2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/extable.h> /* search_exception_tables */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
15 #include <linux/prefetch.h> /* prefetchw */
16 #include <linux/context_tracking.h> /* exception_enter(), ... */
17 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
20 #include <asm/traps.h> /* dotraplinkage, ... */
21 #include <asm/pgalloc.h> /* pgd_*(), ... */
22 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
24 #include <asm/vsyscall.h> /* emulate_vsyscall */
25 #include <asm/vm86.h> /* struct vm86 */
26 #include <asm/mmu_context.h> /* vma_pkey() */
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
32 * Page fault error code bits:
34 * bit 0 == 0: no page found 1: protection fault
35 * bit 1 == 0: read access 1: write access
36 * bit 2 == 0: kernel-mode access 1: user-mode access
37 * bit 3 == 1: use of reserved bit detected
38 * bit 4 == 1: fault was an instruction fetch
39 * bit 5 == 1: protection keys block access
41 enum x86_pf_error_code
{
52 * Returns 0 if mmiotrace is disabled, or if the fault is not
53 * handled by mmiotrace:
55 static nokprobe_inline
int
56 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
58 if (unlikely(is_kmmio_active()))
59 if (kmmio_handler(regs
, addr
) == 1)
64 static nokprobe_inline
int kprobes_fault(struct pt_regs
*regs
)
68 /* kprobe_running() needs smp_processor_id() */
69 if (kprobes_built_in() && !user_mode(regs
)) {
71 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
84 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
85 * Check that here and ignore it.
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
92 * Opcode checker based on code by Richard Brunner.
95 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
96 unsigned char opcode
, int *prefetch
)
98 unsigned char instr_hi
= opcode
& 0xf0;
99 unsigned char instr_lo
= opcode
& 0x0f;
105 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
106 * In X86_64 long mode, the CPU will signal invalid
107 * opcode if some of these prefixes are present so
108 * X86_64 will never get here anyway
110 return ((instr_lo
& 7) == 0x6);
114 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
115 * Need to figure out under what instruction mode the
116 * instruction was issued. Could check the LDT for lm,
117 * but for now it's good enough to assume that long
118 * mode only uses well known segments or kernel.
120 return (!user_mode(regs
) || user_64bit_mode(regs
));
123 /* 0x64 thru 0x67 are valid prefixes in all modes. */
124 return (instr_lo
& 0xC) == 0x4;
126 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
127 return !instr_lo
|| (instr_lo
>>1) == 1;
129 /* Prefetch instruction is 0x0F0D or 0x0F18 */
130 if (probe_kernel_address(instr
, opcode
))
133 *prefetch
= (instr_lo
== 0xF) &&
134 (opcode
== 0x0D || opcode
== 0x18);
142 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
144 unsigned char *max_instr
;
145 unsigned char *instr
;
149 * If it was a exec (instruction fetch) fault on NX page, then
150 * do not ignore the fault:
152 if (error_code
& PF_INSTR
)
155 instr
= (void *)convert_ip_to_linear(current
, regs
);
156 max_instr
= instr
+ 15;
158 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE_MAX
)
161 while (instr
< max_instr
) {
162 unsigned char opcode
;
164 if (probe_kernel_address(instr
, opcode
))
169 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
176 * A protection key fault means that the PKRU value did not allow
177 * access to some PTE. Userspace can figure out what PKRU was
178 * from the XSAVE state, and this function fills out a field in
179 * siginfo so userspace can discover which protection key was set
182 * If we get here, we know that the hardware signaled a PF_PK
183 * fault and that there was a VMA once we got in the fault
184 * handler. It does *not* guarantee that the VMA we find here
185 * was the one that we faulted on.
187 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
188 * 2. T1 : set PKRU to deny access to pkey=4, touches page
190 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
191 * 5. T1 : enters fault handler, takes mmap_sem, etc...
192 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
193 * faulted on a pte with its pkey=4.
195 static void fill_sig_info_pkey(int si_code
, siginfo_t
*info
,
196 struct vm_area_struct
*vma
)
198 /* This is effectively an #ifdef */
199 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
202 /* Fault not from Protection Keys: nothing to do */
203 if (si_code
!= SEGV_PKUERR
)
206 * force_sig_info_fault() is called from a number of
207 * contexts, some of which have a VMA and some of which
208 * do not. The PF_PK handing happens after we have a
209 * valid VMA, so we should never reach this without a
213 WARN_ONCE(1, "PKU fault with no VMA passed in");
218 * si_pkey should be thought of as a strong hint, but not
219 * absolutely guranteed to be 100% accurate because of
220 * the race explained above.
