #define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
340 #define UV2_LOCAL_MMR_BASE 0xfa000000UL
341 #define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
342 #define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
343 #define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
345 #define UV3_LOCAL_MMR_BASE 0xfa000000UL
346 #define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
347 #define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
348 #define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
350 #define UV4_LOCAL_MMR_BASE 0xfa000000UL
351 #define UV4_GLOBAL_MMR32_BASE 0xfc000000UL
352 #define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
353 #define UV4_GLOBAL_MMR32_SIZE (16UL * 1024 * 1024)
355 #define UV_LOCAL_MMR_BASE ( \
356 is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
357 is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
358 is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
359 /*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
361 #define UV_GLOBAL_MMR32_BASE ( \
362 is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
363 is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
364 is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
365 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
367 #define UV_LOCAL_MMR_SIZE ( \
368 is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
369 is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
370 is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
371 /*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
373 #define UV_GLOBAL_MMR32_SIZE ( \
374 is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
375 is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
376 is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
377 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
379 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
381 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000
383 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
384 #define _UV_GLOBAL_MMR64_PNODE_SHIFT 26
385 #define UV_GLOBAL_MMR64_PNODE_SHIFT (uv_hub_info->global_mmr_shift)
387 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
389 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
390 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
392 #define UVH_APICID 0x002D0E00L
393 #define UV_APIC_PNODE_SHIFT 6
395 #define UV_APICID_HIBIT_MASK 0xffff0000
397 /* Local Bus from cpu's perspective */
398 #define LOCAL_BUS_BASE 0x1c00000
399 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
402 * System Controller Interface Reg
404 * Note there are NO leds on a UV system. This register is only
405 * used by the system controller to monitor system-wide operation.
406 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
407 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
410 * The window is located at top of ACPI MMR space
412 #define SCIR_WINDOW_COUNT 64
413 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
417 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
418 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
419 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
421 /* Loop through all installed blades */
422 #define for_each_possible_blade(bid) \
423 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
426 * Macros for converting between kernel virtual addresses, socket local physical
427 * addresses, and UV global physical addresses.
428 * Note: use the standard __pa() & __va() macros for converting
429 * between socket virtual and socket physical addresses.
432 /* global bits offset - number of local address bits in gpa for this UV arch */
433 static inline unsigned int uv_gpa_shift(void)
435 return uv_hub_info
->gpa_shift
;
437 #define _uv_gpa_shift
439 /* Find node that has the address range that contains global address */
440 static inline struct uv_gam_range_s
*uv_gam_range(unsigned long pa
)
442 struct uv_gam_range_s
*gr
= uv_hub_info
->gr_table
;
443 unsigned long pal
= (pa
& uv_hub_info
->gpa_mask
) >> UV_GAM_RANGE_SHFT
;
444 int i
, num
= uv_hub_info
->gr_table_len
;
447 for (i
= 0; i
< num
; i
++, gr
++) {
