2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 #include <linux/mdio.h>
49 #include "t4vf_common.h"
50 #include "t4vf_defs.h"
52 #include "../cxgb4/t4_regs.h"
53 #include "../cxgb4/t4_msg.h"
56 * Generic information about the driver.
58 #define DRV_VERSION "2.0.0-ko"
59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
67 * Default ethtool "message level" for adapters.
69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
74 * The driver uses the best interrupt scheme available on a platform in the
75 * order MSI-X then MSI. This parameter determines which of these schemes the
76 * driver may consider as follows:
78 * msi = 2: choose from among MSI-X and MSI
79 * msi = 1: only consider MSI interrupts
81 * Note that unlike the Physical Function driver, this Virtual Function driver
82 * does _not_ support legacy INTx interrupts (this limitation is mandated by
83 * the PCI-E SR-IOV standard).
87 #define MSI_DEFAULT MSI_MSIX
89 static int msi
= MSI_DEFAULT
;
91 module_param(msi
, int, 0644);
92 MODULE_PARM_DESC(msi
, "whether to use MSI-X or MSI");
95 * Fundamental constants.
96 * ======================
100 MAX_TXQ_ENTRIES
= 16384,
101 MAX_RSPQ_ENTRIES
= 16384,
102 MAX_RX_BUFFERS
= 16384,
104 MIN_TXQ_ENTRIES
= 32,
105 MIN_RSPQ_ENTRIES
= 128,
109 * For purposes of manipulating the Free List size we need to
110 * recognize that Free Lists are actually Egress Queues (the host
111 * produces free buffers which the hardware consumes), Egress Queues
112 * indices are all in units of Egress Context Units bytes, and free
113 * list entries are 64-bit PCI DMA addresses. And since the state of
114 * the Producer Index == the Consumer Index implies an EMPTY list, we
115 * always have at least one Egress Unit's worth of Free List entries
116 * unused. See sge.c for more details ...
118 EQ_UNIT
= SGE_EQ_IDXSIZE
,
119 FL_PER_EQ_UNIT
= EQ_UNIT
/ sizeof(__be64
),
120 MIN_FL_RESID
= FL_PER_EQ_UNIT
,
124 * Global driver state.
125 * ====================
128 static struct dentry
*cxgb4vf_debugfs_root
;
131 * OS "Callback" functions.
132 * ========================
136 * The link status has changed on the indicated "port" (Virtual Interface).
138 void t4vf_os_link_changed(struct adapter
*adapter
, int pidx
, int link_ok
)
140 struct net_device
*dev
= adapter
->port
[pidx
];
143 * If the port is disabled or the current recorded "link up"
144 * status matches the new status, just return.
146 if (!netif_running(dev
) || link_ok
== netif_carrier_ok(dev
))
150 * Tell the OS that the link status has changed and print a short
151 * informative message on the console about the event.
156 const struct port_info
*pi
= netdev_priv(dev
);
158 netif_carrier_on(dev
);
160 switch (pi
->link_cfg
.speed
) {
185 switch (pi
->link_cfg
.fc
) {
194 case PAUSE_RX
|PAUSE_TX
:
203 netdev_info(dev
, "link up, %s, full-duplex, %s PAUSE\n", s
, fc
);
205 netif_carrier_off(dev
);
206 netdev_info(dev
, "link down\n");
211 * THe port module type has changed on the indicated "port" (Virtual
214 void t4vf_os_portmod_changed(struct adapter
*adapter
, int pidx
)
216 static const char * const mod_str
[] = {
217 NULL
, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
219 const struct net_device
*dev
= adapter
->port
[pidx
];
220 const struct port_info
*pi
= netdev_priv(dev
);
222 if (pi
->mod_type
== FW_PORT_MOD_TYPE_NONE
)
223 dev_info(adapter
->pdev_dev
, "%s: port module unplugged\n",
225 else if (pi
->mod_type
< ARRAY_SIZE(mod_str
))
226 dev_info(adapter
->pdev_dev
, "%s: %s port module inserted\n",
227 dev
->name
, mod_str
[pi
->mod_type
]);
228 else if (pi
->mod_type
== FW_PORT_MOD_TYPE_NOTSUPPORTED
)
229 dev_info(adapter
->pdev_dev
, "%s: unsupported optical port "
230 "module inserted\n", dev
->name
);
231 else if (pi
->mod_type
== FW_PORT_MOD_TYPE_UNKNOWN
)
232 dev_info(adapter
->pdev_dev
, "%s: unknown port module inserted,"
233 "forcing TWINAX\n", dev
->name
);
234 else if (pi
->mod_type
== FW_PORT_MOD_TYPE_ERROR
)
235 dev_info(adapter
->pdev_dev
, "%s: transceiver module error\n",
238 dev_info(adapter
->pdev_dev
, "%s: unknown module type %d "
239 "inserted\n", dev
->name
, pi
->mod_type
);
243 * Net device operations.
244 * ======================
251 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
254 static int link_start(struct net_device
*dev
)
257 struct port_info
*pi
= netdev_priv(dev
);
260 * We do not set address filters and promiscuity here, the stack does
261 * that step explicitly. Enable vlan accel.
263 ret
= t4vf_set_rxmode(pi
->adapter
, pi
->viid
, dev
->mtu
, -1, -1, -1, 1,
266 ret
= t4vf_change_mac(pi
->adapter
, pi
->viid
,
267 pi
->xact_addr_filt
, dev
->dev_addr
, true);
269 pi
->xact_addr_filt
= ret
;
275 * We don't need to actually "start the link" itself since the
276 * firmware will do that for us when the first Virtual Interface
277 * is enabled on a port.
280 ret
= t4vf_enable_vi(pi
->adapter
, pi
->viid
, true, true);
285 * Name the MSI-X interrupts.
287 static void name_msix_vecs(struct adapter
*adapter
)
289 int namelen
= sizeof(adapter
->msix_info
[0].desc
) - 1;
295 snprintf(adapter
->msix_info
[MSIX_FW
].desc
, namelen
,
296 "%s-FWeventq", adapter
->name
);
297 adapter
->msix_info
[MSIX_FW
].desc
[namelen
] = 0;
302 for_each_port(adapter
, pidx
) {
303 struct net_device
*dev
= adapter
->port
[pidx
];
304 const struct port_info
*pi
= netdev_priv(dev
);
307 for (qs
= 0, msi
= MSIX_IQFLINT
; qs
< pi
->nqsets
; qs
++, msi
++) {
308 snprintf(adapter
->msix_info
[msi
].desc
, namelen
,
309 "%s-%d", dev
->name
, qs
);
310 adapter
->msix_info
[msi
].desc
[namelen
] = 0;
316 * Request all of our MSI-X resources.
318 static int request_msix_queue_irqs(struct adapter
*adapter
)
320 struct sge
*s
= &adapter
->sge
;
326 err
= request_irq(adapter
->msix_info
[MSIX_FW
].vec
, t4vf_sge_intr_msix
,
327 0, adapter
->msix_info
[MSIX_FW
].desc
, &s
->fw_evtq
);
335 for_each_ethrxq(s
, rxq
) {
336 err
= request_irq(adapter
->msix_info
[msi
].vec
,
337 t4vf_sge_intr_msix
, 0,
338 adapter
->msix_info
[msi
].desc
,
339 &s
->ethrxq
[rxq
].rspq
);
348 free_irq(adapter
->msix_info
[--msi
].vec
, &s
->ethrxq
[rxq
].rspq
);
349 free_irq(adapter
->msix_info
[MSIX_FW
].vec
, &s
->fw_evtq
);
354 * Free our MSI-X resources.
356 static void free_msix_queue_irqs(struct adapter
*adapter
)
358 struct sge
*s
= &adapter
->sge
;
361 free_irq(adapter
->msix_info
[MSIX_FW
].vec
, &s
->fw_evtq
);
363 for_each_ethrxq(s
, rxq
)
364 free_irq(adapter
->msix_info
[msi
++].vec
,
365 &s
->ethrxq
[rxq
].rspq
);
369 * Turn on NAPI and start up interrupts on a response queue.
371 static void qenable(struct sge_rspq
*rspq
)
373 napi_enable(&rspq
->napi
);
376 * 0-increment the Going To Sleep register to start the timer and
379 t4_write_reg(rspq
->adapter
, T4VF_SGE_BASE_ADDR
+ SGE_VF_GTS
,
381 SEINTARM_V(rspq
->intr_params
) |
382 INGRESSQID_V(rspq
->cntxt_id
));
386 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
388 static void enable_rx(struct adapter
*adapter
)
391 struct sge
*s
= &adapter
->sge
;
393 for_each_ethrxq(s
, rxq
)
394 qenable(&s
->ethrxq
[rxq
].rspq
);
395 qenable(&s
->fw_evtq
);
398 * The interrupt queue doesn't use NAPI so we do the 0-increment of
399 * its Going To Sleep register here to get it started.
401 if (adapter
->flags
& USING_MSI
)
402 t4_write_reg(adapter
, T4VF_SGE_BASE_ADDR
+ SGE_VF_GTS
,
404 SEINTARM_V(s
->intrq
.intr_params
) |
405 INGRESSQID_V(s
->intrq
.cntxt_id
));
410 * Wait until all NAPI handlers are descheduled.
412 static void quiesce_rx(struct adapter
*adapter
)
414 struct sge
*s
= &adapter
->sge
;
417 for_each_ethrxq(s
, rxq
)
418 napi_disable(&s
->ethrxq
[rxq
].rspq
.napi
);
419 napi_disable(&s
->fw_evtq
.napi
);
423 * Response queue handler for the firmware event queue.
425 static int fwevtq_handler(struct sge_rspq
*rspq
, const __be64
*rsp
,
426 const struct pkt_gl
*gl
)
429 * Extract response opcode and get pointer to CPL message body.
431 struct adapter
*adapter
= rspq
->adapter
;
432 u8 opcode
= ((const struct rss_header
*)rsp
)->opcode
;
433 void *cpl
= (void *)(rsp
+ 1);
438 * We've received an asynchronous message from the firmware.
440 const struct cpl_fw6_msg
*fw_msg
= cpl
;
441 if (fw_msg
->type
== FW6_TYPE_CMD_RPL
)
442 t4vf_handle_fw_rpl(adapter
, fw_msg
->data
);
447 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
449 const struct cpl_sge_egr_update
*p
= (void *)(rsp
+ 3);
450 opcode
= CPL_OPCODE_G(ntohl(p
->opcode_qid
));
451 if (opcode
!= CPL_SGE_EGR_UPDATE
) {
452 dev_err(adapter
->pdev_dev
, "unexpected FW4/CPL %#x on FW event queue\n"
460 case CPL_SGE_EGR_UPDATE
: {
462 * We've received an Egress Queue Status Update message. We
463 * get these, if the SGE is configured to send these when the
464 * firmware passes certain points in processing our TX
465 * Ethernet Queue or if we make an explicit request for one.
466 * We use these updates to determine when we may need to
467 * restart a TX Ethernet Queue which was stopped for lack of
468 * free TX Queue Descriptors ...
470 const struct cpl_sge_egr_update
*p
= cpl
;
471 unsigned int qid
= EGR_QID_G(be32_to_cpu(p
->opcode_qid
));
472 struct sge
*s
= &adapter
->sge
;
474 struct sge_eth_txq
*txq
;
478 * Perform sanity checking on the Queue ID to make sure it
479 * really refers to one of our TX Ethernet Egress Queues which
480 * is active and matches the queue's ID. None of these error
481 * conditions should ever happen so we may want to either make
482 * them fatal and/or conditionalized under DEBUG.
484 eq_idx
= EQ_IDX(s
, qid
);
485 if (unlikely(eq_idx
>= MAX_EGRQ
)) {
486 dev_err(adapter
->pdev_dev
,
487 "Egress Update QID %d out of range\n", qid
);
490 tq
= s
->egr_map
[eq_idx
];
491 if (unlikely(tq
== NULL
)) {
492 dev_err(adapter
->pdev_dev
,
493 "Egress Update QID %d TXQ=NULL\n", qid
);
496 txq
= container_of(tq
, struct sge_eth_txq
, q
);
497 if (unlikely(tq
->abs_id
!= qid
)) {
498 dev_err(adapter
->pdev_dev
,
499 "Egress Update QID %d refers to TXQ %d\n",
505 * Restart a stopped TX Queue which has less than half of its
509 netif_tx_wake_queue(txq
->txq
);
514 dev_err(adapter
->pdev_dev
,
515 "unexpected CPL %#x on FW event queue\n", opcode
);
522 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
523 * to use and initializes them. We support multiple "Queue Sets" per port if
524 * we have MSI-X, otherwise just one queue set per port.
526 static int setup_sge_queues(struct adapter
*adapter
)
528 struct sge
*s
= &adapter
->sge
;
532 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
535 bitmap_zero(s
->starving_fl
, MAX_EGRQ
);
538 * If we're using MSI interrupt mode we need to set up a "forwarded
539 * interrupt" queue which we'll set up with our MSI vector. The rest
540 * of the ingress queues will be set up to forward their interrupts to
541 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
542 * the intrq's queue ID as the interrupt forwarding queue for the
543 * subsequent calls ...
