2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
32 #include "print-tree.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
42 #undef SCRAMBLE_DELAYED_REFS
45 * control flags for do_chunk_alloc's force field
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
59 CHUNK_ALLOC_NO_FORCE
= 0,
60 CHUNK_ALLOC_LIMITED
= 1,
61 CHUNK_ALLOC_FORCE
= 2,
64 static int update_block_group(struct btrfs_trans_handle
*trans
,
65 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
66 u64 num_bytes
, int alloc
);
67 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
68 struct btrfs_fs_info
*fs_info
,
69 struct btrfs_delayed_ref_node
*node
, u64 parent
,
70 u64 root_objectid
, u64 owner_objectid
,
71 u64 owner_offset
, int refs_to_drop
,
72 struct btrfs_delayed_extent_op
*extra_op
);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
74 struct extent_buffer
*leaf
,
75 struct btrfs_extent_item
*ei
);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
77 struct btrfs_fs_info
*fs_info
,
78 u64 parent
, u64 root_objectid
,
79 u64 flags
, u64 owner
, u64 offset
,
80 struct btrfs_key
*ins
, int ref_mod
);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
82 struct btrfs_fs_info
*fs_info
,
83 u64 parent
, u64 root_objectid
,
84 u64 flags
, struct btrfs_disk_key
*key
,
85 int level
, struct btrfs_key
*ins
);
86 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
87 struct btrfs_fs_info
*fs_info
, u64 flags
,
89 static int find_next_key(struct btrfs_path
*path
, int level
,
90 struct btrfs_key
*key
);
91 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
92 struct btrfs_space_info
*info
, u64 bytes
,
93 int dump_block_groups
);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
95 u64 ram_bytes
, u64 num_bytes
, int delalloc
);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
97 u64 num_bytes
, int delalloc
);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
100 static int __reserve_metadata_bytes(struct btrfs_fs_info
*fs_info
,
101 struct btrfs_space_info
*space_info
,
103 enum btrfs_reserve_flush_enum flush
,
105 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
106 struct btrfs_space_info
*space_info
,
108 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
109 struct btrfs_space_info
*space_info
,
113 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
116 return cache
->cached
== BTRFS_CACHE_FINISHED
||
117 cache
->cached
== BTRFS_CACHE_ERROR
;
120 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
122 return (cache
->flags
& bits
) == bits
;
125 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
127 atomic_inc(&cache
->count
);
130 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
132 if (atomic_dec_and_test(&cache
->count
)) {
133 WARN_ON(cache
->pinned
> 0);
134 WARN_ON(cache
->reserved
> 0);
137 * If not empty, someone is still holding mutex of
138 * full_stripe_lock, which can only be released by caller.
139 * And it will definitely cause use-after-free when caller
140 * tries to release full stripe lock.
142 * No better way to resolve, but only to warn.
144 WARN_ON(!RB_EMPTY_ROOT(&cache
->full_stripe_locks_root
.root
));
145 kfree(cache
->free_space_ctl
);
151 * this adds the block group to the fs_info rb tree for the block group
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
155 struct btrfs_block_group_cache
*block_group
)
158 struct rb_node
*parent
= NULL
;
159 struct btrfs_block_group_cache
*cache
;
161 spin_lock(&info
->block_group_cache_lock
);
162 p
= &info
->block_group_cache_tree
.rb_node
;
166 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
168 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
170 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
173 spin_unlock(&info
->block_group_cache_lock
);
178 rb_link_node(&block_group
->cache_node
, parent
, p
);
179 rb_insert_color(&block_group
->cache_node
,
180 &info
->block_group_cache_tree
);
182 if (info
->first_logical_byte
> block_group
->key
.objectid
)
183 info
->first_logical_byte
= block_group
->key
.objectid
;
185 spin_unlock(&info
->block_group_cache_lock
);
191 * This will return the block group at or after bytenr if contains is 0, else
192 * it will return the block group that contains the bytenr
194 static struct btrfs_block_group_cache
*
195 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
198 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
202 spin_lock(&info
->block_group_cache_lock
);
203 n
= info
->block_group_cache_tree
.rb_node
;
206 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
208 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
209 start
= cache
->key
.objectid
;
211 if (bytenr
< start
) {
212 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
215 } else if (bytenr
> start
) {
216 if (contains
&& bytenr
<= end
) {
227 btrfs_get_block_group(ret
);
228 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
229 info
->first_logical_byte
= ret
->key
.objectid
;
231 spin_unlock(&info
->block_group_cache_lock
);
236 static int add_excluded_extent(struct btrfs_fs_info
*fs_info
,
237 u64 start
, u64 num_bytes
)
239 u64 end
= start
+ num_bytes
- 1;
240 set_extent_bits(&fs_info
->freed_extents
[0],
241 start
, end
, EXTENT_UPTODATE
);
242 set_extent_bits(&fs_info
->freed_extents
[1],
243 start
, end
, EXTENT_UPTODATE
);
247 static void free_excluded_extents(struct btrfs_fs_info
*fs_info
,
248 struct btrfs_block_group_cache
*cache
)
252 start
= cache
->key
.objectid
;
253 end
= start
+ cache
->key
.offset
- 1;
255 clear_extent_bits(&fs_info
->freed_extents
[0],
256 start
, end
, EXTENT_UPTODATE
);
257 clear_extent_bits(&fs_info
->freed_extents
[1],
258 start
, end
, EXTENT_UPTODATE
);
261 static int exclude_super_stripes(struct btrfs_fs_info
*fs_info
,
262 struct btrfs_block_group_cache
*cache
)
269 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
270 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
271 cache
->bytes_super
+= stripe_len
;
272 ret
= add_excluded_extent(fs_info
, cache
->key
.objectid
,
278 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
279 bytenr
= btrfs_sb_offset(i
);
280 ret
= btrfs_rmap_block(fs_info
, cache
->key
.objectid
,
281 bytenr
, 0, &logical
, &nr
, &stripe_len
);
288 if (logical
[nr
] > cache
->key
.objectid
+
292 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
296 if (start
< cache
->key
.objectid
) {
297 start
= cache
->key
.objectid
;
298 len
= (logical
[nr
] + stripe_len
) - start
;
300 len
= min_t(u64
, stripe_len
,
301 cache
->key
.objectid
+
302 cache
->key
.offset
- start
);
305 cache
->bytes_super
+= len
;
306 ret
= add_excluded_extent(fs_info
, start
, len
);
318 static struct btrfs_caching_control
*
319 get_caching_control(struct btrfs_block_group_cache
*cache
)
321 struct btrfs_caching_control
*ctl
;
323 spin_lock(&cache
->lock
);
324 if (!cache
->caching_ctl
) {
325 spin_unlock(&cache
->lock
);
329 ctl
= cache
->caching_ctl
;
330 refcount_inc(&ctl
->count
);
331 spin_unlock(&cache
->lock
);
335 static void put_caching_control(struct btrfs_caching_control
*ctl
)
337 if (refcount_dec_and_test(&ctl
->count
))
341 #ifdef CONFIG_BTRFS_DEBUG
342 static void fragment_free_space(struct btrfs_block_group_cache
*block_group
)
344 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
345 u64 start
= block_group
->key
.objectid
;
346 u64 len
= block_group
->key
.offset
;
347 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
348 fs_info
->nodesize
: fs_info
->sectorsize
;
349 u64 step
= chunk
<< 1;
351 while (len
> chunk
) {
352 btrfs_remove_free_space(block_group
, start
, chunk
);
363 * this is only called by cache_block_group, since we could have freed extents
364 * we need to check the pinned_extents for any extents that can't be used yet
365 * since their free space will be released as soon as the transaction commits.
