Merge tag 'chrome-platform-for-linus-4.13' of git://git.kernel.org/pub/scm/linux...
[linux/fpc-iii.git] / drivers / net / ethernet / freescale / fec_main.c
bloba6e323f1563745c3a0cedd91d240e05af6606f33
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
65 #include <asm/cacheflush.h>
67 #include "fec.h"
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
72 #define DRIVER_NAME "fec"
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE (1 << 5)
78 #define FEC_ENET_RSEM_V 0x84
79 #define FEC_ENET_RSFL_V 16
80 #define FEC_ENET_RAEM_V 0x8
81 #define FEC_ENET_RAFL_V 0x8
82 #define FEC_ENET_OPD_V 0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
85 static struct platform_device_id fec_devtype[] = {
87 /* keep it for coldfire */
88 .name = DRIVER_NAME,
89 .driver_data = 0,
90 }, {
91 .name = "imx25-fec",
92 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
93 }, {
94 .name = "imx27-fec",
95 .driver_data = FEC_QUIRK_MIB_CLEAR,
96 }, {
97 .name = "imx28-fec",
98 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 }, {
101 .name = "imx6q-fec",
102 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 FEC_QUIRK_HAS_RACC,
106 }, {
107 .name = "mvf600-fec",
108 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 }, {
110 .name = "imx6sx-fec",
111 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 }, {
117 .name = "imx6ul-fec",
118 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
121 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
122 FEC_QUIRK_HAS_COALESCE,
123 }, {
124 /* sentinel */
127 MODULE_DEVICE_TABLE(platform, fec_devtype);
129 enum imx_fec_type {
130 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
131 IMX27_FEC, /* runs on i.mx27/35/51 */
132 IMX28_FEC,
133 IMX6Q_FEC,
134 MVF600_FEC,
135 IMX6SX_FEC,
136 IMX6UL_FEC,
139 static const struct of_device_id fec_dt_ids[] = {
140 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
141 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
142 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
143 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
144 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
145 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
146 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
147 { /* sentinel */ }
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
155 #if defined(CONFIG_M5272)
157 * Some hardware gets it MAC address out of local flash memory.
158 * if this is non-zero then assume it is the address to get MAC from.
160 #if defined(CONFIG_NETtel)
161 #define FEC_FLASHMAC 0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define FEC_FLASHMAC 0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define FEC_FLASHMAC 0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define FEC_FLASHMAC (0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC 0xffc0406b
170 #else
171 #define FEC_FLASHMAC 0
172 #endif
173 #endif /* CONFIG_M5272 */
175 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
177 #define PKT_MAXBUF_SIZE 1522
178 #define PKT_MINBUF_SIZE 64
179 #define PKT_MAXBLR_SIZE 1536
181 /* FEC receive acceleration */
182 #define FEC_RACC_IPDIS (1 << 1)
183 #define FEC_RACC_PRODIS (1 << 2)
184 #define FEC_RACC_SHIFT16 BIT(7)
185 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
187 /* MIB Control Register */
188 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
191 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
192 * size bits. Other FEC hardware does not, so we need to take that into
193 * account when setting it.
195 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
196 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
197 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
198 #else
199 #define OPT_FRAME_SIZE 0
200 #endif
202 /* FEC MII MMFR bits definition */
203 #define FEC_MMFR_ST (1 << 30)
204 #define FEC_MMFR_OP_READ (2 << 28)
205 #define FEC_MMFR_OP_WRITE (1 << 28)
206 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
207 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
208 #define FEC_MMFR_TA (2 << 16)
209 #define FEC_MMFR_DATA(v) (v & 0xffff)
210 /* FEC ECR bits definition */
211 #define FEC_ECR_MAGICEN (1 << 2)
212 #define FEC_ECR_SLEEP (1 << 3)
214 #define FEC_MII_TIMEOUT 30000 /* us */
216 /* Transmitter timeout */
217 #define TX_TIMEOUT (2 * HZ)
219 #define FEC_PAUSE_FLAG_AUTONEG 0x1
220 #define FEC_PAUSE_FLAG_ENABLE 0x2
221 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
222 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
223 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
225 #define COPYBREAK_DEFAULT 256
227 #define TSO_HEADER_SIZE 128
228 /* Max number of allowed TCP segments for software TSO */
229 #define FEC_MAX_TSO_SEGS 100
230 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
232 #define IS_TSO_HEADER(txq, addr) \
233 ((addr >= txq->tso_hdrs_dma) && \
234 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
236 static int mii_cnt;
238 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
239 struct bufdesc_prop *bd)
241 return (bdp >= bd->last) ? bd->base
242 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
245 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
246 struct bufdesc_prop *bd)
248 return (bdp <= bd->base) ? bd->last
249 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
252 static int fec_enet_get_bd_index(struct bufdesc *bdp,
253 struct bufdesc_prop *bd)
255 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
258 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
260 int entries;
262 entries = (((const char *)txq->dirty_tx -
263 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
265 return entries >= 0 ? entries : entries + txq->bd.ring_size;
268 static void swap_buffer(void *bufaddr, int len)
270 int i;
271 unsigned int *buf = bufaddr;
273 for (i = 0; i < len; i += 4, buf++)
274 swab32s(buf);
277 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
279 int i;
280 unsigned int *src = src_buf;
281 unsigned int *dst = dst_buf;
283 for (i = 0; i < len; i += 4, src++, dst++)
284 *dst = swab32p(src);
287 static void fec_dump(struct net_device *ndev)
289 struct fec_enet_private *fep = netdev_priv(ndev);
290 struct bufdesc *bdp;
291 struct fec_enet_priv_tx_q *txq;
292 int index = 0;
294 netdev_info(ndev, "TX ring dump\n");
295 pr_info("Nr SC addr len SKB\n");
297 txq = fep->tx_queue[0];
298 bdp = txq->bd.base;
300 do {
301 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
302 index,
303 bdp == txq->bd.cur ? 'S' : ' ',
304 bdp == txq->dirty_tx ? 'H' : ' ',
305 fec16_to_cpu(bdp->cbd_sc),
306 fec32_to_cpu(bdp->cbd_bufaddr),
307 fec16_to_cpu(bdp->cbd_datlen),
308 txq->tx_skbuff[index]);
309 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
310 index++;
311 } while (bdp != txq->bd.base);
314 static inline bool is_ipv4_pkt(struct sk_buff *skb)
316 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
319 static int
320 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
322 /* Only run for packets requiring a checksum. */
323 if (skb->ip_summed != CHECKSUM_PARTIAL)
324 return 0;
326 if (unlikely(skb_cow_head(skb, 0)))
327 return -1;
329 if (is_ipv4_pkt(skb))
330 ip_hdr(skb)->check = 0;
331 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
333 return 0;
336 static struct bufdesc *
337 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
338 struct sk_buff *skb,
339 struct net_device *ndev)
341 struct fec_enet_private *fep = netdev_priv(ndev);
342 struct bufdesc *bdp = txq->bd.cur;
343 struct bufdesc_ex *ebdp;
344 int nr_frags = skb_shinfo(skb)->nr_frags;
345 int frag, frag_len;
346 unsigned short status;
347 unsigned int estatus = 0;
348 skb_frag_t *this_frag;
349 unsigned int index;
350 void *bufaddr;
351 dma_addr_t addr;
352 int i;
354 for (frag = 0; frag < nr_frags; frag++) {
355 this_frag = &skb_shinfo(skb)->frags[frag];
356 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
357 ebdp = (struct bufdesc_ex *)bdp;
359 status = fec16_to_cpu(bdp->cbd_sc);
360 status &= ~BD_ENET_TX_STATS;
361 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
362 frag_len = skb_shinfo(skb)->frags[frag].size;
364 /* Handle the last BD specially */
365 if (frag == nr_frags - 1) {
366 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
367 if (fep->bufdesc_ex) {
368 estatus |= BD_ENET_TX_INT;
369 if (unlikely(skb_shinfo(skb)->tx_flags &
370 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
371 estatus |= BD_ENET_TX_TS;
375 if (fep->bufdesc_ex) {
376 if (fep->quirks & FEC_QUIRK_HAS_AVB)
377 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
378 if (skb->ip_summed == CHECKSUM_PARTIAL)
379 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
380 ebdp->cbd_bdu = 0;
381 ebdp->cbd_esc = cpu_to_fec32(estatus);
384 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
386 index = fec_enet_get_bd_index(bdp, &txq->bd);
387 if (((unsigned long) bufaddr) & fep->tx_align ||
388 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
389 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
390 bufaddr = txq->tx_bounce[index];
392 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
393 swap_buffer(bufaddr, frag_len);
396 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
397 DMA_TO_DEVICE);
398 if (dma_mapping_error(&fep->pdev->dev, addr)) {
399 if (net_ratelimit())
400 netdev_err(ndev, "Tx DMA memory map failed\n");
401 goto dma_mapping_error;
404 bdp->cbd_bufaddr = cpu_to_fec32(addr);
405 bdp->cbd_datlen = cpu_to_fec16(frag_len);
406 /* Make sure the updates to rest of the descriptor are
407 * performed before transferring ownership.
409 wmb();
410 bdp->cbd_sc = cpu_to_fec16(status);
413 return bdp;
414 dma_mapping_error:
415 bdp = txq->bd.cur;
416 for (i = 0; i < frag; i++) {
417 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
418 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
419 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
421 return ERR_PTR(-ENOMEM);
424 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
425 struct sk_buff *skb, struct net_device *ndev)
427 struct fec_enet_private *fep = netdev_priv(ndev);
428 int nr_frags = skb_shinfo(skb)->nr_frags;
429 struct bufdesc *bdp, *last_bdp;
430 void *bufaddr;
431 dma_addr_t addr;
432 unsigned short status;
433 unsigned short buflen;
434 unsigned int estatus = 0;
435 unsigned int index;
436 int entries_free;
438 entries_free = fec_enet_get_free_txdesc_num(txq);
439 if (entries_free < MAX_SKB_FRAGS + 1) {
440 dev_kfree_skb_any(skb);
441 if (net_ratelimit())
442 netdev_err(ndev, "NOT enough BD for SG!\n");
443 return NETDEV_TX_OK;
446 /* Protocol checksum off-load for TCP and UDP. */
447 if (fec_enet_clear_csum(skb, ndev)) {
448 dev_kfree_skb_any(skb);
449 return NETDEV_TX_OK;
452 /* Fill in a Tx ring entry */
453 bdp = txq->bd.cur;
454 last_bdp = bdp;
455 status = fec16_to_cpu(bdp->cbd_sc);
456 status &= ~BD_ENET_TX_STATS;
458 /* Set buffer length and buffer pointer */
459 bufaddr = skb->data;
460 buflen = skb_headlen(skb);
462 index = fec_enet_get_bd_index(bdp, &txq->bd);
463 if (((unsigned long) bufaddr) & fep->tx_align ||
464 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
465 memcpy(txq->tx_bounce[index], skb->data, buflen);
466 bufaddr = txq->tx_bounce[index];
468 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
469 swap_buffer(bufaddr, buflen);
472 /* Push the data cache so the CPM does not get stale memory data. */
473 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
474 if (dma_mapping_error(&fep->pdev->dev, addr)) {
475 dev_kfree_skb_any(skb);
476 if (net_ratelimit())
477 netdev_err(ndev, "Tx DMA memory map failed\n");
478 return NETDEV_TX_OK;
481 if (nr_frags) {
482 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
483 if (IS_ERR(last_bdp)) {
484 dma_unmap_single(&fep->pdev->dev, addr,
485 buflen, DMA_TO_DEVICE);
486 dev_kfree_skb_any(skb);
487 return NETDEV_TX_OK;
489 } else {
490 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
491 if (fep->bufdesc_ex) {
492 estatus = BD_ENET_TX_INT;
493 if (unlikely(skb_shinfo(skb)->tx_flags &
494 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
495 estatus |= BD_ENET_TX_TS;
498 bdp->cbd_bufaddr = cpu_to_fec32(addr);
499 bdp->cbd_datlen = cpu_to_fec16(buflen);
501 if (fep->bufdesc_ex) {
503 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
505 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
506 fep->hwts_tx_en))
507 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
509 if (fep->quirks & FEC_QUIRK_HAS_AVB)
510 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
512 if (skb->ip_summed == CHECKSUM_PARTIAL)
513 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
515 ebdp->cbd_bdu = 0;
516 ebdp->cbd_esc = cpu_to_fec32(estatus);
519 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
520 /* Save skb pointer */
521 txq->tx_skbuff[index] = skb;
523 /* Make sure the updates to rest of the descriptor are performed before
524 * transferring ownership.