452 pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa
, gr
);
456 /* Return base address of node that contains global address */
457 static inline unsigned long uv_gam_range_base(unsigned long pa
)
459 struct uv_gam_range_s
*gr
= uv_gam_range(pa
);
465 return uv_hub_info
->gr_table
[base
].limit
;
468 /* socket phys RAM --> UV global NASID (UV4+) */
469 static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr
)
471 return uv_gam_range(paddr
)->nasid
;
473 #define _uv_soc_phys_ram_to_nasid
475 /* socket virtual --> UV global NASID (UV4+) */
476 static inline unsigned long uv_gpa_nasid(void *v
)
478 return uv_soc_phys_ram_to_nasid(__pa(v
));
481 /* socket phys RAM --> UV global physical address */
482 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr
)
484 unsigned int m_val
= uv_hub_info
->m_val
;
486 if (paddr
< uv_hub_info
->lowmem_remap_top
)
487 paddr
|= uv_hub_info
->lowmem_remap_base
;
490 paddr
|= uv_hub_info
->gnode_upper
;
491 paddr
= ((paddr
<< uv_hub_info
->m_shift
)
492 >> uv_hub_info
->m_shift
) |
493 ((paddr
>> uv_hub_info
->m_val
)
494 << uv_hub_info
->n_lshift
);
496 paddr
|= uv_soc_phys_ram_to_nasid(paddr
)
497 << uv_hub_info
->gpa_shift
;
502 /* socket virtual --> UV global physical address */
503 static inline unsigned long uv_gpa(void *v
)
505 return uv_soc_phys_ram_to_gpa(__pa(v
));
508 /* Top two bits indicate the requested address is in MMR space. */
510 uv_gpa_in_mmr_space(unsigned long gpa
)
512 return (gpa
>> 62) == 0x3UL
;
515 /* UV global physical address --> socket phys RAM */
516 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa
)
519 unsigned long remap_base
= uv_hub_info
->lowmem_remap_base
;
520 unsigned long remap_top
= uv_hub_info
->lowmem_remap_top
;
521 unsigned int m_val
= uv_hub_info
->m_val
;
524 gpa
= ((gpa
<< uv_hub_info
->m_shift
) >> uv_hub_info
->m_shift
) |
525 ((gpa
>> uv_hub_info
->n_lshift
) << uv_hub_info
->m_val
);
527 paddr
= gpa
& uv_hub_info
->gpa_mask
;
528 if (paddr
>= remap_base
&& paddr
< remap_base
+ remap_top
)
534 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa
)
536 unsigned int n_lshift
= uv_hub_info
->n_lshift
;
539 return gpa
>> n_lshift
;
541 return uv_gam_range(gpa
)->nasid
>> 1;
545 static inline int uv_gpa_to_pnode(unsigned long gpa
)
547 return uv_gpa_to_gnode(gpa
) & uv_hub_info
->pnode_mask
;
550 /* gpa -> node offset */
551 static inline unsigned long uv_gpa_to_offset(unsigned long gpa
)
553 unsigned int m_shift
= uv_hub_info
->m_shift
;
556 return (gpa
<< m_shift
) >> m_shift
;
558 return (gpa
& uv_hub_info
->gpa_mask
) - uv_gam_range_base(gpa
);
561 /* Convert socket to node */
562 static inline int _uv_socket_to_node(int socket
, unsigned short *s2nid
)
564 return s2nid
? s2nid
[socket
- uv_hub_info
->min_socket
] : socket
;
567 static inline int uv_socket_to_node(int socket
)
569 return _uv_socket_to_node(socket
, uv_hub_info
->socket_to_node
);
572 /* pnode, offset --> socket virtual */
573 static inline void *uv_pnode_offset_to_vaddr(int pnode
, unsigned long offset
)
575 unsigned int m_val
= uv_hub_info
->m_val
;
577 unsigned short sockid
, node
, *p2s
;
580 return __va(((unsigned long)pnode
<< m_val
) | offset
);
582 p2s
= uv_hub_info
->pnode_to_socket
;
583 sockid
= p2s
? p2s
[pnode
- uv_hub_info
->min_pnode
] : pnode
;
584 node
= uv_socket_to_node(sockid
);
586 /* limit address of previous socket is our base, except node 0 is 0 */
588 return __va((unsigned long)offset
);
590 base
= (unsigned long)(uv_hub_info
->gr_table
[node
- 1].limit
);
591 return __va(base
<< UV_GAM_RANGE_SHFT
| offset
);
594 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
595 static inline int uv_apicid_to_pnode(int apicid
)
597 int pnode
= apicid
>> uv_hub_info
->apic_pnode_shift
;
598 unsigned short *s2pn
= uv_hub_info
->socket_to_pnode
;
600 return s2pn
? s2pn
[pnode
- uv_hub_info
->min_socket
] : pnode
;
603 /* Convert an apicid to the socket number on the blade */
604 static inline int uv_apicid_to_socket(int apicid
)
607 return (apicid
>> (uv_hub_info
->apic_pnode_shift
- 1)) & 1;
613 * Access global MMRs using the low memory MMR32 space. This region supports
614 * faster MMR access but not all MMRs are accessible in this space.