367 u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
368 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
370 u64 extent_start
, extent_end
, size
, total_added
= 0;
373 while (start
< end
) {
374 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
375 &extent_start
, &extent_end
,
376 EXTENT_DIRTY
| EXTENT_UPTODATE
,
381 if (extent_start
<= start
) {
382 start
= extent_end
+ 1;
383 } else if (extent_start
> start
&& extent_start
< end
) {
384 size
= extent_start
- start
;
386 ret
= btrfs_add_free_space(block_group
, start
,
388 BUG_ON(ret
); /* -ENOMEM or logic error */
389 start
= extent_end
+ 1;
398 ret
= btrfs_add_free_space(block_group
, start
, size
);
399 BUG_ON(ret
); /* -ENOMEM or logic error */
405 static int load_extent_tree_free(struct btrfs_caching_control
*caching_ctl
)
407 struct btrfs_block_group_cache
*block_group
= caching_ctl
->block_group
;
408 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
409 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
410 struct btrfs_path
*path
;
411 struct extent_buffer
*leaf
;
412 struct btrfs_key key
;
419 path
= btrfs_alloc_path();
423 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
425 #ifdef CONFIG_BTRFS_DEBUG
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
431 if (btrfs_should_fragment_free_space(block_group
))
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
440 path
->skip_locking
= 1;
441 path
->search_commit_root
= 1;
442 path
->reada
= READA_FORWARD
;
446 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
449 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
453 leaf
= path
->nodes
[0];
454 nritems
= btrfs_header_nritems(leaf
);
457 if (btrfs_fs_closing(fs_info
) > 1) {
462 if (path
->slots
[0] < nritems
) {
463 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
465 ret
= find_next_key(path
, 0, &key
);
469 if (need_resched() ||
470 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
472 caching_ctl
->progress
= last
;
473 btrfs_release_path(path
);
474 up_read(&fs_info
->commit_root_sem
);
475 mutex_unlock(&caching_ctl
->mutex
);
477 mutex_lock(&caching_ctl
->mutex
);
478 down_read(&fs_info
->commit_root_sem
);
482 ret
= btrfs_next_leaf(extent_root
, path
);
487 leaf
= path
->nodes
[0];
488 nritems
= btrfs_header_nritems(leaf
);
492 if (key
.objectid
< last
) {
495 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
498 caching_ctl
->progress
= last
;
499 btrfs_release_path(path
);
503 if (key
.objectid
< block_group
->key
.objectid
) {
508 if (key
.objectid
>= block_group
->key
.objectid
+
509 block_group
->key
.offset
)
512 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
513 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
514 total_found
+= add_new_free_space(block_group
,
517 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
518 last
= key
.objectid
+
521 last
= key
.objectid
+ key
.offset
;
523 if (total_found
> CACHING_CTL_WAKE_UP
) {
526 wake_up(&caching_ctl
->wait
);
533 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
534 block_group
->key
.objectid
+
535 block_group
->key
.offset
);
536 caching_ctl
->progress
= (u64
)-1;
539 btrfs_free_path(path
);
543 static noinline
void caching_thread(struct btrfs_work
*work
)
545 struct btrfs_block_group_cache
*block_group
;
546 struct btrfs_fs_info
*fs_info
;
547 struct btrfs_caching_control
*caching_ctl
;
548 struct btrfs_root
*extent_root
;
551 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
552 block_group
= caching_ctl
->block_group
;
553 fs_info
= block_group
->fs_info
;
554 extent_root
= fs_info
->extent_root
;
556 mutex_lock(&caching_ctl
->mutex
);
557 down_read(&fs_info
->commit_root_sem
);
559 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
))
560 ret
= load_free_space_tree(caching_ctl
);
562 ret
= load_extent_tree_free(caching_ctl
);
564 spin_lock(&block_group
->lock
);
565 block_group
->caching_ctl
= NULL
;
566 block_group
->cached
= ret
? BTRFS_CACHE_ERROR
: BTRFS_CACHE_FINISHED
;
567 spin_unlock(&block_group
->lock
);
569 #ifdef CONFIG_BTRFS_DEBUG
570 if (btrfs_should_fragment_free_space(block_group
)) {
573 spin_lock(&block_group
->space_info
->lock
);
574 spin_lock(&block_group
->lock
);
575 bytes_used
= block_group
->key
.offset
-
576 btrfs_block_group_used(&block_group
->item
);
577 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
578 spin_unlock(&block_group
->lock
);
579 spin_unlock(&block_group
->space_info
->lock
);
580 fragment_free_space(block_group
);
584 caching_ctl
->progress
= (u64
)-1;
586 up_read(&fs_info
->commit_root_sem
);
587 free_excluded_extents(fs_info
, block_group
);
588 mutex_unlock(&caching_ctl
->mutex
);
590 wake_up(&caching_ctl
->wait
);
592 put_caching_control(caching_ctl
);
593 btrfs_put_block_group(block_group
);
596 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
600 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
601 struct btrfs_caching_control
*caching_ctl
;
604 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
608 INIT_LIST_HEAD(&caching_ctl
->list
);
609 mutex_init(&caching_ctl
->mutex
);
610 init_waitqueue_head(&caching_ctl
->wait
);
611 caching_ctl
->block_group
= cache
;
612 caching_ctl
->progress
= cache
->key
.objectid
;
613 refcount_set(&caching_ctl
->count
, 1);
614 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
615 caching_thread
, NULL
, NULL
);
617 spin_lock(&cache
->lock
);
619 * This should be a rare occasion, but this could happen I think in the
620 * case where one thread starts to load the space cache info, and then
621 * some other thread starts a transaction commit which tries to do an
622 * allocation while the other thread is still loading the space cache
623 * info. The previous loop should have kept us from choosing this block
624 * group, but if we've moved to the state where we will wait on caching
625 * block groups we need to first check if we're doing a fast load here,
626 * so we can wait for it to finish, otherwise we could end up allocating
627 * from a block group who's cache gets evicted for one reason or
630 while (cache
->cached
== BTRFS_CACHE_FAST
) {
631 struct btrfs_caching_control
*ctl
;
633 ctl
= cache
->caching_ctl
;
634 refcount_inc(&ctl
->count
);
635 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
636 spin_unlock(&cache
->lock
);
640 finish_wait(&ctl
->wait
, &wait
);
641 put_caching_control(ctl
);
642 spin_lock(&cache
->lock
);
645 if (cache
->cached
!= BTRFS_CACHE_NO
) {
646 spin_unlock(&cache
->lock
);
650 WARN_ON(cache
->caching_ctl
);
651 cache
->caching_ctl
= caching_ctl
;
652 cache
->cached
= BTRFS_CACHE_FAST
;
653 spin_unlock(&cache
->lock
);
655 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
656 mutex_lock(&caching_ctl
->mutex
);
657 ret
= load_free_space_cache(fs_info
, cache
);
659 spin_lock(&cache
->lock
);
661 cache
->caching_ctl
= NULL
;
662 cache
->cached
= BTRFS_CACHE_FINISHED
;
663 cache
->last_byte_to_unpin
= (u64
)-1;
664 caching_ctl
->progress
= (u64
)-1;
666 if (load_cache_only
) {
667 cache
->caching_ctl
= NULL
;
668 cache
->cached
= BTRFS_CACHE_NO
;
670 cache
->cached
= BTRFS_CACHE_STARTED
;
671 cache
->has_caching_ctl
= 1;
674 spin_unlock(&cache
->lock
);
675 #ifdef CONFIG_BTRFS_DEBUG
677 btrfs_should_fragment_free_space(cache
)) {
680 spin_lock(&cache
->space_info
->lock
);
681 spin_lock(&cache
->lock
);
682 bytes_used
= cache
->key
.offset
-
683 btrfs_block_group_used(&cache
->item
);
684 cache
->space_info
->bytes_used
+= bytes_used
>> 1;
685 spin_unlock(&cache
->lock
);
686 spin_unlock(&cache
->space_info
->lock
);
687 fragment_free_space(cache
);
690 mutex_unlock(&caching_ctl
->mutex
);
692 wake_up(&caching_ctl
->wait
);
694 put_caching_control(caching_ctl
);
695 free_excluded_extents(fs_info
, cache
);
700 * We're either using the free space tree or no caching at all.
