1 #ifndef _ASM_X86_BOOTPARAM_H
2 #define _ASM_X86_BOOTPARAM_H
6 #define SETUP_E820_EXT 1
10 #define SETUP_APPLE_PROPERTIES 5
13 #define RAMDISK_IMAGE_START_MASK 0x07FF
14 #define RAMDISK_PROMPT_FLAG 0x8000
15 #define RAMDISK_LOAD_FLAG 0x4000
18 #define LOADED_HIGH (1<<0)
19 #define KASLR_FLAG (1<<1)
20 #define QUIET_FLAG (1<<5)
21 #define KEEP_SEGMENTS (1<<6)
22 #define CAN_USE_HEAP (1<<7)
25 #define XLF_KERNEL_64 (1<<0)
26 #define XLF_CAN_BE_LOADED_ABOVE_4G (1<<1)
27 #define XLF_EFI_HANDOVER_32 (1<<2)
28 #define XLF_EFI_HANDOVER_64 (1<<3)
29 #define XLF_EFI_KEXEC (1<<4)
33 #include <linux/types.h>
34 #include <linux/screen_info.h>
35 #include <linux/apm_bios.h>
36 #include <linux/edd.h>
38 #include <video/edid.h>
40 /* extensible setup data list node */
64 __u16 setup_move_size
;
68 __u32 bootsect_kludge
;
73 __u32 initrd_addr_max
;
74 __u32 kernel_alignment
;
75 __u8 relocatable_kernel
;
79 __u32 hardware_subarch
;
80 __u64 hardware_subarch_data
;
86 __u32 handover_offset
;
87 } __attribute__((packed
));
89 struct sys_desc_table
{
94 /* Gleaned from OFW's set-parameters in cpu/x86/pc/linux.fth */
95 struct olpc_ofw_header
{
96 __u32 ofw_magic
; /* OFW signature */
98 __u32 cif_handler
; /* callback into OFW */
100 } __attribute__((packed
));
103 __u32 efi_loader_signature
;
105 __u32 efi_memdesc_size
;
106 __u32 efi_memdesc_version
;
108 __u32 efi_memmap_size
;
114 * This is the maximum number of entries in struct boot_params::e820_table
115 * (the zeropage), which is part of the x86 boot protocol ABI:
117 #define E820_MAX_ENTRIES_ZEROPAGE 128
120 * The E820 memory region entry of the boot protocol ABI:
122 struct boot_e820_entry
{
126 } __attribute__((packed
));
128 /* The so-called "zeropage" */
130 struct screen_info screen_info
; /* 0x000 */
131 struct apm_bios_info apm_bios_info
; /* 0x040 */
132 __u8 _pad2
[4]; /* 0x054 */
133 __u64 tboot_addr
; /* 0x058 */
134 struct ist_info ist_info
; /* 0x060 */
135 __u8 _pad3
[16]; /* 0x070 */
136 __u8 hd0_info
[16]; /* obsolete! */ /* 0x080 */
137 __u8 hd1_info
[16]; /* obsolete! */ /* 0x090 */
138 struct sys_desc_table sys_desc_table
; /* obsolete! */ /* 0x0a0 */
139 struct olpc_ofw_header olpc_ofw_header
; /* 0x0b0 */
140 __u32 ext_ramdisk_image
; /* 0x0c0 */
141 __u32 ext_ramdisk_size
; /* 0x0c4 */
142 __u32 ext_cmd_line_ptr
; /* 0x0c8 */
143 __u8 _pad4
[116]; /* 0x0cc */
144 struct edid_info edid_info
; /* 0x140 */
145 struct efi_info efi_info
; /* 0x1c0 */
146 __u32 alt_mem_k
; /* 0x1e0 */
147 __u32 scratch
; /* Scratch field! */ /* 0x1e4 */
148 __u8 e820_entries
; /* 0x1e8 */
149 __u8 eddbuf_entries
; /* 0x1e9 */
150 __u8 edd_mbr_sig_buf_entries
; /* 0x1ea */
151 __u8 kbd_status
; /* 0x1eb */
152 __u8 secure_boot
; /* 0x1ec */
153 __u8 _pad5
[2]; /* 0x1ed */
155 * The sentinel is set to a nonzero value (0xff) in header.S.