222 info
->si_pkey
= vma_pkey(vma
);
226 force_sig_info_fault(int si_signo
, int si_code
, unsigned long address
,
227 struct task_struct
*tsk
, struct vm_area_struct
*vma
,
233 info
.si_signo
= si_signo
;
235 info
.si_code
= si_code
;
236 info
.si_addr
= (void __user
*)address
;
237 if (fault
& VM_FAULT_HWPOISON_LARGE
)
238 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
239 if (fault
& VM_FAULT_HWPOISON
)
241 info
.si_addr_lsb
= lsb
;
243 fill_sig_info_pkey(si_code
, &info
, vma
);
245 force_sig_info(si_signo
, &info
, tsk
);
248 DEFINE_SPINLOCK(pgd_lock
);
252 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
254 unsigned index
= pgd_index(address
);
261 pgd_k
= init_mm
.pgd
+ index
;
263 if (!pgd_present(*pgd_k
))
267 * set_pgd(pgd, *pgd_k); here would be useless on PAE
268 * and redundant with the set_pmd() on non-PAE. As would
271 p4d
= p4d_offset(pgd
, address
);
272 p4d_k
= p4d_offset(pgd_k
, address
);
273 if (!p4d_present(*p4d_k
))
276 pud
= pud_offset(p4d
, address
);
277 pud_k
= pud_offset(p4d_k
, address
);
278 if (!pud_present(*pud_k
))
281 pmd
= pmd_offset(pud
, address
);
282 pmd_k
= pmd_offset(pud_k
, address
);
283 if (!pmd_present(*pmd_k
))
286 if (!pmd_present(*pmd
))
287 set_pmd(pmd
, *pmd_k
);
289 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
294 void vmalloc_sync_all(void)
296 unsigned long address
;
298 if (SHARED_KERNEL_PMD
)
301 for (address
= VMALLOC_START
& PMD_MASK
;
302 address
>= TASK_SIZE_MAX
&& address
< FIXADDR_TOP
;
303 address
+= PMD_SIZE
) {
306 spin_lock(&pgd_lock
);
307 list_for_each_entry(page
, &pgd_list
, lru
) {
308 spinlock_t
*pgt_lock
;
311 /* the pgt_lock only for Xen */
312 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
315 ret
= vmalloc_sync_one(page_address(page
), address
);
316 spin_unlock(pgt_lock
);
321 spin_unlock(&pgd_lock
);
328 * Handle a fault on the vmalloc or module mapping area
330 static noinline
int vmalloc_fault(unsigned long address
)
332 unsigned long pgd_paddr
;
336 /* Make sure we are in vmalloc area: */
337 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
340 WARN_ON_ONCE(in_nmi());
343 * Synchronize this task's top level page-table
344 * with the 'reference' page table.
346 * Do _not_ use "current" here. We might be inside
347 * an interrupt in the middle of a task switch..
349 pgd_paddr
= read_cr3_pa();
350 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
354 if (pmd_huge(*pmd_k
))
357 pte_k
= pte_offset_kernel(pmd_k
, address
);
358 if (!pte_present(*pte_k
))
363 NOKPROBE_SYMBOL(vmalloc_fault
);
366 * Did it hit the DOS screen memory VA from vm86 mode?
369 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
370 struct task_struct
*tsk
)
375 if (!v8086_mode(regs
) || !tsk
->thread
.vm86
)
378 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
380 tsk
->thread
.vm86
->screen_bitmap
|= 1 << bit
;
384 static bool low_pfn(unsigned long pfn
)
386 return pfn
< max_low_pfn
;
389 static void dump_pagetable(unsigned long address
)
391 pgd_t
*base
= __va(read_cr3_pa());
392 pgd_t
*pgd
= &base
[pgd_index(address
)];
398 #ifdef CONFIG_X86_PAE
399 printk("*pdpt = %016Lx ", pgd_val(*pgd
));
400 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
403 p4d
= p4d_offset(pgd
, address
);
404 pud
= pud_offset(p4d
, address
);
405 pmd
= pmd_offset(pud
, address
);
406 printk(KERN_CONT
"*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
409 * We must not directly access the pte in the highpte
410 * case if the page table is located in highmem.