701 * Set cached to the appropriate value and wakeup any waiters.
703 spin_lock(&cache
->lock
);
704 if (load_cache_only
) {
705 cache
->caching_ctl
= NULL
;
706 cache
->cached
= BTRFS_CACHE_NO
;
708 cache
->cached
= BTRFS_CACHE_STARTED
;
709 cache
->has_caching_ctl
= 1;
711 spin_unlock(&cache
->lock
);
712 wake_up(&caching_ctl
->wait
);
715 if (load_cache_only
) {
716 put_caching_control(caching_ctl
);
720 down_write(&fs_info
->commit_root_sem
);
721 refcount_inc(&caching_ctl
->count
);
722 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
723 up_write(&fs_info
->commit_root_sem
);
725 btrfs_get_block_group(cache
);
727 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
733 * return the block group that starts at or after bytenr
735 static struct btrfs_block_group_cache
*
736 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
738 return block_group_cache_tree_search(info
, bytenr
, 0);
742 * return the block group that contains the given bytenr
744 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
745 struct btrfs_fs_info
*info
,
748 return block_group_cache_tree_search(info
, bytenr
, 1);
751 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
754 struct list_head
*head
= &info
->space_info
;
755 struct btrfs_space_info
*found
;
757 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
760 list_for_each_entry_rcu(found
, head
, list
) {
761 if (found
->flags
& flags
) {
770 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, s64 num_bytes
,
771 u64 owner
, u64 root_objectid
)
773 struct btrfs_space_info
*space_info
;
776 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
777 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
778 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
780 flags
= BTRFS_BLOCK_GROUP_METADATA
;
782 flags
= BTRFS_BLOCK_GROUP_DATA
;
785 space_info
= __find_space_info(fs_info
, flags
);
787 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
791 * after adding space to the filesystem, we need to clear the full flags
792 * on all the space infos.
794 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
796 struct list_head
*head
= &info
->space_info
;
797 struct btrfs_space_info
*found
;
800 list_for_each_entry_rcu(found
, head
, list
)
805 /* simple helper to search for an existing data extent at a given offset */
806 int btrfs_lookup_data_extent(struct btrfs_fs_info
*fs_info
, u64 start
, u64 len
)
809 struct btrfs_key key
;
810 struct btrfs_path
*path
;
812 path
= btrfs_alloc_path();
816 key
.objectid
= start
;
818 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
819 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
820 btrfs_free_path(path
);
825 * helper function to lookup reference count and flags of a tree block.
827 * the head node for delayed ref is used to store the sum of all the
828 * reference count modifications queued up in the rbtree. the head
829 * node may also store the extent flags to set. This way you can check
830 * to see what the reference count and extent flags would be if all of
831 * the delayed refs are not processed.
833 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
834 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
835 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
837 struct btrfs_delayed_ref_head
*head
;
838 struct btrfs_delayed_ref_root
*delayed_refs
;
839 struct btrfs_path
*path
;
840 struct btrfs_extent_item
*ei
;
841 struct extent_buffer
*leaf
;
842 struct btrfs_key key
;
849 * If we don't have skinny metadata, don't bother doing anything
852 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
)) {
853 offset
= fs_info
->nodesize
;
857 path
= btrfs_alloc_path();
862 path
->skip_locking
= 1;
863 path
->search_commit_root
= 1;
867 key
.objectid
= bytenr
;
870 key
.type
= BTRFS_METADATA_ITEM_KEY
;
872 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
874 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
878 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
879 if (path
->slots
[0]) {
881 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
883 if (key
.objectid
== bytenr
&&
884 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
885 key
.offset
== fs_info
->nodesize
)
891 leaf
= path
->nodes
[0];
892 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
893 if (item_size
>= sizeof(*ei
)) {
894 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
895 struct btrfs_extent_item
);
896 num_refs
= btrfs_extent_refs(leaf
, ei
);
897 extent_flags
= btrfs_extent_flags(leaf
, ei
);
899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 struct btrfs_extent_item_v0
*ei0
;
901 BUG_ON(item_size
!= sizeof(*ei0
));
902 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
903 struct btrfs_extent_item_v0
);
904 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
905 /* FIXME: this isn't correct for data */
906 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
911 BUG_ON(num_refs
== 0);
921 delayed_refs
= &trans
->transaction
->delayed_refs
;
922 spin_lock(&delayed_refs
->lock
);
923 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
925 if (!mutex_trylock(&head
->mutex
)) {
926 refcount_inc(&head
->node
.refs
);
927 spin_unlock(&delayed_refs
->lock
);
929 btrfs_release_path(path
);
932 * Mutex was contended, block until it's released and try
935 mutex_lock(&head
->mutex
);
936 mutex_unlock(&head
->mutex
);
937 btrfs_put_delayed_ref(&head
->node
);
940 spin_lock(&head
->lock
);
941 if (head
->extent_op
&& head
->extent_op
->update_flags
)
942 extent_flags
|= head
->extent_op
->flags_to_set
;
944 BUG_ON(num_refs
== 0);
946 num_refs
+= head
->node
.ref_mod
;
947 spin_unlock(&head
->lock
);
948 mutex_unlock(&head
->mutex
);
950 spin_unlock(&delayed_refs
->lock
);
952 WARN_ON(num_refs
== 0);
956 *flags
= extent_flags
;
958 btrfs_free_path(path
);
963 * Back reference rules. Back refs have three main goals:
965 * 1) differentiate between all holders of references to an extent so that
966 * when a reference is dropped we can make sure it was a valid reference
967 * before freeing the extent.
969 * 2) Provide enough information to quickly find the holders of an extent
970 * if we notice a given block is corrupted or bad.
972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973 * maintenance. This is actually the same as #2, but with a slightly
974 * different use case.
976 * There are two kinds of back refs. The implicit back refs is optimized
977 * for pointers in non-shared tree blocks. For a given pointer in a block,
978 * back refs of this kind provide information about the block's owner tree
979 * and the pointer's key. These information allow us to find the block by
980 * b-tree searching. The full back refs is for pointers in tree blocks not
981 * referenced by their owner trees. The location of tree block is recorded
982 * in the back refs. Actually the full back refs is generic, and can be
983 * used in all cases the implicit back refs is used. The major shortcoming
984 * of the full back refs is its overhead. Every time a tree block gets
985 * COWed, we have to update back refs entry for all pointers in it.
987 * For a newly allocated tree block, we use implicit back refs for
988 * pointers in it. This means most tree related operations only involve
989 * implicit back refs. For a tree block created in old transaction, the
990 * only way to drop a reference to it is COW it. So we can detect the
991 * event that tree block loses its owner tree's reference and do the
992 * back refs conversion.
