3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
6 #include <asm/fixmap.h>
9 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO)
12 #define PGALLOC_USER_GFP __GFP_HIGHMEM
14 #define PGALLOC_USER_GFP 0
17 gfp_t __userpte_alloc_gfp
= PGALLOC_GFP
| PGALLOC_USER_GFP
;
19 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
, unsigned long address
)
21 return (pte_t
*)__get_free_page(PGALLOC_GFP
& ~__GFP_ACCOUNT
);
24 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
28 pte
= alloc_pages(__userpte_alloc_gfp
, 0);
31 if (!pgtable_page_ctor(pte
)) {
38 static int __init
setup_userpte(char *arg
)
44 * "userpte=nohigh" disables allocation of user pagetables in
47 if (strcmp(arg
, "nohigh") == 0)
48 __userpte_alloc_gfp
&= ~__GFP_HIGHMEM
;
53 early_param("userpte", setup_userpte
);
55 void ___pte_free_tlb(struct mmu_gather
*tlb
, struct page
*pte
)
57 pgtable_page_dtor(pte
);
58 paravirt_release_pte(page_to_pfn(pte
));
59 tlb_remove_page(tlb
, pte
);
62 #if CONFIG_PGTABLE_LEVELS > 2
63 void ___pmd_free_tlb(struct mmu_gather
*tlb
, pmd_t
*pmd
)
65 struct page
*page
= virt_to_page(pmd
);
66 paravirt_release_pmd(__pa(pmd
) >> PAGE_SHIFT
);
68 * NOTE! For PAE, any changes to the top page-directory-pointer-table
69 * entries need a full cr3 reload to flush.
72 tlb
->need_flush_all
= 1;
74 pgtable_pmd_page_dtor(page
);
75 tlb_remove_page(tlb
, page
);
78 #if CONFIG_PGTABLE_LEVELS > 3
79 void ___pud_free_tlb(struct mmu_gather
*tlb
, pud_t
*pud
)
81 paravirt_release_pud(__pa(pud
) >> PAGE_SHIFT
);
82 tlb_remove_page(tlb
, virt_to_page(pud
));
85 #if CONFIG_PGTABLE_LEVELS > 4
86 void ___p4d_free_tlb(struct mmu_gather
*tlb
, p4d_t
*p4d
)
88 paravirt_release_p4d(__pa(p4d
) >> PAGE_SHIFT
);
89 tlb_remove_page(tlb
, virt_to_page(p4d
));
91 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
92 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
93 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
95 static inline void pgd_list_add(pgd_t
*pgd
)
97 struct page
*page
= virt_to_page(pgd
);
99 list_add(&page
->lru
, &pgd_list
);
102 static inline void pgd_list_del(pgd_t
*pgd
)
104 struct page
*page
= virt_to_page(pgd
);
106 list_del(&page
->lru
);
109 #define UNSHARED_PTRS_PER_PGD \
110 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
113 static void pgd_set_mm(pgd_t
*pgd
, struct mm_struct
*mm
)
115 BUILD_BUG_ON(sizeof(virt_to_page(pgd
)->index
) < sizeof(mm
));
116 virt_to_page(pgd
)->index
= (pgoff_t
)mm
;
119 struct mm_struct
*pgd_page_get_mm(struct page
*page
)
121 return (struct mm_struct
*)page
->index
;
124 static void pgd_ctor(struct mm_struct
*mm
, pgd_t
*pgd
)
126 /* If the pgd points to a shared pagetable level (either the
127 ptes in non-PAE, or shared PMD in PAE), then just copy the
128 references from swapper_pg_dir. */
129 if (CONFIG_PGTABLE_LEVELS
== 2 ||
130 (CONFIG_PGTABLE_LEVELS
== 3 && SHARED_KERNEL_PMD
) ||
131 CONFIG_PGTABLE_LEVELS
>= 4) {
132 clone_pgd_range(pgd
+ KERNEL_PGD_BOUNDARY
,
133 swapper_pg_dir
+ KERNEL_PGD_BOUNDARY
,
137 /* list required to sync kernel mapping updates */
138 if (!SHARED_KERNEL_PMD
) {
144 static void pgd_dtor(pgd_t
*pgd
)
146 if (SHARED_KERNEL_PMD
)
149 spin_lock(&pgd_lock
);
151 spin_unlock(&pgd_lock
);
155 * List of all pgd's needed for non-PAE so it can invalidate entries
156 * in both cached and uncached pgd's; not needed for PAE since the
157 * kernel pmd is shared. If PAE were not to share the pmd a similar
158 * tactic would be needed. This is essentially codepath-based locking
159 * against pageattr.c; it is the unique case in which a valid change
160 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
161 * vmalloc faults work because attached pagetables are never freed.