411 * And let's rather not kmap-atomic the pte, just in case
412 * it's allocated already:
414 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
417 pte
= pte_offset_kernel(pmd
, address
);
418 printk("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
423 #else /* CONFIG_X86_64: */
425 void vmalloc_sync_all(void)
427 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
);
433 * Handle a fault on the vmalloc area
435 static noinline
int vmalloc_fault(unsigned long address
)
437 pgd_t
*pgd
, *pgd_ref
;
438 p4d_t
*p4d
, *p4d_ref
;
439 pud_t
*pud
, *pud_ref
;
440 pmd_t
*pmd
, *pmd_ref
;
441 pte_t
*pte
, *pte_ref
;
443 /* Make sure we are in vmalloc area: */
444 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
447 WARN_ON_ONCE(in_nmi());
450 * Copy kernel mappings over when needed. This can also
451 * happen within a race in page table update. In the later
454 pgd
= (pgd_t
*)__va(read_cr3_pa()) + pgd_index(address
);
455 pgd_ref
= pgd_offset_k(address
);
456 if (pgd_none(*pgd_ref
))
459 if (pgd_none(*pgd
)) {
460 set_pgd(pgd
, *pgd_ref
);
461 arch_flush_lazy_mmu_mode();
462 } else if (CONFIG_PGTABLE_LEVELS
> 4) {
464 * With folded p4d, pgd_none() is always false, so the pgd may
465 * point to an empty page table entry and pgd_page_vaddr()
466 * will return garbage.
468 * We will do the correct sanity check on the p4d level.
470 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
473 /* With 4-level paging, copying happens on the p4d level. */
474 p4d
= p4d_offset(pgd
, address
);
475 p4d_ref
= p4d_offset(pgd_ref
, address
);
476 if (p4d_none(*p4d_ref
))
479 if (p4d_none(*p4d
)) {
480 set_p4d(p4d
, *p4d_ref
);
481 arch_flush_lazy_mmu_mode();
483 BUG_ON(p4d_pfn(*p4d
) != p4d_pfn(*p4d_ref
));
487 * Below here mismatches are bugs because these lower tables
491 pud
= pud_offset(p4d
, address
);
492 pud_ref
= pud_offset(p4d_ref
, address
);
493 if (pud_none(*pud_ref
))
496 if (pud_none(*pud
) || pud_pfn(*pud
) != pud_pfn(*pud_ref
))
502 pmd
= pmd_offset(pud
, address
);
503 pmd_ref
= pmd_offset(pud_ref
, address
);
504 if (pmd_none(*pmd_ref
))
507 if (pmd_none(*pmd
) || pmd_pfn(*pmd
) != pmd_pfn(*pmd_ref
))
513 pte_ref
= pte_offset_kernel(pmd_ref
, address
);
514 if (!pte_present(*pte_ref
))
517 pte
= pte_offset_kernel(pmd
, address
);
520 * Don't use pte_page here, because the mappings can point
521 * outside mem_map, and the NUMA hash lookup cannot handle
524 if (!pte_present(*pte
) || pte_pfn(*pte
) != pte_pfn(*pte_ref
))
529 NOKPROBE_SYMBOL(vmalloc_fault
);
531 #ifdef CONFIG_CPU_SUP_AMD
532 static const char errata93_warning
[] =
534 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
535 "******* Working around it, but it may cause SEGVs or burn power.\n"
536 "******* Please consider a BIOS update.\n"
537 "******* Disabling USB legacy in the BIOS may also help.\n";
541 * No vm86 mode in 64-bit mode:
544 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
545 struct task_struct
*tsk
)
549 static int bad_address(void *p
)
553 return probe_kernel_address((unsigned long *)p
, dummy
);
556 static void dump_pagetable(unsigned long address
)
558 pgd_t
*base
= __va(read_cr3_pa());
559 pgd_t
*pgd
= base
+ pgd_index(address
);
565 if (bad_address(pgd
))
568 printk("PGD %lx ", pgd_val(*pgd
));
570 if (!pgd_present(*pgd
))
573 p4d
= p4d_offset(pgd
, address
);
574 if (bad_address(p4d
))
577 printk("P4D %lx ", p4d_val(*p4d
));
578 if (!p4d_present(*p4d
) || p4d_large(*p4d
))
581 pud
= pud_offset(p4d
, address
);
582 if (bad_address(pud
))
585 printk("PUD %lx ", pud_val(*pud
));
586 if (!pud_present(*pud
) || pud_large(*pud
))
589 pmd
= pmd_offset(pud
, address
);
590 if (bad_address(pmd
))
593 printk("PMD %lx ", pmd_val(*pmd
));
594 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
597 pte
= pte_offset_kernel(pmd
, address
);
598 if (bad_address(pte
))
601 printk("PTE %lx", pte_val(*pte
));
609 #endif /* CONFIG_X86_64 */
612 * Workaround for K8 erratum #93 & buggy BIOS.
614 * BIOS SMM functions are required to use a specific workaround
615 * to avoid corruption of the 64bit RIP register on C stepping K8.
617 * A lot of BIOS that didn't get tested properly miss this.
619 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
620 * Try to work around it here.
622 * Note we only handle faults in kernel here.
623 * Does nothing on 32-bit.