526 wmb();
528 /* Send it on its way. Tell FEC it's ready, interrupt when done,
529 * it's the last BD of the frame, and to put the CRC on the end.
531 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
532 bdp->cbd_sc = cpu_to_fec16(status);
534 /* If this was the last BD in the ring, start at the beginning again. */
535 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
537 skb_tx_timestamp(skb);
539 /* Make sure the update to bdp and tx_skbuff are performed before
540 * txq->bd.cur.
542 wmb();
543 txq->bd.cur = bdp;
545 /* Trigger transmission start */
546 writel(0, txq->bd.reg_desc_active);
548 return 0;
551 static int
552 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
553 struct net_device *ndev,
554 struct bufdesc *bdp, int index, char *data,
555 int size, bool last_tcp, bool is_last)
557 struct fec_enet_private *fep = netdev_priv(ndev);
558 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
559 unsigned short status;
560 unsigned int estatus = 0;
561 dma_addr_t addr;
563 status = fec16_to_cpu(bdp->cbd_sc);
564 status &= ~BD_ENET_TX_STATS;
566 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
568 if (((unsigned long) data) & fep->tx_align ||
569 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
570 memcpy(txq->tx_bounce[index], data, size);
571 data = txq->tx_bounce[index];
573 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
574 swap_buffer(data, size);
577 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
578 if (dma_mapping_error(&fep->pdev->dev, addr)) {
579 dev_kfree_skb_any(skb);
580 if (net_ratelimit())
581 netdev_err(ndev, "Tx DMA memory map failed\n");
582 return NETDEV_TX_BUSY;
585 bdp->cbd_datlen = cpu_to_fec16(size);
586 bdp->cbd_bufaddr = cpu_to_fec32(addr);
588 if (fep->bufdesc_ex) {
589 if (fep->quirks & FEC_QUIRK_HAS_AVB)
590 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
591 if (skb->ip_summed == CHECKSUM_PARTIAL)
592 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
593 ebdp->cbd_bdu = 0;
594 ebdp->cbd_esc = cpu_to_fec32(estatus);
597 /* Handle the last BD specially */
598 if (last_tcp)
599 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
600 if (is_last) {
601 status |= BD_ENET_TX_INTR;
602 if (fep->bufdesc_ex)
603 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
606 bdp->cbd_sc = cpu_to_fec16(status);
608 return 0;
611 static int
612 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
613 struct sk_buff *skb, struct net_device *ndev,
614 struct bufdesc *bdp, int index)
616 struct fec_enet_private *fep = netdev_priv(ndev);
617 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
618 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
619 void *bufaddr;
620 unsigned long dmabuf;
621 unsigned short status;
622 unsigned int estatus = 0;
624 status = fec16_to_cpu(bdp->cbd_sc);
625 status &= ~BD_ENET_TX_STATS;
626 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
628 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
629 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
630 if (((unsigned long)bufaddr) & fep->tx_align ||
631 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
632 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
633 bufaddr = txq->tx_bounce[index];
635 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
636 swap_buffer(bufaddr, hdr_len);
638 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
639 hdr_len, DMA_TO_DEVICE);
640 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
641 dev_kfree_skb_any(skb);
642 if (net_ratelimit())
643 netdev_err(ndev, "Tx DMA memory map failed\n");
644 return NETDEV_TX_BUSY;
648 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
649 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
651 if (fep->bufdesc_ex) {
652 if (fep->quirks & FEC_QUIRK_HAS_AVB)
653 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
654 if (skb->ip_summed == CHECKSUM_PARTIAL)
655 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
656 ebdp->cbd_bdu = 0;
657 ebdp->cbd_esc = cpu_to_fec32(estatus);
660 bdp->cbd_sc = cpu_to_fec16(status);
662 return 0;
665 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
666 struct sk_buff *skb,
667 struct net_device *ndev)
669 struct fec_enet_private *fep = netdev_priv(ndev);
670 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
671 int total_len, data_left;
672 struct bufdesc *bdp = txq->bd.cur;
673 struct tso_t tso;
674 unsigned int index = 0;
675 int ret;
677 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
678 dev_kfree_skb_any(skb);
679 if (net_ratelimit())
680 netdev_err(ndev, "NOT enough BD for TSO!\n");
681 return NETDEV_TX_OK;
684 /* Protocol checksum off-load for TCP and UDP. */
685 if (fec_enet_clear_csum(skb, ndev)) {
686 dev_kfree_skb_any(skb);
687 return NETDEV_TX_OK;
690 /* Initialize the TSO handler, and prepare the first payload */
691 tso_start(skb, &tso);
693 total_len = skb->len - hdr_len;
694 while (total_len > 0) {
695 char *hdr;
697 index = fec_enet_get_bd_index(bdp, &txq->bd);
698 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
699 total_len -= data_left;
701 /* prepare packet headers: MAC + IP + TCP */
702 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
703 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
704 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
705 if (ret)
706 goto err_release;
708 while (data_left > 0) {
709 int size;
711 size = min_t(int, tso.size, data_left);
712 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
713 index = fec_enet_get_bd_index(bdp, &txq->bd);
714 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
715 bdp, index,
716 tso.data, size,
717 size == data_left,
718 total_len == 0);
719 if (ret)
720 goto err_release;
722 data_left -= size;
723 tso_build_data(skb, &tso, size);
726 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
729 /* Save skb pointer */
730 txq->tx_skbuff[index] = skb;
732 skb_tx_timestamp(skb);
733 txq->bd.cur = bdp;
735 /* Trigger transmission start */
736 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
737 !readl(txq->bd.reg_desc_active) ||
738 !readl(txq->bd.reg_desc_active) ||
739 !readl(txq->bd.reg_desc_active) ||
740 !readl(txq->bd.reg_desc_active))
741 writel(0, txq->bd.reg_desc_active);
743 return 0;
745 err_release:
746 /* TODO: Release all used data descriptors for TSO */
747 return ret;
750 static netdev_tx_t
751 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
753 struct fec_enet_private *fep = netdev_priv(ndev);
754 int entries_free;
755 unsigned short queue;
756 struct fec_enet_priv_tx_q *txq;
757 struct netdev_queue *nq;
758 int ret;
760 queue = skb_get_queue_mapping(skb);
761 txq = fep->tx_queue[queue];
762 nq = netdev_get_tx_queue(ndev, queue);
764 if (skb_is_gso(skb))
765 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
766 else
767 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
768 if (ret)
769 return ret;
771 entries_free = fec_enet_get_free_txdesc_num(txq);
772 if (entries_free <= txq->tx_stop_threshold)
773 netif_tx_stop_queue(nq);
775 return NETDEV_TX_OK;
778 /* Init RX & TX buffer descriptors
780 static void fec_enet_bd_init(struct net_device *dev)
782 struct fec_enet_private *fep = netdev_priv(dev);
783 struct fec_enet_priv_tx_q *txq;
784 struct fec_enet_priv_rx_q *rxq;
785 struct bufdesc *bdp;
786 unsigned int i;
787 unsigned int q;
789 for (q = 0; q < fep->num_rx_queues; q++) {
790 /* Initialize the receive buffer descriptors. */
791 rxq = fep->rx_queue[q];
792 bdp = rxq->bd.base;
794 for (i = 0; i < rxq->bd.ring_size; i++) {
796 /* Initialize the BD for every fragment in the page. */
797 if (bdp->cbd_bufaddr)
798 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
799 else
800 bdp->cbd_sc = cpu_to_fec16(0);
801 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
804 /* Set the last buffer to wrap */
805 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
806 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
808 rxq->bd.cur = rxq->bd.base;
811 for (q = 0; q < fep->num_tx_queues; q++) {
812 /* ...and the same for transmit */
813 txq = fep->tx_queue[q];
814 bdp = txq->bd.base;
815 txq->bd.cur = bdp;
817 for (i = 0; i < txq->bd.ring_size; i++) {
818 /* Initialize the BD for every fragment in the page. */
819 bdp->cbd_sc = cpu_to_fec16(0);
820 if (txq->tx_skbuff[i]) {
821 dev_kfree_skb_any(txq->tx_skbuff[i]);
822 txq->tx_skbuff[i] = NULL;
824 bdp->cbd_bufaddr = cpu_to_fec32(0);
825 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
828 /* Set the last buffer to wrap */
829 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
830 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
831 txq->dirty_tx = bdp;
835 static void fec_enet_active_rxring(struct net_device *ndev)
837 struct fec_enet_private *fep = netdev_priv(ndev);
838 int i;
840 for (i = 0; i < fep->num_rx_queues; i++)
841 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
844 static void fec_enet_enable_ring(struct net_device *ndev)
846 struct fec_enet_private *fep = netdev_priv(ndev);
847 struct fec_enet_priv_tx_q *txq;
848 struct fec_enet_priv_rx_q *rxq;
849 int i;
851 for (i = 0; i < fep->num_rx_queues; i++) {
852 rxq = fep->rx_queue[i];
853 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
854 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
856 /* enable DMA1/2 */
857 if (i)
858 writel(RCMR_MATCHEN | RCMR_CMP(i),
859 fep->hwp + FEC_RCMR(i));
862 for (i = 0; i < fep->num_tx_queues; i++) {
863 txq = fep->tx_queue[i];
864 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
866 /* enable DMA1/2 */
867 if (i)
868 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
869 fep->hwp + FEC_DMA_CFG(i));
873 static void fec_enet_reset_skb(struct net_device *ndev)
875 struct fec_enet_private *fep = netdev_priv(ndev);
876 struct fec_enet_priv_tx_q *txq;
877 int i, j;
879 for (i = 0; i < fep->num_tx_queues; i++) {
880 txq = fep->tx_queue[i];
882 for (j = 0; j < txq->bd.ring_size; j++) {
883 if (txq->tx_skbuff[j]) {
884 dev_kfree_skb_any(txq->tx_skbuff[j]);
885 txq->tx_skbuff[j] = NULL;
892 * This function is called to start or restart the FEC during a link
893 * change, transmit timeout, or to reconfigure the FEC. The network
894 * packet processing for this device must be stopped before this call.
896 static void
897 fec_restart(struct net_device *ndev)
899 struct fec_enet_private *fep = netdev_priv(ndev);
900 u32 val;
901 u32 temp_mac[2];
902 u32 rcntl = OPT_FRAME_SIZE | 0x04;
903 u32 ecntl = 0x2; /* ETHEREN */
905 /* Whack a reset. We should wait for this.
906 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
907 * instead of reset MAC itself.
909 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
910 writel(0, fep->hwp + FEC_ECNTRL);
911 } else {
912 writel(1, fep->hwp + FEC_ECNTRL);
913 udelay(10);
917 * enet-mac reset will reset mac address registers too,
918 * so need to reconfigure it.
920 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
921 writel((__force u32)cpu_to_be32(temp_mac[0]),
922 fep->hwp + FEC_ADDR_LOW);
923 writel((__force u32)cpu_to_be32(temp_mac[1]),
924 fep->hwp + FEC_ADDR_HIGH);
926 /* Clear any outstanding interrupt. */
927 writel(0xffffffff, fep->hwp + FEC_IEVENT);
929 fec_enet_bd_init(ndev);
931 fec_enet_enable_ring(ndev);
933 /* Reset tx SKB buffers. */
934 fec_enet_reset_skb(ndev);
936 /* Enable MII mode */
937 if (fep->full_duplex == DUPLEX_FULL) {
938 /* FD enable */
939 writel(0x04, fep->hwp + FEC_X_CNTRL);
940 } else {
941 /* No Rcv on Xmit */
942 rcntl |= 0x02;
943 writel(0x0, fep->hwp + FEC_X_CNTRL);
946 /* Set MII speed */
947 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
949 #if !defined(CONFIG_M5272)
950 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
951 val = readl(fep->hwp + FEC_RACC);
952 /* align IP header */
953 val |= FEC_RACC_SHIFT16;
954 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
955 /* set RX checksum */
956 val |= FEC_RACC_OPTIONS;
957 else
958 val &= ~FEC_RACC_OPTIONS;
959 writel(val, fep->hwp + FEC_RACC);
960 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
962 #endif
965 * The phy interface and speed need to get configured
966 * differently on enet-mac.