994 * When a tree block is COWed through a tree, there are four cases:
996 * The reference count of the block is one and the tree is the block's
997 * owner tree. Nothing to do in this case.
999 * The reference count of the block is one and the tree is not the
1000 * block's owner tree. In this case, full back refs is used for pointers
1001 * in the block. Remove these full back refs, add implicit back refs for
1002 * every pointers in the new block.
1004 * The reference count of the block is greater than one and the tree is
1005 * the block's owner tree. In this case, implicit back refs is used for
1006 * pointers in the block. Add full back refs for every pointers in the
1007 * block, increase lower level extents' reference counts. The original
1008 * implicit back refs are entailed to the new block.
1010 * The reference count of the block is greater than one and the tree is
1011 * not the block's owner tree. Add implicit back refs for every pointer in
1012 * the new block, increase lower level extents' reference count.
1014 * Back Reference Key composing:
1016 * The key objectid corresponds to the first byte in the extent,
1017 * The key type is used to differentiate between types of back refs.
1018 * There are different meanings of the key offset for different types
1021 * File extents can be referenced by:
1023 * - multiple snapshots, subvolumes, or different generations in one subvol
1024 * - different files inside a single subvolume
1025 * - different offsets inside a file (bookend extents in file.c)
1027 * The extent ref structure for the implicit back refs has fields for:
1029 * - Objectid of the subvolume root
1030 * - objectid of the file holding the reference
1031 * - original offset in the file
1032 * - how many bookend extents
1034 * The key offset for the implicit back refs is hash of the first
1037 * The extent ref structure for the full back refs has field for:
1039 * - number of pointers in the tree leaf
1041 * The key offset for the implicit back refs is the first byte of
1044 * When a file extent is allocated, The implicit back refs is used.
1045 * the fields are filled in:
1047 * (root_key.objectid, inode objectid, offset in file, 1)
1049 * When a file extent is removed file truncation, we find the
1050 * corresponding implicit back refs and check the following fields:
1052 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1054 * Btree extents can be referenced by:
1056 * - Different subvolumes
1058 * Both the implicit back refs and the full back refs for tree blocks
1059 * only consist of key. The key offset for the implicit back refs is
1060 * objectid of block's owner tree. The key offset for the full back refs
1061 * is the first byte of parent block.
1063 * When implicit back refs is used, information about the lowest key and
1064 * level of the tree block are required. These information are stored in
1065 * tree block info structure.
1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1069 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
1070 struct btrfs_fs_info
*fs_info
,
1071 struct btrfs_path
*path
,
1072 u64 owner
, u32 extra_size
)
1074 struct btrfs_root
*root
= fs_info
->extent_root
;
1075 struct btrfs_extent_item
*item
;
1076 struct btrfs_extent_item_v0
*ei0
;
1077 struct btrfs_extent_ref_v0
*ref0
;
1078 struct btrfs_tree_block_info
*bi
;
1079 struct extent_buffer
*leaf
;
1080 struct btrfs_key key
;
1081 struct btrfs_key found_key
;
1082 u32 new_size
= sizeof(*item
);
1086 leaf
= path
->nodes
[0];
1087 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1089 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1090 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1091 struct btrfs_extent_item_v0
);
1092 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1094 if (owner
== (u64
)-1) {
1096 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1097 ret
= btrfs_next_leaf(root
, path
);
1100 BUG_ON(ret
> 0); /* Corruption */
1101 leaf
= path
->nodes
[0];
1103 btrfs_item_key_to_cpu(leaf
, &found_key
,
1105 BUG_ON(key
.objectid
!= found_key
.objectid
);
1106 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1110 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1111 struct btrfs_extent_ref_v0
);
1112 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1116 btrfs_release_path(path
);
1118 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1119 new_size
+= sizeof(*bi
);
1121 new_size
-= sizeof(*ei0
);
1122 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1123 new_size
+ extra_size
, 1);
1126 BUG_ON(ret
); /* Corruption */
1128 btrfs_extend_item(fs_info
, path
, new_size
);
1130 leaf
= path
->nodes
[0];
1131 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1132 btrfs_set_extent_refs(leaf
, item
, refs
);
1133 /* FIXME: get real generation */
1134 btrfs_set_extent_generation(leaf
, item
, 0);
1135 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1136 btrfs_set_extent_flags(leaf
, item
,
1137 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1138 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1139 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1140 /* FIXME: get first key of the block */
1141 memzero_extent_buffer(leaf
, (unsigned long)bi
, sizeof(*bi
));
1142 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1144 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1146 btrfs_mark_buffer_dirty(leaf
);
1151 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1153 u32 high_crc
= ~(u32
)0;
1154 u32 low_crc
= ~(u32
)0;
1157 lenum
= cpu_to_le64(root_objectid
);
1158 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1159 lenum
= cpu_to_le64(owner
);
1160 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1161 lenum
= cpu_to_le64(offset
);
1162 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1164 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1167 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1168 struct btrfs_extent_data_ref
*ref
)
1170 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1171 btrfs_extent_data_ref_objectid(leaf
, ref
),
1172 btrfs_extent_data_ref_offset(leaf
, ref
));
1175 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1176 struct btrfs_extent_data_ref
*ref
,
1177 u64 root_objectid
, u64 owner
, u64 offset
)
1179 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1180 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1181 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1186 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1187 struct btrfs_fs_info
*fs_info
,
1188 struct btrfs_path
*path
,
1189 u64 bytenr
, u64 parent
,
1191 u64 owner
, u64 offset
)
1193 struct btrfs_root
*root
= fs_info
->extent_root
;
1194 struct btrfs_key key
;
1195 struct btrfs_extent_data_ref
*ref
;
1196 struct extent_buffer
*leaf
;
1202 key
.objectid
= bytenr
;
1204 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1205 key
.offset
= parent
;
1207 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1208 key
.offset
= hash_extent_data_ref(root_objectid
,
1213 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1224 btrfs_release_path(path
);
1225 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1236 leaf
= path
->nodes
[0];
1237 nritems
= btrfs_header_nritems(leaf
);
1239 if (path
->slots
[0] >= nritems
) {
1240 ret
= btrfs_next_leaf(root
, path
);
1246 leaf
= path
->nodes
[0];
1247 nritems
= btrfs_header_nritems(leaf
);
1251 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1252 if (key
.objectid
!= bytenr
||
1253 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1256 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1257 struct btrfs_extent_data_ref
);
1259 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1262 btrfs_release_path(path
);
1274 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1275 struct btrfs_fs_info
*fs_info
,
1276 struct btrfs_path
*path
,
1277 u64 bytenr
, u64 parent
,
1278 u64 root_objectid
, u64 owner
,
1279 u64 offset
, int refs_to_add
)
1281 struct btrfs_root
*root
= fs_info
->extent_root
;
1282 struct btrfs_key key
;
1283 struct extent_buffer
*leaf
;
1288 key
.objectid
= bytenr
;
1290 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1291 key
.offset
= parent
;
1292 size
= sizeof(struct btrfs_shared_data_ref
);
1294 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1295 key
.offset
= hash_extent_data_ref(root_objectid
,
1297 size
= sizeof(struct btrfs_extent_data_ref
);
1300 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1301 if (ret
&& ret
!= -EEXIST
)
1304 leaf
= path
->nodes
[0];
1306 struct btrfs_shared_data_ref
*ref
;
1307 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1308 struct btrfs_shared_data_ref
);
1310 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1312 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1313 num_refs
+= refs_to_add
;
1314 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1317 struct btrfs_extent_data_ref
*ref
;
1318 while (ret
== -EEXIST
) {
1319 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1320 struct btrfs_extent_data_ref
);
1321 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1324 btrfs_release_path(path
);
1326 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1328 if (ret
&& ret
!= -EEXIST
)
1331 leaf
= path
->nodes
[0];
1333 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1334 struct btrfs_extent_data_ref
);
1336 btrfs_set_extent_data_ref_root(leaf
, ref
,