545 if (adapter
->flags
& USING_MSI
) {
546 err
= t4vf_sge_alloc_rxq(adapter
, &s
->intrq
, false,
547 adapter
->port
[0], 0, NULL
, NULL
);
549 goto err_free_queues
;
553 * Allocate our ingress queue for asynchronous firmware messages.
555 err
= t4vf_sge_alloc_rxq(adapter
, &s
->fw_evtq
, true, adapter
->port
[0],
556 MSIX_FW
, NULL
, fwevtq_handler
);
558 goto err_free_queues
;
561 * Allocate each "port"'s initial Queue Sets. These can be changed
562 * later on ... up to the point where any interface on the adapter is
563 * brought up at which point lots of things get nailed down
567 for_each_port(adapter
, pidx
) {
568 struct net_device
*dev
= adapter
->port
[pidx
];
569 struct port_info
*pi
= netdev_priv(dev
);
570 struct sge_eth_rxq
*rxq
= &s
->ethrxq
[pi
->first_qset
];
571 struct sge_eth_txq
*txq
= &s
->ethtxq
[pi
->first_qset
];
574 for (qs
= 0; qs
< pi
->nqsets
; qs
++, rxq
++, txq
++) {
575 err
= t4vf_sge_alloc_rxq(adapter
, &rxq
->rspq
, false,
577 &rxq
->fl
, t4vf_ethrx_handler
);
579 goto err_free_queues
;
581 err
= t4vf_sge_alloc_eth_txq(adapter
, txq
, dev
,
582 netdev_get_tx_queue(dev
, qs
),
583 s
->fw_evtq
.cntxt_id
);
585 goto err_free_queues
;
588 memset(&rxq
->stats
, 0, sizeof(rxq
->stats
));
593 * Create the reverse mappings for the queues.
595 s
->egr_base
= s
->ethtxq
[0].q
.abs_id
- s
->ethtxq
[0].q
.cntxt_id
;
596 s
->ingr_base
= s
->ethrxq
[0].rspq
.abs_id
- s
->ethrxq
[0].rspq
.cntxt_id
;
597 IQ_MAP(s
, s
->fw_evtq
.abs_id
) = &s
->fw_evtq
;
598 for_each_port(adapter
, pidx
) {
599 struct net_device
*dev
= adapter
->port
[pidx
];
600 struct port_info
*pi
= netdev_priv(dev
);
601 struct sge_eth_rxq
*rxq
= &s
->ethrxq
[pi
->first_qset
];
602 struct sge_eth_txq
*txq
= &s
->ethtxq
[pi
->first_qset
];
605 for (qs
= 0; qs
< pi
->nqsets
; qs
++, rxq
++, txq
++) {
606 IQ_MAP(s
, rxq
->rspq
.abs_id
) = &rxq
->rspq
;
607 EQ_MAP(s
, txq
->q
.abs_id
) = &txq
->q
;
610 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
611 * for Free Lists but since all of the Egress Queues
612 * (including Free Lists) have Relative Queue IDs
613 * which are computed as Absolute - Base Queue ID, we
614 * can synthesize the Absolute Queue IDs for the Free
615 * Lists. This is useful for debugging purposes when
616 * we want to dump Queue Contexts via the PF Driver.
618 rxq
->fl
.abs_id
= rxq
->fl
.cntxt_id
+ s
->egr_base
;
619 EQ_MAP(s
, rxq
->fl
.abs_id
) = &rxq
->fl
;
625 t4vf_free_sge_resources(adapter
);
630 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
631 * queues. We configure the RSS CPU lookup table to distribute to the number
632 * of HW receive queues, and the response queue lookup table to narrow that
633 * down to the response queues actually configured for each "port" (Virtual
634 * Interface). We always configure the RSS mapping for all ports since the
635 * mapping table has plenty of entries.
637 static int setup_rss(struct adapter
*adapter
)
641 for_each_port(adapter
, pidx
) {
642 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
643 struct sge_eth_rxq
*rxq
= &adapter
->sge
.ethrxq
[pi
->first_qset
];
644 u16 rss
[MAX_PORT_QSETS
];
647 for (qs
= 0; qs
< pi
->nqsets
; qs
++)
648 rss
[qs
] = rxq
[qs
].rspq
.abs_id
;
650 err
= t4vf_config_rss_range(adapter
, pi
->viid
,
651 0, pi
->rss_size
, rss
, pi
->nqsets
);
656 * Perform Global RSS Mode-specific initialization.
658 switch (adapter
->params
.rss
.mode
) {
659 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
:
661 * If Tunnel All Lookup isn't specified in the global
662 * RSS Configuration, then we need to specify a
663 * default Ingress Queue for any ingress packets which
664 * aren't hashed. We'll use our first ingress queue
667 if (!adapter
->params
.rss
.u
.basicvirtual
.tnlalllookup
) {
668 union rss_vi_config config
;
669 err
= t4vf_read_rss_vi_config(adapter
,
674 config
.basicvirtual
.defaultq
=
676 err
= t4vf_write_rss_vi_config(adapter
,
690 * Bring the adapter up. Called whenever we go from no "ports" open to having
691 * one open. This function performs the actions necessary to make an adapter
692 * operational, such as completing the initialization of HW modules, and
693 * enabling interrupts. Must be called with the rtnl lock held. (Note that
694 * this is called "cxgb_up" in the PF Driver.)
696 static int adapter_up(struct adapter
*adapter
)
701 * If this is the first time we've been called, perform basic
702 * adapter setup. Once we've done this, many of our adapter
703 * parameters can no longer be changed ...
705 if ((adapter
->flags
& FULL_INIT_DONE
) == 0) {
706 err
= setup_sge_queues(adapter
);
709 err
= setup_rss(adapter
);
711 t4vf_free_sge_resources(adapter
);
715 if (adapter
->flags
& USING_MSIX
)
716 name_msix_vecs(adapter
);
717 adapter
->flags
|= FULL_INIT_DONE
;
721 * Acquire our interrupt resources. We only support MSI-X and MSI.
723 BUG_ON((adapter
->flags
& (USING_MSIX
|USING_MSI
)) == 0);
724 if (adapter
->flags
& USING_MSIX
)
725 err
= request_msix_queue_irqs(adapter
);
727 err
= request_irq(adapter
->pdev
->irq
,
728 t4vf_intr_handler(adapter
), 0,
729 adapter
->name
, adapter
);
731 dev_err(adapter
->pdev_dev
, "request_irq failed, err %d\n",
737 * Enable NAPI ingress processing and return success.
740 t4vf_sge_start(adapter
);
742 /* Initialize hash mac addr list*/
743 INIT_LIST_HEAD(&adapter
->mac_hlist
);
748 * Bring the adapter down. Called whenever the last "port" (Virtual
749 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
752 static void adapter_down(struct adapter
*adapter
)
755 * Free interrupt resources.
757 if (adapter
->flags
& USING_MSIX
)
758 free_msix_queue_irqs(adapter
);
760 free_irq(adapter
->pdev
->irq
, adapter
);
763 * Wait for NAPI handlers to finish.
769 * Start up a net device.
771 static int cxgb4vf_open(struct net_device
*dev
)
774 struct port_info
*pi
= netdev_priv(dev
);
775 struct adapter
*adapter
= pi
->adapter
;
778 * If this is the first interface that we're opening on the "adapter",
779 * bring the "adapter" up now.
781 if (adapter
->open_device_map
== 0) {
782 err
= adapter_up(adapter
);
788 * Note that this interface is up and start everything up ...
790 err
= link_start(dev
);
794 netif_tx_start_all_queues(dev
);
795 set_bit(pi
->port_id
, &adapter
->open_device_map
);
799 if (adapter
->open_device_map
== 0)
800 adapter_down(adapter
);
805 * Shut down a net device. This routine is called "cxgb_close" in the PF
808 static int cxgb4vf_stop(struct net_device
*dev
)
810 struct port_info
*pi
= netdev_priv(dev
);
811 struct adapter
*adapter
= pi
->adapter
;
813 netif_tx_stop_all_queues(dev
);
814 netif_carrier_off(dev
);
815 t4vf_enable_vi(adapter
, pi
->viid
, false, false);
816 pi
->link_cfg
.link_ok
= 0;
818 clear_bit(pi
->port_id
, &adapter
->open_device_map
);
819 if (adapter
->open_device_map
== 0)
820 adapter_down(adapter
);
825 * Translate our basic statistics into the standard "ifconfig" statistics.
827 static struct net_device_stats
*cxgb4vf_get_stats(struct net_device
*dev
)
829 struct t4vf_port_stats stats
;
830 struct port_info
*pi
= netdev2pinfo(dev
);
831 struct adapter
*adapter
= pi
->adapter
;
832 struct net_device_stats
*ns
= &dev
->stats
;
835 spin_lock(&adapter
->stats_lock
);
836 err
= t4vf_get_port_stats(adapter
, pi
->pidx
, &stats
);
837 spin_unlock(&adapter
->stats_lock
);
839 memset(ns
, 0, sizeof(*ns
));
843 ns
->tx_bytes
= (stats
.tx_bcast_bytes
+ stats
.tx_mcast_bytes
+
844 stats
.tx_ucast_bytes
+ stats
.tx_offload_bytes
);
845 ns
->tx_packets
= (stats
.tx_bcast_frames
+ stats
.tx_mcast_frames
+
846 stats
.tx_ucast_frames
+ stats
.tx_offload_frames
);
847 ns
->rx_bytes
= (stats
.rx_bcast_bytes
+ stats
.rx_mcast_bytes
+
848 stats
.rx_ucast_bytes
);
849 ns
->rx_packets
= (stats
.rx_bcast_frames
+ stats
.rx_mcast_frames
+
850 stats
.rx_ucast_frames
);
851 ns
->multicast
= stats
.rx_mcast_frames
;
852 ns
->tx_errors
= stats
.tx_drop_frames
;
853 ns
->rx_errors
= stats
.rx_err_frames
;
858 static inline int cxgb4vf_set_addr_hash(struct port_info
*pi
)
860 struct adapter
*adapter
= pi
->adapter
;
863 struct hash_mac_addr
*entry
;
865 /* Calculate the hash vector for the updated list and program it */
866 list_for_each_entry(entry
, &adapter
->mac_hlist
, list
) {
867 ucast
|= is_unicast_ether_addr(entry
->addr
);
868 vec
|= (1ULL << hash_mac_addr(entry
->addr
));
870 return t4vf_set_addr_hash(adapter
, pi
->viid
, ucast
, vec
, false);
873 static int cxgb4vf_mac_sync(struct net_device
*netdev
, const u8
*mac_addr
)
875 struct port_info
*pi
= netdev_priv(netdev
);
876 struct adapter
*adapter
= pi
->adapter
;
881 bool ucast
= is_unicast_ether_addr(mac_addr
);
882 const u8
*maclist
[1] = {mac_addr
};
883 struct hash_mac_addr
*new_entry
;
885 ret
= t4vf_alloc_mac_filt(adapter
, pi
->viid
, free
, 1, maclist
,
886 NULL
, ucast
? &uhash
: &mhash
, false);
889 /* if hash != 0, then add the addr to hash addr list
890 * so on the end we will calculate the hash for the
891 * list and program it
893 if (uhash
|| mhash
) {
894 new_entry
= kzalloc(sizeof(*new_entry
), GFP_ATOMIC
);
897 ether_addr_copy(new_entry
->addr
, mac_addr
);
898 list_add_tail(&new_entry
->list
, &adapter
->mac_hlist
);
899 ret
= cxgb4vf_set_addr_hash(pi
);
902 return ret
< 0 ? ret
: 0;
905 static int cxgb4vf_mac_unsync(struct net_device
*netdev
, const u8
*mac_addr
)
907 struct port_info
*pi
= netdev_priv(netdev
);
908 struct adapter
*adapter
= pi
->adapter
;
910 const u8
*maclist
[1] = {mac_addr
};
911 struct hash_mac_addr
*entry
, *tmp
;
913 /* If the MAC address to be removed is in the hash addr
914 * list, delete it from the list and update hash vector
916 list_for_each_entry_safe(entry
, tmp
, &adapter
->mac_hlist
, list
) {
917 if (ether_addr_equal(entry
->addr
, mac_addr
)) {
918 list_del(&entry
->list
);
920 return cxgb4vf_set_addr_hash(pi
);
924 ret
= t4vf_free_mac_filt(adapter
, pi
->viid
, 1, maclist
, false);
925 return ret
< 0 ? -EINVAL
: 0;
929 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
930 * If @mtu is -1 it is left unchanged.
932 static int set_rxmode(struct net_device
*dev
, int mtu
, bool sleep_ok
)
934 struct port_info
*pi
= netdev_priv(dev
);
936 __dev_uc_sync(dev
, cxgb4vf_mac_sync
, cxgb4vf_mac_unsync
);
937 __dev_mc_sync(dev
, cxgb4vf_mac_sync
, cxgb4vf_mac_unsync
);
938 return t4vf_set_rxmode(pi
->adapter
, pi
->viid
, -1,
939 (dev
->flags
& IFF_PROMISC
) != 0,
940 (dev
->flags
& IFF_ALLMULTI
) != 0,
945 * Set the current receive modes on the device.