165 #ifdef CONFIG_X86_PAE
167 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
168 * updating the top-level pagetable entries to guarantee the
169 * processor notices the update. Since this is expensive, and
170 * all 4 top-level entries are used almost immediately in a
171 * new process's life, we just pre-populate them here.
173 * Also, if we're in a paravirt environment where the kernel pmd is
174 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
175 * and initialize the kernel pmds here.
177 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
179 void pud_populate(struct mm_struct
*mm
, pud_t
*pudp
, pmd_t
*pmd
)
181 paravirt_alloc_pmd(mm
, __pa(pmd
) >> PAGE_SHIFT
);
183 /* Note: almost everything apart from _PAGE_PRESENT is
184 reserved at the pmd (PDPT) level. */
185 set_pud(pudp
, __pud(__pa(pmd
) | _PAGE_PRESENT
));
188 * According to Intel App note "TLBs, Paging-Structure Caches,
189 * and Their Invalidation", April 2007, document 317080-001,
190 * section 8.1: in PAE mode we explicitly have to flush the
191 * TLB via cr3 if the top-level pgd is changed...
195 #else /* !CONFIG_X86_PAE */
197 /* No need to prepopulate any pagetable entries in non-PAE modes. */
198 #define PREALLOCATED_PMDS 0
200 #endif /* CONFIG_X86_PAE */
202 static void free_pmds(struct mm_struct
*mm
, pmd_t
*pmds
[])
206 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++)
208 pgtable_pmd_page_dtor(virt_to_page(pmds
[i
]));
209 free_page((unsigned long)pmds
[i
]);
214 static int preallocate_pmds(struct mm_struct
*mm
, pmd_t
*pmds
[])
218 gfp_t gfp
= PGALLOC_GFP
;
221 gfp
&= ~__GFP_ACCOUNT
;
223 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
224 pmd_t
*pmd
= (pmd_t
*)__get_free_page(gfp
);
227 if (pmd
&& !pgtable_pmd_page_ctor(virt_to_page(pmd
))) {
228 free_page((unsigned long)pmd
);
246 * Mop up any pmd pages which may still be attached to the pgd.
247 * Normally they will be freed by munmap/exit_mmap, but any pmd we
248 * preallocate which never got a corresponding vma will need to be
251 static void pgd_mop_up_pmds(struct mm_struct
*mm
, pgd_t
*pgdp
)
255 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
258 if (pgd_val(pgd
) != 0) {
259 pmd_t
*pmd
= (pmd_t
*)pgd_page_vaddr(pgd
);
261 pgdp
[i
] = native_make_pgd(0);
263 paravirt_release_pmd(pgd_val(pgd
) >> PAGE_SHIFT
);
270 static void pgd_prepopulate_pmd(struct mm_struct
*mm
, pgd_t
*pgd
, pmd_t
*pmds
[])
276 if (PREALLOCATED_PMDS
== 0) /* Work around gcc-3.4.x bug */
279 p4d
= p4d_offset(pgd
, 0);
280 pud
= pud_offset(p4d
, 0);
282 for (i
= 0; i
< PREALLOCATED_PMDS
; i
++, pud
++) {
283 pmd_t
*pmd
= pmds
[i
];
285 if (i
>= KERNEL_PGD_BOUNDARY
)
286 memcpy(pmd
, (pmd_t
*)pgd_page_vaddr(swapper_pg_dir
[i
]),
287 sizeof(pmd_t
) * PTRS_PER_PMD
);
289 pud_populate(mm
, pud
, pmd
);
294 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
295 * assumes that pgd should be in one page.
297 * But kernel with PAE paging that is not running as a Xen domain
298 * only needs to allocate 32 bytes for pgd instead of one page.
300 #ifdef CONFIG_X86_PAE
302 #include <linux/slab.h>
304 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
307 static struct kmem_cache
*pgd_cache
;
309 static int __init
pgd_cache_init(void)
312 * When PAE kernel is running as a Xen domain, it does not use
313 * shared kernel pmd. And this requires a whole page for pgd.
315 if (!SHARED_KERNEL_PMD
)
319 * when PAE kernel is not running as a Xen domain, it uses
320 * shared kernel pmd. Shared kernel pmd does not require a whole
321 * page for pgd. We are able to just allocate a 32-byte for pgd.