1338 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1339 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1340 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1342 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1343 num_refs
+= refs_to_add
;
1344 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1347 btrfs_mark_buffer_dirty(leaf
);
1350 btrfs_release_path(path
);
1354 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1355 struct btrfs_fs_info
*fs_info
,
1356 struct btrfs_path
*path
,
1357 int refs_to_drop
, int *last_ref
)
1359 struct btrfs_key key
;
1360 struct btrfs_extent_data_ref
*ref1
= NULL
;
1361 struct btrfs_shared_data_ref
*ref2
= NULL
;
1362 struct extent_buffer
*leaf
;
1366 leaf
= path
->nodes
[0];
1367 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1369 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1370 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1371 struct btrfs_extent_data_ref
);
1372 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1373 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1374 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1375 struct btrfs_shared_data_ref
);
1376 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1377 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1378 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1379 struct btrfs_extent_ref_v0
*ref0
;
1380 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1381 struct btrfs_extent_ref_v0
);
1382 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1388 BUG_ON(num_refs
< refs_to_drop
);
1389 num_refs
-= refs_to_drop
;
1391 if (num_refs
== 0) {
1392 ret
= btrfs_del_item(trans
, fs_info
->extent_root
, path
);
1395 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1396 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1397 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1398 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1399 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1401 struct btrfs_extent_ref_v0
*ref0
;
1402 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1403 struct btrfs_extent_ref_v0
);
1404 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1407 btrfs_mark_buffer_dirty(leaf
);
1412 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
1413 struct btrfs_extent_inline_ref
*iref
)
1415 struct btrfs_key key
;
1416 struct extent_buffer
*leaf
;
1417 struct btrfs_extent_data_ref
*ref1
;
1418 struct btrfs_shared_data_ref
*ref2
;
1421 leaf
= path
->nodes
[0];
1422 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1424 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1425 BTRFS_EXTENT_DATA_REF_KEY
) {
1426 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1427 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1429 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1430 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1432 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1433 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1434 struct btrfs_extent_data_ref
);
1435 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1436 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1437 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1438 struct btrfs_shared_data_ref
);
1439 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1440 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1441 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1442 struct btrfs_extent_ref_v0
*ref0
;
1443 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1444 struct btrfs_extent_ref_v0
);
1445 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1453 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1454 struct btrfs_fs_info
*fs_info
,
1455 struct btrfs_path
*path
,
1456 u64 bytenr
, u64 parent
,
1459 struct btrfs_root
*root
= fs_info
->extent_root
;
1460 struct btrfs_key key
;
1463 key
.objectid
= bytenr
;
1465 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1466 key
.offset
= parent
;
1468 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1469 key
.offset
= root_objectid
;
1472 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1475 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1476 if (ret
== -ENOENT
&& parent
) {
1477 btrfs_release_path(path
);
1478 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1479 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1487 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1488 struct btrfs_fs_info
*fs_info
,
1489 struct btrfs_path
*path
,
1490 u64 bytenr
, u64 parent
,
1493 struct btrfs_key key
;
1496 key
.objectid
= bytenr
;
1498 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1499 key
.offset
= parent
;
1501 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1502 key
.offset
= root_objectid
;
1505 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
,
1507 btrfs_release_path(path
);
1511 static inline int extent_ref_type(u64 parent
, u64 owner
)
1514 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1516 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1518 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1521 type
= BTRFS_SHARED_DATA_REF_KEY
;
1523 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1528 static int find_next_key(struct btrfs_path
*path
, int level
,
1529 struct btrfs_key
*key
)
1532 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1533 if (!path
->nodes
[level
])
1535 if (path
->slots
[level
] + 1 >=
1536 btrfs_header_nritems(path
->nodes
[level
]))
1539 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1540 path
->slots
[level
] + 1);
1542 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1543 path
->slots
[level
] + 1);
1550 * look for inline back ref. if back ref is found, *ref_ret is set
1551 * to the address of inline back ref, and 0 is returned.
1553 * if back ref isn't found, *ref_ret is set to the address where it
1554 * should be inserted, and -ENOENT is returned.
1556 * if insert is true and there are too many inline back refs, the path
1557 * points to the extent item, and -EAGAIN is returned.
1559 * NOTE: inline back refs are ordered in the same way that back ref
1560 * items in the tree are ordered.
1562 static noinline_for_stack
1563 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1564 struct btrfs_fs_info
*fs_info
,
1565 struct btrfs_path
*path
,
1566 struct btrfs_extent_inline_ref
**ref_ret
,
1567 u64 bytenr
, u64 num_bytes
,
1568 u64 parent
, u64 root_objectid
,
1569 u64 owner
, u64 offset
, int insert
)
1571 struct btrfs_root
*root
= fs_info
->extent_root
;
1572 struct btrfs_key key
;
1573 struct extent_buffer
*leaf
;
1574 struct btrfs_extent_item
*ei
;
1575 struct btrfs_extent_inline_ref
*iref
;
1585 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
1587 key
.objectid
= bytenr
;
1588 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1589 key
.offset
= num_bytes
;
1591 want
= extent_ref_type(parent
, owner
);
1593 extra_size
= btrfs_extent_inline_ref_size(want
);
1594 path
->keep_locks
= 1;
1599 * Owner is our parent level, so we can just add one to get the level
1600 * for the block we are interested in.
1602 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1603 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1608 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1615 * We may be a newly converted file system which still has the old fat
1616 * extent entries for metadata, so try and see if we have one of those.
1618 if (ret
> 0 && skinny_metadata
) {
1619 skinny_metadata
= false;
1620 if (path
->slots
[0]) {
1622 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1624 if (key
.objectid
== bytenr
&&
1625 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1626 key
.offset
== num_bytes
)
1630 key
.objectid
= bytenr
;
1631 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1632 key
.offset
= num_bytes
;
1633 btrfs_release_path(path
);
1638 if (ret
&& !insert
) {
1641 } else if (WARN_ON(ret
)) {
1646 leaf
= path
->nodes
[0];
1647 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1648 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1649 if (item_size
< sizeof(*ei
)) {
1654 ret
= convert_extent_item_v0(trans
, fs_info
, path
, owner
,
1660 leaf
= path
->nodes
[0];
1661 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1664 BUG_ON(item_size
< sizeof(*ei
));
1666 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1667 flags
= btrfs_extent_flags(leaf
, ei
);
1669 ptr
= (unsigned long)(ei
+ 1);
1670 end
= (unsigned long)ei
+ item_size
;
1672 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1673 ptr
+= sizeof(struct btrfs_tree_block_info
);
1683 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1684 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1688 ptr
+= btrfs_extent_inline_ref_size(type
);
1692 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1693 struct btrfs_extent_data_ref
*dref
;
1694 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1695 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1700 if (hash_extent_data_ref_item(leaf
, dref
) <
1701 hash_extent_data_ref(root_objectid
, owner
, offset
))
1705 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1707 if (parent
== ref_offset
) {
1711 if (ref_offset
< parent
)
1714 if (root_objectid
== ref_offset
) {
1718 if (ref_offset
< root_objectid
)
1722 ptr
+= btrfs_extent_inline_ref_size(type
);
1724 if (err
== -ENOENT
&& insert
) {
1725 if (item_size
+ extra_size
>=
1726 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1731 * To add new inline back ref, we have to make sure
1732 * there is no corresponding back ref item.