947 static void cxgb4vf_set_rxmode(struct net_device
*dev
)
949 /* unfortunately we can't return errors to the stack */
950 set_rxmode(dev
, -1, false);
954 * Find the entry in the interrupt holdoff timer value array which comes
955 * closest to the specified interrupt holdoff value.
957 static int closest_timer(const struct sge
*s
, int us
)
959 int i
, timer_idx
= 0, min_delta
= INT_MAX
;
961 for (i
= 0; i
< ARRAY_SIZE(s
->timer_val
); i
++) {
962 int delta
= us
- s
->timer_val
[i
];
965 if (delta
< min_delta
) {
973 static int closest_thres(const struct sge
*s
, int thres
)
975 int i
, delta
, pktcnt_idx
= 0, min_delta
= INT_MAX
;
977 for (i
= 0; i
< ARRAY_SIZE(s
->counter_val
); i
++) {
978 delta
= thres
- s
->counter_val
[i
];
981 if (delta
< min_delta
) {
990 * Return a queue's interrupt hold-off time in us. 0 means no timer.
992 static unsigned int qtimer_val(const struct adapter
*adapter
,
993 const struct sge_rspq
*rspq
)
995 unsigned int timer_idx
= QINTR_TIMER_IDX_G(rspq
->intr_params
);
997 return timer_idx
< SGE_NTIMERS
998 ? adapter
->sge
.timer_val
[timer_idx
]
1003 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
1004 * @adapter: the adapter
1005 * @rspq: the RX response queue
1006 * @us: the hold-off time in us, or 0 to disable timer
1007 * @cnt: the hold-off packet count, or 0 to disable counter
1009 * Sets an RX response queue's interrupt hold-off time and packet count.
1010 * At least one of the two needs to be enabled for the queue to generate
1013 static int set_rxq_intr_params(struct adapter
*adapter
, struct sge_rspq
*rspq
,
1014 unsigned int us
, unsigned int cnt
)
1016 unsigned int timer_idx
;
1019 * If both the interrupt holdoff timer and count are specified as
1020 * zero, default to a holdoff count of 1 ...
1022 if ((us
| cnt
) == 0)
1026 * If an interrupt holdoff count has been specified, then find the
1027 * closest configured holdoff count and use that. If the response
1028 * queue has already been created, then update its queue context
1035 pktcnt_idx
= closest_thres(&adapter
->sge
, cnt
);
1036 if (rspq
->desc
&& rspq
->pktcnt_idx
!= pktcnt_idx
) {
1037 v
= FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ
) |
1038 FW_PARAMS_PARAM_X_V(
1039 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH
) |
1040 FW_PARAMS_PARAM_YZ_V(rspq
->cntxt_id
);
1041 err
= t4vf_set_params(adapter
, 1, &v
, &pktcnt_idx
);
1045 rspq
->pktcnt_idx
= pktcnt_idx
;
1049 * Compute the closest holdoff timer index from the supplied holdoff
1052 timer_idx
= (us
== 0
1053 ? SGE_TIMER_RSTRT_CNTR
1054 : closest_timer(&adapter
->sge
, us
));
1057 * Update the response queue's interrupt coalescing parameters and
1060 rspq
->intr_params
= (QINTR_TIMER_IDX_V(timer_idx
) |
1061 QINTR_CNT_EN_V(cnt
> 0));
1066 * Return a version number to identify the type of adapter. The scheme is:
1067 * - bits 0..9: chip version
1068 * - bits 10..15: chip revision
1070 static inline unsigned int mk_adap_vers(const struct adapter
*adapter
)
1073 * Chip version 4, revision 0x3f (cxgb4vf).
1075 return CHELSIO_CHIP_VERSION(adapter
->params
.chip
) | (0x3f << 10);
1079 * Execute the specified ioctl command.
1081 static int cxgb4vf_do_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
1087 * The VF Driver doesn't have access to any of the other
1088 * common Ethernet device ioctl()'s (like reading/writing
1089 * PHY registers, etc.
1100 * Change the device's MTU.
1102 static int cxgb4vf_change_mtu(struct net_device
*dev
, int new_mtu
)
1105 struct port_info
*pi
= netdev_priv(dev
);
1107 ret
= t4vf_set_rxmode(pi
->adapter
, pi
->viid
, new_mtu
,
1108 -1, -1, -1, -1, true);
1114 static netdev_features_t
cxgb4vf_fix_features(struct net_device
*dev
,
1115 netdev_features_t features
)
1118 * Since there is no support for separate rx/tx vlan accel
1119 * enable/disable make sure tx flag is always in same state as rx.
1121 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
1122 features
|= NETIF_F_HW_VLAN_CTAG_TX
;
1124 features
&= ~NETIF_F_HW_VLAN_CTAG_TX
;
1129 static int cxgb4vf_set_features(struct net_device
*dev
,
1130 netdev_features_t features
)
1132 struct port_info
*pi
= netdev_priv(dev
);
1133 netdev_features_t changed
= dev
->features
^ features
;
1135 if (changed
& NETIF_F_HW_VLAN_CTAG_RX
)
1136 t4vf_set_rxmode(pi
->adapter
, pi
->viid
, -1, -1, -1, -1,
1137 features
& NETIF_F_HW_VLAN_CTAG_TX
, 0);
1143 * Change the devices MAC address.
1145 static int cxgb4vf_set_mac_addr(struct net_device
*dev
, void *_addr
)
1148 struct sockaddr
*addr
= _addr
;
1149 struct port_info
*pi
= netdev_priv(dev
);
1151 if (!is_valid_ether_addr(addr
->sa_data
))
1152 return -EADDRNOTAVAIL
;
1154 ret
= t4vf_change_mac(pi
->adapter
, pi
->viid
, pi
->xact_addr_filt
,
1155 addr
->sa_data
, true);
1159 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1160 pi
->xact_addr_filt
= ret
;
1164 #ifdef CONFIG_NET_POLL_CONTROLLER
1166 * Poll all of our receive queues. This is called outside of normal interrupt
1169 static void cxgb4vf_poll_controller(struct net_device
*dev
)
1171 struct port_info
*pi
= netdev_priv(dev
);
1172 struct adapter
*adapter
= pi
->adapter
;
1174 if (adapter
->flags
& USING_MSIX
) {
1175 struct sge_eth_rxq
*rxq
;
1178 rxq
= &adapter
->sge
.ethrxq
[pi
->first_qset
];
1179 for (nqsets
= pi
->nqsets
; nqsets
; nqsets
--) {
1180 t4vf_sge_intr_msix(0, &rxq
->rspq
);
1184 t4vf_intr_handler(adapter
)(0, adapter
);
1189 * Ethtool operations.
1190 * ===================
1192 * Note that we don't support any ethtool operations which change the physical
1193 * state of the port to which we're linked.
1197 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1198 * @port_type: Firmware Port Type
1199 * @mod_type: Firmware Module Type
1201 * Translate Firmware Port/Module type to Ethtool Port Type.
1203 static int from_fw_port_mod_type(enum fw_port_type port_type
,
1204 enum fw_port_module_type mod_type
)
1206 if (port_type
== FW_PORT_TYPE_BT_SGMII
||
1207 port_type
== FW_PORT_TYPE_BT_XFI
||
1208 port_type
== FW_PORT_TYPE_BT_XAUI
) {
1210 } else if (port_type
== FW_PORT_TYPE_FIBER_XFI
||
1211 port_type
== FW_PORT_TYPE_FIBER_XAUI
) {
1213 } else if (port_type
== FW_PORT_TYPE_SFP
||
1214 port_type
== FW_PORT_TYPE_QSFP_10G
||
1215 port_type
== FW_PORT_TYPE_QSA
||
1216 port_type
== FW_PORT_TYPE_QSFP
) {
1217 if (mod_type
== FW_PORT_MOD_TYPE_LR
||
1218 mod_type
== FW_PORT_MOD_TYPE_SR
||
1219 mod_type
== FW_PORT_MOD_TYPE_ER
||
1220 mod_type
== FW_PORT_MOD_TYPE_LRM
)
1222 else if (mod_type
== FW_PORT_MOD_TYPE_TWINAX_PASSIVE
||
1223 mod_type
== FW_PORT_MOD_TYPE_TWINAX_ACTIVE
)
1233 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1234 * @port_type: Firmware Port Type
1235 * @fw_caps: Firmware Port Capabilities
1236 * @link_mode_mask: ethtool Link Mode Mask
1238 * Translate a Firmware Port Capabilities specification to an ethtool
1241 static void fw_caps_to_lmm(enum fw_port_type port_type
,
1242 unsigned int fw_caps
,
1243 unsigned long *link_mode_mask
)
1245 #define SET_LMM(__lmm_name) __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name\
1246 ## _BIT, link_mode_mask)
1248 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1250 if (fw_caps & FW_PORT_CAP_ ## __fw_name) \
1251 SET_LMM(__lmm_name); \
1254 switch (port_type
) {
1255 case FW_PORT_TYPE_BT_SGMII
:
1256 case FW_PORT_TYPE_BT_XFI
:
1257 case FW_PORT_TYPE_BT_XAUI
:
1259 FW_CAPS_TO_LMM(SPEED_100M
, 100baseT_Full
);
1260 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseT_Full
);
1261 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseT_Full
);
1264 case FW_PORT_TYPE_KX4
:
1265 case FW_PORT_TYPE_KX
:
1267 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseKX_Full
);
1268 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseKX4_Full
);
1271 case FW_PORT_TYPE_KR
:
1273 SET_LMM(10000baseKR_Full
);
1276 case FW_PORT_TYPE_BP_AP
:
1278 SET_LMM(10000baseR_FEC
);
1279 SET_LMM(10000baseKR_Full
);
1280 SET_LMM(1000baseKX_Full
);
1283 case FW_PORT_TYPE_BP4_AP
:
1285 SET_LMM(10000baseR_FEC
);
1286 SET_LMM(10000baseKR_Full
);
1287 SET_LMM(1000baseKX_Full
);
1288 SET_LMM(10000baseKX4_Full
);
1291 case FW_PORT_TYPE_FIBER_XFI
:
1292 case FW_PORT_TYPE_FIBER_XAUI
:
1293 case FW_PORT_TYPE_SFP
:
1294 case FW_PORT_TYPE_QSFP_10G
:
1295 case FW_PORT_TYPE_QSA
:
1297 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseT_Full
);
1298 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseT_Full
);
1301 case FW_PORT_TYPE_BP40_BA
:
1302 case FW_PORT_TYPE_QSFP
:
1304 SET_LMM(40000baseSR4_Full
);
1307 case FW_PORT_TYPE_CR_QSFP
:
1308 case FW_PORT_TYPE_SFP28
:
1310 SET_LMM(25000baseCR_Full
);
1313 case FW_PORT_TYPE_KR4_100G
:
1314 case FW_PORT_TYPE_CR4_QSFP
:
1316 SET_LMM(100000baseCR4_Full
);
1323 FW_CAPS_TO_LMM(ANEG
, Autoneg
);
1324 FW_CAPS_TO_LMM(802_3_PAUSE
, Pause
);
1325 FW_CAPS_TO_LMM(802_3_ASM_DIR
, Asym_Pause
);
1327 #undef FW_CAPS_TO_LMM
1331 static int cxgb4vf_get_link_ksettings(struct net_device
*dev
,
1332 struct ethtool_link_ksettings
1335 const struct port_info
*pi
= netdev_priv(dev
);
1336 struct ethtool_link_settings
*base
= &link_ksettings
->base
;
1338 ethtool_link_ksettings_zero_link_mode(link_ksettings
, supported
);
1339 ethtool_link_ksettings_zero_link_mode(link_ksettings
, advertising
);
1340 ethtool_link_ksettings_zero_link_mode(link_ksettings
, lp_advertising
);
1342 base
->port
= from_fw_port_mod_type(pi
->port_type
, pi
->mod_type
);
1344 if (pi
->mdio_addr
>= 0) {
1345 base
->phy_address
= pi
->mdio_addr
;
1346 base
->mdio_support
= (pi
->port_type
== FW_PORT_TYPE_BT_SGMII
1347 ? ETH_MDIO_SUPPORTS_C22
1348 : ETH_MDIO_SUPPORTS_C45
);
1350 base
->phy_address
= 255;
1351 base
->mdio_support
= 0;
1354 fw_caps_to_lmm(pi
->port_type
, pi
->link_cfg
.supported
,
1355 link_ksettings
->link_modes
.supported
);
1356 fw_caps_to_lmm(pi
->port_type
, pi
->link_cfg
.advertising
,
1357 link_ksettings
->link_modes
.advertising
);
1358 fw_caps_to_lmm(pi
->port_type
, pi
->link_cfg
.lp_advertising
,
1359 link_ksettings
->link_modes
.lp_advertising
);
1361 if (netif_carrier_ok(dev
)) {
1362 base
->speed
= pi
->link_cfg
.speed
;
1363 base
->duplex
= DUPLEX_FULL
;
1365 base
->speed
= SPEED_UNKNOWN
;
1366 base
->duplex
= DUPLEX_UNKNOWN
;
1369 base
->autoneg
= pi
->link_cfg
.autoneg
;
1370 if (pi
->link_cfg
.supported
& FW_PORT_CAP_ANEG
)
1371 ethtool_link_ksettings_add_link_mode(link_ksettings
,
1372 supported
, Autoneg
);
1373 if (pi
->link_cfg
.autoneg
)
1374 ethtool_link_ksettings_add_link_mode(link_ksettings
,
1375 advertising
, Autoneg
);
1381 * Return our driver information.