322 * During boot time, we create a 32-byte slab for pgd table allocation.
324 pgd_cache
= kmem_cache_create("pgd_cache", PGD_SIZE
, PGD_ALIGN
,
331 core_initcall(pgd_cache_init
);
333 static inline pgd_t
*_pgd_alloc(void)
336 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
337 * We allocate one page for pgd.
339 if (!SHARED_KERNEL_PMD
)
340 return (pgd_t
*)__get_free_page(PGALLOC_GFP
);
343 * Now PAE kernel is not running as a Xen domain. We can allocate
344 * a 32-byte slab for pgd to save memory space.
346 return kmem_cache_alloc(pgd_cache
, PGALLOC_GFP
);
349 static inline void _pgd_free(pgd_t
*pgd
)
351 if (!SHARED_KERNEL_PMD
)
352 free_page((unsigned long)pgd
);
354 kmem_cache_free(pgd_cache
, pgd
);
357 static inline pgd_t
*_pgd_alloc(void)
359 return (pgd_t
*)__get_free_page(PGALLOC_GFP
);
362 static inline void _pgd_free(pgd_t
*pgd
)
364 free_page((unsigned long)pgd
);
366 #endif /* CONFIG_X86_PAE */
368 pgd_t
*pgd_alloc(struct mm_struct
*mm
)
371 pmd_t
*pmds
[PREALLOCATED_PMDS
];
380 if (preallocate_pmds(mm
, pmds
) != 0)
383 if (paravirt_pgd_alloc(mm
) != 0)
387 * Make sure that pre-populating the pmds is atomic with
388 * respect to anything walking the pgd_list, so that they
389 * never see a partially populated pgd.
391 spin_lock(&pgd_lock
);
394 pgd_prepopulate_pmd(mm
, pgd
, pmds
);
396 spin_unlock(&pgd_lock
);
408 void pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
410 pgd_mop_up_pmds(mm
, pgd
);
412 paravirt_pgd_free(mm
, pgd
);
417 * Used to set accessed or dirty bits in the page table entries
418 * on other architectures. On x86, the accessed and dirty bits
419 * are tracked by hardware. However, do_wp_page calls this function
420 * to also make the pte writeable at the same time the dirty bit is
421 * set. In that case we do actually need to write the PTE.
423 int ptep_set_access_flags(struct vm_area_struct
*vma
,
424 unsigned long address
, pte_t
*ptep
,
425 pte_t entry
, int dirty
)
427 int changed
= !pte_same(*ptep
, entry
);
429 if (changed
&& dirty
) {
431 pte_update(vma
->vm_mm
, address
, ptep
);
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 int pmdp_set_access_flags(struct vm_area_struct
*vma
,
439 unsigned long address
, pmd_t
*pmdp
,
440 pmd_t entry
, int dirty
)
442 int changed
= !pmd_same(*pmdp
, entry
);
444 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
446 if (changed
&& dirty
) {
449 * We had a write-protection fault here and changed the pmd
450 * to to more permissive. No need to flush the TLB for that,
451 * #PF is architecturally guaranteed to do that and in the
452 * worst-case we'll generate a spurious fault.
459 int pudp_set_access_flags(struct vm_area_struct
*vma
, unsigned long address
,
460 pud_t
*pudp
, pud_t entry
, int dirty
)
462 int changed
= !pud_same(*pudp
, entry
);
464 VM_BUG_ON(address
& ~HPAGE_PUD_MASK
);
466 if (changed
&& dirty
) {
469 * We had a write-protection fault here and changed the pud
470 * to to more permissive. No need to flush the TLB for that,
471 * #PF is architecturally guaranteed to do that and in the
472 * worst-case we'll generate a spurious fault.