1733 * For simplicity, we just do not add new inline back
1734 * ref if there is any kind of item for this block
1736 if (find_next_key(path
, 0, &key
) == 0 &&
1737 key
.objectid
== bytenr
&&
1738 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1743 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1746 path
->keep_locks
= 0;
1747 btrfs_unlock_up_safe(path
, 1);
1753 * helper to add new inline back ref
1755 static noinline_for_stack
1756 void setup_inline_extent_backref(struct btrfs_fs_info
*fs_info
,
1757 struct btrfs_path
*path
,
1758 struct btrfs_extent_inline_ref
*iref
,
1759 u64 parent
, u64 root_objectid
,
1760 u64 owner
, u64 offset
, int refs_to_add
,
1761 struct btrfs_delayed_extent_op
*extent_op
)
1763 struct extent_buffer
*leaf
;
1764 struct btrfs_extent_item
*ei
;
1767 unsigned long item_offset
;
1772 leaf
= path
->nodes
[0];
1773 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1774 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1776 type
= extent_ref_type(parent
, owner
);
1777 size
= btrfs_extent_inline_ref_size(type
);
1779 btrfs_extend_item(fs_info
, path
, size
);
1781 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1782 refs
= btrfs_extent_refs(leaf
, ei
);
1783 refs
+= refs_to_add
;
1784 btrfs_set_extent_refs(leaf
, ei
, refs
);
1786 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1788 ptr
= (unsigned long)ei
+ item_offset
;
1789 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1790 if (ptr
< end
- size
)
1791 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1794 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1795 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1796 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1797 struct btrfs_extent_data_ref
*dref
;
1798 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1799 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1800 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1801 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1802 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1803 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1804 struct btrfs_shared_data_ref
*sref
;
1805 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1806 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1807 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1808 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1809 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1811 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1813 btrfs_mark_buffer_dirty(leaf
);
1816 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1817 struct btrfs_fs_info
*fs_info
,
1818 struct btrfs_path
*path
,
1819 struct btrfs_extent_inline_ref
**ref_ret
,
1820 u64 bytenr
, u64 num_bytes
, u64 parent
,
1821 u64 root_objectid
, u64 owner
, u64 offset
)
1825 ret
= lookup_inline_extent_backref(trans
, fs_info
, path
, ref_ret
,
1826 bytenr
, num_bytes
, parent
,
1827 root_objectid
, owner
, offset
, 0);
1831 btrfs_release_path(path
);
1834 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1835 ret
= lookup_tree_block_ref(trans
, fs_info
, path
, bytenr
,
1836 parent
, root_objectid
);
1838 ret
= lookup_extent_data_ref(trans
, fs_info
, path
, bytenr
,
1839 parent
, root_objectid
, owner
,
1846 * helper to update/remove inline back ref
1848 static noinline_for_stack
1849 void update_inline_extent_backref(struct btrfs_fs_info
*fs_info
,
1850 struct btrfs_path
*path
,
1851 struct btrfs_extent_inline_ref
*iref
,
1853 struct btrfs_delayed_extent_op
*extent_op
,
1856 struct extent_buffer
*leaf
;
1857 struct btrfs_extent_item
*ei
;
1858 struct btrfs_extent_data_ref
*dref
= NULL
;
1859 struct btrfs_shared_data_ref
*sref
= NULL
;
1867 leaf
= path
->nodes
[0];
1868 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1869 refs
= btrfs_extent_refs(leaf
, ei
);
1870 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1871 refs
+= refs_to_mod
;
1872 btrfs_set_extent_refs(leaf
, ei
, refs
);
1874 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1876 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1878 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1879 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1880 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1881 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1882 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1883 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1886 BUG_ON(refs_to_mod
!= -1);
1889 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1890 refs
+= refs_to_mod
;
1893 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1894 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1896 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1899 size
= btrfs_extent_inline_ref_size(type
);
1900 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1901 ptr
= (unsigned long)iref
;
1902 end
= (unsigned long)ei
+ item_size
;
1903 if (ptr
+ size
< end
)
1904 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1907 btrfs_truncate_item(fs_info
, path
, item_size
, 1);
1909 btrfs_mark_buffer_dirty(leaf
);
1912 static noinline_for_stack
1913 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1914 struct btrfs_fs_info
*fs_info
,
1915 struct btrfs_path
*path
,
1916 u64 bytenr
, u64 num_bytes
, u64 parent
,
1917 u64 root_objectid
, u64 owner
,
1918 u64 offset
, int refs_to_add
,
1919 struct btrfs_delayed_extent_op
*extent_op
)
1921 struct btrfs_extent_inline_ref
*iref
;
1924 ret
= lookup_inline_extent_backref(trans
, fs_info
, path
, &iref
,
1925 bytenr
, num_bytes
, parent
,
1926 root_objectid
, owner
, offset
, 1);
1928 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1929 update_inline_extent_backref(fs_info
, path
, iref
,
1930 refs_to_add
, extent_op
, NULL
);
1931 } else if (ret
== -ENOENT
) {
1932 setup_inline_extent_backref(fs_info
, path
, iref
, parent
,
1933 root_objectid
, owner
, offset
,
1934 refs_to_add
, extent_op
);
1940 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1941 struct btrfs_fs_info
*fs_info
,
1942 struct btrfs_path
*path
,
1943 u64 bytenr
, u64 parent
, u64 root_objectid
,
1944 u64 owner
, u64 offset
, int refs_to_add
)
1947 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1948 BUG_ON(refs_to_add
!= 1);
1949 ret
= insert_tree_block_ref(trans
, fs_info
, path
, bytenr
,
1950 parent
, root_objectid
);
1952 ret
= insert_extent_data_ref(trans
, fs_info
, path
, bytenr
,
1953 parent
, root_objectid
,
1954 owner
, offset
, refs_to_add
);
1959 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1960 struct btrfs_fs_info
*fs_info
,
1961 struct btrfs_path
*path
,
1962 struct btrfs_extent_inline_ref
*iref
,
1963 int refs_to_drop
, int is_data
, int *last_ref
)
1967 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1969 update_inline_extent_backref(fs_info
, path
, iref
,
1970 -refs_to_drop
, NULL
, last_ref
);
1971 } else if (is_data
) {
1972 ret
= remove_extent_data_ref(trans
, fs_info
, path
, refs_to_drop
,
1976 ret
= btrfs_del_item(trans
, fs_info
->extent_root
, path
);
1981 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1982 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
1983 u64
*discarded_bytes
)
1986 u64 bytes_left
, end
;
1987 u64 aligned_start
= ALIGN(start
, 1 << 9);
1989 if (WARN_ON(start
!= aligned_start
)) {
1990 len
-= aligned_start
- start
;
1991 len
= round_down(len
, 1 << 9);
1992 start
= aligned_start
;
1995 *discarded_bytes
= 0;
2003 /* Skip any superblocks on this device. */
2004 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
2005 u64 sb_start
= btrfs_sb_offset(j
);
2006 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
2007 u64 size
= sb_start
- start
;
2009 if (!in_range(sb_start
, start
, bytes_left
) &&
2010 !in_range(sb_end
, start
, bytes_left
) &&
2011 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
2015 * Superblock spans beginning of range. Adjust start and
2018 if (sb_start
<= start
) {
2019 start
+= sb_end
- start
;
2024 bytes_left
= end
- start
;
2029 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
2032 *discarded_bytes
+= size
;
2033 else if (ret
!= -EOPNOTSUPP
)
2042 bytes_left
= end
- start
;
2046 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
2049 *discarded_bytes
+= bytes_left
;
2054 int btrfs_discard_extent(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
2055 u64 num_bytes
, u64
*actual_bytes
)
2058 u64 discarded_bytes
= 0;
2059 struct btrfs_bio
*bbio
= NULL
;
2063 * Avoid races with device replace and make sure our bbio has devices
2064 * associated to its stripes that don't go away while we are discarding.