968 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
969 /* Enable flow control and length check */
970 rcntl |= 0x40000000 | 0x00000020;
972 /* RGMII, RMII or MII */
973 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
974 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
975 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
976 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
977 rcntl |= (1 << 6);
978 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
979 rcntl |= (1 << 8);
980 else
981 rcntl &= ~(1 << 8);
983 /* 1G, 100M or 10M */
984 if (ndev->phydev) {
985 if (ndev->phydev->speed == SPEED_1000)
986 ecntl |= (1 << 5);
987 else if (ndev->phydev->speed == SPEED_100)
988 rcntl &= ~(1 << 9);
989 else
990 rcntl |= (1 << 9);
992 } else {
993 #ifdef FEC_MIIGSK_ENR
994 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
995 u32 cfgr;
996 /* disable the gasket and wait */
997 writel(0, fep->hwp + FEC_MIIGSK_ENR);
998 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
999 udelay(1);
1002 * configure the gasket:
1003 * RMII, 50 MHz, no loopback, no echo
1004 * MII, 25 MHz, no loopback, no echo
1006 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1007 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1008 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1009 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1010 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1012 /* re-enable the gasket */
1013 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1015 #endif
1018 #if !defined(CONFIG_M5272)
1019 /* enable pause frame*/
1020 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1021 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1022 ndev->phydev && ndev->phydev->pause)) {
1023 rcntl |= FEC_ENET_FCE;
1025 /* set FIFO threshold parameter to reduce overrun */
1026 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1027 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1028 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1029 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1031 /* OPD */
1032 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1033 } else {
1034 rcntl &= ~FEC_ENET_FCE;
1036 #endif /* !defined(CONFIG_M5272) */
1038 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1040 /* Setup multicast filter. */
1041 set_multicast_list(ndev);
1042 #ifndef CONFIG_M5272
1043 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1044 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1045 #endif
1047 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1048 /* enable ENET endian swap */
1049 ecntl |= (1 << 8);
1050 /* enable ENET store and forward mode */
1051 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1054 if (fep->bufdesc_ex)
1055 ecntl |= (1 << 4);
1057 #ifndef CONFIG_M5272
1058 /* Enable the MIB statistic event counters */
1059 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1060 #endif
1062 /* And last, enable the transmit and receive processing */
1063 writel(ecntl, fep->hwp + FEC_ECNTRL);
1064 fec_enet_active_rxring(ndev);
1066 if (fep->bufdesc_ex)
1067 fec_ptp_start_cyclecounter(ndev);
1069 /* Enable interrupts we wish to service */
1070 if (fep->link)
1071 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1072 else
1073 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1075 /* Init the interrupt coalescing */
1076 fec_enet_itr_coal_init(ndev);
1080 static void
1081 fec_stop(struct net_device *ndev)
1083 struct fec_enet_private *fep = netdev_priv(ndev);
1084 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1085 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1086 u32 val;
1088 /* We cannot expect a graceful transmit stop without link !!! */
1089 if (fep->link) {
1090 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1091 udelay(10);
1092 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1093 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1096 /* Whack a reset. We should wait for this.
1097 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1098 * instead of reset MAC itself.
1100 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1101 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1102 writel(0, fep->hwp + FEC_ECNTRL);
1103 } else {
1104 writel(1, fep->hwp + FEC_ECNTRL);
1105 udelay(10);
1107 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1108 } else {
1109 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1110 val = readl(fep->hwp + FEC_ECNTRL);
1111 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1112 writel(val, fep->hwp + FEC_ECNTRL);
1114 if (pdata && pdata->sleep_mode_enable)
1115 pdata->sleep_mode_enable(true);
1117 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1119 /* We have to keep ENET enabled to have MII interrupt stay working */
1120 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1121 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1122 writel(2, fep->hwp + FEC_ECNTRL);
1123 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1128 static void
1129 fec_timeout(struct net_device *ndev)
1131 struct fec_enet_private *fep = netdev_priv(ndev);
1133 fec_dump(ndev);
1135 ndev->stats.tx_errors++;
1137 schedule_work(&fep->tx_timeout_work);
1140 static void fec_enet_timeout_work(struct work_struct *work)
1142 struct fec_enet_private *fep =
1143 container_of(work, struct fec_enet_private, tx_timeout_work);
1144 struct net_device *ndev = fep->netdev;
1146 rtnl_lock();
1147 if (netif_device_present(ndev) || netif_running(ndev)) {
1148 napi_disable(&fep->napi);
1149 netif_tx_lock_bh(ndev);
1150 fec_restart(ndev);
1151 netif_wake_queue(ndev);
1152 netif_tx_unlock_bh(ndev);
1153 napi_enable(&fep->napi);
1155 rtnl_unlock();
1158 static void
1159 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1160 struct skb_shared_hwtstamps *hwtstamps)
1162 unsigned long flags;
1163 u64 ns;
1165 spin_lock_irqsave(&fep->tmreg_lock, flags);
1166 ns = timecounter_cyc2time(&fep->tc, ts);
1167 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1169 memset(hwtstamps, 0, sizeof(*hwtstamps));
1170 hwtstamps->hwtstamp = ns_to_ktime(ns);
1173 static void
1174 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1176 struct fec_enet_private *fep;
1177 struct bufdesc *bdp;
1178 unsigned short status;
1179 struct sk_buff *skb;
1180 struct fec_enet_priv_tx_q *txq;
1181 struct netdev_queue *nq;
1182 int index = 0;
1183 int entries_free;
1185 fep = netdev_priv(ndev);
1187 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1189 txq = fep->tx_queue[queue_id];
1190 /* get next bdp of dirty_tx */
1191 nq = netdev_get_tx_queue(ndev, queue_id);
1192 bdp = txq->dirty_tx;
1194 /* get next bdp of dirty_tx */
1195 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1197 while (bdp != READ_ONCE(txq->bd.cur)) {
1198 /* Order the load of bd.cur and cbd_sc */
1199 rmb();
1200 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1201 if (status & BD_ENET_TX_READY)
1202 break;
1204 index = fec_enet_get_bd_index(bdp, &txq->bd);
1206 skb = txq->tx_skbuff[index];
1207 txq->tx_skbuff[index] = NULL;
1208 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1209 dma_unmap_single(&fep->pdev->dev,
1210 fec32_to_cpu(bdp->cbd_bufaddr),
1211 fec16_to_cpu(bdp->cbd_datlen),
1212 DMA_TO_DEVICE);
1213 bdp->cbd_bufaddr = cpu_to_fec32(0);
1214 if (!skb)
1215 goto skb_done;
1217 /* Check for errors. */
1218 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1219 BD_ENET_TX_RL | BD_ENET_TX_UN |
1220 BD_ENET_TX_CSL)) {
1221 ndev->stats.tx_errors++;
1222 if (status & BD_ENET_TX_HB) /* No heartbeat */
1223 ndev->stats.tx_heartbeat_errors++;
1224 if (status & BD_ENET_TX_LC) /* Late collision */
1225 ndev->stats.tx_window_errors++;
1226 if (status & BD_ENET_TX_RL) /* Retrans limit */
1227 ndev->stats.tx_aborted_errors++;
1228 if (status & BD_ENET_TX_UN) /* Underrun */
1229 ndev->stats.tx_fifo_errors++;
1230 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1231 ndev->stats.tx_carrier_errors++;
1232 } else {
1233 ndev->stats.tx_packets++;
1234 ndev->stats.tx_bytes += skb->len;
1237 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1238 fep->bufdesc_ex) {
1239 struct skb_shared_hwtstamps shhwtstamps;
1240 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1242 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1243 skb_tstamp_tx(skb, &shhwtstamps);
1246 /* Deferred means some collisions occurred during transmit,
1247 * but we eventually sent the packet OK.
1249 if (status & BD_ENET_TX_DEF)
1250 ndev->stats.collisions++;
1252 /* Free the sk buffer associated with this last transmit */
1253 dev_kfree_skb_any(skb);
1254 skb_done:
1255 /* Make sure the update to bdp and tx_skbuff are performed
1256 * before dirty_tx
1258 wmb();
1259 txq->dirty_tx = bdp;
1261 /* Update pointer to next buffer descriptor to be transmitted */
1262 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1264 /* Since we have freed up a buffer, the ring is no longer full
1266 if (netif_queue_stopped(ndev)) {
1267 entries_free = fec_enet_get_free_txdesc_num(txq);
1268 if (entries_free >= txq->tx_wake_threshold)
1269 netif_tx_wake_queue(nq);
1273 /* ERR006358: Keep the transmitter going */
1274 if (bdp != txq->bd.cur &&
1275 readl(txq->bd.reg_desc_active) == 0)
1276 writel(0, txq->bd.reg_desc_active);
1279 static void
1280 fec_enet_tx(struct net_device *ndev)
1282 struct fec_enet_private *fep = netdev_priv(ndev);
1283 u16 queue_id;
1284 /* First process class A queue, then Class B and Best Effort queue */
1285 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1286 clear_bit(queue_id, &fep->work_tx);
1287 fec_enet_tx_queue(ndev, queue_id);
1289 return;
1292 static int
1293 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1295 struct fec_enet_private *fep = netdev_priv(ndev);
1296 int off;
1298 off = ((unsigned long)skb->data) & fep->rx_align;
1299 if (off)
1300 skb_reserve(skb, fep->rx_align + 1 - off);
1302 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1303 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1304 if (net_ratelimit())
1305 netdev_err(ndev, "Rx DMA memory map failed\n");
1306 return -ENOMEM;
1309 return 0;
1312 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1313 struct bufdesc *bdp, u32 length, bool swap)
1315 struct fec_enet_private *fep = netdev_priv(ndev);
1316 struct sk_buff *new_skb;
1318 if (length > fep->rx_copybreak)
1319 return false;
1321 new_skb = netdev_alloc_skb(ndev, length);
1322 if (!new_skb)
1323 return false;
1325 dma_sync_single_for_cpu(&fep->pdev->dev,
1326 fec32_to_cpu(bdp->cbd_bufaddr),
1327 FEC_ENET_RX_FRSIZE - fep->rx_align,
1328 DMA_FROM_DEVICE);
1329 if (!swap)
1330 memcpy(new_skb->data, (*skb)->data, length);
1331 else
1332 swap_buffer2(new_skb->data, (*skb)->data, length);
1333 *skb = new_skb;
1335 return true;
1338 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1339 * When we update through the ring, if the next incoming buffer has
1340 * not been given to the system, we just set the empty indicator,
1341 * effectively tossing the packet.
1343 static int
1344 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1346 struct fec_enet_private *fep = netdev_priv(ndev);
1347 struct fec_enet_priv_rx_q *rxq;
1348 struct bufdesc *bdp;
1349 unsigned short status;
1350 struct sk_buff *skb_new = NULL;
1351 struct sk_buff *skb;
1352 ushort pkt_len;
1353 __u8 *data;
1354 int pkt_received = 0;
1355 struct bufdesc_ex *ebdp = NULL;
1356 bool vlan_packet_rcvd = false;
1357 u16 vlan_tag;
1358 int index = 0;
1359 bool is_copybreak;
1360 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1362 #ifdef CONFIG_M532x
1363 flush_cache_all();
1364 #endif
1365 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1366 rxq = fep->rx_queue[queue_id];
1368 /* First, grab all of the stats for the incoming packet.
1369 * These get messed up if we get called due to a busy condition.
1371 bdp = rxq->bd.cur;
1373 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1375 if (pkt_received >= budget)
1376 break;
1377 pkt_received++;
1379 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1381 /* Check for errors. */
1382 status ^= BD_ENET_RX_LAST;
1383 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1384 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1385 BD_ENET_RX_CL)) {
1386 ndev->stats.rx_errors++;
1387 if (status & BD_ENET_RX_OV) {
1388 /* FIFO overrun */
1389 ndev->stats.rx_fifo_errors++;
1390 goto rx_processing_done;
1392 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1393 | BD_ENET_RX_LAST)) {
1394 /* Frame too long or too short. */
1395 ndev->stats.rx_length_errors++;
1396 if (status & BD_ENET_RX_LAST)
1397 netdev_err(ndev, "rcv is not +last\n");
1399 if (status & BD_ENET_RX_CR) /* CRC Error */
1400 ndev->stats.rx_crc_errors++;
1401 /* Report late collisions as a frame error. */
1402 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1403 ndev->stats.rx_frame_errors++;
1404 goto rx_processing_done;
1407 /* Process the incoming frame. */
1408 ndev->stats.rx_packets++;
1409 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1410 ndev->stats.rx_bytes += pkt_len;
1412 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1413 skb = rxq->rx_skbuff[index];
1415 /* The packet length includes FCS, but we don't want to
1416 * include that when passing upstream as it messes up
1417 * bridging applications.