1383 static void cxgb4vf_get_drvinfo(struct net_device
*dev
,
1384 struct ethtool_drvinfo
*drvinfo
)
1386 struct adapter
*adapter
= netdev2adap(dev
);
1388 strlcpy(drvinfo
->driver
, KBUILD_MODNAME
, sizeof(drvinfo
->driver
));
1389 strlcpy(drvinfo
->version
, DRV_VERSION
, sizeof(drvinfo
->version
));
1390 strlcpy(drvinfo
->bus_info
, pci_name(to_pci_dev(dev
->dev
.parent
)),
1391 sizeof(drvinfo
->bus_info
));
1392 snprintf(drvinfo
->fw_version
, sizeof(drvinfo
->fw_version
),
1393 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1394 FW_HDR_FW_VER_MAJOR_G(adapter
->params
.dev
.fwrev
),
1395 FW_HDR_FW_VER_MINOR_G(adapter
->params
.dev
.fwrev
),
1396 FW_HDR_FW_VER_MICRO_G(adapter
->params
.dev
.fwrev
),
1397 FW_HDR_FW_VER_BUILD_G(adapter
->params
.dev
.fwrev
),
1398 FW_HDR_FW_VER_MAJOR_G(adapter
->params
.dev
.tprev
),
1399 FW_HDR_FW_VER_MINOR_G(adapter
->params
.dev
.tprev
),
1400 FW_HDR_FW_VER_MICRO_G(adapter
->params
.dev
.tprev
),
1401 FW_HDR_FW_VER_BUILD_G(adapter
->params
.dev
.tprev
));
1405 * Return current adapter message level.
1407 static u32
cxgb4vf_get_msglevel(struct net_device
*dev
)
1409 return netdev2adap(dev
)->msg_enable
;
1413 * Set current adapter message level.
1415 static void cxgb4vf_set_msglevel(struct net_device
*dev
, u32 msglevel
)
1417 netdev2adap(dev
)->msg_enable
= msglevel
;
1421 * Return the device's current Queue Set ring size parameters along with the
1422 * allowed maximum values. Since ethtool doesn't understand the concept of
1423 * multi-queue devices, we just return the current values associated with the
1426 static void cxgb4vf_get_ringparam(struct net_device
*dev
,
1427 struct ethtool_ringparam
*rp
)
1429 const struct port_info
*pi
= netdev_priv(dev
);
1430 const struct sge
*s
= &pi
->adapter
->sge
;
1432 rp
->rx_max_pending
= MAX_RX_BUFFERS
;
1433 rp
->rx_mini_max_pending
= MAX_RSPQ_ENTRIES
;
1434 rp
->rx_jumbo_max_pending
= 0;
1435 rp
->tx_max_pending
= MAX_TXQ_ENTRIES
;
1437 rp
->rx_pending
= s
->ethrxq
[pi
->first_qset
].fl
.size
- MIN_FL_RESID
;
1438 rp
->rx_mini_pending
= s
->ethrxq
[pi
->first_qset
].rspq
.size
;
1439 rp
->rx_jumbo_pending
= 0;
1440 rp
->tx_pending
= s
->ethtxq
[pi
->first_qset
].q
.size
;
1444 * Set the Queue Set ring size parameters for the device. Again, since
1445 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1446 * apply these new values across all of the Queue Sets associated with the
1447 * device -- after vetting them of course!
1449 static int cxgb4vf_set_ringparam(struct net_device
*dev
,
1450 struct ethtool_ringparam
*rp
)
1452 const struct port_info
*pi
= netdev_priv(dev
);
1453 struct adapter
*adapter
= pi
->adapter
;
1454 struct sge
*s
= &adapter
->sge
;
1457 if (rp
->rx_pending
> MAX_RX_BUFFERS
||
1458 rp
->rx_jumbo_pending
||
1459 rp
->tx_pending
> MAX_TXQ_ENTRIES
||
1460 rp
->rx_mini_pending
> MAX_RSPQ_ENTRIES
||
1461 rp
->rx_mini_pending
< MIN_RSPQ_ENTRIES
||
1462 rp
->rx_pending
< MIN_FL_ENTRIES
||
1463 rp
->tx_pending
< MIN_TXQ_ENTRIES
)
1466 if (adapter
->flags
& FULL_INIT_DONE
)
1469 for (qs
= pi
->first_qset
; qs
< pi
->first_qset
+ pi
->nqsets
; qs
++) {
1470 s
->ethrxq
[qs
].fl
.size
= rp
->rx_pending
+ MIN_FL_RESID
;
1471 s
->ethrxq
[qs
].rspq
.size
= rp
->rx_mini_pending
;
1472 s
->ethtxq
[qs
].q
.size
= rp
->tx_pending
;
1478 * Return the interrupt holdoff timer and count for the first Queue Set on the
1479 * device. Our extension ioctl() (the cxgbtool interface) allows the
1480 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1482 static int cxgb4vf_get_coalesce(struct net_device
*dev
,
1483 struct ethtool_coalesce
*coalesce
)
1485 const struct port_info
*pi
= netdev_priv(dev
);
1486 const struct adapter
*adapter
= pi
->adapter
;
1487 const struct sge_rspq
*rspq
= &adapter
->sge
.ethrxq
[pi
->first_qset
].rspq
;
1489 coalesce
->rx_coalesce_usecs
= qtimer_val(adapter
, rspq
);
1490 coalesce
->rx_max_coalesced_frames
=
1491 ((rspq
->intr_params
& QINTR_CNT_EN_F
)
1492 ? adapter
->sge
.counter_val
[rspq
->pktcnt_idx
]
1498 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1499 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1500 * the interrupt holdoff timer on any of the device's Queue Sets.
1502 static int cxgb4vf_set_coalesce(struct net_device
*dev
,
1503 struct ethtool_coalesce
*coalesce
)
1505 const struct port_info
*pi
= netdev_priv(dev
);
1506 struct adapter
*adapter
= pi
->adapter
;
1508 return set_rxq_intr_params(adapter
,
1509 &adapter
->sge
.ethrxq
[pi
->first_qset
].rspq
,
1510 coalesce
->rx_coalesce_usecs
,
1511 coalesce
->rx_max_coalesced_frames
);
1515 * Report current port link pause parameter settings.
1517 static void cxgb4vf_get_pauseparam(struct net_device
*dev
,
1518 struct ethtool_pauseparam
*pauseparam
)
1520 struct port_info
*pi
= netdev_priv(dev
);
1522 pauseparam
->autoneg
= (pi
->link_cfg
.requested_fc
& PAUSE_AUTONEG
) != 0;
1523 pauseparam
->rx_pause
= (pi
->link_cfg
.fc
& PAUSE_RX
) != 0;
1524 pauseparam
->tx_pause
= (pi
->link_cfg
.fc
& PAUSE_TX
) != 0;
1528 * Identify the port by blinking the port's LED.
1530 static int cxgb4vf_phys_id(struct net_device
*dev
,
1531 enum ethtool_phys_id_state state
)
1534 struct port_info
*pi
= netdev_priv(dev
);
1536 if (state
== ETHTOOL_ID_ACTIVE
)
1538 else if (state
== ETHTOOL_ID_INACTIVE
)
1543 return t4vf_identify_port(pi
->adapter
, pi
->viid
, val
);
1547 * Port stats maintained per queue of the port.
1549 struct queue_port_stats
{
1560 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1561 * these need to match the order of statistics returned by
1562 * t4vf_get_port_stats().
1564 static const char stats_strings
[][ETH_GSTRING_LEN
] = {
1566 * These must match the layout of the t4vf_port_stats structure.
1568 "TxBroadcastBytes ",
1569 "TxBroadcastFrames ",
1570 "TxMulticastBytes ",
1571 "TxMulticastFrames ",
1577 "RxBroadcastBytes ",
1578 "RxBroadcastFrames ",
1579 "RxMulticastBytes ",
1580 "RxMulticastFrames ",
1586 * These are accumulated per-queue statistics and must match the
1587 * order of the fields in the queue_port_stats structure.
1599 * Return the number of statistics in the specified statistics set.
1601 static int cxgb4vf_get_sset_count(struct net_device
*dev
, int sset
)
1605 return ARRAY_SIZE(stats_strings
);
1613 * Return the strings for the specified statistics set.
1615 static void cxgb4vf_get_strings(struct net_device
*dev
,
1621 memcpy(data
, stats_strings
, sizeof(stats_strings
));
1627 * Small utility routine to accumulate queue statistics across the queues of
1630 static void collect_sge_port_stats(const struct adapter
*adapter
,
1631 const struct port_info
*pi
,
1632 struct queue_port_stats
*stats
)
1634 const struct sge_eth_txq
*txq
= &adapter
->sge
.ethtxq
[pi
->first_qset
];
1635 const struct sge_eth_rxq
*rxq
= &adapter
->sge
.ethrxq
[pi
->first_qset
];
1638 memset(stats
, 0, sizeof(*stats
));
1639 for (qs
= 0; qs
< pi
->nqsets
; qs
++, rxq
++, txq
++) {
1640 stats
->tso
+= txq
->tso
;
1641 stats
->tx_csum
+= txq
->tx_cso
;
1642 stats
->rx_csum
+= rxq
->stats
.rx_cso
;
1643 stats
->vlan_ex
+= rxq
->stats
.vlan_ex
;
1644 stats
->vlan_ins
+= txq
->vlan_ins
;
1645 stats
->lro_pkts
+= rxq
->stats
.lro_pkts
;
1646 stats
->lro_merged
+= rxq
->stats
.lro_merged
;
1651 * Return the ETH_SS_STATS statistics set.
1653 static void cxgb4vf_get_ethtool_stats(struct net_device
*dev
,
1654 struct ethtool_stats
*stats
,
1657 struct port_info
*pi
= netdev2pinfo(dev
);
1658 struct adapter
*adapter
= pi
->adapter
;
1659 int err
= t4vf_get_port_stats(adapter
, pi
->pidx
,
1660 (struct t4vf_port_stats
*)data
);
1662 memset(data
, 0, sizeof(struct t4vf_port_stats
));
1664 data
+= sizeof(struct t4vf_port_stats
) / sizeof(u64
);
1665 collect_sge_port_stats(adapter
, pi
, (struct queue_port_stats
*)data
);
1669 * Return the size of our register map.
1671 static int cxgb4vf_get_regs_len(struct net_device
*dev
)
1673 return T4VF_REGMAP_SIZE
;
1677 * Dump a block of registers, start to end inclusive, into a buffer.
1679 static void reg_block_dump(struct adapter
*adapter
, void *regbuf
,
1680 unsigned int start
, unsigned int end
)
1682 u32
*bp
= regbuf
+ start
- T4VF_REGMAP_START
;
1684 for ( ; start
<= end
; start
+= sizeof(u32
)) {
1686 * Avoid reading the Mailbox Control register since that
1687 * can trigger a Mailbox Ownership Arbitration cycle and
1688 * interfere with communication with the firmware.
1690 if (start
== T4VF_CIM_BASE_ADDR
+ CIM_VF_EXT_MAILBOX_CTRL
)
1693 *bp
++ = t4_read_reg(adapter
, start
);
1698 * Copy our entire register map into the provided buffer.
1700 static void cxgb4vf_get_regs(struct net_device
*dev
,
1701 struct ethtool_regs
*regs
,
1704 struct adapter
*adapter
= netdev2adap(dev
);
1706 regs
->version
= mk_adap_vers(adapter
);
1709 * Fill in register buffer with our register map.
1711 memset(regbuf
, 0, T4VF_REGMAP_SIZE
);
1713 reg_block_dump(adapter
, regbuf
,
1714 T4VF_SGE_BASE_ADDR
+ T4VF_MOD_MAP_SGE_FIRST
,
1715 T4VF_SGE_BASE_ADDR
+ T4VF_MOD_MAP_SGE_LAST
);
1716 reg_block_dump(adapter
, regbuf
,
1717 T4VF_MPS_BASE_ADDR
+ T4VF_MOD_MAP_MPS_FIRST
,
1718 T4VF_MPS_BASE_ADDR
+ T4VF_MOD_MAP_MPS_LAST
);
1720 /* T5 adds new registers in the PL Register map.
1722 reg_block_dump(adapter
, regbuf
,
1723 T4VF_PL_BASE_ADDR
+ T4VF_MOD_MAP_PL_FIRST
,
1724 T4VF_PL_BASE_ADDR
+ (is_t4(adapter
->params
.chip
)
1725 ? PL_VF_WHOAMI_A
: PL_VF_REVISION_A
));
1726 reg_block_dump(adapter
, regbuf
,
1727 T4VF_CIM_BASE_ADDR
+ T4VF_MOD_MAP_CIM_FIRST
,
1728 T4VF_CIM_BASE_ADDR
+ T4VF_MOD_MAP_CIM_LAST
);
1730 reg_block_dump(adapter
, regbuf
,
1731 T4VF_MBDATA_BASE_ADDR
+ T4VF_MBDATA_FIRST
,
1732 T4VF_MBDATA_BASE_ADDR
+ T4VF_MBDATA_LAST
);
1736 * Report current Wake On LAN settings.