2066 btrfs_bio_counter_inc_blocked(fs_info
);
2067 /* Tell the block device(s) that the sectors can be discarded */
2068 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_DISCARD
, bytenr
, &num_bytes
,
2070 /* Error condition is -ENOMEM */
2072 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
2076 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
2078 if (!stripe
->dev
->can_discard
)
2081 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
2086 discarded_bytes
+= bytes
;
2087 else if (ret
!= -EOPNOTSUPP
)
2088 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2091 * Just in case we get back EOPNOTSUPP for some reason,
2092 * just ignore the return value so we don't screw up
2093 * people calling discard_extent.
2097 btrfs_put_bbio(bbio
);
2099 btrfs_bio_counter_dec(fs_info
);
2102 *actual_bytes
= discarded_bytes
;
2105 if (ret
== -EOPNOTSUPP
)
2110 /* Can return -ENOMEM */
2111 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2112 struct btrfs_fs_info
*fs_info
,
2113 u64 bytenr
, u64 num_bytes
, u64 parent
,
2114 u64 root_objectid
, u64 owner
, u64 offset
)
2116 int old_ref_mod
, new_ref_mod
;
2119 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
2120 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
2122 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2123 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
2125 root_objectid
, (int)owner
,
2126 BTRFS_ADD_DELAYED_REF
, NULL
,
2127 &old_ref_mod
, &new_ref_mod
);
2129 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
2131 root_objectid
, owner
, offset
,
2132 0, BTRFS_ADD_DELAYED_REF
,
2133 &old_ref_mod
, &new_ref_mod
);
2136 if (ret
== 0 && old_ref_mod
< 0 && new_ref_mod
>= 0)
2137 add_pinned_bytes(fs_info
, -num_bytes
, owner
, root_objectid
);
2142 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2143 struct btrfs_fs_info
*fs_info
,
2144 struct btrfs_delayed_ref_node
*node
,
2145 u64 parent
, u64 root_objectid
,
2146 u64 owner
, u64 offset
, int refs_to_add
,
2147 struct btrfs_delayed_extent_op
*extent_op
)
2149 struct btrfs_path
*path
;
2150 struct extent_buffer
*leaf
;
2151 struct btrfs_extent_item
*item
;
2152 struct btrfs_key key
;
2153 u64 bytenr
= node
->bytenr
;
2154 u64 num_bytes
= node
->num_bytes
;
2158 path
= btrfs_alloc_path();
2162 path
->reada
= READA_FORWARD
;
2163 path
->leave_spinning
= 1;
2164 /* this will setup the path even if it fails to insert the back ref */
2165 ret
= insert_inline_extent_backref(trans
, fs_info
, path
, bytenr
,
2166 num_bytes
, parent
, root_objectid
,
2168 refs_to_add
, extent_op
);
2169 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
2173 * Ok we had -EAGAIN which means we didn't have space to insert and
2174 * inline extent ref, so just update the reference count and add a
2177 leaf
= path
->nodes
[0];
2178 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2179 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2180 refs
= btrfs_extent_refs(leaf
, item
);
2181 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2183 __run_delayed_extent_op(extent_op
, leaf
, item
);
2185 btrfs_mark_buffer_dirty(leaf
);
2186 btrfs_release_path(path
);
2188 path
->reada
= READA_FORWARD
;
2189 path
->leave_spinning
= 1;
2190 /* now insert the actual backref */
2191 ret
= insert_extent_backref(trans
, fs_info
, path
, bytenr
, parent
,
2192 root_objectid
, owner
, offset
, refs_to_add
);
2194 btrfs_abort_transaction(trans
, ret
);
2196 btrfs_free_path(path
);
2200 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2201 struct btrfs_fs_info
*fs_info
,
2202 struct btrfs_delayed_ref_node
*node
,
2203 struct btrfs_delayed_extent_op
*extent_op
,
2204 int insert_reserved
)
2207 struct btrfs_delayed_data_ref
*ref
;
2208 struct btrfs_key ins
;
2213 ins
.objectid
= node
->bytenr
;
2214 ins
.offset
= node
->num_bytes
;
2215 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2217 ref
= btrfs_delayed_node_to_data_ref(node
);
2218 trace_run_delayed_data_ref(fs_info
, node
, ref
, node
->action
);
2220 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2221 parent
= ref
->parent
;
2222 ref_root
= ref
->root
;
2224 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2226 flags
|= extent_op
->flags_to_set
;
2227 ret
= alloc_reserved_file_extent(trans
, fs_info
,
2228 parent
, ref_root
, flags
,
2229 ref
->objectid
, ref
->offset
,
2230 &ins
, node
->ref_mod
);
2231 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2232 ret
= __btrfs_inc_extent_ref(trans
, fs_info
, node
, parent
,
2233 ref_root
, ref
->objectid
,
2234 ref
->offset
, node
->ref_mod
,
2236 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2237 ret
= __btrfs_free_extent(trans
, fs_info
, node
, parent
,
2238 ref_root
, ref
->objectid
,
2239 ref
->offset
, node
->ref_mod
,
2247 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2248 struct extent_buffer
*leaf
,
2249 struct btrfs_extent_item
*ei
)
2251 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2252 if (extent_op
->update_flags
) {
2253 flags
|= extent_op
->flags_to_set
;
2254 btrfs_set_extent_flags(leaf
, ei
, flags
);
2257 if (extent_op
->update_key
) {
2258 struct btrfs_tree_block_info
*bi
;
2259 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2260 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2261 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2265 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2266 struct btrfs_fs_info
*fs_info
,
2267 struct btrfs_delayed_ref_node
*node
,
2268 struct btrfs_delayed_extent_op
*extent_op
)
2270 struct btrfs_key key
;
2271 struct btrfs_path
*path
;
2272 struct btrfs_extent_item
*ei
;
2273 struct extent_buffer
*leaf
;
2277 int metadata
= !extent_op
->is_data
;
2282 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2285 path
= btrfs_alloc_path();
2289 key
.objectid
= node
->bytenr
;
2292 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2293 key
.offset
= extent_op
->level
;
2295 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2296 key
.offset
= node
->num_bytes
;
2300 path
->reada
= READA_FORWARD
;
2301 path
->leave_spinning
= 1;
2302 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 1);
2309 if (path
->slots
[0] > 0) {
2311 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2313 if (key
.objectid
== node
->bytenr
&&
2314 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2315 key
.offset
== node
->num_bytes
)
2319 btrfs_release_path(path
);
2322 key
.objectid
= node
->bytenr
;
2323 key
.offset
= node
->num_bytes
;
2324 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2333 leaf
= path
->nodes
[0];
2334 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2335 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2336 if (item_size
< sizeof(*ei
)) {
2337 ret
= convert_extent_item_v0(trans
, fs_info
, path
, (u64
)-1, 0);
2342 leaf
= path
->nodes
[0];
2343 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2346 BUG_ON(item_size
< sizeof(*ei
));
2347 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2348 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2350 btrfs_mark_buffer_dirty(leaf