1419 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1420 need_swap);
1421 if (!is_copybreak) {
1422 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1423 if (unlikely(!skb_new)) {
1424 ndev->stats.rx_dropped++;
1425 goto rx_processing_done;
1427 dma_unmap_single(&fep->pdev->dev,
1428 fec32_to_cpu(bdp->cbd_bufaddr),
1429 FEC_ENET_RX_FRSIZE - fep->rx_align,
1430 DMA_FROM_DEVICE);
1433 prefetch(skb->data - NET_IP_ALIGN);
1434 skb_put(skb, pkt_len - 4);
1435 data = skb->data;
1437 if (!is_copybreak && need_swap)
1438 swap_buffer(data, pkt_len);
1440 #if !defined(CONFIG_M5272)
1441 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1442 data = skb_pull_inline(skb, 2);
1443 #endif
1445 /* Extract the enhanced buffer descriptor */
1446 ebdp = NULL;
1447 if (fep->bufdesc_ex)
1448 ebdp = (struct bufdesc_ex *)bdp;
1450 /* If this is a VLAN packet remove the VLAN Tag */
1451 vlan_packet_rcvd = false;
1452 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1453 fep->bufdesc_ex &&
1454 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1455 /* Push and remove the vlan tag */
1456 struct vlan_hdr *vlan_header =
1457 (struct vlan_hdr *) (data + ETH_HLEN);
1458 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1460 vlan_packet_rcvd = true;
1462 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1463 skb_pull(skb, VLAN_HLEN);
1466 skb->protocol = eth_type_trans(skb, ndev);
1468 /* Get receive timestamp from the skb */
1469 if (fep->hwts_rx_en && fep->bufdesc_ex)
1470 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1471 skb_hwtstamps(skb));
1473 if (fep->bufdesc_ex &&
1474 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1475 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1476 /* don't check it */
1477 skb->ip_summed = CHECKSUM_UNNECESSARY;
1478 } else {
1479 skb_checksum_none_assert(skb);
1483 /* Handle received VLAN packets */
1484 if (vlan_packet_rcvd)
1485 __vlan_hwaccel_put_tag(skb,
1486 htons(ETH_P_8021Q),
1487 vlan_tag);
1489 napi_gro_receive(&fep->napi, skb);
1491 if (is_copybreak) {
1492 dma_sync_single_for_device(&fep->pdev->dev,
1493 fec32_to_cpu(bdp->cbd_bufaddr),
1494 FEC_ENET_RX_FRSIZE - fep->rx_align,
1495 DMA_FROM_DEVICE);
1496 } else {
1497 rxq->rx_skbuff[index] = skb_new;
1498 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1501 rx_processing_done:
1502 /* Clear the status flags for this buffer */
1503 status &= ~BD_ENET_RX_STATS;
1505 /* Mark the buffer empty */
1506 status |= BD_ENET_RX_EMPTY;
1508 if (fep->bufdesc_ex) {
1509 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1511 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1512 ebdp->cbd_prot = 0;
1513 ebdp->cbd_bdu = 0;
1515 /* Make sure the updates to rest of the descriptor are
1516 * performed before transferring ownership.
1518 wmb();
1519 bdp->cbd_sc = cpu_to_fec16(status);
1521 /* Update BD pointer to next entry */
1522 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1524 /* Doing this here will keep the FEC running while we process
1525 * incoming frames. On a heavily loaded network, we should be
1526 * able to keep up at the expense of system resources.
1528 writel(0, rxq->bd.reg_desc_active);
1530 rxq->bd.cur = bdp;
1531 return pkt_received;
1534 static int
1535 fec_enet_rx(struct net_device *ndev, int budget)
1537 int pkt_received = 0;
1538 u16 queue_id;
1539 struct fec_enet_private *fep = netdev_priv(ndev);
1541 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1542 int ret;
1544 ret = fec_enet_rx_queue(ndev,
1545 budget - pkt_received, queue_id);
1547 if (ret < budget - pkt_received)
1548 clear_bit(queue_id, &fep->work_rx);
1550 pkt_received += ret;
1552 return pkt_received;
1555 static bool
1556 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1558 if (int_events == 0)
1559 return false;
1561 if (int_events & FEC_ENET_RXF)
1562 fep->work_rx |= (1 << 2);
1563 if (int_events & FEC_ENET_RXF_1)
1564 fep->work_rx |= (1 << 0);
1565 if (int_events & FEC_ENET_RXF_2)
1566 fep->work_rx |= (1 << 1);
1568 if (int_events & FEC_ENET_TXF)
1569 fep->work_tx |= (1 << 2);
1570 if (int_events & FEC_ENET_TXF_1)
1571 fep->work_tx |= (1 << 0);
1572 if (int_events & FEC_ENET_TXF_2)
1573 fep->work_tx |= (1 << 1);
1575 return true;
1578 static irqreturn_t
1579 fec_enet_interrupt(int irq, void *dev_id)
1581 struct net_device *ndev = dev_id;
1582 struct fec_enet_private *fep = netdev_priv(ndev);
1583 uint int_events;
1584 irqreturn_t ret = IRQ_NONE;
1586 int_events = readl(fep->hwp + FEC_IEVENT);
1587 writel(int_events, fep->hwp + FEC_IEVENT);
1588 fec_enet_collect_events(fep, int_events);
1590 if ((fep->work_tx || fep->work_rx) && fep->link) {
1591 ret = IRQ_HANDLED;
1593 if (napi_schedule_prep(&fep->napi)) {
1594 /* Disable the NAPI interrupts */
1595 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1596 __napi_schedule(&fep->napi);
1600 if (int_events & FEC_ENET_MII) {
1601 ret = IRQ_HANDLED;
1602 complete(&fep->mdio_done);
1605 if (fep->ptp_clock)
1606 fec_ptp_check_pps_event(fep);
1608 return ret;
1611 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1613 struct net_device *ndev = napi->dev;
1614 struct fec_enet_private *fep = netdev_priv(ndev);
1615 int pkts;
1617 pkts = fec_enet_rx(ndev, budget);
1619 fec_enet_tx(ndev);
1621 if (pkts < budget) {
1622 napi_complete_done(napi, pkts);
1623 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1625 return pkts;
1628 /* ------------------------------------------------------------------------- */
1629 static void fec_get_mac(struct net_device *ndev)
1631 struct fec_enet_private *fep = netdev_priv(ndev);
1632 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1633 unsigned char *iap, tmpaddr[ETH_ALEN];
1636 * try to get mac address in following order:
1638 * 1) module parameter via kernel command line in form
1639 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1641 iap = macaddr;
1644 * 2) from device tree data
1646 if (!is_valid_ether_addr(iap)) {
1647 struct device_node *np = fep->pdev->dev.of_node;
1648 if (np) {
1649 const char *mac = of_get_mac_address(np);
1650 if (mac)
1651 iap = (unsigned char *) mac;
1656 * 3) from flash or fuse (via platform data)
1658 if (!is_valid_ether_addr(iap)) {
1659 #ifdef CONFIG_M5272
1660 if (FEC_FLASHMAC)
1661 iap = (unsigned char *)FEC_FLASHMAC;
1662 #else
1663 if (pdata)
1664 iap = (unsigned char *)&pdata->mac;
1665 #endif
1669 * 4) FEC mac registers set by bootloader
1671 if (!is_valid_ether_addr(iap)) {
1672 *((__be32 *) &tmpaddr[0]) =
1673 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1674 *((__be16 *) &tmpaddr[4]) =
1675 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1676 iap = &tmpaddr[0];
1680 * 5) random mac address
1682 if (!is_valid_ether_addr(iap)) {
1683 /* Report it and use a random ethernet address instead */
1684 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1685 eth_hw_addr_random(ndev);
1686 netdev_info(ndev, "Using random MAC address: %pM\n",
1687 ndev->dev_addr);
1688 return;
1691 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1693 /* Adjust MAC if using macaddr */
1694 if (iap == macaddr)
1695 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1698 /* ------------------------------------------------------------------------- */
1701 * Phy section
1703 static void fec_enet_adjust_link(struct net_device *ndev)
1705 struct fec_enet_private *fep = netdev_priv(ndev);
1706 struct phy_device *phy_dev = ndev->phydev;
1707 int status_change = 0;
1709 /* Prevent a state halted on mii error */
1710 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1711 phy_dev->state = PHY_RESUMING;
1712 return;
1716 * If the netdev is down, or is going down, we're not interested
1717 * in link state events, so just mark our idea of the link as down
1718 * and ignore the event.
1720 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1721 fep->link = 0;
1722 } else if (phy_dev->link) {
1723 if (!fep->link) {
1724 fep->link = phy_dev->link;
1725 status_change = 1;
1728 if (fep->full_duplex != phy_dev->duplex) {
1729 fep->full_duplex = phy_dev->duplex;
1730 status_change = 1;
1733 if (phy_dev->speed != fep->speed) {
1734 fep->speed = phy_dev->speed;
1735 status_change = 1;
1738 /* if any of the above changed restart the FEC */
1739 if (status_change) {
1740 napi_disable(&fep->napi);
1741 netif_tx_lock_bh(ndev);
1742 fec_restart(ndev);
1743 netif_wake_queue(ndev);
1744 netif_tx_unlock_bh(ndev);
1745 napi_enable(&fep->napi);
1747 } else {
1748 if (fep->link) {
1749 napi_disable(&fep->napi);
1750 netif_tx_lock_bh(ndev);
1751 fec_stop(ndev);
1752 netif_tx_unlock_bh(ndev);
1753 napi_enable(&fep->napi);
1754 fep->link = phy_dev->link;
1755 status_change = 1;
1759 if (status_change)
1760 phy_print_status(phy_dev);
1763 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1765 struct fec_enet_private *fep = bus->priv;
1766 struct device *dev = &fep->pdev->dev;
1767 unsigned long time_left;
1768 int ret = 0;
1770 ret = pm_runtime_get_sync(dev);
1771 if (ret < 0)
1772 return ret;
1774 fep->mii_timeout = 0;
1775 reinit_completion(&fep->mdio_done);
1777 /* start a read op */
1778 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1779 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1780 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1782 /* wait for end of transfer */
1783 time_left = wait_for_completion_timeout(&fep->mdio_done,
1784 usecs_to_jiffies(FEC_MII_TIMEOUT));
1785 if (time_left == 0) {
1786 fep->mii_timeout = 1;
1787 netdev_err(fep->netdev, "MDIO read timeout\n");
1788 ret = -ETIMEDOUT;
1789 goto out;
1792 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1794 out:
1795 pm_runtime_mark_last_busy(dev);
1796 pm_runtime_put_autosuspend(dev);
1798 return ret;
1801 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1802 u16 value)
1804 struct fec_enet_private *fep = bus->priv;
1805 struct device *dev = &fep->pdev->dev;
1806 unsigned long time_left;
1807 int ret;
1809 ret = pm_runtime_get_sync(dev);
1810 if (ret < 0)
1811 return ret;
1812 else
1813 ret = 0;
1815 fep->mii_timeout = 0;
1816 reinit_completion(&fep->mdio_done);
1818 /* start a write op */
1819 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1820 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1821 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1822 fep->hwp + FEC_MII_DATA);
1824 /* wait for end of transfer */
1825 time_left = wait_for_completion_timeout(&fep->mdio_done,
1826 usecs_to_jiffies(FEC_MII_TIMEOUT));
1827 if (time_left == 0) {
1828 fep->mii_timeout = 1;
1829 netdev_err(fep->netdev, "MDIO write timeout\n");
1830 ret = -ETIMEDOUT;
1833 pm_runtime_mark_last_busy(dev);
1834 pm_runtime_put_autosuspend(dev);
1836 return ret;
1839 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1841 struct fec_enet_private *fep = netdev_priv(ndev);
1842 int ret;
1844 if (enable) {
1845 ret = clk_prepare_enable(fep->clk_ahb);
1846 if (ret)
1847 return ret;
1849 ret = clk_prepare_enable(fep->clk_enet_out);
1850 if (ret)
1851 goto failed_clk_enet_out;
1853 if (fep->clk_ptp) {
1854 mutex_lock(&fep->ptp_clk_mutex);
1855 ret = clk_prepare_enable(fep->clk_ptp);
1856 if (ret) {
1857 mutex_unlock(&fep->ptp_clk_mutex);
1858 goto failed_clk_ptp;
1859 } else {
1860 fep->ptp_clk_on = true;
1862 mutex_unlock(&fep->ptp_clk_mutex);
1865 ret = clk_prepare_enable(fep->clk_ref);
1866 if (ret)
1867 goto failed_clk_ref;
1868 } else {
1869 clk_disable_unprepare(fep->clk_ahb);
1870 clk_disable_unprepare(fep->clk_enet_out);
1871 if (fep->clk_ptp) {
1872 mutex_lock(&fep->ptp_clk_mutex);
1873 clk_disable_unprepare(fep->clk_ptp);
1874 fep->ptp_clk_on = false;
1875 mutex_unlock(&fep->ptp_clk_mutex);
1877 clk_disable_unprepare(fep->clk_ref);
1880 return 0;
1882 failed_clk_ref:
1883 if (fep->clk_ref)
1884 clk_disable_unprepare(fep->clk_ref);
1885 failed_clk_ptp:
1886 if (fep->clk_enet_out)
1887 clk_disable_unprepare(fep->clk_enet_out);
1888 failed_clk_enet_out:
1889 clk_disable_unprepare(fep->clk_ahb);
1891 return ret;
1894 static int fec_enet_mii_probe(struct net_device *ndev)
1896 struct fec_enet_private *fep = netdev_priv(ndev);
1897 struct phy_device *phy_dev = NULL;
1898 char mdio_bus_id[MII_BUS_ID_SIZE];
1899 char phy_name[MII_BUS_ID_SIZE + 3];
1900 int phy_id;
1901 int dev_id = fep->dev_id;
1903 if (fep->phy_node) {
1904 phy_dev = of_phy_connect(ndev, fep->phy_node,
1905 &fec_enet_adjust_link, 0,
1906 fep->phy_interface);
1907 if (!phy_dev)
1908 return -ENODEV;
1909 } else {
1910 /* check for attached phy */
1911 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1912 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1913 continue;
1914 if (dev_id--)
1915 continue;
1916 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1917 break;
1920 if (phy_id >= PHY_MAX_ADDR) {
1921 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1922 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1923 phy_id = 0;
1926 snprintf(phy_name, sizeof(phy_name),
1927 PHY_ID_FMT, mdio_bus_id, phy_id);
1928 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1929 fep->phy_interface);
1932 if (IS_ERR(phy_dev)) {
1933 netdev_err(ndev, "could not attach to PHY\n");
1934 return PTR_ERR(phy_dev);
1937 /* mask with MAC supported features */
1938 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1939 phy_dev->supported &= PHY_GBIT_FEATURES;
1940 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1941 #if !defined(CONFIG_M5272)
1942 phy_dev->supported |= SUPPORTED_Pause;
1943 #endif
1945 else
1946 phy_dev->supported &= PHY_BASIC_FEATURES;
1948 phy_dev->advertising = phy_dev->supported;
1950 fep->link = 0;
1951 fep->full_duplex = 0;
1953 phy_attached_info(phy_dev);
1955 return 0;
1958 static int fec_enet_mii_init(struct platform_device *pdev)
1960 static struct mii_bus *fec0_mii_bus;
1961 struct net_device *ndev = platform_get_drvdata(pdev);
1962 struct fec_enet_private *fep = netdev_priv(ndev);
1963 struct device_node *node;
1964 int err = -ENXIO;
1965 u32 mii_speed, holdtime;
1968 * The i.MX28 dual fec interfaces are not equal.