1738 static void cxgb4vf_get_wol(struct net_device
*dev
,
1739 struct ethtool_wolinfo
*wol
)
1743 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
1747 * TCP Segmentation Offload flags which we support.
1749 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1751 static const struct ethtool_ops cxgb4vf_ethtool_ops
= {
1752 .get_link_ksettings
= cxgb4vf_get_link_ksettings
,
1753 .get_drvinfo
= cxgb4vf_get_drvinfo
,
1754 .get_msglevel
= cxgb4vf_get_msglevel
,
1755 .set_msglevel
= cxgb4vf_set_msglevel
,
1756 .get_ringparam
= cxgb4vf_get_ringparam
,
1757 .set_ringparam
= cxgb4vf_set_ringparam
,
1758 .get_coalesce
= cxgb4vf_get_coalesce
,
1759 .set_coalesce
= cxgb4vf_set_coalesce
,
1760 .get_pauseparam
= cxgb4vf_get_pauseparam
,
1761 .get_link
= ethtool_op_get_link
,
1762 .get_strings
= cxgb4vf_get_strings
,
1763 .set_phys_id
= cxgb4vf_phys_id
,
1764 .get_sset_count
= cxgb4vf_get_sset_count
,
1765 .get_ethtool_stats
= cxgb4vf_get_ethtool_stats
,
1766 .get_regs_len
= cxgb4vf_get_regs_len
,
1767 .get_regs
= cxgb4vf_get_regs
,
1768 .get_wol
= cxgb4vf_get_wol
,
1772 * /sys/kernel/debug/cxgb4vf support code and data.
1773 * ================================================
1777 * Show Firmware Mailbox Command/Reply Log
1779 * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1780 * it's possible that we can catch things during a log update and therefore
1781 * see partially corrupted log entries. But i9t's probably Good Enough(tm).
1782 * If we ever decide that we want to make sure that we're dumping a coherent
1783 * log, we'd need to perform locking in the mailbox logging and in
1784 * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1785 * like we do for the Firmware Device Log. But as stated above, meh ...
1787 static int mboxlog_show(struct seq_file
*seq
, void *v
)
1789 struct adapter
*adapter
= seq
->private;
1790 struct mbox_cmd_log
*log
= adapter
->mbox_log
;
1791 struct mbox_cmd
*entry
;
1794 if (v
== SEQ_START_TOKEN
) {
1796 "%10s %15s %5s %5s %s\n",
1797 "Seq#", "Tstamp", "Atime", "Etime",
1802 entry_idx
= log
->cursor
+ ((uintptr_t)v
- 2);
1803 if (entry_idx
>= log
->size
)
1804 entry_idx
-= log
->size
;
1805 entry
= mbox_cmd_log_entry(log
, entry_idx
);
1807 /* skip over unused entries */
1808 if (entry
->timestamp
== 0)
1811 seq_printf(seq
, "%10u %15llu %5d %5d",
1812 entry
->seqno
, entry
->timestamp
,
1813 entry
->access
, entry
->execute
);
1814 for (i
= 0; i
< MBOX_LEN
/ 8; i
++) {
1815 u64 flit
= entry
->cmd
[i
];
1816 u32 hi
= (u32
)(flit
>> 32);
1819 seq_printf(seq
, " %08x %08x", hi
, lo
);
1821 seq_puts(seq
, "\n");
1825 static inline void *mboxlog_get_idx(struct seq_file
*seq
, loff_t pos
)
1827 struct adapter
*adapter
= seq
->private;
1828 struct mbox_cmd_log
*log
= adapter
->mbox_log
;
1830 return ((pos
<= log
->size
) ? (void *)(uintptr_t)(pos
+ 1) : NULL
);
1833 static void *mboxlog_start(struct seq_file
*seq
, loff_t
*pos
)
1835 return *pos
? mboxlog_get_idx(seq
, *pos
) : SEQ_START_TOKEN
;
1838 static void *mboxlog_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1841 return mboxlog_get_idx(seq
, *pos
);
1844 static void mboxlog_stop(struct seq_file
*seq
, void *v
)
1848 static const struct seq_operations mboxlog_seq_ops
= {
1849 .start
= mboxlog_start
,
1850 .next
= mboxlog_next
,
1851 .stop
= mboxlog_stop
,
1852 .show
= mboxlog_show
1855 static int mboxlog_open(struct inode
*inode
, struct file
*file
)
1857 int res
= seq_open(file
, &mboxlog_seq_ops
);
1860 struct seq_file
*seq
= file
->private_data
;
1862 seq
->private = inode
->i_private
;
1867 static const struct file_operations mboxlog_fops
= {
1868 .owner
= THIS_MODULE
,
1869 .open
= mboxlog_open
,
1871 .llseek
= seq_lseek
,
1872 .release
= seq_release
,
1876 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1880 static int sge_qinfo_show(struct seq_file
*seq
, void *v
)
1882 struct adapter
*adapter
= seq
->private;
1883 int eth_entries
= DIV_ROUND_UP(adapter
->sge
.ethqsets
, QPL
);
1884 int qs
, r
= (uintptr_t)v
- 1;
1887 seq_putc(seq
, '\n');
1889 #define S3(fmt_spec, s, v) \
1891 seq_printf(seq, "%-12s", s); \
1892 for (qs = 0; qs < n; ++qs) \
1893 seq_printf(seq, " %16" fmt_spec, v); \
1894 seq_putc(seq, '\n'); \
1896 #define S(s, v) S3("s", s, v)
1897 #define T(s, v) S3("u", s, txq[qs].v)
1898 #define R(s, v) S3("u", s, rxq[qs].v)
1900 if (r
< eth_entries
) {
1901 const struct sge_eth_rxq
*rxq
= &adapter
->sge
.ethrxq
[r
* QPL
];
1902 const struct sge_eth_txq
*txq
= &adapter
->sge
.ethtxq
[r
* QPL
];
1903 int n
= min(QPL
, adapter
->sge
.ethqsets
- QPL
* r
);
1905 S("QType:", "Ethernet");
1907 (rxq
[qs
].rspq
.netdev
1908 ? rxq
[qs
].rspq
.netdev
->name
1911 (rxq
[qs
].rspq
.netdev
1912 ? ((struct port_info
*)
1913 netdev_priv(rxq
[qs
].rspq
.netdev
))->port_id
1915 T("TxQ ID:", q
.abs_id
);
1916 T("TxQ size:", q
.size
);
1917 T("TxQ inuse:", q
.in_use
);
1918 T("TxQ PIdx:", q
.pidx
);
1919 T("TxQ CIdx:", q
.cidx
);
1920 R("RspQ ID:", rspq
.abs_id
);
1921 R("RspQ size:", rspq
.size
);
1922 R("RspQE size:", rspq
.iqe_len
);
1923 S3("u", "Intr delay:", qtimer_val(adapter
, &rxq
[qs
].rspq
));
1924 S3("u", "Intr pktcnt:",
1925 adapter
->sge
.counter_val
[rxq
[qs
].rspq
.pktcnt_idx
]);
1926 R("RspQ CIdx:", rspq
.cidx
);
1927 R("RspQ Gen:", rspq
.gen
);
1928 R("FL ID:", fl
.abs_id
);
1929 R("FL size:", fl
.size
- MIN_FL_RESID
);
1930 R("FL avail:", fl
.avail
);
1931 R("FL PIdx:", fl
.pidx
);
1932 R("FL CIdx:", fl
.cidx
);
1938 const struct sge_rspq
*evtq
= &adapter
->sge
.fw_evtq
;
1940 seq_printf(seq
, "%-12s %16s\n", "QType:", "FW event queue");
1941 seq_printf(seq
, "%-12s %16u\n", "RspQ ID:", evtq
->abs_id
);
1942 seq_printf(seq
, "%-12s %16u\n", "Intr delay:",
1943 qtimer_val(adapter
, evtq
));
1944 seq_printf(seq
, "%-12s %16u\n", "Intr pktcnt:",
1945 adapter
->sge
.counter_val
[evtq
->pktcnt_idx
]);
1946 seq_printf(seq
, "%-12s %16u\n", "RspQ Cidx:", evtq
->cidx
);
1947 seq_printf(seq
, "%-12s %16u\n", "RspQ Gen:", evtq
->gen
);
1948 } else if (r
== 1) {
1949 const struct sge_rspq
*intrq
= &adapter
->sge
.intrq
;
1951 seq_printf(seq
, "%-12s %16s\n", "QType:", "Interrupt Queue");
1952 seq_printf(seq
, "%-12s %16u\n", "RspQ ID:", intrq
->abs_id
);
1953 seq_printf(seq
, "%-12s %16u\n", "Intr delay:",
1954 qtimer_val(adapter
, intrq
));
1955 seq_printf(seq
, "%-12s %16u\n", "Intr pktcnt:",
1956 adapter
->sge
.counter_val
[intrq
->pktcnt_idx
]);
1957 seq_printf(seq
, "%-12s %16u\n", "RspQ Cidx:", intrq
->cidx
);
1958 seq_printf(seq
, "%-12s %16u\n", "RspQ Gen:", intrq
->gen
);
1970 * Return the number of "entries" in our "file". We group the multi-Queue
1971 * sections with QPL Queue Sets per "entry". The sections of the output are:
1973 * Ethernet RX/TX Queue Sets
1974 * Firmware Event Queue
1975 * Forwarded Interrupt Queue (if in MSI mode)
1977 static int sge_queue_entries(const struct adapter
*adapter
)
1979 return DIV_ROUND_UP(adapter
->sge
.ethqsets
, QPL
) + 1 +
1980 ((adapter
->flags
& USING_MSI
) != 0);
1983 static void *sge_queue_start(struct seq_file
*seq
, loff_t
*pos
)
1985 int entries
= sge_queue_entries(seq
->private);
1987 return *pos
< entries
? (void *)((uintptr_t)*pos
+ 1) : NULL
;
1990 static void sge_queue_stop(struct seq_file
*seq
, void *v
)
1994 static void *sge_queue_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1996 int entries
= sge_queue_entries(seq
->private);
1999 return *pos
< entries
? (void *)((uintptr_t)*pos
+ 1) : NULL
;
2002 static const struct seq_operations sge_qinfo_seq_ops
= {
2003 .start
= sge_queue_start
,
2004 .next
= sge_queue_next
,
2005 .stop
= sge_queue_stop
,
2006 .show
= sge_qinfo_show
2009 static int sge_qinfo_open(struct inode
*inode
, struct file
*file
)
2011 int res
= seq_open(file
, &sge_qinfo_seq_ops
);
2014 struct seq_file
*seq
= file
->private_data
;
2015 seq
->private = inode
->i_private
;
2020 static const struct file_operations sge_qinfo_debugfs_fops
= {
2021 .owner
= THIS_MODULE
,
2022 .open
= sge_qinfo_open
,
2024 .llseek
= seq_lseek
,
2025 .release
= seq_release
,
2029 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
2033 static int sge_qstats_show(struct seq_file
*seq
, void *v
)
2035 struct adapter
*adapter
= seq
->private;
2036 int eth_entries
= DIV_ROUND_UP(adapter
->sge
.ethqsets
, QPL
);
2037 int qs
, r
= (uintptr_t)v
- 1;
2040 seq_putc(seq
, '\n');
2042 #define S3(fmt, s, v) \
2044 seq_printf(seq, "%-16s", s); \
2045 for (qs = 0; qs < n; ++qs) \
2046 seq_printf(seq, " %8" fmt, v); \
2047 seq_putc(seq, '\n'); \
2049 #define S(s, v) S3("s", s, v)
2051 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
2052 #define T(s, v) T3("lu", s, v)
2054 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
2055 #define R(s, v) R3("lu", s, v)
2057 if (r
< eth_entries
) {
2058 const struct sge_eth_rxq
*rxq
= &adapter
->sge
.ethrxq
[r
* QPL
];
2059 const struct sge_eth_txq
*txq
= &adapter
->sge
.ethtxq
[r
* QPL
];
2060 int n
= min(QPL
, adapter
->sge
.ethqsets
- QPL
* r
);
2062 S("QType:", "Ethernet");
2064 (rxq
[qs
].rspq
.netdev
2065 ? rxq
[qs
].rspq
.netdev
->name
2067 R3("u", "RspQNullInts:", rspq
.unhandled_irqs
);
2068 R("RxPackets:", stats
.pkts
);
2069 R("RxCSO:", stats
.rx_cso
);
2070 R("VLANxtract:", stats
.vlan_ex
);
2071 R("LROmerged:", stats
.lro_merged
);
2072 R("LROpackets:", stats
.lro_pkts
);
2073 R("RxDrops:", stats
.rx_drops
);
2075 T("TxCSO:", tx_cso
);
2076 T("VLANins:", vlan_ins
);
2077 T("TxQFull:", q
.stops
);
2078 T("TxQRestarts:", q
.restarts
);
2079 T("TxMapErr:", mapping_err
);
2080 R("FLAllocErr:", fl
.alloc_failed
);
2081 R("FLLrgAlcErr:", fl
.large_alloc_failed
);
2082 R("FLStarving:", fl
.starving
);
2088 const struct sge_rspq
*evtq
= &adapter
->sge
.fw_evtq
;
2090 seq_printf(seq
, "%-8s %16s\n", "QType:", "FW event queue");
2091 seq_printf(seq
, "%-16s %8u\n", "RspQNullInts:",
2092 evtq
->unhandled_irqs
);
2093 seq_printf(seq
, "%-16s %8u\n", "RspQ CIdx:", evtq
->cidx
);
2094 seq_printf(seq
, "%-16s %8u\n", "RspQ Gen:", evtq
->gen
);
2095 } else if (r
== 1) {
2096 const struct sge_rspq
*intrq
= &adapter
->sge
.intrq
;
2098 seq_printf(seq
, "%-8s %16s\n", "QType:", "Interrupt Queue");
2099 seq_printf(seq
, "%-16s %8u\n", "RspQNullInts:",
2100 intrq
->unhandled_irqs
);
2101 seq_printf(seq
, "%-16s %8u\n", "RspQ CIdx:", intrq
->cidx
);
2102 seq_printf(seq
, "%-16s %8u\n", "RspQ Gen:", intrq
->gen
);
2116 * Return the number of "entries" in our "file". We group the multi-Queue
2117 * sections with QPL Queue Sets per "entry". The sections of the output are:
2119 * Ethernet RX/TX Queue Sets
2120 * Firmware Event Queue
2121 * Forwarded Interrupt Queue (if in MSI mode)
2123 static int sge_qstats_entries(const struct adapter
*adapter
)
2125 return DIV_ROUND_UP(adapter
->sge
.ethqsets
, QPL