157 * A bootloader is supposed to only take setup_header and put
158 * it into a clean boot_params buffer. If it turns out that
159 * it is clumsy or too generous with the buffer, it most
160 * probably will pick up the sentinel variable too. The fact
161 * that this variable then is still 0xff will let kernel
162 * know that some variables in boot_params are invalid and
163 * kernel should zero out certain portions of boot_params.
165 __u8 sentinel
; /* 0x1ef */
166 __u8 _pad6
[1]; /* 0x1f0 */
167 struct setup_header hdr
; /* setup header */ /* 0x1f1 */
168 __u8 _pad7
[0x290-0x1f1-sizeof(struct setup_header
)];
169 __u32 edd_mbr_sig_buffer
[EDD_MBR_SIG_MAX
]; /* 0x290 */
170 struct boot_e820_entry e820_table
[E820_MAX_ENTRIES_ZEROPAGE
]; /* 0x2d0 */
171 __u8 _pad8
[48]; /* 0xcd0 */
172 struct edd_info eddbuf
[EDDMAXNR
]; /* 0xd00 */
173 __u8 _pad9
[276]; /* 0xeec */
174 } __attribute__((packed
));
177 * enum x86_hardware_subarch - x86 hardware subarchitecture
179 * The x86 hardware_subarch and hardware_subarch_data were added as of the x86
180 * boot protocol 2.07 to help distinguish and support custom x86 boot
181 * sequences. This enum represents accepted values for the x86
182 * hardware_subarch. Custom x86 boot sequences (not X86_SUBARCH_PC) do not
183 * have or simply *cannot* make use of natural stubs like BIOS or EFI, the
184 * hardware_subarch can be used on the Linux entry path to revector to a
185 * subarchitecture stub when needed. This subarchitecture stub can be used to
186 * set up Linux boot parameters or for special care to account for nonstandard
187 * handling of page tables.
189 * These enums should only ever be used by x86 code, and the code that uses
190 * it should be well contained and compartamentalized.
192 * KVM and Xen HVM do not have a subarch as these are expected to follow
193 * standard x86 boot entries. If there is a genuine need for "hypervisor" type
194 * that should be considered separately in the future. Future guest types
195 * should seriously consider working with standard x86 boot stubs such as
196 * the BIOS or EFI boot stubs.
198 * WARNING: this enum is only used for legacy hacks, for platform features that
199 * are not easily enumerated or discoverable. You should not ever use
200 * this for new features.
202 * @X86_SUBARCH_PC: Should be used if the hardware is enumerable using standard
203 * PC mechanisms (PCI, ACPI) and doesn't need a special boot flow.
204 * @X86_SUBARCH_LGUEST: Used for x86 hypervisor demo, lguest
205 * @X86_SUBARCH_XEN: Used for Xen guest types which follow the PV boot path,
206 * which start at asm startup_xen() entry point and later jump to the C
207 * xen_start_kernel() entry point. Both domU and dom0 type of guests are
208 * currently supportd through this PV boot path.
209 * @X86_SUBARCH_INTEL_MID: Used for Intel MID (Mobile Internet Device) platform
210 * systems which do not have the PCI legacy interfaces.
211 * @X86_SUBARCH_CE4100: Used for Intel CE media processor (CE4100) SoC for
212 * for settop boxes and media devices, the use of a subarch for CE4100
213 * is more of a hack...
215 enum x86_hardware_subarch
{
219 X86_SUBARCH_INTEL_MID
,
224 #endif /* __ASSEMBLY__ */
226 #endif /* _ASM_X86_BOOTPARAM_H */