616 static inline unsigned long *uv_global_mmr32_address(int pnode
, unsigned long offset
)
618 return __va(UV_GLOBAL_MMR32_BASE
|
619 UV_GLOBAL_MMR32_PNODE_BITS(pnode
) | offset
);
622 static inline void uv_write_global_mmr32(int pnode
, unsigned long offset
, unsigned long val
)
624 writeq(val
, uv_global_mmr32_address(pnode
, offset
));
627 static inline unsigned long uv_read_global_mmr32(int pnode
, unsigned long offset
)
629 return readq(uv_global_mmr32_address(pnode
, offset
));
633 * Access Global MMR space using the MMR space located at the top of physical
636 static inline volatile void __iomem
*uv_global_mmr64_address(int pnode
, unsigned long offset
)
638 return __va(UV_GLOBAL_MMR64_BASE
|
639 UV_GLOBAL_MMR64_PNODE_BITS(pnode
) | offset
);
642 static inline void uv_write_global_mmr64(int pnode
, unsigned long offset
, unsigned long val
)
644 writeq(val
, uv_global_mmr64_address(pnode
, offset
));
647 static inline unsigned long uv_read_global_mmr64(int pnode
, unsigned long offset
)
649 return readq(uv_global_mmr64_address(pnode
, offset
));
652 static inline void uv_write_global_mmr8(int pnode
, unsigned long offset
, unsigned char val
)
654 writeb(val
, uv_global_mmr64_address(pnode
, offset
));
657 static inline unsigned char uv_read_global_mmr8(int pnode
, unsigned long offset
)
659 return readb(uv_global_mmr64_address(pnode
, offset
));
663 * Access hub local MMRs. Faster than using global space but only local MMRs
666 static inline unsigned long *uv_local_mmr_address(unsigned long offset
)
668 return __va(UV_LOCAL_MMR_BASE
| offset
);
671 static inline unsigned long uv_read_local_mmr(unsigned long offset
)
673 return readq(uv_local_mmr_address(offset
));
676 static inline void uv_write_local_mmr(unsigned long offset
, unsigned long val
)
678 writeq(val
, uv_local_mmr_address(offset
));
681 static inline unsigned char uv_read_local_mmr8(unsigned long offset
)
683 return readb(uv_local_mmr_address(offset
));
686 static inline void uv_write_local_mmr8(unsigned long offset
, unsigned char val
)
688 writeb(val
, uv_local_mmr_address(offset
));
691 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
692 static inline int uv_blade_processor_id(void)
694 return uv_cpu_info
->blade_cpu_id
;
697 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
698 static inline int uv_cpu_blade_processor_id(int cpu
)
700 return uv_cpu_info_per(cpu
)->blade_cpu_id
;
702 #define _uv_cpu_blade_processor_id 1 /* indicate function available */
704 /* Blade number to Node number (UV1..UV4 is 1:1) */
705 static inline int uv_blade_to_node(int blade
)
710 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
711 static inline int uv_numa_blade_id(void)
713 return uv_hub_info
->numa_blade_id
;
717 * Convert linux node number to the UV blade number.
718 * .. Currently for UV1 thru UV4 the node and the blade are identical.
719 * .. If this changes then you MUST check references to this function!
721 static inline int uv_node_to_blade_id(int nid
)
726 /* Convert a cpu number to the the UV blade number */
727 static inline int uv_cpu_to_blade_id(int cpu
)
729 return uv_node_to_blade_id(cpu_to_node(cpu
));
732 /* Convert a blade id to the PNODE of the blade */
733 static inline int uv_blade_to_pnode(int bid
)
735 return uv_hub_info_list(uv_blade_to_node(bid
))->pnode
;
738 /* Nid of memory node on blade. -1 if no blade-local memory */
739 static inline int uv_blade_to_memory_nid(int bid
)
741 return uv_hub_info_list(uv_blade_to_node(bid
))->memory_nid
;
744 /* Determine the number of possible cpus on a blade */
745 static inline int uv_blade_nr_possible_cpus(int bid
)
747 return uv_hub_info_list(uv_blade_to_node(bid
))->nr_possible_cpus
;
750 /* Determine the number of online cpus on a blade */
751 static inline int uv_blade_nr_online_cpus(int bid
)
753 return uv_hub_info_list(uv_blade_to_node(bid
))->nr_online_cpus