1969 * Here are the differences:
1971 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1972 * - fec0 acts as the 1588 time master while fec1 is slave
1973 * - external phys can only be configured by fec0
1975 * That is to say fec1 can not work independently. It only works
1976 * when fec0 is working. The reason behind this design is that the
1977 * second interface is added primarily for Switch mode.
1979 * Because of the last point above, both phys are attached on fec0
1980 * mdio interface in board design, and need to be configured by
1981 * fec0 mii_bus.
1983 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1984 /* fec1 uses fec0 mii_bus */
1985 if (mii_cnt && fec0_mii_bus) {
1986 fep->mii_bus = fec0_mii_bus;
1987 mii_cnt++;
1988 return 0;
1990 return -ENOENT;
1993 fep->mii_timeout = 0;
1996 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1998 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1999 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2000 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2001 * document.
2003 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2004 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2005 mii_speed--;
2006 if (mii_speed > 63) {
2007 dev_err(&pdev->dev,
2008 "fec clock (%lu) too fast to get right mii speed\n",
2009 clk_get_rate(fep->clk_ipg));
2010 err = -EINVAL;
2011 goto err_out;
2015 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2016 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2017 * versions are RAZ there, so just ignore the difference and write the
2018 * register always.
2019 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2020 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2021 * output.
2022 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2023 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2024 * holdtime cannot result in a value greater than 3.
2026 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2028 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2030 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2032 fep->mii_bus = mdiobus_alloc();
2033 if (fep->mii_bus == NULL) {
2034 err = -ENOMEM;
2035 goto err_out;
2038 fep->mii_bus->name = "fec_enet_mii_bus";
2039 fep->mii_bus->read = fec_enet_mdio_read;
2040 fep->mii_bus->write = fec_enet_mdio_write;
2041 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2042 pdev->name, fep->dev_id + 1);
2043 fep->mii_bus->priv = fep;
2044 fep->mii_bus->parent = &pdev->dev;
2046 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2047 if (node) {
2048 err = of_mdiobus_register(fep->mii_bus, node);
2049 of_node_put(node);
2050 } else {
2051 err = mdiobus_register(fep->mii_bus);
2054 if (err)
2055 goto err_out_free_mdiobus;
2057 mii_cnt++;
2059 /* save fec0 mii_bus */
2060 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2061 fec0_mii_bus = fep->mii_bus;
2063 return 0;
2065 err_out_free_mdiobus:
2066 mdiobus_free(fep->mii_bus);
2067 err_out:
2068 return err;
2071 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2073 if (--mii_cnt == 0) {
2074 mdiobus_unregister(fep->mii_bus);
2075 mdiobus_free(fep->mii_bus);
2079 static void fec_enet_get_drvinfo(struct net_device *ndev,
2080 struct ethtool_drvinfo *info)
2082 struct fec_enet_private *fep = netdev_priv(ndev);
2084 strlcpy(info->driver, fep->pdev->dev.driver->name,
2085 sizeof(info->driver));
2086 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2087 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2090 static int fec_enet_get_regs_len(struct net_device *ndev)
2092 struct fec_enet_private *fep = netdev_priv(ndev);
2093 struct resource *r;
2094 int s = 0;
2096 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2097 if (r)
2098 s = resource_size(r);
2100 return s;
2103 /* List of registers that can be safety be read to dump them with ethtool */
2104 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2105 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2106 static u32 fec_enet_register_offset[] = {
2107 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2108 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2109 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2110 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2111 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2112 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2113 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2114 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2115 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2116 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2117 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2118 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2119 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2120 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2121 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2122 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2123 RMON_T_P_GTE2048, RMON_T_OCTETS,
2124 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2125 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2126 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2127 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2128 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2129 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2130 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2131 RMON_R_P_GTE2048, RMON_R_OCTETS,
2132 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2133 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2135 #else
2136 static u32 fec_enet_register_offset[] = {
2137 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2138 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2139 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2140 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2141 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2142 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2143 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2144 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2145 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2147 #endif
2149 static void fec_enet_get_regs(struct net_device *ndev,
2150 struct ethtool_regs *regs, void *regbuf)
2152 struct fec_enet_private *fep = netdev_priv(ndev);
2153 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2154 u32 *buf = (u32 *)regbuf;
2155 u32 i, off;
2157 memset(buf, 0, regs->len);
2159 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2160 off = fec_enet_register_offset[i] / 4;
2161 buf[off] = readl(&theregs[off]);
2165 static int fec_enet_get_ts_info(struct net_device *ndev,
2166 struct ethtool_ts_info *info)
2168 struct fec_enet_private *fep = netdev_priv(ndev);
2170 if (fep->bufdesc_ex) {
2172 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2173 SOF_TIMESTAMPING_RX_SOFTWARE |
2174 SOF_TIMESTAMPING_SOFTWARE |
2175 SOF_TIMESTAMPING_TX_HARDWARE |
2176 SOF_TIMESTAMPING_RX_HARDWARE |
2177 SOF_TIMESTAMPING_RAW_HARDWARE;
2178 if (fep->ptp_clock)
2179 info->phc_index = ptp_clock_index(fep->ptp_clock);
2180 else
2181 info->phc_index = -1;
2183 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2184 (1 << HWTSTAMP_TX_ON);
2186 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2187 (1 << HWTSTAMP_FILTER_ALL);
2188 return 0;
2189 } else {
2190 return ethtool_op_get_ts_info(ndev, info);
2194 #if !defined(CONFIG_M5272)
2196 static void fec_enet_get_pauseparam(struct net_device *ndev,
2197 struct ethtool_pauseparam *pause)
2199 struct fec_enet_private *fep = netdev_priv(ndev);
2201 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2202 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2203 pause->rx_pause = pause->tx_pause;
2206 static int fec_enet_set_pauseparam(struct net_device *ndev,
2207 struct ethtool_pauseparam *pause)
2209 struct fec_enet_private *fep = netdev_priv(ndev);
2211 if (!ndev->phydev)
2212 return -ENODEV;
2214 if (pause->tx_pause != pause->rx_pause) {
2215 netdev_info(ndev,
2216 "hardware only support enable/disable both tx and rx");
2217 return -EINVAL;
2220 fep->pause_flag = 0;
2222 /* tx pause must be same as rx pause */
2223 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2224 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2226 if (pause->rx_pause || pause->autoneg) {
2227 ndev->phydev->supported |= ADVERTISED_Pause;
2228 ndev->phydev->advertising |= ADVERTISED_Pause;
2229 } else {
2230 ndev->phydev->supported &= ~ADVERTISED_Pause;
2231 ndev->phydev->advertising &= ~ADVERTISED_Pause;
2234 if (pause->autoneg) {
2235 if (netif_running(ndev))
2236 fec_stop(ndev);
2237 phy_start_aneg(ndev->phydev);
2239 if (netif_running(ndev)) {
2240 napi_disable(&fep->napi);
2241 netif_tx_lock_bh(ndev);
2242 fec_restart(ndev);
2243 netif_wake_queue(ndev);
2244 netif_tx_unlock_bh(ndev);
2245 napi_enable(&fep->napi);
2248 return 0;
2251 static const struct fec_stat {
2252 char name[ETH_GSTRING_LEN];
2253 u16 offset;
2254 } fec_stats[] = {
2255 /* RMON TX */
2256 { "tx_dropped", RMON_T_DROP },
2257 { "tx_packets", RMON_T_PACKETS },
2258 { "tx_broadcast", RMON_T_BC_PKT },
2259 { "tx_multicast", RMON_T_MC_PKT },
2260 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2261 { "tx_undersize", RMON_T_UNDERSIZE },
2262 { "tx_oversize", RMON_T_OVERSIZE },
2263 { "tx_fragment", RMON_T_FRAG },
2264 { "tx_jabber", RMON_T_JAB },
2265 { "tx_collision", RMON_T_COL },
2266 { "tx_64byte", RMON_T_P64 },
2267 { "tx_65to127byte", RMON_T_P65TO127 },
2268 { "tx_128to255byte", RMON_T_P128TO255 },
2269 { "tx_256to511byte", RMON_T_P256TO511 },
2270 { "tx_512to1023byte", RMON_T_P512TO1023 },
2271 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2272 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2273 { "tx_octets", RMON_T_OCTETS },
2275 /* IEEE TX */
2276 { "IEEE_tx_drop", IEEE_T_DROP },
2277 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2278 { "IEEE_tx_1col", IEEE_T_1COL },
2279 { "IEEE_tx_mcol", IEEE_T_MCOL },
2280 { "IEEE_tx_def", IEEE_T_DEF },
2281 { "IEEE_tx_lcol", IEEE_T_LCOL },
2282 { "IEEE_tx_excol", IEEE_T_EXCOL },
2283 { "IEEE_tx_macerr", IEEE_T_MACERR },
2284 { "IEEE_tx_cserr", IEEE_T_CSERR },
2285 { "IEEE_tx_sqe", IEEE_T_SQE },
2286 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2287 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2289 /* RMON RX */
2290 { "rx_packets", RMON_R_PACKETS },
2291 { "rx_broadcast", RMON_R_BC_PKT },
2292 { "rx_multicast", RMON_R_MC_PKT },
2293 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2294 { "rx_undersize", RMON_R_UNDERSIZE },
2295 { "rx_oversize", RMON_R_OVERSIZE },
2296 { "rx_fragment", RMON_R_FRAG },
2297 { "rx_jabber", RMON_R_JAB },
2298 { "rx_64byte", RMON_R_P64 },
2299 { "rx_65to127byte", RMON_R_P65TO127 },
2300 { "rx_128to255byte", RMON_R_P128TO255 },
2301 { "rx_256to511byte", RMON_R_P256TO511 },
2302 { "rx_512to1023byte", RMON_R_P512TO1023 },
2303 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2304 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2305 { "rx_octets", RMON_R_OCTETS },
2307 /* IEEE RX */
2308 { "IEEE_rx_drop", IEEE_R_DROP },
2309 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2310 { "IEEE_rx_crc", IEEE_R_CRC },
2311 { "IEEE_rx_align", IEEE_R_ALIGN },
2312 { "IEEE_rx_macerr", IEEE_R_MACERR },
2313 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2314 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2317 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2319 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2321 struct fec_enet_private *fep = netdev_priv(dev);
2322 int i;
2324 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2325 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2328 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2329 struct ethtool_stats *stats, u64 *data)
2331 struct fec_enet_private *fep = netdev_priv(dev);
2333 if (netif_running(dev))
2334 fec_enet_update_ethtool_stats(dev);
2336 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2339 static void fec_enet_get_strings(struct net_device *netdev,
2340 u32 stringset, u8 *data)
2342 int i;
2343 switch (stringset) {
2344 case ETH_SS_STATS:
2345 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2346 memcpy(data + i * ETH_GSTRING_LEN,
2347 fec_stats[i].name, ETH_GSTRING_LEN);
2348 break;
2352 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2354 switch (sset) {
2355 case ETH_SS_STATS:
2356 return ARRAY_SIZE(fec_stats);
2357 default:
2358 return -EOPNOTSUPP;
2362 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2364 struct fec_enet_private *fep = netdev_priv(dev);
2365 int i;
2367 /* Disable MIB statistics counters */
2368 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2370 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2371 writel(0, fep->hwp + fec_stats[i].offset);
2373 /* Don't disable MIB statistics counters */
2374 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2377 #else /* !defined(CONFIG_M5272) */
2378 #define FEC_STATS_SIZE 0
2379 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2383 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2386 #endif /* !defined(CONFIG_M5272) */
2388 /* ITR clock source is enet system clock (clk_ahb).