625 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
627 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
628 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
629 || boot_cpu_data
.x86
!= 0xf)
632 if (address
!= regs
->ip
)
635 if ((address
>> 32) != 0)
638 address
|= 0xffffffffUL
<< 32;
639 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
640 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
641 printk_once(errata93_warning
);
650 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
651 * to illegal addresses >4GB.
653 * We catch this in the page fault handler because these addresses
654 * are not reachable. Just detect this case and return. Any code
655 * segment in LDT is compatibility mode.
657 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
660 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
666 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
668 #ifdef CONFIG_X86_F00F_BUG
672 * Pentium F0 0F C7 C8 bug workaround:
674 if (boot_cpu_has_bug(X86_BUG_F00F
)) {
675 nr
= (address
- idt_descr
.address
) >> 3;
678 do_invalid_op(regs
, 0);
686 static const char nx_warning
[] = KERN_CRIT
687 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
688 static const char smep_warning
[] = KERN_CRIT
689 "unable to execute userspace code (SMEP?) (uid: %d)\n";
692 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
693 unsigned long address
)
695 if (!oops_may_print())
698 if (error_code
& PF_INSTR
) {
703 pgd
= __va(read_cr3_pa());
704 pgd
+= pgd_index(address
);
706 pte
= lookup_address_in_pgd(pgd
, address
, &level
);
708 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
709 printk(nx_warning
, from_kuid(&init_user_ns
, current_uid()));
710 if (pte
&& pte_present(*pte
) && pte_exec(*pte
) &&
711 (pgd_flags(*pgd
) & _PAGE_USER
) &&
712 (__read_cr4() & X86_CR4_SMEP
))
713 printk(smep_warning
, from_kuid(&init_user_ns
, current_uid()));
716 printk(KERN_ALERT
"BUG: unable to handle kernel ");
717 if (address
< PAGE_SIZE
)
718 printk(KERN_CONT
"NULL pointer dereference");
720 printk(KERN_CONT
"paging request");
722 printk(KERN_CONT
" at %p\n", (void *) address
);
723 printk(KERN_ALERT
"IP: %pS\n", (void *)regs
->ip
);
725 dump_pagetable(address
);
729 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
730 unsigned long address
)
732 struct task_struct
*tsk
;
736 flags
= oops_begin();
740 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
742 dump_pagetable(address
);
744 tsk
->thread
.cr2
= address
;
745 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
746 tsk
->thread
.error_code
= error_code
;
748 if (__die("Bad pagetable", regs
, error_code
))
751 oops_end(flags
, regs
, sig
);
755 no_context(struct pt_regs
*regs
, unsigned long error_code
,
756 unsigned long address
, int signal
, int si_code
)
758 struct task_struct
*tsk
= current
;
761 /* No context means no VMA to pass down */
762 struct vm_area_struct
*vma
= NULL
;
764 /* Are we prepared to handle this kernel fault? */
765 if (fixup_exception(regs
, X86_TRAP_PF
)) {
767 * Any interrupt that takes a fault gets the fixup. This makes
768 * the below recursive fault logic only apply to a faults from
775 * Per the above we're !in_interrupt(), aka. task context.
777 * In this case we need to make sure we're not recursively
778 * faulting through the emulate_vsyscall() logic.
780 if (current
->thread
.sig_on_uaccess_err
&& signal
) {
781 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
782 tsk
->thread
.error_code
= error_code
| PF_USER
;
783 tsk
->thread
.cr2
= address
;
785 /* XXX: hwpoison faults will set the wrong code. */
786 force_sig_info_fault(signal
, si_code
, address
,
791 * Barring that, we can do the fixup and be happy.
796 #ifdef CONFIG_VMAP_STACK
798 * Stack overflow? During boot, we can fault near the initial
799 * stack in the direct map, but that's not an overflow -- check
800 * that we're in vmalloc space to avoid this.
802 if (is_vmalloc_addr((void *)address
) &&
803 (((unsigned long)tsk
->stack
- 1 - address
< PAGE_SIZE
) ||
804 address
- ((unsigned long)tsk
->stack
+ THREAD_SIZE
) < PAGE_SIZE
)) {
805 register void *__sp
asm("rsp");
806 unsigned long stack
= this_cpu_read(orig_ist
.ist
[DOUBLEFAULT_STACK
]) - sizeof(void *);
808 * We're likely to be running with very little stack space
809 * left. It's plausible that we'd hit this condition but
810 * double-fault even before we get this far, in which case
811 * we're fine: the double-fault handler will deal with it.
813 * We don't want to make it all the way into the oops code
814 * and then double-fault, though, because we're likely to
815 * break the console driver and lose most of the stack dump.