;
756 /* Convert a cpu id to the PNODE of the blade containing the cpu */
757 static inline int uv_cpu_to_pnode(int cpu
)
759 return uv_cpu_hub_info(cpu
)->pnode
;
762 /* Convert a linux node number to the PNODE of the blade */
763 static inline int uv_node_to_pnode(int nid
)
765 return uv_hub_info_list(nid
)->pnode
;
768 /* Maximum possible number of blades */
769 extern short uv_possible_blades
;
770 static inline int uv_num_possible_blades(void)
772 return uv_possible_blades
;
775 /* Per Hub NMI support */
776 extern void uv_nmi_setup(void);
777 extern void uv_nmi_setup_hubless(void);
779 /* BMC sets a bit this MMR non-zero before sending an NMI */
780 #define UVH_NMI_MMR UVH_SCRATCH5
781 #define UVH_NMI_MMR_CLEAR UVH_SCRATCH5_ALIAS
782 #define UVH_NMI_MMR_SHIFT 63
783 #define UVH_NMI_MMR_TYPE "SCRATCH5"
785 /* Newer SMM NMI handler, not present in all systems */
786 #define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
787 #define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
788 #define UVH_NMI_MMRX_SHIFT UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
789 #define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
791 /* Non-zero indicates newer SMM NMI handler present */
792 #define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
794 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
795 #define UVH_NMI_MMRX_REQ UVH_SCRATCH5_ALIAS_2
796 #define UVH_NMI_MMRX_REQ_SHIFT 62
798 struct uv_hub_nmi_s
{
799 raw_spinlock_t nmi_lock
;
800 atomic_t in_nmi
; /* flag this node in UV NMI IRQ */
801 atomic_t cpu_owner
; /* last locker of this struct */
802 atomic_t read_mmr_count
; /* count of MMR reads */
803 atomic_t nmi_count
; /* count of true UV NMIs */
804 unsigned long nmi_value
; /* last value read from NMI MMR */
805 bool hub_present
; /* false means UV hubless system */
806 bool pch_owner
; /* indicates this hub owns PCH */
809 struct uv_cpu_nmi_s
{
810 struct uv_hub_nmi_s
*hub
;
817 DECLARE_PER_CPU(struct uv_cpu_nmi_s
, uv_cpu_nmi
);
819 #define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub)
820 #define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu))
821 #define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
823 /* uv_cpu_nmi_states */
824 #define UV_NMI_STATE_OUT 0
825 #define UV_NMI_STATE_IN 1
826 #define UV_NMI_STATE_DUMP 2
827 #define UV_NMI_STATE_DUMP_DONE 3
829 /* Update SCIR state */
830 static inline void uv_set_scir_bits(unsigned char value
)
832 if (uv_scir_info
->state
!= value
) {
833 uv_scir_info
->state
= value
;
834 uv_write_local_mmr8(uv_scir_info
->offset
, value
);
838 static inline unsigned long uv_scir_offset(int apicid
)
840 return SCIR_LOCAL_MMR_BASE
| (apicid
& 0x3f);
843 static inline void uv_set_cpu_scir_bits(int cpu
, unsigned char value
)
845 if (uv_cpu_scir_info(cpu
)->state
!= value
) {
846 uv_write_global_mmr8(uv_cpu_to_pnode(cpu
),
847 uv_cpu_scir_info(cpu
)->offset
, value
);
848 uv_cpu_scir_info(cpu
)->state
= value
;
852 extern unsigned int uv_apicid_hibits
;
853 static unsigned long uv_hub_ipi_value(int apicid
, int vector
, int mode
)
855 apicid
|= uv_apicid_hibits
;
856 return (1UL << UVH_IPI_INT_SEND_SHFT
) |
857 ((apicid
) << UVH_IPI_INT_APIC_ID_SHFT
) |
858 (mode
<< UVH_IPI_INT_DELIVERY_MODE_SHFT
) |
859 (vector
<< UVH_IPI_INT_VECTOR_SHFT
);
862 static inline void uv_hub_send_ipi(int pnode
, int apicid
, int vector
)
865 unsigned long dmode
= dest_Fixed
;
867 if (vector
== NMI_VECTOR
)
870 val
= uv_hub_ipi_value(apicid
, vector
, dmode
);
871 uv_write_global_mmr64(pnode
, UVH_IPI_INT
, val
);
875 * Get the minimum revision number of the hub chips within the partition.
876 * (See UVx_HUB_REVISION_BASE above for specific values.)
878 static inline int uv_get_min_hub_revision_id(void)
880 return uv_hub_info
->hub_revision
;
883 #endif /* CONFIG_X86_64 */
884 #endif /* _ASM_X86_UV_UV_HUB_H */