2389 * TCTT unit is cycle_ns * 64 cycle
2390 * So, the ICTT value = X us / (cycle_ns * 64)
2392 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2394 struct fec_enet_private *fep = netdev_priv(ndev);
2396 return us * (fep->itr_clk_rate / 64000) / 1000;
2399 /* Set threshold for interrupt coalescing */
2400 static void fec_enet_itr_coal_set(struct net_device *ndev)
2402 struct fec_enet_private *fep = netdev_priv(ndev);
2403 int rx_itr, tx_itr;
2405 /* Must be greater than zero to avoid unpredictable behavior */
2406 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2407 !fep->tx_time_itr || !fep->tx_pkts_itr)
2408 return;
2410 /* Select enet system clock as Interrupt Coalescing
2411 * timer Clock Source
2413 rx_itr = FEC_ITR_CLK_SEL;
2414 tx_itr = FEC_ITR_CLK_SEL;
2416 /* set ICFT and ICTT */
2417 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2418 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2419 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2420 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2422 rx_itr |= FEC_ITR_EN;
2423 tx_itr |= FEC_ITR_EN;
2425 writel(tx_itr, fep->hwp + FEC_TXIC0);
2426 writel(rx_itr, fep->hwp + FEC_RXIC0);
2427 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2428 writel(tx_itr, fep->hwp + FEC_TXIC1);
2429 writel(rx_itr, fep->hwp + FEC_RXIC1);
2430 writel(tx_itr, fep->hwp + FEC_TXIC2);
2431 writel(rx_itr, fep->hwp + FEC_RXIC2);
2435 static int
2436 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2438 struct fec_enet_private *fep = netdev_priv(ndev);
2440 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2441 return -EOPNOTSUPP;
2443 ec->rx_coalesce_usecs = fep->rx_time_itr;
2444 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2446 ec->tx_coalesce_usecs = fep->tx_time_itr;
2447 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2449 return 0;
2452 static int
2453 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2455 struct fec_enet_private *fep = netdev_priv(ndev);
2456 unsigned int cycle;
2458 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2459 return -EOPNOTSUPP;
2461 if (ec->rx_max_coalesced_frames > 255) {
2462 pr_err("Rx coalesced frames exceed hardware limitation\n");
2463 return -EINVAL;
2466 if (ec->tx_max_coalesced_frames > 255) {
2467 pr_err("Tx coalesced frame exceed hardware limitation\n");
2468 return -EINVAL;
2471 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2472 if (cycle > 0xFFFF) {
2473 pr_err("Rx coalesced usec exceed hardware limitation\n");
2474 return -EINVAL;
2477 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2478 if (cycle > 0xFFFF) {
2479 pr_err("Rx coalesced usec exceed hardware limitation\n");
2480 return -EINVAL;
2483 fep->rx_time_itr = ec->rx_coalesce_usecs;
2484 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2486 fep->tx_time_itr = ec->tx_coalesce_usecs;
2487 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2489 fec_enet_itr_coal_set(ndev);
2491 return 0;
2494 static void fec_enet_itr_coal_init(struct net_device *ndev)
2496 struct ethtool_coalesce ec;
2498 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2499 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2501 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2502 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2504 fec_enet_set_coalesce(ndev, &ec);
2507 static int fec_enet_get_tunable(struct net_device *netdev,
2508 const struct ethtool_tunable *tuna,
2509 void *data)
2511 struct fec_enet_private *fep = netdev_priv(netdev);
2512 int ret = 0;
2514 switch (tuna->id) {
2515 case ETHTOOL_RX_COPYBREAK:
2516 *(u32 *)data = fep->rx_copybreak;
2517 break;
2518 default:
2519 ret = -EINVAL;
2520 break;
2523 return ret;
2526 static int fec_enet_set_tunable(struct net_device *netdev,
2527 const struct ethtool_tunable *tuna,
2528 const void *data)
2530 struct fec_enet_private *fep = netdev_priv(netdev);
2531 int ret = 0;
2533 switch (tuna->id) {
2534 case ETHTOOL_RX_COPYBREAK:
2535 fep->rx_copybreak = *(u32 *)data;
2536 break;
2537 default:
2538 ret = -EINVAL;
2539 break;
2542 return ret;
2545 static void
2546 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2548 struct fec_enet_private *fep = netdev_priv(ndev);
2550 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2551 wol->supported = WAKE_MAGIC;
2552 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2553 } else {
2554 wol->supported = wol->wolopts = 0;
2558 static int
2559 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2561 struct fec_enet_private *fep = netdev_priv(ndev);
2563 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2564 return -EINVAL;
2566 if (wol->wolopts & ~WAKE_MAGIC)
2567 return -EINVAL;
2569 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2570 if (device_may_wakeup(&ndev->dev)) {
2571 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2572 if (fep->irq[0] > 0)
2573 enable_irq_wake(fep->irq[0]);
2574 } else {
2575 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2576 if (fep->irq[0] > 0)
2577 disable_irq_wake(fep->irq[0]);
2580 return 0;
2583 static const struct ethtool_ops fec_enet_ethtool_ops = {
2584 .get_drvinfo = fec_enet_get_drvinfo,
2585 .get_regs_len = fec_enet_get_regs_len,
2586 .get_regs = fec_enet_get_regs,
2587 .nway_reset = phy_ethtool_nway_reset,
2588 .get_link = ethtool_op_get_link,
2589 .get_coalesce = fec_enet_get_coalesce,
2590 .set_coalesce = fec_enet_set_coalesce,
2591 #ifndef CONFIG_M5272
2592 .get_pauseparam = fec_enet_get_pauseparam,
2593 .set_pauseparam = fec_enet_set_pauseparam,
2594 .get_strings = fec_enet_get_strings,
2595 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2596 .get_sset_count = fec_enet_get_sset_count,
2597 #endif
2598 .get_ts_info = fec_enet_get_ts_info,
2599 .get_tunable = fec_enet_get_tunable,
2600 .set_tunable = fec_enet_set_tunable,
2601 .get_wol = fec_enet_get_wol,
2602 .set_wol = fec_enet_set_wol,
2603 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2604 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2607 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2609 struct fec_enet_private *fep = netdev_priv(ndev);
2610 struct phy_device *phydev = ndev->phydev;
2612 if (!netif_running(ndev))
2613 return -EINVAL;
2615 if (!phydev)
2616 return -ENODEV;
2618 if (fep->bufdesc_ex) {
2619 if (cmd == SIOCSHWTSTAMP)
2620 return fec_ptp_set(ndev, rq);
2621 if (cmd == SIOCGHWTSTAMP)
2622 return fec_ptp_get(ndev, rq);
2625 return phy_mii_ioctl(phydev, rq, cmd);
2628 static void fec_enet_free_buffers(struct net_device *ndev)
2630 struct fec_enet_private *fep = netdev_priv(ndev);
2631 unsigned int i;
2632 struct sk_buff *skb;
2633 struct bufdesc *bdp;
2634 struct fec_enet_priv_tx_q *txq;
2635 struct fec_enet_priv_rx_q *rxq;
2636 unsigned int q;
2638 for (q = 0; q < fep->num_rx_queues; q++) {
2639 rxq = fep->rx_queue[q];
2640 bdp = rxq->bd.base;
2641 for (i = 0; i < rxq->bd.ring_size; i++) {
2642 skb = rxq->rx_skbuff[i];
2643 rxq->rx_skbuff[i] = NULL;
2644 if (skb) {
2645 dma_unmap_single(&fep->pdev->dev,
2646 fec32_to_cpu(bdp->cbd_bufaddr),
2647 FEC_ENET_RX_FRSIZE - fep->rx_align,
2648 DMA_FROM_DEVICE);
2649 dev_kfree_skb(skb);
2651 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2655 for (q = 0; q < fep->num_tx_queues; q++) {
2656 txq = fep->tx_queue[q];
2657 bdp = txq->bd.base;
2658 for (i = 0; i < txq->bd.ring_size; i++) {
2659 kfree(txq->tx_bounce[i]);
2660 txq->tx_bounce[i] = NULL;
2661 skb = txq->tx_skbuff[i];
2662 txq->tx_skbuff[i] = NULL;
2663 dev_kfree_skb(skb);
2668 static void fec_enet_free_queue(struct net_device *ndev)
2670 struct fec_enet_private *fep = netdev_priv(ndev);
2671 int i;
2672 struct fec_enet_priv_tx_q *txq;
2674 for (i = 0; i < fep->num_tx_queues; i++)
2675 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2676 txq = fep->tx_queue[i];
2677 dma_free_coherent(&fep->pdev->dev,
2678 txq->bd.ring_size * TSO_HEADER_SIZE,
2679 txq->tso_hdrs,
2680 txq->tso_hdrs_dma);
2683 for (i = 0; i < fep->num_rx_queues; i++)
2684 kfree(fep->rx_queue[i]);
2685 for (i = 0; i < fep->num_tx_queues; i++)
2686 kfree(fep->tx_queue[i]);
2689 static int fec_enet_alloc_queue(struct net_device *ndev)
2691 struct fec_enet_private *fep = netdev_priv(ndev);
2692 int i;
2693 int ret = 0;
2694 struct fec_enet_priv_tx_q *txq;
2696 for (i = 0; i < fep->num_tx_queues; i++) {
2697 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2698 if (!txq) {
2699 ret = -ENOMEM;
2700 goto alloc_failed;
2703 fep->tx_queue[i] = txq;
2704 txq->bd.ring_size = TX_RING_SIZE;
2705 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2707 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2708 txq->tx_wake_threshold =
2709 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2711 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2712 txq->bd.ring_size * TSO_HEADER_SIZE,
2713 &txq->tso_hdrs_dma,
2714 GFP_KERNEL);
2715 if (!txq->tso_hdrs) {
2716 ret = -ENOMEM;
2717 goto alloc_failed;
2721 for (i = 0; i < fep->num_rx_queues; i++) {
2722 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2723 GFP_KERNEL);
2724 if (!fep->rx_queue[i]) {
2725 ret = -ENOMEM;
2726 goto alloc_failed;
2729 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2730 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2732 return ret;
2734 alloc_failed:
2735 fec_enet_free_queue(ndev);
2736 return ret;
2739 static int
2740 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2742 struct fec_enet_private *fep = netdev_priv(ndev);
2743 unsigned int i;
2744 struct sk_buff *skb;
2745 struct bufdesc *bdp;
2746 struct fec_enet_priv_rx_q *rxq;
2748 rxq = fep->rx_queue[queue];
2749 bdp = rxq->bd.base;
2750 for (i = 0; i < rxq->bd.ring_size; i++) {
2751 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2752 if (!skb)
2753 goto err_alloc;
2755 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2756 dev_kfree_skb(skb);
2757 goto err_alloc;
2760 rxq->rx_skbuff[i] = skb;
2761 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2763 if (fep->bufdesc_ex) {
2764 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2765 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2768 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2771 /* Set the last buffer to wrap. */
2772 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2773 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2774 return 0;
2776 err_alloc:
2777 fec_enet_free_buffers(ndev);
2778 return -ENOMEM;
2781 static int
2782 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2784 struct fec_enet_private *fep = netdev_priv(ndev);
2785 unsigned int i;
2786 struct bufdesc *bdp;
2787 struct fec_enet_priv_tx_q *txq;
2789 txq = fep->tx_queue[queue];
2790 bdp = txq->bd.base;
2791 for (i = 0; i < txq->bd.ring_size; i++) {
2792 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2793 if (!txq->tx_bounce[i])
2794 goto err_alloc;
2796 bdp->cbd_sc = cpu_to_fec16(0);
2797 bdp->cbd_bufaddr = cpu_to_fec32(0);
2799 if (fep->bufdesc_ex) {
2800 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2801 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2804 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2807 /* Set the last buffer to wrap. */
2808 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2809 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2811 return 0;
2813 err_alloc:
2814 fec_enet_free_buffers(ndev);
2815 return -ENOMEM;
2818 static int fec_enet_alloc_buffers(struct net_device *ndev)
2820 struct fec_enet_private *fep = netdev_priv(ndev);
2821 unsigned int i;
2823 for (i = 0; i < fep->num_rx_queues; i++)
2824 if (fec_enet_alloc_rxq_buffers(ndev, i))
2825 return -ENOMEM;
2827 for (i = 0; i < fep->num_tx_queues; i++)
2828 if (fec_enet_alloc_txq_buffers(ndev, i))
2829 return -ENOMEM;
2830 return 0;
2833 static int
2834 fec_enet_open(struct net_device *ndev)
2836 struct fec_enet_private *fep = netdev_priv(ndev);
2837 int ret;
2839 ret = pm_runtime_get_sync(&fep->pdev->dev);
2840 if (ret < 0)
2841 return ret;
2843 pinctrl_pm_select_default_state(&fep->pdev->dev);
2844 ret = fec_enet_clk_enable(ndev, true);
2845 if (ret)
2846 goto clk_enable;
2848 /* I should reset the ring buffers here, but I don't yet know
2849 * a simple way to do that.