480 int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
481 unsigned long addr
, pte_t
*ptep
)
485 if (pte_young(*ptep
))
486 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
487 (unsigned long *) &ptep
->pte
);
490 pte_update(vma
->vm_mm
, addr
, ptep
);
495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
496 int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
497 unsigned long addr
, pmd_t
*pmdp
)
501 if (pmd_young(*pmdp
))
502 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
503 (unsigned long *)pmdp
);
507 int pudp_test_and_clear_young(struct vm_area_struct
*vma
,
508 unsigned long addr
, pud_t
*pudp
)
512 if (pud_young(*pudp
))
513 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
514 (unsigned long *)pudp
);
520 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
521 unsigned long address
, pte_t
*ptep
)
524 * On x86 CPUs, clearing the accessed bit without a TLB flush
525 * doesn't cause data corruption. [ It could cause incorrect
526 * page aging and the (mistaken) reclaim of hot pages, but the
527 * chance of that should be relatively low. ]
529 * So as a performance optimization don't flush the TLB when
530 * clearing the accessed bit, it will eventually be flushed by
531 * a context switch or a VM operation anyway. [ In the rare
532 * event of it not getting flushed for a long time the delay
533 * shouldn't really matter because there's no real memory
534 * pressure for swapout to react to. ]
536 return ptep_test_and_clear_young(vma
, address
, ptep
);
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
541 unsigned long address
, pmd_t
*pmdp
)
545 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
547 young
= pmdp_test_and_clear_young(vma
, address
, pmdp
);
549 flush_tlb_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
556 * reserve_top_address - reserves a hole in the top of kernel address space
557 * @reserve - size of hole to reserve
559 * Can be used to relocate the fixmap area and poke a hole in the top
560 * of kernel address space to make room for a hypervisor.
562 void __init
reserve_top_address(unsigned long reserve
)
565 BUG_ON(fixmaps_set
> 0);
566 __FIXADDR_TOP
= round_down(-reserve
, 1 << PMD_SHIFT
) - PAGE_SIZE
;
567 printk(KERN_INFO
"Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
568 -reserve
, __FIXADDR_TOP
+ PAGE_SIZE
);
574 void __native_set_fixmap(enum fixed_addresses idx
, pte_t pte
)
576 unsigned long address
= __fix_to_virt(idx
);
578 if (idx
>= __end_of_fixed_addresses
) {
582 set_pte_vaddr(address
, pte
);
586 void native_set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
,
589 __native_set_fixmap(idx
, pfn_pte(phys
>> PAGE_SHIFT
, flags
));
592 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
593 #ifdef CONFIG_X86_5LEVEL
595 * p4d_set_huge - setup kernel P4D mapping
597 * No 512GB pages yet -- always return 0
599 int p4d_set_huge(p4d_t
*p4d
, phys_addr_t addr
, pgprot_t prot
)
605 * p4d_clear_huge - clear kernel P4D mapping when it is set
607 * No 512GB pages yet -- always return 0
609 int p4d_clear_huge(p4d_t
*p4d
)
616 * pud_set_huge - setup kernel PUD mapping
618 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
619 * function sets up a huge page only if any of the following conditions are met:
621 * - MTRRs are disabled, or
623 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
625 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
626 * has no effect on the requested PAT memory type.
628 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
629 * page mapping attempt fails.
631 * Returns 1 on success and 0 on failure.
633 int pud_set_huge(pud_t
*pud
, phys_addr_t addr
, pgprot_t prot
)
637 mtrr
= mtrr_type_lookup(addr
, addr
+ PUD_SIZE
, &uniform
);
638 if ((mtrr
!= MTRR_TYPE_INVALID
) && (!uniform
) &&
639 (mtrr
!= MTRR_TYPE_WRBACK
))
642 prot
= pgprot_4k_2_large(prot
);
644 set_pte((pte_t
*)pud
, pfn_pte(
645 (u64
)addr
>> PAGE_SHIFT
,
646 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
652 * pmd_set_huge - setup kernel PMD mapping
654 * See text over pud_set_huge() above.
656 * Returns 1 on success and 0 on failure.
658 int pmd_set_huge(pmd_t
*pmd
, phys_addr_t addr
, pgprot_t prot
)
662 mtrr
= mtrr_type_lookup(addr
, addr
+ PMD_SIZE
, &uniform
);
663 if ((mtrr
!= MTRR_TYPE_INVALID
) && (!uniform
) &&
664 (mtrr
!= MTRR_TYPE_WRBACK
)) {
665 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
666 __func__
, addr
, addr
+ PMD_SIZE
);
670 prot
= pgprot_4k_2_large(prot
);
672 set_pte((pte_t
*)pmd
, pfn_pte(
673 (u64
)addr
>> PAGE_SHIFT
,
674 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
680 * pud_clear_huge - clear kernel PUD mapping when it is set
682 * Returns 1 on success and 0 on failure (no PUD map is found).
684 int pud_clear_huge(pud_t
*pud
)
686 if (pud_large(*pud
)) {
695 * pmd_clear_huge - clear kernel PMD mapping when it is set
697 * Returns 1 on success and 0 on failure (no PMD map is found).
699 int pmd_clear_huge(pmd_t
*pmd
)
701 if (pmd_large(*pmd
)) {
708 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */