2 * Hibernation support for x86-64
4 * Distribute under GPLv2
6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
11 #include <linux/gfp.h>
12 #include <linux/smp.h>
13 #include <linux/suspend.h>
14 #include <linux/scatterlist.h>
15 #include <linux/kdebug.h>
17 #include <crypto/hash.h>
19 #include <asm/e820/api.h>
21 #include <asm/proto.h>
23 #include <asm/pgtable.h>
25 #include <asm/sections.h>
26 #include <asm/suspend.h>
27 #include <asm/tlbflush.h>
29 /* Defined in hibernate_asm_64.S */
30 extern asmlinkage __visible
int restore_image(void);
33 * Address to jump to in the last phase of restore in order to get to the image
34 * kernel's text (this value is passed in the image header).
36 unsigned long restore_jump_address __visible
;
37 unsigned long jump_address_phys
;
40 * Value of the cr3 register from before the hibernation (this value is passed
41 * in the image header).
43 unsigned long restore_cr3 __visible
;
45 unsigned long temp_level4_pgt __visible
;
47 unsigned long relocated_restore_code __visible
;
49 static int set_up_temporary_text_mapping(pgd_t
*pgd
)
56 * The new mapping only has to cover the page containing the image
57 * kernel's entry point (jump_address_phys), because the switch over to
58 * it is carried out by relocated code running from a page allocated
59 * specifically for this purpose and covered by the identity mapping, so
60 * the temporary kernel text mapping is only needed for the final jump.
61 * Moreover, in that mapping the virtual address of the image kernel's
62 * entry point must be the same as its virtual address in the image
63 * kernel (restore_jump_address), so the image kernel's
64 * restore_registers() code doesn't find itself in a different area of
65 * the virtual address space after switching over to the original page
66 * tables used by the image kernel.
69 if (IS_ENABLED(CONFIG_X86_5LEVEL
)) {
70 p4d
= (p4d_t
*)get_safe_page(GFP_ATOMIC
);
75 pud
= (pud_t
*)get_safe_page(GFP_ATOMIC
);
79 pmd
= (pmd_t
*)get_safe_page(GFP_ATOMIC
);
83 set_pmd(pmd
+ pmd_index(restore_jump_address
),
84 __pmd((jump_address_phys
& PMD_MASK
) | __PAGE_KERNEL_LARGE_EXEC
));
85 set_pud(pud
+ pud_index(restore_jump_address
),
86 __pud(__pa(pmd
) | _KERNPG_TABLE
));
87 if (IS_ENABLED(CONFIG_X86_5LEVEL
)) {
88 set_p4d(p4d
+ p4d_index(restore_jump_address
), __p4d(__pa(pud
) | _KERNPG_TABLE
));
89 set_pgd(pgd
+ pgd_index(restore_jump_address
), __pgd(__pa(p4d
) | _KERNPG_TABLE
));
91 /* No p4d for 4-level paging: point the pgd to the pud page table */
92 set_pgd(pgd
+ pgd_index(restore_jump_address
), __pgd(__pa(pud
) | _KERNPG_TABLE
));
98 static void *alloc_pgt_page(void *context
)
100 return (void *)get_safe_page(GFP_ATOMIC
);
103 static int set_up_temporary_mappings(void)
105 struct x86_mapping_info info
= {
106 .alloc_pgt_page
= alloc_pgt_page
,
107 .page_flag
= __PAGE_KERNEL_LARGE_EXEC
,
108 .offset
= __PAGE_OFFSET
,
110 unsigned long mstart
, mend
;
115 pgd
= (pgd_t
*)get_safe_page(GFP_ATOMIC
);
119 /* Prepare a temporary mapping for the kernel text */
120 result
= set_up_temporary_text_mapping(pgd
);
124 /* Set up the direct mapping from scratch */
125 for (i
= 0; i
< nr_pfn_mapped
; i
++) {
126 mstart
= pfn_mapped
[i
].start
<< PAGE_SHIFT
;
127 mend
= pfn_mapped
[i
].end
<< PAGE_SHIFT
;
129 result
= kernel_ident_mapping_init(&info
, pgd
, mstart
, mend
);
134 temp_level4_pgt
= __pa(pgd
);
138 static int relocate_restore_code(void)
146 relocated_restore_code
= get_safe_page(GFP_ATOMIC
);
147 if (!relocated_restore_code
)
150 memcpy((void *)relocated_restore_code
, core_restore_code
, PAGE_SIZE
);
152 /* Make the page containing the relocated code executable */
153 pgd
= (pgd_t
*)__va(read_cr3_pa()) +
154 pgd_index(relocated_restore_code
);
155 p4d
= p4d_offset(pgd
, relocated_restore_code
);
156 if (p4d_large(*p4d
)) {
157 set_p4d(p4d
, __p4d(p4d_val(*p4d
) & ~_PAGE_NX
));
160 pud
= pud_offset(p4d
, relocated_restore_code
);
161 if (pud_large(*pud
)) {
162 set_pud(pud
, __pud(pud_val(*pud
) & ~_PAGE_NX
));
165 pmd
= pmd_offset(pud
, relocated_restore_code
);
166 if (pmd_large(*pmd
)) {
167 set_pmd(pmd
, __pmd(pmd_val(*pmd
) & ~_PAGE_NX
));
170 pte
= pte_offset_kernel(pmd
, relocated_restore_code
);
171 set_pte(pte
, __pte(pte_val(*pte
) & ~_PAGE_NX
));
177 int swsusp_arch_resume(void)
181 /* We have got enough memory and from now on we cannot recover */
182 error
= set_up_temporary_mappings();
186 error
= relocate_restore_code();
195 * pfn_is_nosave - check if given pfn is in the 'nosave' section
198 int pfn_is_nosave(unsigned long pfn
)
200 unsigned long nosave_begin_pfn
= __pa_symbol(&__nosave_begin
) >> PAGE_SHIFT
;
201 unsigned long nosave_end_pfn
= PAGE_ALIGN(__pa_symbol(&__nosave_end
)) >> PAGE_SHIFT
;
202 return (pfn
>= nosave_begin_pfn
) && (pfn
< nosave_end_pfn
);
205 #define MD5_DIGEST_SIZE 16
207 struct restore_data_record
{
208 unsigned long jump_address
;
209 unsigned long jump_address_phys
;
212 u8 e820_digest
[MD5_DIGEST_SIZE
];
215 #define RESTORE_MAGIC 0x23456789ABCDEF01UL
217 #if IS_BUILTIN(CONFIG_CRYPTO_MD5)
219 * get_e820_md5 - calculate md5 according to given e820 table
221 * @table: the e820 table to be calculated
222 * @buf: the md5 result to be stored to
224 static int get_e820_md5(struct e820_table
*table
, void *buf
)
226 struct scatterlist sg
;
227 struct crypto_ahash
*tfm
;
231 tfm
= crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC
);
236 AHASH_REQUEST_ON_STACK(req
, tfm
);
237 size
= offsetof(struct e820_table
, entries
) + sizeof(struct e820_entry
) * table
->nr_entries
;
238 ahash_request_set_tfm(req
, tfm
);
239 sg_init_one(&sg
, (u8
*)table
, size
);
240 ahash_request_set_callback(req
, 0, NULL
, NULL
);
241 ahash_request_set_crypt(req
, &sg
, buf
, size
);
243 if (crypto_ahash_digest(req
))
245 ahash_request_zero(req
);
247 crypto_free_ahash(tfm
);
252 static void hibernation_e820_save(void *buf
)
254 get_e820_md5(e820_table_firmware
, buf
);
257 static bool hibernation_e820_mismatch(void *buf
)
260 u8 result
[MD5_DIGEST_SIZE
];
262 memset(result
, 0, MD5_DIGEST_SIZE
);
263 /* If there is no digest in suspend kernel, let it go. */
264 if (!memcmp(result
, buf
, MD5_DIGEST_SIZE
))
267 ret
= get_e820_md5(e820_table_firmware
, result
);
271 return memcmp(result
, buf
, MD5_DIGEST_SIZE
) ? true : false;
274 static void hibernation_e820_save(void *buf
)
278 static bool hibernation_e820_mismatch(void *buf
)
280 /* If md5 is not builtin for restore kernel, let it go. */
286 * arch_hibernation_header_save - populate the architecture specific part
287 * of a hibernation image header
288 * @addr: address to save the data at
290 int arch_hibernation_header_save(void *addr
, unsigned int max_size
)
292 struct restore_data_record
*rdr
= addr
;
294 if (max_size
< sizeof(struct restore_data_record
))
296 rdr
->jump_address
= (unsigned long)restore_registers
;
297 rdr
->jump_address_phys
= __pa_symbol(restore_registers
);
298 rdr
->cr3
= restore_cr3
;
299 rdr
->magic
= RESTORE_MAGIC
;
301 hibernation_e820_save(rdr
->e820_digest
);
307 * arch_hibernation_header_restore - read the architecture specific data
308 * from the hibernation image header
309 * @addr: address to read the data from
311 int arch_hibernation_header_restore(void *addr
)
313 struct restore_data_record
*rdr
= addr
;
315 restore_jump_address
= rdr
->jump_address
;
316 jump_address_phys
= rdr
->jump_address_phys
;
317 restore_cr3
= rdr
->cr3
;
319 if (rdr
->magic
!= RESTORE_MAGIC
) {
320 pr_crit("Unrecognized hibernate image header format!\n");
324 if (hibernation_e820_mismatch(rdr
->e820_digest
)) {
325 pr_crit("Hibernate inconsistent memory map detected!\n");