) + 1 +
2126 ((adapter
->flags
& USING_MSI
) != 0);
2129 static void *sge_qstats_start(struct seq_file
*seq
, loff_t
*pos
)
2131 int entries
= sge_qstats_entries(seq
->private);
2133 return *pos
< entries
? (void *)((uintptr_t)*pos
+ 1) : NULL
;
2136 static void sge_qstats_stop(struct seq_file
*seq
, void *v
)
2140 static void *sge_qstats_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2142 int entries
= sge_qstats_entries(seq
->private);
2145 return *pos
< entries
? (void *)((uintptr_t)*pos
+ 1) : NULL
;
2148 static const struct seq_operations sge_qstats_seq_ops
= {
2149 .start
= sge_qstats_start
,
2150 .next
= sge_qstats_next
,
2151 .stop
= sge_qstats_stop
,
2152 .show
= sge_qstats_show
2155 static int sge_qstats_open(struct inode
*inode
, struct file
*file
)
2157 int res
= seq_open(file
, &sge_qstats_seq_ops
);
2160 struct seq_file
*seq
= file
->private_data
;
2161 seq
->private = inode
->i_private
;
2166 static const struct file_operations sge_qstats_proc_fops
= {
2167 .owner
= THIS_MODULE
,
2168 .open
= sge_qstats_open
,
2170 .llseek
= seq_lseek
,
2171 .release
= seq_release
,
2175 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2177 static int resources_show(struct seq_file
*seq
, void *v
)
2179 struct adapter
*adapter
= seq
->private;
2180 struct vf_resources
*vfres
= &adapter
->params
.vfres
;
2182 #define S(desc, fmt, var) \
2183 seq_printf(seq, "%-60s " fmt "\n", \
2184 desc " (" #var "):", vfres->var)
2186 S("Virtual Interfaces", "%d", nvi
);
2187 S("Egress Queues", "%d", neq
);
2188 S("Ethernet Control", "%d", nethctrl
);
2189 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint
);
2190 S("Ingress Queues", "%d", niq
);
2191 S("Traffic Class", "%d", tc
);
2192 S("Port Access Rights Mask", "%#x", pmask
);
2193 S("MAC Address Filters", "%d", nexactf
);
2194 S("Firmware Command Read Capabilities", "%#x", r_caps
);
2195 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps
);
2202 static int resources_open(struct inode
*inode
, struct file
*file
)
2204 return single_open(file
, resources_show
, inode
->i_private
);
2207 static const struct file_operations resources_proc_fops
= {
2208 .owner
= THIS_MODULE
,
2209 .open
= resources_open
,
2211 .llseek
= seq_lseek
,
2212 .release
= single_release
,
2216 * Show Virtual Interfaces.
2218 static int interfaces_show(struct seq_file
*seq
, void *v
)
2220 if (v
== SEQ_START_TOKEN
) {
2221 seq_puts(seq
, "Interface Port VIID\n");
2223 struct adapter
*adapter
= seq
->private;
2224 int pidx
= (uintptr_t)v
- 2;
2225 struct net_device
*dev
= adapter
->port
[pidx
];
2226 struct port_info
*pi
= netdev_priv(dev
);
2228 seq_printf(seq
, "%9s %4d %#5x\n",
2229 dev
->name
, pi
->port_id
, pi
->viid
);
2234 static inline void *interfaces_get_idx(struct adapter
*adapter
, loff_t pos
)
2236 return pos
<= adapter
->params
.nports
2237 ? (void *)(uintptr_t)(pos
+ 1)
2241 static void *interfaces_start(struct seq_file
*seq
, loff_t
*pos
)
2244 ? interfaces_get_idx(seq
->private, *pos
)
2248 static void *interfaces_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2251 return interfaces_get_idx(seq
->private, *pos
);
2254 static void interfaces_stop(struct seq_file
*seq
, void *v
)
2258 static const struct seq_operations interfaces_seq_ops
= {
2259 .start
= interfaces_start
,
2260 .next
= interfaces_next
,
2261 .stop
= interfaces_stop
,
2262 .show
= interfaces_show
2265 static int interfaces_open(struct inode
*inode
, struct file
*file
)
2267 int res
= seq_open(file
, &interfaces_seq_ops
);
2270 struct seq_file
*seq
= file
->private_data
;
2271 seq
->private = inode
->i_private
;
2276 static const struct file_operations interfaces_proc_fops
= {
2277 .owner
= THIS_MODULE
,
2278 .open
= interfaces_open
,
2280 .llseek
= seq_lseek
,
2281 .release
= seq_release
,
2285 * /sys/kernel/debugfs/cxgb4vf/ files list.
2287 struct cxgb4vf_debugfs_entry
{
2288 const char *name
; /* name of debugfs node */
2289 umode_t mode
; /* file system mode */
2290 const struct file_operations
*fops
;
2293 static struct cxgb4vf_debugfs_entry debugfs_files
[] = {
2294 { "mboxlog", S_IRUGO
, &mboxlog_fops
},
2295 { "sge_qinfo", S_IRUGO
, &sge_qinfo_debugfs_fops
},
2296 { "sge_qstats", S_IRUGO
, &sge_qstats_proc_fops
},
2297 { "resources", S_IRUGO
, &resources_proc_fops
},
2298 { "interfaces", S_IRUGO
, &interfaces_proc_fops
},
2302 * Module and device initialization and cleanup code.
2303 * ==================================================
2307 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2308 * directory (debugfs_root) has already been set up.
2310 static int setup_debugfs(struct adapter
*adapter
)
2314 BUG_ON(IS_ERR_OR_NULL(adapter
->debugfs_root
));
2317 * Debugfs support is best effort.
2319 for (i
= 0; i
< ARRAY_SIZE(debugfs_files
); i
++)
2320 (void)debugfs_create_file(debugfs_files
[i
].name
,
2321 debugfs_files
[i
].mode
,
2322 adapter
->debugfs_root
,
2324 debugfs_files
[i
].fops
);
2330 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2331 * it to our caller to tear down the directory (debugfs_root).
2333 static void cleanup_debugfs(struct adapter
*adapter
)
2335 BUG_ON(IS_ERR_OR_NULL(adapter
->debugfs_root
));
2338 * Unlike our sister routine cleanup_proc(), we don't need to remove
2339 * individual entries because a call will be made to
2340 * debugfs_remove_recursive(). We just need to clean up any ancillary
2346 /* Figure out how many Ports and Queue Sets we can support. This depends on
2347 * knowing our Virtual Function Resources and may be called a second time if
2348 * we fall back from MSI-X to MSI Interrupt Mode.
2350 static void size_nports_qsets(struct adapter
*adapter
)
2352 struct vf_resources
*vfres
= &adapter
->params
.vfres
;
2353 unsigned int ethqsets
, pmask_nports
;
2355 /* The number of "ports" which we support is equal to the number of
2356 * Virtual Interfaces with which we've been provisioned.
2358 adapter
->params
.nports
= vfres
->nvi
;
2359 if (adapter
->params
.nports
> MAX_NPORTS
) {
2360 dev_warn(adapter
->pdev_dev
, "only using %d of %d maximum"
2361 " allowed virtual interfaces\n", MAX_NPORTS
,
2362 adapter
->params
.nports
);
2363 adapter
->params
.nports
= MAX_NPORTS
;
2366 /* We may have been provisioned with more VIs than the number of
2367 * ports we're allowed to access (our Port Access Rights Mask).
2368 * This is obviously a configuration conflict but we don't want to
2369 * crash the kernel or anything silly just because of that.
2371 pmask_nports
= hweight32(adapter
->params
.vfres
.pmask
);
2372 if (pmask_nports
< adapter
->params
.nports
) {
2373 dev_warn(adapter
->pdev_dev
, "only using %d of %d provisioned"
2374 " virtual interfaces; limited by Port Access Rights"
2375 " mask %#x\n", pmask_nports
, adapter
->params
.nports
,
2376 adapter
->params
.vfres
.pmask
);
2377 adapter
->params
.nports
= pmask_nports
;
2380 /* We need to reserve an Ingress Queue for the Asynchronous Firmware
2381 * Event Queue. And if we're using MSI Interrupts, we'll also need to
2382 * reserve an Ingress Queue for a Forwarded Interrupts.
2384 * The rest of the FL/Intr-capable ingress queues will be matched up
2385 * one-for-one with Ethernet/Control egress queues in order to form
2386 * "Queue Sets" which will be aportioned between the "ports". For
2387 * each Queue Set, we'll need the ability to allocate two Egress
2388 * Contexts -- one for the Ingress Queue Free List and one for the TX
2391 * Note that even if we're currently configured to use MSI-X
2392 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2393 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that
2394 * happens we'll need to adjust things later.
2396 ethqsets
= vfres
->niqflint
- 1 - (msi
== MSI_MSI
);
2397 if (vfres
->nethctrl
!= ethqsets
)
2398 ethqsets
= min(vfres
->nethctrl
, ethqsets
);
2399 if (vfres
->neq
< ethqsets
*2)
2400 ethqsets
= vfres
->neq
/2;
2401 if (ethqsets
> MAX_ETH_QSETS
)
2402 ethqsets
= MAX_ETH_QSETS
;
2403 adapter
->sge
.max_ethqsets
= ethqsets
;
2405 if (adapter
->sge
.max_ethqsets
< adapter
->params
.nports
) {
2406 dev_warn(adapter
->pdev_dev
, "only using %d of %d available"
2407 " virtual interfaces (too few Queue Sets)\n",
2408 adapter
->sge
.max_ethqsets
, adapter
->params
.nports
);
2409 adapter
->params
.nports
= adapter
->sge
.max_ethqsets
;
2414 * Perform early "adapter" initialization. This is where we discover what
2415 * adapter parameters we're going to be using and initialize basic adapter
2418 static int adap_init0(struct adapter
*adapter
)
2420 struct sge_params
*sge_params
= &adapter
->params
.sge
;
2421 struct sge
*s
= &adapter
->sge
;
2426 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2427 * 2.6.31 and later we can't call pci_reset_function() in order to
2428 * issue an FLR because of a self- deadlock on the device semaphore.
2429 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2430 * cases where they're needed -- for instance, some versions of KVM
2431 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2432 * use the firmware based reset in order to reset any per function
2435 err
= t4vf_fw_reset(adapter
);
2437 dev_err(adapter
->pdev_dev
, "FW reset failed: err=%d\n", err
);
2442 * Grab basic operational parameters. These will predominantly have
2443 * been set up by the Physical Function Driver or will be hard coded
2444 * into the adapter. We just have to live with them ... Note that
2445 * we _must_ get our VPD parameters before our SGE parameters because
2446 * we need to know the adapter's core clock from the VPD in order to
2447 * properly decode the SGE Timer Values.
2449 err
= t4vf_get_dev_params(adapter
);
2451 dev_err(adapter
->pdev_dev
, "unable to retrieve adapter"
2452 " device parameters: err=%d\n", err
);
2455 err
= t4vf_get_vpd_params(adapter
);
2457 dev_err(adapter
->pdev_dev
, "unable to retrieve adapter"
2458 " VPD parameters: err=%d\n", err
);
2461 err
= t4vf_get_sge_params(adapter
);
2463 dev_err(adapter
->pdev_dev
, "unable to retrieve adapter"
2464 " SGE parameters: err=%d\n", err
);
2467 err
= t4vf_get_rss_glb_config(adapter
);
2469 dev_err(adapter
->pdev_dev
, "unable to retrieve adapter"
2470 " RSS parameters: err=%d\n", err
);
2473 if (adapter
->params
.rss
.mode
!=
2474 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
) {
2475 dev_err(adapter
->pdev_dev
, "unable to operate with global RSS"
2476 " mode %d\n", adapter
->params
.rss
.mode
);
2479 err
= t4vf_sge_init(adapter
);
2481 dev_err(adapter
->pdev_dev
, "unable to use adapter parameters:"
2486 /* If we're running on newer firmware, let it know that we're
2487 * prepared to deal with encapsulated CPL messages. Older
2488 * firmware won't understand this and we'll just get
2489 * unencapsulated messages ...
2491 param
= FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF
) |
2492 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP
);
2494 (void) t4vf_set_params(adapter
, 1, ¶m
, &val
);
2497 * Retrieve our RX interrupt holdoff timer values and counter
2498 * threshold values from the SGE parameters.
2500 s
->timer_val
[0] = core_ticks_to_us(adapter
,
2501 TIMERVALUE0_G(sge_params
->sge_timer_value_0_and_1
));
2502 s
->timer_val
[1] = core_ticks_to_us(adapter
,
2503 TIMERVALUE1_G(sge_params
->sge_timer_value_0_and_1
));
2504 s
->timer_val
[2] = core_ticks_to_us(adapter
,
2505 TIMERVALUE0_G(sge_params
->sge_timer_value_2_and_3
));
2506 s
->timer_val
[3] = core_ticks_to_us(adapter
,
2507 TIMERVALUE1_G(sge_params
->sge_timer_value_2_and_3
));
2508 s
->timer_val
[4] = core_ticks_to_us(adapter
,
2509 TIMERVALUE0_G(sge_params
->sge_timer_value_4_and_5
));
2510 s
->timer_val
[5] = core_ticks_to_us(adapter
,
2511 TIMERVALUE1_G(sge_params
->sge_timer_value_4_and_5
));
2513 s
->counter_val
[0] = THRESHOLD_0_G(sge_params
->sge_ingress_rx_threshold
);
2514 s
->counter_val
[1] = THRESHOLD_1_G(sge_params
->sge_ingress_rx_threshold
);
2515 s
->counter_val
[2] = THRESHOLD_2_G(sge_params
->sge_ingress_rx_threshold
);
2516 s
->counter_val
[3] = THRESHOLD_3_G(sge_params
->sge_ingress_rx_threshold
);
2519 * Grab our Virtual Interface resource allocation, extract the
2520 * features that we're interested in and do a bit of sanity testing on
2523 err
= t4vf_get_vfres(adapter
);
2525 dev_err(adapter
->pdev_dev
, "unable to get virtual interface"
2526 " resources: err=%d\n", err
);
2530 /* Check for various parameter sanity issues */
2531 if (adapter
->params
.vfres
.pmask
== 0) {
2532 dev_err(adapter
->pdev_dev
, "no port access configured\n"
2536 if (adapter
->params
.vfres
.nvi
== 0) {
2537 dev_err(adapter
->pdev_dev
, "no virtual interfaces configured/"
2542 /* Initialize nports and max_ethqsets now that we have our Virtual
2543 * Function Resources.
2545 size_nports_qsets(adapter
);
2550 static inline void init_rspq(struct sge_rspq
*rspq
, u8 timer_idx
,
2551 u8 pkt_cnt_idx
, unsigned int size
,
2552 unsigned int iqe_size
)
2554 rspq
->intr_params
= (QINTR_TIMER_IDX_V(timer_idx
) |
2555 (pkt_cnt_idx
< SGE_NCOUNTERS
?
2556 QINTR_CNT_EN_F
: 0));
2557 rspq
->pktcnt_idx
= (pkt_cnt_idx
< SGE_NCOUNTERS
2560 rspq
->iqe_len
= iqe_size
;
2565 * Perform default configuration of DMA queues depending on the number and
2566 * type of ports we found and the number of available CPUs. Most settings can
2567 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2568 * being brought up for the first time.
2570 static void cfg_queues(struct adapter
*adapter
)
2572 struct sge
*s
= &adapter
->sge
;
2573 int q10g
, n10g
, qidx
, pidx
, qs
;
2577 * We should not be called till we know how many Queue Sets we can
2578 * support. In particular, this means that we need to know what kind
2579 * of interrupts we'll be using ...
2581 BUG_ON((adapter
->flags
& (USING_MSIX
|USING_MSI
)) == 0);
2584 * Count the number of 10GbE Virtual Interfaces that we have.
2587 for_each_port(adapter
, pidx
)
2588 n10g
+= is_x_10g_port(&adap2pinfo(adapter
, pidx
)->link_cfg
);
2591 * We default to 1 queue per non-10G port and up to # of cores queues
2597 int n1g
= (adapter
->params
.nports
- n10g
);
2598 q10g
= (adapter
->sge
.max_ethqsets
- n1g
) / n10g
;
2599 if (q10g
> num_online_cpus())
2600 q10g
= num_online_cpus();
2604 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2605 * The layout will be established in setup_sge_queues() when the
2606 * adapter is brough up for the first time.
2609 for_each_port(adapter
, pidx
) {
2610 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
2612 pi
->first_qset
= qidx
;
2613 pi
->nqsets
= is_x_10g_port(&pi
->link_cfg
) ? q10g
: 1;
2619 * The Ingress Queue Entry Size for our various Response Queues needs
2620 * to be big enough to accommodate the largest message we can receive
2621 * from the chip/firmware; which is 64 bytes ...
2626 * Set up default Queue Set parameters ... Start off with the
2627 * shortest interrupt holdoff timer.
2629 for (qs
= 0; qs
< s
->max_ethqsets
; qs
++) {
2630 struct sge_eth_rxq
*rxq
= &s
->ethrxq
[qs
];
2631 struct sge_eth_txq
*txq
= &s
->ethtxq
[qs
];
2633 init_rspq(&rxq
->rspq
, 0, 0, 1024, iqe_size
);
2639 * The firmware event queue is used for link state changes and
2640 * notifications of TX DMA completions.
2642 init_rspq(&s
->fw_evtq
, SGE_TIMER_RSTRT_CNTR
, 0, 512, iqe_size
);
2645 * The forwarded interrupt queue is used when we're in MSI interrupt
2646 * mode. In this mode all interrupts associated with RX queues will
2647 * be forwarded to a single queue which we'll associate with our MSI
2648 * interrupt vector. The messages dropped in the forwarded interrupt
2649 * queue will indicate which ingress queue needs servicing ... This
2650 * queue needs to be large enough to accommodate all of the ingress
2651 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2652 * from equalling the CIDX if every ingress queue has an outstanding
2653 * interrupt). The queue doesn't need to be any larger because no
2654 * ingress queue will ever have more than one outstanding interrupt at
2657 init_rspq(&s
->intrq
, SGE_TIMER_RSTRT_CNTR
, 0, MSIX_ENTRIES
+ 1,
2662 * Reduce the number of Ethernet queues across all ports to at most n.
2663 * n provides at least one queue per port.
2665 static void reduce_ethqs(struct adapter
*adapter
, int n
)
2668 struct port_info
*pi
;
2671 * While we have too many active Ether Queue Sets, interate across the
2672 * "ports" and reduce their individual Queue Set allocations.
2674 BUG_ON(n
< adapter
->params
.nports
);
2675 while (n
< adapter
->sge
.ethqsets
)
2676 for_each_port(adapter
, i
) {
2677 pi
= adap2pinfo(adapter
, i
);
2678 if (pi
->nqsets
> 1) {
2680 adapter
->sge
.ethqsets
--;
2681 if (adapter
->sge
.ethqsets
<= n
)
2687 * Reassign the starting Queue Sets for each of the "ports" ...
2690 for_each_port(adapter
, i
) {
2691 pi
= adap2pinfo(adapter
, i
);
2698 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2699 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2700 * need. Minimally we need one for every Virtual Interface plus those needed
2701 * for our "extras". Note that this process may lower the maximum number of
2702 * allowed Queue Sets ...
2704 static int enable_msix(struct adapter
*adapter
)
2706 int i
, want
, need
, nqsets
;
2707 struct msix_entry entries
[MSIX_ENTRIES
];
2708 struct sge
*s
= &adapter
->sge
;
2710 for (i
= 0; i
< MSIX_ENTRIES
; ++i
)
2711 entries
[i
].entry
= i
;
2714 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2715 * plus those needed for our "extras" (for example, the firmware
2716 * message queue). We _need_ at least one "Queue Set" per Virtual
2717 * Interface plus those needed for our "extras". So now we get to see
2718 * if the song is right ...
2720 want
= s
->max_ethqsets
+ MSIX_EXTRAS
;
2721 need
= adapter
->params
.nports
+ MSIX_EXTRAS
;
2723 want
= pci_enable_msix_range(adapter
->pdev
, entries
, need
, want
);
2727 nqsets
= want
- MSIX_EXTRAS
;
2728 if (nqsets
< s
->max_ethqsets
) {
2729 dev_warn(adapter
->pdev_dev
, "only enough MSI-X vectors"
2730 " for %d Queue Sets\n", nqsets
);
2731 s
->max_ethqsets
= nqsets
;
2732 if (nqsets
< s
->ethqsets
)
2733 reduce_ethqs(adapter
, nqsets
);
2735 for (i
= 0; i
< want
; ++i
)
2736 adapter
->msix_info
[i
].vec
= entries
[i
].vector
;
2741 static const struct net_device_ops cxgb4vf_netdev_ops
= {
2742 .ndo_open
= cxgb4vf_open
,
2743 .ndo_stop
= cxgb4vf_stop
,
2744 .ndo_start_xmit
= t4vf_eth_xmit
,
2745 .ndo_get_stats
= cxgb4vf_get_stats
,
2746 .ndo_set_rx_mode
= cxgb4vf_set_rxmode
,
2747 .ndo_set_mac_address
= cxgb4vf_set_mac_addr
,
2748 .ndo_validate_addr
= eth_validate_addr
,
2749 .ndo_do_ioctl
= cxgb4vf_do_ioctl
,
2750 .ndo_change_mtu
= cxgb4vf_change_mtu
,
2751 .ndo_fix_features
= cxgb4vf_fix_features
,
2752 .ndo_set_features
= cxgb4vf_set_features
,
2753 #ifdef CONFIG_NET_POLL_CONTROLLER
2754 .ndo_poll_controller
= cxgb4vf_poll_controller
,
2759 * "Probe" a device: initialize a device and construct all kernel and driver
2760 * state needed to manage the device. This routine is called "init_one" in
2763 static int cxgb4vf_pci_probe(struct pci_dev
*pdev
,
2764 const struct pci_device_id
*ent
)
2769 struct adapter
*adapter
;
2770 struct port_info
*pi
;
2771 struct net_device
*netdev
;
2775 * Print our driver banner the first time we're called to initialize a
2778 pr_info_once("%s - version %s\n", DRV_DESC
, DRV_VERSION
);
2781 * Initialize generic PCI device state.
2783 err
= pci_enable_device(pdev
);
2785 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
2790 * Reserve PCI resources for the device. If we can't get them some
2791 * other driver may have already claimed the device ...
2793 err
= pci_request_regions(pdev
, KBUILD_MODNAME
);
2795 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
2796 goto err_disable_device
;
2800 * Set up our DMA mask: try for 64-bit address masking first and
2801 * fall back to 32-bit if we can't get 64 bits ...
2803 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
2805 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
2807 dev_err(&pdev
->dev
, "unable to obtain 64-bit DMA for"
2808 " coherent allocations\n");
2809 goto err_release_regions
;
2813 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2815 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
2816 goto err_release_regions
;
2822 * Enable bus mastering for the device ...
2824 pci_set_master(pdev
);
2827 * Allocate our adapter data structure and attach it to the device.
2829 adapter
= kzalloc(sizeof(*adapter
), GFP_KERNEL
);
2832 goto err_release_regions
;
2834 pci_set_drvdata(pdev
, adapter
);
2835 adapter
->pdev
= pdev
;
2836 adapter
->pdev_dev
= &pdev
->dev
;
2838 adapter
->mbox_log
= kzalloc(sizeof(*adapter
->mbox_log
) +
2839 (sizeof(struct mbox_cmd
) *
2840 T4VF_OS_LOG_MBOX_CMDS
),
2842 if (!adapter
->mbox_log
) {
2844 goto err_free_adapter
;
2846 adapter
->mbox_log
->size
= T4VF_OS_LOG_MBOX_CMDS
;
2849 * Initialize SMP data synchronization resources.
2851 spin_lock_init(&adapter
->stats_lock
);
2852 spin_lock_init(&adapter
->mbox_lock
);
2853 INIT_LIST_HEAD(&adapter
->mlist
.list
);
2856 * Map our I/O registers in BAR0.
2858 adapter
->regs
= pci_ioremap_bar(pdev
, 0);
2859 if (!adapter
->regs
) {
2860 dev_err(&pdev
->dev
, "cannot map device registers\n");
2862 goto err_free_adapter
;
2865 /* Wait for the device to become ready before proceeding ...
2867 err
= t4vf_prep_adapter(adapter
);
2869 dev_err(adapter
->pdev_dev
, "device didn't become ready:"
2871 goto err_unmap_bar0
;
2874 /* For T5 and later we want to use the new BAR-based User Doorbells,
2875 * so we need to map BAR2 here ...
2877 if (!is_t4(adapter
->params
.chip
)) {
2878 adapter
->bar2
= ioremap_wc(pci_resource_start(pdev
, 2),
2879 pci_resource_len(pdev
, 2));
2880 if (!adapter
->bar2
) {
2881 dev_err(adapter
->pdev_dev
, "cannot map BAR2 doorbells\n");
2883 goto err_unmap_bar0
;
2887 * Initialize adapter level features.
2889 adapter
->name
= pci_name(pdev
);
2890 adapter
->msg_enable
= DFLT_MSG_ENABLE
;
2891 err
= adap_init0(adapter
);
2896 * Allocate our "adapter ports" and stitch everything together.
2898 pmask
= adapter
->params
.vfres
.pmask
;
2899 pf
= t4vf_get_pf_from_vf(adapter
);
2900 for_each_port(adapter
, pidx
) {
2903 unsigned int naddr
= 1;
2906 * We simplistically allocate our virtual interfaces
2907 * sequentially across the port numbers to which we have
2908 * access rights. This should be configurable in some manner
2913 port_id
= ffs(pmask
) - 1;
2914 pmask
&= ~(1 << port_id
);
2915 viid
= t4vf_alloc_vi(adapter
, port_id
);
2917 dev_err(&pdev
->dev
, "cannot allocate VI for port %d:"
2918 " err=%d\n", port_id
, viid
);
2924 * Allocate our network device and stitch things together.
2926 netdev
= alloc_etherdev_mq(sizeof(struct port_info
),
2928 if (netdev
== NULL
) {
2929 t4vf_free_vi(adapter
, viid
);
2933 adapter
->port
[pidx
] = netdev
;
2934 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2935 pi
= netdev_priv(netdev
);
2936 pi
->adapter
= adapter
;
2938 pi
->port_id
= port_id
;
2942 * Initialize the starting state of our "port" and register
2945 pi
->xact_addr_filt
= -1;
2946 netif_carrier_off(netdev
);
2947 netdev
->irq
= pdev
->irq
;
2949 netdev
->hw_features
= NETIF_F_SG
| TSO_FLAGS
|
2950 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
2951 NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_RXCSUM
;
2952 netdev
->vlan_features
= NETIF_F_SG
| TSO_FLAGS
|
2953 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
2955 netdev
->features
= netdev
->hw_features
|
2956 NETIF_F_HW_VLAN_CTAG_TX
;
2958 netdev
->features
|= NETIF_F_HIGHDMA
;
2960 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
2961 netdev
->min_mtu
= 81;
2962 netdev
->max_mtu
= ETH_MAX_MTU
;
2964 netdev
->netdev_ops
= &cxgb4vf_netdev_ops
;
2965 netdev
->ethtool_ops
= &cxgb4vf_ethtool_ops
;
2966 netdev
->dev_port
= pi
->port_id
;
2969 * Initialize the hardware/software state for the port.
2971 err
= t4vf_port_init(adapter
, pidx
);
2973 dev_err(&pdev
->dev
, "cannot initialize port %d\n",
2978 err
= t4vf_get_vf_mac_acl(adapter
, pf
, &naddr
, mac
);
2981 "unable to determine MAC ACL address, "
2982 "continuing anyway.. (status %d)\n", err
);
2983 } else if (naddr
&& adapter
->params
.vfres
.nvi
== 1) {
2984 struct sockaddr addr
;
2986 ether_addr_copy(addr
.sa_data
, mac
);
2987 err
= cxgb4vf_set_mac_addr(netdev
, &addr
);
2990 "unable to set MAC address %pM\n",
2994 dev_info(&pdev
->dev
,
2995 "Using assigned MAC ACL: %pM\n", mac
);
2999 /* See what interrupts we'll be using. If we've been configured to
3000 * use MSI-X interrupts, try to enable them but fall back to using
3001 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
3002 * get MSI interrupts we bail with the error.
3004 if (msi
== MSI_MSIX
&& enable_msix(adapter
) == 0)
3005 adapter
->flags
|= USING_MSIX
;
3007 if (msi
== MSI_MSIX
) {
3008 dev_info(adapter
->pdev_dev
,
3009 "Unable to use MSI-X Interrupts; falling "
3010 "back to MSI Interrupts\n");
3012 /* We're going to need a Forwarded Interrupt Queue so
3013 * that may cut into how many Queue Sets we can
3017 size_nports_qsets(adapter
);
3019 err
= pci_enable_msi(pdev
);
3021 dev_err(&pdev
->dev
, "Unable to allocate MSI Interrupts;"
3025 adapter
->flags
|= USING_MSI
;
3028 /* Now that we know how many "ports" we have and what interrupt
3029 * mechanism we're going to use, we can configure our queue resources.
3031 cfg_queues(adapter
);
3034 * The "card" is now ready to go. If any errors occur during device
3035 * registration we do not fail the whole "card" but rather proceed
3036 * only with the ports we manage to register successfully. However we
3037 * must register at least one net device.
3039 for_each_port(adapter
, pidx
) {
3040 struct port_info
*pi
= netdev_priv(adapter
->port
[pidx
]);
3041 netdev
= adapter
->port
[pidx
];
3045 netif_set_real_num_tx_queues(netdev
, pi
->nqsets
);
3046 netif_set_real_num_rx_queues(netdev
, pi
->nqsets
);
3048 err
= register_netdev(netdev
);
3050 dev_warn(&pdev
->dev
, "cannot register net device %s,"
3051 " skipping\n", netdev
->name
);
3055 set_bit(pidx
, &adapter
->registered_device_map
);
3057 if (adapter
->registered_device_map
== 0) {
3058 dev_err(&pdev
->dev
, "could not register any net devices\n");
3059 goto err_disable_interrupts
;
3063 * Set up our debugfs entries.
3065 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root
)) {
3066 adapter
->debugfs_root
=
3067 debugfs_create_dir(pci_name(pdev
),
3068 cxgb4vf_debugfs_root
);
3069 if (IS_ERR_OR_NULL(adapter
->debugfs_root
))
3070 dev_warn(&pdev
->dev
, "could not create debugfs"
3073 setup_debugfs(adapter
);
3077 * Print a short notice on the existence and configuration of the new
3078 * VF network device ...
3080 for_each_port(adapter
, pidx
) {
3081 dev_info(adapter
->pdev_dev
, "%s: Chelsio VF NIC PCIe %s\n",
3082 adapter
->port
[pidx
]->name
,
3083 (adapter
->flags
& USING_MSIX
) ? "MSI-X" :
3084 (adapter
->flags
& USING_MSI
) ? "MSI" : "");
3093 * Error recovery and exit code. Unwind state that's been created
3094 * so far and return the error.
3096 err_disable_interrupts
:
3097 if (adapter
->flags
& USING_MSIX
) {
3098 pci_disable_msix(adapter
->pdev
);
3099 adapter
->flags
&= ~USING_MSIX
;
3100 } else if (adapter
->flags
& USING_MSI
) {
3101 pci_disable_msi(adapter
->pdev
);
3102 adapter
->flags
&= ~USING_MSI
;
3106 for_each_port(adapter
, pidx
) {
3107 netdev
= adapter
->port
[pidx
];
3110 pi
= netdev_priv(netdev
);
3111 t4vf_free_vi(adapter
, pi
->viid
);
3112 if (test_bit(pidx
, &adapter
->registered_device_map
))
3113 unregister_netdev(netdev
);
3114 free_netdev(netdev
);
3118 if (!is_t4(adapter
->params
.chip
))
3119 iounmap(adapter
->bar2
);
3122 iounmap(adapter
->regs
);
3125 kfree(adapter
->mbox_log
);
3128 err_release_regions
:
3129 pci_release_regions(pdev
);
3130 pci_clear_master(pdev
);
3133 pci_disable_device(pdev
);
3139 * "Remove" a device: tear down all kernel and driver state created in the
3140 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
3141 * that this is called "remove_one" in the PF Driver.)
3143 static void cxgb4vf_pci_remove(struct pci_dev
*pdev
)
3145 struct adapter
*adapter
= pci_get_drvdata(pdev
);
3148 * Tear down driver state associated with device.
3154 * Stop all of our activity. Unregister network port,
3155 * disable interrupts, etc.
3157 for_each_port(adapter
, pidx
)
3158 if (test_bit(pidx
, &adapter
->registered_device_map
))
3159 unregister_netdev(adapter
->port
[pidx
]);
3160 t4vf_sge_stop(adapter
);
3161 if (adapter
->flags
& USING_MSIX
) {
3162 pci_disable_msix(adapter
->pdev
);
3163 adapter
->flags
&= ~USING_MSIX
;
3164 } else if (adapter
->flags
& USING_MSI
) {
3165 pci_disable_msi(adapter
->pdev
);
3166 adapter
->flags
&= ~USING_MSI
;
3170 * Tear down our debugfs entries.
3172 if (!IS_ERR_OR_NULL(adapter
->debugfs_root
)) {
3173 cleanup_debugfs(adapter
);
3174 debugfs_remove_recursive(adapter
->debugfs_root
);
3178 * Free all of the various resources which we've acquired ...
3180 t4vf_free_sge_resources(adapter
);
3181 for_each_port(adapter
, pidx
) {
3182 struct net_device
*netdev
= adapter
->port
[pidx
];
3183 struct port_info
*pi
;
3188 pi
= netdev_priv(netdev
);
3189 t4vf_free_vi(adapter
, pi
->viid
);
3190 free_netdev(netdev
);
3192 iounmap(adapter
->regs
);
3193 if (!is_t4(adapter
->params
.chip
))
3194 iounmap(adapter
->bar2
);
3195 kfree(adapter
->mbox_log
);
3200 * Disable the device and release its PCI resources.
3202 pci_disable_device(pdev
);
3203 pci_clear_master(pdev
);
3204 pci_release_regions(pdev
);
3208 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3211 static void cxgb4vf_pci_shutdown(struct pci_dev
*pdev
)
3213 struct adapter
*adapter
;
3216 adapter
= pci_get_drvdata(pdev
);
3220 /* Disable all Virtual Interfaces. This will shut down the
3221 * delivery of all ingress packets into the chip for these
3222 * Virtual Interfaces.
3224 for_each_port(adapter
, pidx
)
3225 if (test_bit(pidx
, &adapter
->registered_device_map
))
3226 unregister_netdev(adapter
->port
[pidx
]);
3228 /* Free up all Queues which will prevent further DMA and
3229 * Interrupts allowing various internal pathways to drain.
3231 t4vf_sge_stop(adapter
);
3232 if (adapter
->flags
& USING_MSIX
) {
3233 pci_disable_msix(adapter
->pdev
);
3234 adapter
->flags
&= ~USING_MSIX
;
3235 } else if (adapter
->flags
& USING_MSI
) {
3236 pci_disable_msi(adapter
->pdev
);
3237 adapter
->flags
&= ~USING_MSI
;
3241 * Free up all Queues which will prevent further DMA and
3242 * Interrupts allowing various internal pathways to drain.
3244 t4vf_free_sge_resources(adapter
);
3245 pci_set_drvdata(pdev
, NULL
);
3248 /* Macros needed to support the PCI Device ID Table ...
3250 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3251 static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3252 #define CH_PCI_DEVICE_ID_FUNCTION 0x8
3254 #define CH_PCI_ID_TABLE_ENTRY(devid) \
3255 { PCI_VDEVICE(CHELSIO, (devid)), 0 }
3257 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3259 #include "../cxgb4/t4_pci_id_tbl.h"
3261 MODULE_DESCRIPTION(DRV_DESC
);
3262 MODULE_AUTHOR("Chelsio Communications");
3263 MODULE_LICENSE("Dual BSD/GPL");
3264 MODULE_VERSION(DRV_VERSION
);
3265 MODULE_DEVICE_TABLE(pci
, cxgb4vf_pci_tbl
);
3267 static struct pci_driver cxgb4vf_driver
= {
3268 .name
= KBUILD_MODNAME
,
3269 .id_table
= cxgb4vf_pci_tbl
,
3270 .probe
= cxgb4vf_pci_probe
,
3271 .remove
= cxgb4vf_pci_remove
,
3272 .shutdown
= cxgb4vf_pci_shutdown
,
3276 * Initialize global driver state.
3278 static int __init
cxgb4vf_module_init(void)
3283 * Vet our module parameters.
3285 if (msi
!= MSI_MSIX
&& msi
!= MSI_MSI
) {
3286 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3287 msi
, MSI_MSIX
, MSI_MSI
);
3291 /* Debugfs support is optional, just warn if this fails */
3292 cxgb4vf_debugfs_root
= debugfs_create_dir(KBUILD_MODNAME
, NULL
);
3293 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root
))
3294 pr_warn("could not create debugfs entry, continuing\n");
3296 ret
= pci_register_driver(&cxgb4vf_driver
);
3297 if (ret
< 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root
))
3298 debugfs_remove(cxgb4vf_debugfs_root
);
3303 * Tear down global driver state.
3305 static void __exit
cxgb4vf_module_exit(void)
3307 pci_unregister_driver(&cxgb4vf_driver
);
3308 debugfs_remove(cxgb4vf_debugfs_root
);
3311 module_init(cxgb4vf_module_init
);
3312 module_exit(cxgb4vf_module_exit
);