2852 ret = fec_enet_alloc_buffers(ndev);
2853 if (ret)
2854 goto err_enet_alloc;
2856 /* Init MAC prior to mii bus probe */
2857 fec_restart(ndev);
2859 /* Probe and connect to PHY when open the interface */
2860 ret = fec_enet_mii_probe(ndev);
2861 if (ret)
2862 goto err_enet_mii_probe;
2864 if (fep->quirks & FEC_QUIRK_ERR006687)
2865 imx6q_cpuidle_fec_irqs_used();
2867 napi_enable(&fep->napi);
2868 phy_start(ndev->phydev);
2869 netif_tx_start_all_queues(ndev);
2871 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2872 FEC_WOL_FLAG_ENABLE);
2874 return 0;
2876 err_enet_mii_probe:
2877 fec_enet_free_buffers(ndev);
2878 err_enet_alloc:
2879 fec_enet_clk_enable(ndev, false);
2880 clk_enable:
2881 pm_runtime_mark_last_busy(&fep->pdev->dev);
2882 pm_runtime_put_autosuspend(&fep->pdev->dev);
2883 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2884 return ret;
2887 static int
2888 fec_enet_close(struct net_device *ndev)
2890 struct fec_enet_private *fep = netdev_priv(ndev);
2892 phy_stop(ndev->phydev);
2894 if (netif_device_present(ndev)) {
2895 napi_disable(&fep->napi);
2896 netif_tx_disable(ndev);
2897 fec_stop(ndev);
2900 phy_disconnect(ndev->phydev);
2902 if (fep->quirks & FEC_QUIRK_ERR006687)
2903 imx6q_cpuidle_fec_irqs_unused();
2905 fec_enet_update_ethtool_stats(ndev);
2907 fec_enet_clk_enable(ndev, false);
2908 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2909 pm_runtime_mark_last_busy(&fep->pdev->dev);
2910 pm_runtime_put_autosuspend(&fep->pdev->dev);
2912 fec_enet_free_buffers(ndev);
2914 return 0;
2917 /* Set or clear the multicast filter for this adaptor.
2918 * Skeleton taken from sunlance driver.
2919 * The CPM Ethernet implementation allows Multicast as well as individual
2920 * MAC address filtering. Some of the drivers check to make sure it is
2921 * a group multicast address, and discard those that are not. I guess I
2922 * will do the same for now, but just remove the test if you want
2923 * individual filtering as well (do the upper net layers want or support
2924 * this kind of feature?).
2927 #define FEC_HASH_BITS 6 /* #bits in hash */
2928 #define CRC32_POLY 0xEDB88320
2930 static void set_multicast_list(struct net_device *ndev)
2932 struct fec_enet_private *fep = netdev_priv(ndev);
2933 struct netdev_hw_addr *ha;
2934 unsigned int i, bit, data, crc, tmp;
2935 unsigned char hash;
2936 unsigned int hash_high = 0, hash_low = 0;
2938 if (ndev->flags & IFF_PROMISC) {
2939 tmp = readl(fep->hwp + FEC_R_CNTRL);
2940 tmp |= 0x8;
2941 writel(tmp, fep->hwp + FEC_R_CNTRL);
2942 return;
2945 tmp = readl(fep->hwp + FEC_R_CNTRL);
2946 tmp &= ~0x8;
2947 writel(tmp, fep->hwp + FEC_R_CNTRL);
2949 if (ndev->flags & IFF_ALLMULTI) {
2950 /* Catch all multicast addresses, so set the
2951 * filter to all 1's
2953 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2954 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2956 return;
2959 /* Add the addresses in hash register */
2960 netdev_for_each_mc_addr(ha, ndev) {
2961 /* calculate crc32 value of mac address */
2962 crc = 0xffffffff;
2964 for (i = 0; i < ndev->addr_len; i++) {
2965 data = ha->addr[i];
2966 for (bit = 0; bit < 8; bit++, data >>= 1) {
2967 crc = (crc >> 1) ^
2968 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2972 /* only upper 6 bits (FEC_HASH_BITS) are used
2973 * which point to specific bit in the hash registers
2975 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
2977 if (hash > 31)
2978 hash_high |= 1 << (hash - 32);
2979 else
2980 hash_low |= 1 << hash;
2983 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2984 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2987 /* Set a MAC change in hardware. */
2988 static int
2989 fec_set_mac_address(struct net_device *ndev, void *p)
2991 struct fec_enet_private *fep = netdev_priv(ndev);
2992 struct sockaddr *addr = p;
2994 if (addr) {
2995 if (!is_valid_ether_addr(addr->sa_data))
2996 return -EADDRNOTAVAIL;
2997 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3000 /* Add netif status check here to avoid system hang in below case:
3001 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3002 * After ethx down, fec all clocks are gated off and then register
3003 * access causes system hang.
3005 if (!netif_running(ndev))
3006 return 0;
3008 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3009 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3010 fep->hwp + FEC_ADDR_LOW);
3011 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3012 fep->hwp + FEC_ADDR_HIGH);
3013 return 0;
3016 #ifdef CONFIG_NET_POLL_CONTROLLER
3018 * fec_poll_controller - FEC Poll controller function
3019 * @dev: The FEC network adapter
3021 * Polled functionality used by netconsole and others in non interrupt mode
3024 static void fec_poll_controller(struct net_device *dev)
3026 int i;
3027 struct fec_enet_private *fep = netdev_priv(dev);
3029 for (i = 0; i < FEC_IRQ_NUM; i++) {
3030 if (fep->irq[i] > 0) {
3031 disable_irq(fep->irq[i]);
3032 fec_enet_interrupt(fep->irq[i], dev);
3033 enable_irq(fep->irq[i]);
3037 #endif
3039 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3040 netdev_features_t features)
3042 struct fec_enet_private *fep = netdev_priv(netdev);
3043 netdev_features_t changed = features ^ netdev->features;
3045 netdev->features = features;
3047 /* Receive checksum has been changed */
3048 if (changed & NETIF_F_RXCSUM) {
3049 if (features & NETIF_F_RXCSUM)
3050 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3051 else
3052 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3056 static int fec_set_features(struct net_device *netdev,
3057 netdev_features_t features)
3059 struct fec_enet_private *fep = netdev_priv(netdev);
3060 netdev_features_t changed = features ^ netdev->features;
3062 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3063 napi_disable(&fep->napi);
3064 netif_tx_lock_bh(netdev);
3065 fec_stop(netdev);
3066 fec_enet_set_netdev_features(netdev, features);
3067 fec_restart(netdev);
3068 netif_tx_wake_all_queues(netdev);
3069 netif_tx_unlock_bh(netdev);
3070 napi_enable(&fep->napi);
3071 } else {
3072 fec_enet_set_netdev_features(netdev, features);
3075 return 0;
3078 static const struct net_device_ops fec_netdev_ops = {
3079 .ndo_open = fec_enet_open,
3080 .ndo_stop = fec_enet_close,
3081 .ndo_start_xmit = fec_enet_start_xmit,
3082 .ndo_set_rx_mode = set_multicast_list,
3083 .ndo_validate_addr = eth_validate_addr,
3084 .ndo_tx_timeout = fec_timeout,
3085 .ndo_set_mac_address = fec_set_mac_address,
3086 .ndo_do_ioctl = fec_enet_ioctl,
3087 #ifdef CONFIG_NET_POLL_CONTROLLER
3088 .ndo_poll_controller = fec_poll_controller,
3089 #endif
3090 .ndo_set_features = fec_set_features,
3093 static const unsigned short offset_des_active_rxq[] = {
3094 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3097 static const unsigned short offset_des_active_txq[] = {
3098 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3102 * XXX: We need to clean up on failure exits here.
3105 static int fec_enet_init(struct net_device *ndev)
3107 struct fec_enet_private *fep = netdev_priv(ndev);
3108 struct bufdesc *cbd_base;
3109 dma_addr_t bd_dma;
3110 int bd_size;
3111 unsigned int i;
3112 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3113 sizeof(struct bufdesc);
3114 unsigned dsize_log2 = __fls(dsize);
3116 WARN_ON(dsize != (1 << dsize_log2));
3117 #if defined(CONFIG_ARM)
3118 fep->rx_align = 0xf;
3119 fep->tx_align = 0xf;
3120 #else
3121 fep->rx_align = 0x3;
3122 fep->tx_align = 0x3;
3123 #endif
3125 fec_enet_alloc_queue(ndev);
3127 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3129 /* Allocate memory for buffer descriptors. */
3130 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3131 GFP_KERNEL);
3132 if (!cbd_base) {
3133 return -ENOMEM;
3136 memset(cbd_base, 0, bd_size);
3138 /* Get the Ethernet address */
3139 fec_get_mac(ndev);
3140 /* make sure MAC we just acquired is programmed into the hw */
3141 fec_set_mac_address(ndev, NULL);
3143 /* Set receive and transmit descriptor base. */
3144 for (i = 0; i < fep->num_rx_queues; i++) {
3145 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3146 unsigned size = dsize * rxq->bd.ring_size;
3148 rxq->bd.qid = i;
3149 rxq->bd.base = cbd_base;
3150 rxq->bd.cur = cbd_base;
3151 rxq->bd.dma = bd_dma;
3152 rxq->bd.dsize = dsize;
3153 rxq->bd.dsize_log2 = dsize_log2;
3154 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3155 bd_dma += size;
3156 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3157 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3160 for (i = 0; i < fep->num_tx_queues; i++) {
3161 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3162 unsigned size = dsize * txq->bd.ring_size;
3164 txq->bd.qid = i;
3165 txq->bd.base = cbd_base;
3166 txq->bd.cur = cbd_base;
3167 txq->bd.dma = bd_dma;
3168 txq->bd.dsize = dsize;
3169 txq->bd.dsize_log2 = dsize_log2;
3170 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3171 bd_dma += size;
3172 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3173 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3177 /* The FEC Ethernet specific entries in the device structure */
3178 ndev->watchdog_timeo = TX_TIMEOUT;
3179 ndev->netdev_ops = &fec_netdev_ops;
3180 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3182 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3183 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3185 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3186 /* enable hw VLAN support */
3187 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3189 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3190 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3192 /* enable hw accelerator */
3193 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3194 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3195 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3198 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3199 fep->tx_align = 0;
3200 fep->rx_align = 0x3f;
3203 ndev->hw_features = ndev->features;
3205 fec_restart(ndev);
3207 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3208 fec_enet_clear_ethtool_stats(ndev);
3209 else
3210 fec_enet_update_ethtool_stats(ndev);
3212 return 0;
3215 #ifdef CONFIG_OF
3216 static int fec_reset_phy(struct platform_device *pdev)
3218 int err, phy_reset;
3219 bool active_high = false;
3220 int msec = 1, phy_post_delay = 0;
3221 struct device_node *np = pdev->dev.of_node;
3223 if (!np)
3224 return 0;
3226 err = of_property_read_u32(np, "phy-reset-duration", &msec);
3227 /* A sane reset duration should not be longer than 1s */
3228 if (!err && msec > 1000)
3229 msec = 1;
3231 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3232 if (phy_reset == -EPROBE_DEFER)
3233 return phy_reset;
3234 else if (!gpio_is_valid(phy_reset))
3235 return 0;
3237 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3238 /* valid reset duration should be less than 1s */
3239 if (!err && phy_post_delay > 1000)
3240 return -EINVAL;
3242 active_high = of_property_read_bool(np, "phy-reset-active-high");
3244 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3245 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3246 "phy-reset");
3247 if (err) {
3248 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3249 return err;
3252 if (msec > 20)
3253 msleep(msec);
3254 else
3255 usleep_range(msec * 1000, msec * 1000 + 1000);
3257 gpio_set_value_cansleep(phy_reset, !active_high);
3259 if (!phy_post_delay)
3260 return 0;
3262 if (phy_post_delay > 20)
3263 msleep(phy_post_delay);
3264 else
3265 usleep_range(phy_post_delay * 1000,
3266 phy_post_delay * 1000 + 1000);
3268 return 0;
3270 #else /* CONFIG_OF */
3271 static int fec_reset_phy(struct platform_device *pdev)
3274 * In case of platform probe, the reset has been done
3275 * by machine code.