817 asm volatile ("movq %[stack], %%rsp\n\t"
818 "call handle_stack_overflow\n\t"
821 : "D" ("kernel stack overflow (page fault)"),
822 "S" (regs
), "d" (address
),
823 [stack
] "rm" (stack
));
831 * Valid to do another page fault here, because if this fault
832 * had been triggered by is_prefetch fixup_exception would have
837 * Hall of shame of CPU/BIOS bugs.
839 if (is_prefetch(regs
, error_code
, address
))
842 if (is_errata93(regs
, address
))
846 * Oops. The kernel tried to access some bad page. We'll have to
847 * terminate things with extreme prejudice:
849 flags
= oops_begin();
851 show_fault_oops(regs
, error_code
, address
);
853 if (task_stack_end_corrupted(tsk
))
854 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
856 tsk
->thread
.cr2
= address
;
857 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
858 tsk
->thread
.error_code
= error_code
;
861 if (__die("Oops", regs
, error_code
))
864 /* Executive summary in case the body of the oops scrolled away */
865 printk(KERN_DEFAULT
"CR2: %016lx\n", address
);
867 oops_end(flags
, regs
, sig
);
871 * Print out info about fatal segfaults, if the show_unhandled_signals
875 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
876 unsigned long address
, struct task_struct
*tsk
)
878 if (!unhandled_signal(tsk
, SIGSEGV
))
881 if (!printk_ratelimit())
884 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
885 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
886 tsk
->comm
, task_pid_nr(tsk
), address
,
887 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
889 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
891 printk(KERN_CONT
"\n");
895 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
896 unsigned long address
, struct vm_area_struct
*vma
,
899 struct task_struct
*tsk
= current
;
901 /* User mode accesses just cause a SIGSEGV */
902 if (error_code
& PF_USER
) {
904 * It's possible to have interrupts off here:
909 * Valid to do another page fault here because this one came
912 if (is_prefetch(regs
, error_code
, address
))
915 if (is_errata100(regs
, address
))
920 * Instruction fetch faults in the vsyscall page might need
923 if (unlikely((error_code
& PF_INSTR
) &&
924 ((address
& ~0xfff) == VSYSCALL_ADDR
))) {
925 if (emulate_vsyscall(regs
, address
))
931 * To avoid leaking information about the kernel page table
932 * layout, pretend that user-mode accesses to kernel addresses
933 * are always protection faults.
935 if (address
>= TASK_SIZE_MAX
)
936 error_code
|= PF_PROT
;
938 if (likely(show_unhandled_signals
))
939 show_signal_msg(regs
, error_code
, address
, tsk
);
941 tsk
->thread
.cr2
= address
;
942 tsk
->thread
.error_code
= error_code
;
943 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
945 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
, vma
, 0);
950 if (is_f00f_bug(regs
, address
))
953 no_context(regs
, error_code
, address
, SIGSEGV
, si_code
);
957 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
958 unsigned long address
, struct vm_area_struct
*vma
)
960 __bad_area_nosemaphore(regs
, error_code
, address
, vma
, SEGV_MAPERR
);
964 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
965 unsigned long address
, struct vm_area_struct
*vma
, int si_code
)
967 struct mm_struct
*mm
= current
->mm
;
970 * Something tried to access memory that isn't in our memory map..
971 * Fix it, but check if it's kernel or user first..
973 up_read(&mm
->mmap_sem
);
975 __bad_area_nosemaphore(regs
, error_code
, address
, vma
, si_code
);
979 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
981 __bad_area(regs
, error_code
, address
, NULL
, SEGV_MAPERR
);
984 static inline bool bad_area_access_from_pkeys(unsigned long error_code
,
985 struct vm_area_struct
*vma
)
987 /* This code is always called on the current mm */
988 bool foreign
= false;
990 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
992 if (error_code
& PF_PK
)
994 /* this checks permission keys on the VMA: */
995 if (!arch_vma_access_permitted(vma
, (error_code
& PF_WRITE
),
996 (error_code
& PF_INSTR
), foreign
))
1001 static noinline
void
1002 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
1003 unsigned long address
, struct vm_area_struct
*vma
)
1006 * This OSPKE check is not strictly necessary at runtime.
1007 * But, doing it this way allows compiler optimizations
1008 * if pkeys are compiled out.
1010 if (bad_area_access_from_pkeys(error_code
, vma
))
1011 __bad_area(regs
, error_code
, address
, vma
, SEGV_PKUERR
);
1013 __bad_area(regs
, error_code
, address
, vma
, SEGV_ACCERR
);
1017 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
1018 struct vm_area_struct
*vma
, unsigned int fault
)
1020 struct task_struct
*tsk
= current
;
1021 int code
= BUS_ADRERR
;
1023 /* Kernel mode? Handle exceptions or die: */
1024 if (!(error_code
& PF_USER
)) {
1025 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
1029 /* User-space => ok to do another page fault: */
1030 if (is_prefetch(regs
, error_code
, address
))
1033 tsk
->thread
.cr2
= address
;
1034 tsk
->thread
.error_code
= error_code
;
1035 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
1037 #ifdef CONFIG_MEMORY_FAILURE
1038 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
1040 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1041 tsk
->comm
, tsk
->pid
, address
);
1042 code
= BUS_MCEERR_AR
;
1045 force_sig_info_fault(SIGBUS
, code
, address
, tsk
, vma
, fault
);
1048 static noinline
void
1049 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
1050 unsigned long address
, struct vm_area_struct
*vma
,
1053 if (fatal_signal_pending(current
) && !(error_code
& PF_USER
)) {
1054 no_context(regs
, error_code
, address
, 0, 0);
1058 if (fault
& VM_FAULT_OOM
) {
1059 /* Kernel mode? Handle exceptions or die: */
1060 if (!(error_code
& PF_USER
)) {
1061 no_context(regs
, error_code
, address
,
1062 SIGSEGV
, SEGV_MAPERR
);
1067 * We ran out of memory, call the OOM killer, and return the
1068 * userspace (which will retry the fault, or kill us if we got
1071 pagefault_out_of_memory();
1073 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
1074 VM_FAULT_HWPOISON_LARGE
))
1075 do_sigbus(regs
, error_code
, address
, vma
, fault
);
1076 else if (fault
& VM_FAULT_SIGSEGV
)
1077 bad_area_nosemaphore(regs
, error_code
, address
, vma
);
1083 static int spurious_fault_check(unsigned long error_code
, pte_t
*pte
)
1085 if ((error_code
& PF_WRITE
) && !pte_write(*pte
))
1088 if ((error_code
& PF_INSTR
) && !pte_exec(*pte
))
1091 * Note: We do not do lazy flushing on protection key
1092 * changes, so no spurious fault will ever set PF_PK.
1094 if ((error_code
& PF_PK
))
1101 * Handle a spurious fault caused by a stale TLB entry.
1103 * This allows us to lazily refresh the TLB when increasing the
1104 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1105 * eagerly is very expensive since that implies doing a full
1106 * cross-processor TLB flush, even if no stale TLB entries exist
1107 * on other processors.
1109 * Spurious faults may only occur if the TLB contains an entry with
1110 * fewer permission than the page table entry. Non-present (P = 0)
1111 * and reserved bit (R = 1) faults are never spurious.
1113 * There are no security implications to leaving a stale TLB when
1114 * increasing the permissions on a page.
1116 * Returns non-zero if a spurious fault was handled, zero otherwise.
1118 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1119 * (Optional Invalidation).
1122 spurious_fault(unsigned long error_code
, unsigned long address
)
1132 * Only writes to RO or instruction fetches from NX may cause
1135 * These could be from user or supervisor accesses but the TLB
1136 * is only lazily flushed after a kernel mapping protection
1137 * change, so user accesses are not expected to cause spurious
1140 if (error_code
!= (PF_WRITE
| PF_PROT
)
1141 && error_code
!= (PF_INSTR
| PF_PROT
))
1144 pgd
= init_mm
.pgd
+ pgd_index(address
);
1145 if (!pgd_present(*pgd
))
1148 p4d
= p4d_offset(pgd
, address
);
1149 if (!p4d_present(*p4d
))
1152 if (p4d_large(*p4d
))
1153 return spurious_fault_check(error_code
, (pte_t
*) p4d
);
1155 pud
= pud_offset(p4d
, address
);
1156 if (!pud_present(*pud
))
1159 if (pud_large(*pud
))
1160 return spurious_fault_check(error_code
, (pte_t
*) pud
);
1162 pmd
= pmd_offset(pud
, address
);
1163 if (!pmd_present(*pmd
))
1166 if (pmd_large(*pmd
))
1167 return spurious_fault_check(error_code
, (pte_t
*) pmd
);
1169 pte
= pte_offset_kernel(pmd
, address
);
1170 if (!pte_present(*pte
))
1173 ret
= spurious_fault_check(error_code
, pte
);
1178 * Make sure we have permissions in PMD.
1179 * If not, then there's a bug in the page tables:
1181 ret
= spurious_fault_check(error_code
, (pte_t
*) pmd
);
1182 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
1186 NOKPROBE_SYMBOL(spurious_fault
);
1188 int show_unhandled_signals
= 1;
1191 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
1193 /* This is only called for the current mm, so: */
1194 bool foreign
= false;
1197 * Read or write was blocked by protection keys. This is
1198 * always an unconditional error and can never result in
1199 * a follow-up action to resolve the fault, like a COW.