3277 return 0;
3279 #endif /* CONFIG_OF */
3281 static void
3282 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3284 struct device_node *np = pdev->dev.of_node;
3286 *num_tx = *num_rx = 1;
3288 if (!np || !of_device_is_available(np))
3289 return;
3291 /* parse the num of tx and rx queues */
3292 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3294 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3296 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3297 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3298 *num_tx);
3299 *num_tx = 1;
3300 return;
3303 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3304 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3305 *num_rx);
3306 *num_rx = 1;
3307 return;
3312 static int
3313 fec_probe(struct platform_device *pdev)
3315 struct fec_enet_private *fep;
3316 struct fec_platform_data *pdata;
3317 struct net_device *ndev;
3318 int i, irq, ret = 0;
3319 struct resource *r;
3320 const struct of_device_id *of_id;
3321 static int dev_id;
3322 struct device_node *np = pdev->dev.of_node, *phy_node;
3323 int num_tx_qs;
3324 int num_rx_qs;
3326 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3328 /* Init network device */
3329 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3330 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3331 if (!ndev)
3332 return -ENOMEM;
3334 SET_NETDEV_DEV(ndev, &pdev->dev);
3336 /* setup board info structure */
3337 fep = netdev_priv(ndev);
3339 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3340 if (of_id)
3341 pdev->id_entry = of_id->data;
3342 fep->quirks = pdev->id_entry->driver_data;
3344 fep->netdev = ndev;
3345 fep->num_rx_queues = num_rx_qs;
3346 fep->num_tx_queues = num_tx_qs;
3348 #if !defined(CONFIG_M5272)
3349 /* default enable pause frame auto negotiation */
3350 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3351 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3352 #endif
3354 /* Select default pin state */
3355 pinctrl_pm_select_default_state(&pdev->dev);
3357 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3358 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3359 if (IS_ERR(fep->hwp)) {
3360 ret = PTR_ERR(fep->hwp);
3361 goto failed_ioremap;
3364 fep->pdev = pdev;
3365 fep->dev_id = dev_id++;
3367 platform_set_drvdata(pdev, ndev);
3369 if ((of_machine_is_compatible("fsl,imx6q") ||
3370 of_machine_is_compatible("fsl,imx6dl")) &&
3371 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3372 fep->quirks |= FEC_QUIRK_ERR006687;
3374 if (of_get_property(np, "fsl,magic-packet", NULL))
3375 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3377 phy_node = of_parse_phandle(np, "phy-handle", 0);
3378 if (!phy_node && of_phy_is_fixed_link(np)) {
3379 ret = of_phy_register_fixed_link(np);
3380 if (ret < 0) {
3381 dev_err(&pdev->dev,
3382 "broken fixed-link specification\n");
3383 goto failed_phy;
3385 phy_node = of_node_get(np);
3387 fep->phy_node = phy_node;
3389 ret = of_get_phy_mode(pdev->dev.of_node);
3390 if (ret < 0) {
3391 pdata = dev_get_platdata(&pdev->dev);
3392 if (pdata)
3393 fep->phy_interface = pdata->phy;
3394 else
3395 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3396 } else {
3397 fep->phy_interface = ret;
3400 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3401 if (IS_ERR(fep->clk_ipg)) {
3402 ret = PTR_ERR(fep->clk_ipg);
3403 goto failed_clk;
3406 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3407 if (IS_ERR(fep->clk_ahb)) {
3408 ret = PTR_ERR(fep->clk_ahb);
3409 goto failed_clk;
3412 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3414 /* enet_out is optional, depends on board */
3415 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3416 if (IS_ERR(fep->clk_enet_out))
3417 fep->clk_enet_out = NULL;
3419 fep->ptp_clk_on = false;
3420 mutex_init(&fep->ptp_clk_mutex);
3422 /* clk_ref is optional, depends on board */
3423 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3424 if (IS_ERR(fep->clk_ref))
3425 fep->clk_ref = NULL;
3427 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3428 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3429 if (IS_ERR(fep->clk_ptp)) {
3430 fep->clk_ptp = NULL;
3431 fep->bufdesc_ex = false;
3434 ret = fec_enet_clk_enable(ndev, true);
3435 if (ret)
3436 goto failed_clk;
3438 ret = clk_prepare_enable(fep->clk_ipg);
3439 if (ret)
3440 goto failed_clk_ipg;
3442 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3443 if (!IS_ERR(fep->reg_phy)) {
3444 ret = regulator_enable(fep->reg_phy);
3445 if (ret) {
3446 dev_err(&pdev->dev,
3447 "Failed to enable phy regulator: %d\n", ret);
3448 clk_disable_unprepare(fep->clk_ipg);
3449 goto failed_regulator;
3451 } else {
3452 fep->reg_phy = NULL;
3455 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3456 pm_runtime_use_autosuspend(&pdev->dev);
3457 pm_runtime_get_noresume(&pdev->dev);
3458 pm_runtime_set_active(&pdev->dev);
3459 pm_runtime_enable(&pdev->dev);
3461 ret = fec_reset_phy(pdev);
3462 if (ret)
3463 goto failed_reset;
3465 if (fep->bufdesc_ex)
3466 fec_ptp_init(pdev);
3468 ret = fec_enet_init(ndev);
3469 if (ret)
3470 goto failed_init;
3472 for (i = 0; i < FEC_IRQ_NUM; i++) {
3473 irq = platform_get_irq(pdev, i);
3474 if (irq < 0) {
3475 if (i)
3476 break;
3477 ret = irq;
3478 goto failed_irq;
3480 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3481 0, pdev->name, ndev);
3482 if (ret)
3483 goto failed_irq;
3485 fep->irq[i] = irq;
3488 init_completion(&fep->mdio_done);
3489 ret = fec_enet_mii_init(pdev);
3490 if (ret)
3491 goto failed_mii_init;
3493 /* Carrier starts down, phylib will bring it up */
3494 netif_carrier_off(ndev);
3495 fec_enet_clk_enable(ndev, false);
3496 pinctrl_pm_select_sleep_state(&pdev->dev);
3498 ret = register_netdev(ndev);
3499 if (ret)
3500 goto failed_register;
3502 device_init_wakeup(&ndev->dev, fep->wol_flag &
3503 FEC_WOL_HAS_MAGIC_PACKET);
3505 if (fep->bufdesc_ex && fep->ptp_clock)
3506 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3508 fep->rx_copybreak = COPYBREAK_DEFAULT;
3509 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3511 pm_runtime_mark_last_busy(&pdev->dev);
3512 pm_runtime_put_autosuspend(&pdev->dev);
3514 return 0;
3516 failed_register:
3517 fec_enet_mii_remove(fep);
3518 failed_mii_init:
3519 failed_irq:
3520 failed_init:
3521 fec_ptp_stop(pdev);
3522 if (fep->reg_phy)
3523 regulator_disable(fep->reg_phy);
3524 failed_reset:
3525 pm_runtime_put(&pdev->dev);
3526 pm_runtime_disable(&pdev->dev);
3527 failed_regulator:
3528 failed_clk_ipg:
3529 fec_enet_clk_enable(ndev, false);
3530 failed_clk:
3531 if (of_phy_is_fixed_link(np))
3532 of_phy_deregister_fixed_link(np);
3533 failed_phy:
3534 of_node_put(phy_node);
3535 failed_ioremap:
3536 free_netdev(ndev);
3538 return ret;
3541 static int
3542 fec_drv_remove(struct platform_device *pdev)
3544 struct net_device *ndev = platform_get_drvdata(pdev);
3545 struct fec_enet_private *fep = netdev_priv(ndev);
3546 struct device_node *np = pdev->dev.of_node;
3548 cancel_work_sync(&fep->tx_timeout_work);
3549 fec_ptp_stop(pdev);
3550 unregister_netdev(ndev);
3551 fec_enet_mii_remove(fep);
3552 if (fep->reg_phy)
3553 regulator_disable(fep->reg_phy);
3554 if (of_phy_is_fixed_link(np))
3555 of_phy_deregister_fixed_link(np);
3556 of_node_put(fep->phy_node);
3557 free_netdev(ndev);
3559 return 0;
3562 static int __maybe_unused fec_suspend(struct device *dev)
3564 struct net_device *ndev = dev_get_drvdata(dev);
3565 struct fec_enet_private *fep = netdev_priv(ndev);
3567 rtnl_lock();
3568 if (netif_running(ndev)) {
3569 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3570 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3571 phy_stop(ndev->phydev);
3572 napi_disable(&fep->napi);
3573 netif_tx_lock_bh(ndev);
3574 netif_device_detach(ndev);
3575 netif_tx_unlock_bh(ndev);
3576 fec_stop(ndev);
3577 fec_enet_clk_enable(ndev, false);
3578 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3579 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3581 rtnl_unlock();
3583 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3584 regulator_disable(fep->reg_phy);
3586 /* SOC supply clock to phy, when clock is disabled, phy link down
3587 * SOC control phy regulator, when regulator is disabled, phy link down
3589 if (fep->clk_enet_out || fep->reg_phy)
3590 fep->link = 0;
3592 return 0;
3595 static int __maybe_unused fec_resume(struct device *dev)
3597 struct net_device *ndev = dev_get_drvdata(dev);
3598 struct fec_enet_private *fep = netdev_priv(ndev);
3599 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3600 int ret;
3601 int val;
3603 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3604 ret = regulator_enable(fep->reg_phy);
3605 if (ret)
3606 return ret;
3609 rtnl_lock();
3610 if (netif_running(ndev)) {
3611 ret = fec_enet_clk_enable(ndev, true);
3612 if (ret) {
3613 rtnl_unlock();
3614 goto failed_clk;
3616 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3617 if (pdata && pdata->sleep_mode_enable)
3618 pdata->sleep_mode_enable(false);
3619 val = readl(fep->hwp + FEC_ECNTRL);
3620 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3621 writel(val, fep->hwp + FEC_ECNTRL);
3622 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3623 } else {
3624 pinctrl_pm_select_default_state(&fep->pdev->dev);
3626 fec_restart(ndev);
3627 netif_tx_lock_bh(ndev);
3628 netif_device_attach(ndev);
3629 netif_tx_unlock_bh(ndev);
3630 napi_enable(&fep->napi);
3631 phy_start(ndev->phydev);
3633 rtnl_unlock();
3635 return 0;
3637 failed_clk:
3638 if (fep->reg_phy)
3639 regulator_disable(fep->reg_phy);
3640 return ret;
3643 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3645 struct net_device *ndev = dev_get_drvdata(dev);
3646 struct fec_enet_private *fep = netdev_priv(ndev);
3648 clk_disable_unprepare(fep->clk_ipg);
3650 return 0;
3653 static int __maybe_unused fec_runtime_resume(struct device *dev)
3655 struct net_device *ndev = dev_get_drvdata(dev);
3656 struct fec_enet_private *fep = netdev_priv(ndev);
3658 return clk_prepare_enable(fep->clk_ipg);
3661 static const struct dev_pm_ops fec_pm_ops = {
3662 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3663 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3666 static struct platform_driver fec_driver = {
3667 .driver = {
3668 .name = DRIVER_NAME,
3669 .pm = &fec_pm_ops,
3670 .of_match_table = fec_dt_ids,
3672 .id_table = fec_devtype,
3673 .probe = fec_probe,
3674 .remove = fec_drv_remove,
3677 module_platform_driver(fec_driver);
3679 MODULE_ALIAS("platform:"DRIVER_NAME);
3680 MODULE_LICENSE("GPL");