1201 if (error_code
& PF_PK
)
1205 * Make sure to check the VMA so that we do not perform
1206 * faults just to hit a PF_PK as soon as we fill in a
1209 if (!arch_vma_access_permitted(vma
, (error_code
& PF_WRITE
),
1210 (error_code
& PF_INSTR
), foreign
))
1213 if (error_code
& PF_WRITE
) {
1214 /* write, present and write, not present: */
1215 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
1220 /* read, present: */
1221 if (unlikely(error_code
& PF_PROT
))
1224 /* read, not present: */
1225 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
1231 static int fault_in_kernel_space(unsigned long address
)
1233 return address
>= TASK_SIZE_MAX
;
1236 static inline bool smap_violation(int error_code
, struct pt_regs
*regs
)
1238 if (!IS_ENABLED(CONFIG_X86_SMAP
))
1241 if (!static_cpu_has(X86_FEATURE_SMAP
))
1244 if (error_code
& PF_USER
)
1247 if (!user_mode(regs
) && (regs
->flags
& X86_EFLAGS_AC
))
1254 * This routine handles page faults. It determines the address,
1255 * and the problem, and then passes it off to one of the appropriate
1258 * This function must have noinline because both callers
1259 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1260 * guarantees there's a function trace entry.
1262 static noinline
void
1263 __do_page_fault(struct pt_regs
*regs
, unsigned long error_code
,
1264 unsigned long address
)
1266 struct vm_area_struct
*vma
;
1267 struct task_struct
*tsk
;
1268 struct mm_struct
*mm
;
1269 int fault
, major
= 0;
1270 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1276 * Detect and handle instructions that would cause a page fault for
1277 * both a tracked kernel page and a userspace page.
1279 if (kmemcheck_active(regs
))
1280 kmemcheck_hide(regs
);
1281 prefetchw(&mm
->mmap_sem
);
1283 if (unlikely(kmmio_fault(regs
, address
)))
1287 * We fault-in kernel-space virtual memory on-demand. The
1288 * 'reference' page table is init_mm.pgd.
1290 * NOTE! We MUST NOT take any locks for this case. We may
1291 * be in an interrupt or a critical region, and should
1292 * only copy the information from the master page table,
1295 * This verifies that the fault happens in kernel space
1296 * (error_code & 4) == 0, and that the fault was not a
1297 * protection error (error_code & 9) == 0.
1299 if (unlikely(fault_in_kernel_space(address
))) {
1300 if (!(error_code
& (PF_RSVD
| PF_USER
| PF_PROT
))) {
1301 if (vmalloc_fault(address
) >= 0)
1304 if (kmemcheck_fault(regs
, address
, error_code
))
1308 /* Can handle a stale RO->RW TLB: */
1309 if (spurious_fault(error_code
, address
))
1312 /* kprobes don't want to hook the spurious faults: */
1313 if (kprobes_fault(regs
))
1316 * Don't take the mm semaphore here. If we fixup a prefetch
1317 * fault we could otherwise deadlock:
1319 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1324 /* kprobes don't want to hook the spurious faults: */
1325 if (unlikely(kprobes_fault(regs
)))
1328 if (unlikely(error_code
& PF_RSVD
))
1329 pgtable_bad(regs
, error_code
, address
);
1331 if (unlikely(smap_violation(error_code
, regs
))) {
1332 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1337 * If we're in an interrupt, have no user context or are running
1338 * in a region with pagefaults disabled then we must not take the fault
1340 if (unlikely(faulthandler_disabled() || !mm
)) {
1341 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1346 * It's safe to allow irq's after cr2 has been saved and the
1347 * vmalloc fault has been handled.
1349 * User-mode registers count as a user access even for any
1350 * potential system fault or CPU buglet:
1352 if (user_mode(regs
)) {
1354 error_code
|= PF_USER
;
1355 flags
|= FAULT_FLAG_USER
;
1357 if (regs
->flags
& X86_EFLAGS_IF
)
1361 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
1363 if (error_code
& PF_WRITE
)
1364 flags
|= FAULT_FLAG_WRITE
;
1365 if (error_code
& PF_INSTR
)
1366 flags
|= FAULT_FLAG_INSTRUCTION
;
1369 * When running in the kernel we expect faults to occur only to
1370 * addresses in user space. All other faults represent errors in
1371 * the kernel and should generate an OOPS. Unfortunately, in the
1372 * case of an erroneous fault occurring in a code path which already
1373 * holds mmap_sem we will deadlock attempting to validate the fault
1374 * against the address space. Luckily the kernel only validly
1375 * references user space from well defined areas of code, which are
1376 * listed in the exceptions table.
1378 * As the vast majority of faults will be valid we will only perform
1379 * the source reference check when there is a possibility of a
1380 * deadlock. Attempt to lock the address space, if we cannot we then
1381 * validate the source. If this is invalid we can skip the address
1382 * space check, thus avoiding the deadlock:
1384 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1385 if ((error_code
& PF_USER
) == 0 &&
1386 !search_exception_tables(regs
->ip
)) {
1387 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1391 down_read(&mm
->mmap_sem
);
1394 * The above down_read_trylock() might have succeeded in
1395 * which case we'll have missed the might_sleep() from
1401 vma
= find_vma(mm
, address
);
1402 if (unlikely(!vma
)) {
1403 bad_area(regs
, error_code
, address
);
1406 if (likely(vma
->vm_start
<= address
))
1408 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1409 bad_area(regs
, error_code
, address
);
1412 if (error_code
& PF_USER
) {
1414 * Accessing the stack below %sp is always a bug.
1415 * The large cushion allows instructions like enter
1416 * and pusha to work. ("enter $65535, $31" pushes
1417 * 32 pointers and then decrements %sp by 65535.)
1419 if (unlikely(address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)) {
1420 bad_area(regs
, error_code
, address
);
1424 if (unlikely(expand_stack(vma
, address
))) {
1425 bad_area(regs
, error_code
, address
);
1430 * Ok, we have a good vm_area for this memory access, so
1431 * we can handle it..
1434 if (unlikely(access_error(error_code
, vma
))) {
1435 bad_area_access_error(regs
, error_code
, address
, vma
);
1440 * If for any reason at all we couldn't handle the fault,
1441 * make sure we exit gracefully rather than endlessly redo
1442 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1443 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1445 fault
= handle_mm_fault(vma
, address
, flags
);
1446 major
|= fault
& VM_FAULT_MAJOR
;
1449 * If we need to retry the mmap_sem has already been released,
1450 * and if there is a fatal signal pending there is no guarantee
1451 * that we made any progress. Handle this case first.
1453 if (unlikely(fault
& VM_FAULT_RETRY
)) {
1454 /* Retry at most once */
1455 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1456 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1457 flags
|= FAULT_FLAG_TRIED
;
1458 if (!fatal_signal_pending(tsk
))
1462 /* User mode? Just return to handle the fatal exception */
1463 if (flags
& FAULT_FLAG_USER
)
1466 /* Not returning to user mode? Handle exceptions or die: */
1467 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
1471 up_read(&mm
->mmap_sem
);
1472 if (unlikely(fault
& VM_FAULT_ERROR
)) {
1473 mm_fault_error(regs
, error_code
, address
, vma
, fault
);
1478 * Major/minor page fault accounting. If any of the events
1479 * returned VM_FAULT_MAJOR, we account it as a major fault.
1483 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
1486 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
1489 check_v8086_mode(regs
, address
, tsk
);
1491 NOKPROBE_SYMBOL(__do_page_fault
);
1493 dotraplinkage
void notrace
1494 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
1496 unsigned long address
= read_cr2(); /* Get the faulting address */
1497 enum ctx_state prev_state
;
1500 * We must have this function tagged with __kprobes, notrace and call
1501 * read_cr2() before calling anything else. To avoid calling any kind
1502 * of tracing machinery before we've observed the CR2 value.
1504 * exception_{enter,exit}() contain all sorts of tracepoints.
1507 prev_state
= exception_enter();
1508 __do_page_fault(regs
, error_code
, address
);
1509 exception_exit(prev_state
);
1511 NOKPROBE_SYMBOL(do_page_fault
);
1513 #ifdef CONFIG_TRACING
1514 static nokprobe_inline
void
1515 trace_page_fault_entries(unsigned long address
, struct pt_regs
*regs
,
1516 unsigned long error_code
)
1518 if (user_mode(regs
))
1519 trace_page_fault_user(address
, regs
, error_code
);
1521 trace_page_fault_kernel(address
, regs
, error_code
);
1524 dotraplinkage
void notrace
1525 trace_do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
1528 * The exception_enter and tracepoint processing could
1529 * trigger another page faults (user space callchain
1530 * reading) and destroy the original cr2 value, so read
1531 * the faulting address now.
1533 unsigned long address
= read_cr2();
1534 enum ctx_state prev_state
;
1536 prev_state
= exception_enter();
1537 trace_page_fault_entries(address
, regs
, error_code
);
1538 __do_page_fault(regs
, error_code
, address
);
1539 exception_exit(prev_state
);
1541 NOKPROBE_SYMBOL(trace_do_page_fault
);
1542 #endif /* CONFIG_TRACING */