);
2352 btrfs_free_path(path
);
2356 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2357 struct btrfs_fs_info
*fs_info
,
2358 struct btrfs_delayed_ref_node
*node
,
2359 struct btrfs_delayed_extent_op
*extent_op
,
2360 int insert_reserved
)
2363 struct btrfs_delayed_tree_ref
*ref
;
2364 struct btrfs_key ins
;
2367 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
2369 ref
= btrfs_delayed_node_to_tree_ref(node
);
2370 trace_run_delayed_tree_ref(fs_info
, node
, ref
, node
->action
);
2372 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2373 parent
= ref
->parent
;
2374 ref_root
= ref
->root
;
2376 ins
.objectid
= node
->bytenr
;
2377 if (skinny_metadata
) {
2378 ins
.offset
= ref
->level
;
2379 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2381 ins
.offset
= node
->num_bytes
;
2382 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2385 if (node
->ref_mod
!= 1) {
2387 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2388 node
->bytenr
, node
->ref_mod
, node
->action
, ref_root
,
2392 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2393 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2394 ret
= alloc_reserved_tree_block(trans
, fs_info
,
2396 extent_op
->flags_to_set
,
2399 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2400 ret
= __btrfs_inc_extent_ref(trans
, fs_info
, node
,
2404 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2405 ret
= __btrfs_free_extent(trans
, fs_info
, node
,
2407 ref
->level
, 0, 1, extent_op
);
2414 /* helper function to actually process a single delayed ref entry */
2415 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2416 struct btrfs_fs_info
*fs_info
,
2417 struct btrfs_delayed_ref_node
*node
,
2418 struct btrfs_delayed_extent_op
*extent_op
,
2419 int insert_reserved
)
2423 if (trans
->aborted
) {
2424 if (insert_reserved
)
2425 btrfs_pin_extent(fs_info
, node
->bytenr
,
2426 node
->num_bytes
, 1);
2430 if (btrfs_delayed_ref_is_head(node
)) {
2431 struct btrfs_delayed_ref_head
*head
;
2433 * we've hit the end of the chain and we were supposed
2434 * to insert this extent into the tree. But, it got
2435 * deleted before we ever needed to insert it, so all
2436 * we have to do is clean up the accounting
2439 head
= btrfs_delayed_node_to_head(node
);
2440 trace_run_delayed_ref_head(fs_info
, node
, head
, node
->action
);
2442 if (head
->total_ref_mod
< 0) {
2443 struct btrfs_block_group_cache
*cache
;
2445 cache
= btrfs_lookup_block_group(fs_info
, node
->bytenr
);
2447 percpu_counter_add(&cache
->space_info
->total_bytes_pinned
,
2449 btrfs_put_block_group(cache
);
2452 if (insert_reserved
) {
2453 btrfs_pin_extent(fs_info
, node
->bytenr
,
2454 node
->num_bytes
, 1);
2455 if (head
->is_data
) {
2456 ret
= btrfs_del_csums(trans
, fs_info
,
2462 /* Also free its reserved qgroup space */
2463 btrfs_qgroup_free_delayed_ref(fs_info
, head
->qgroup_ref_root
,
2464 head
->qgroup_reserved
);
2468 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2469 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2470 ret
= run_delayed_tree_ref(trans
, fs_info
, node
, extent_op
,
2472 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2473 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2474 ret
= run_delayed_data_ref(trans
, fs_info
, node
, extent_op
,
2481 static inline struct btrfs_delayed_ref_node
*
2482 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2484 struct btrfs_delayed_ref_node
*ref
;
2486 if (list_empty(&head
->ref_list
))
2490 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2491 * This is to prevent a ref count from going down to zero, which deletes
2492 * the extent item from the extent tree, when there still are references
2493 * to add, which would fail because they would not find the extent item.
2495 if (!list_empty(&head
->ref_add_list
))
2496 return list_first_entry(&head
->ref_add_list
,
2497 struct btrfs_delayed_ref_node
, add_list
);
2499 ref
= list_first_entry(&head
->ref_list
, struct btrfs_delayed_ref_node
,
2501 ASSERT(list_empty(&ref
->add_list
));
2506 * Returns 0 on success or if called with an already aborted transaction.
2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2509 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2510 struct btrfs_fs_info
*fs_info
,
2513 struct btrfs_delayed_ref_root
*delayed_refs
;
2514 struct btrfs_delayed_ref_node
*ref
;
2515 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2516 struct btrfs_delayed_extent_op
*extent_op
;
2517 ktime_t start
= ktime_get();
2519 unsigned long count
= 0;
2520 unsigned long actual_count
= 0;
2521 int must_insert_reserved
= 0;
2523 delayed_refs
= &trans
->transaction
->delayed_refs
;
2529 spin_lock(&delayed_refs
->lock
);
2530 locked_ref
= btrfs_select_ref_head(trans
);
2532 spin_unlock(&delayed_refs
->lock
);
2536 /* grab the lock that says we are going to process
2537 * all the refs for this head */
2538 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2539 spin_unlock(&delayed_refs
->lock
);
2541 * we may have dropped the spin lock to get the head
2542 * mutex lock, and that might have given someone else
2543 * time to free the head. If that's true, it has been
2544 * removed from our list and we can move on.
2546 if (ret
== -EAGAIN
) {
2554 * We need to try and merge add/drops of the same ref since we
2555 * can run into issues with relocate dropping the implicit ref
2556 * and then it being added back again before the drop can
2557 * finish. If we merged anything we need to re-loop so we can
2559 * Or we can get node references of the same type that weren't
2560 * merged when created due to bumps in the tree mod seq, and
2561 * we need to merge them to prevent adding an inline extent
2562 * backref before dropping it (triggering a BUG_ON at
2563 * insert_inline_extent_backref()).
2565 spin_lock(&locked_ref
->lock
);
2566 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2570 * locked_ref is the head node, so we have to go one
2571 * node back for any delayed ref updates
2573 ref
= select_delayed_ref(locked_ref
);
2575 if (ref
&& ref
->seq
&&
2576 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2577 spin_unlock(&locked_ref
->lock
);
2578 spin_lock(&delayed_refs
->lock
);
2579 locked_ref
->processing
= 0;
2580 delayed_refs
->num_heads_ready
++;
2581 spin_unlock(&delayed_refs
->lock
);
2582 btrfs_delayed_ref_unlock(locked_ref
);
2590 * record the must insert reserved flag before we
2591 * drop the spin lock.
2593 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2594 locked_ref
->must_insert_reserved
= 0;
2596 extent_op
= locked_ref
->extent_op
;
2597 locked_ref
->extent_op
= NULL
;
2602 /* All delayed refs have been processed, Go ahead
2603 * and send the head node to run_one_delayed_ref,
2604 * so that any accounting fixes can happen
2606 ref
= &locked_ref
->node
;
2608 if (extent_op
&& must_insert_reserved
) {
2609 btrfs_free_delayed_extent_op(extent_op
);
2614 spin_unlock(&locked_ref
->lock
);
2615 ret
= run_delayed_extent_op(trans
, fs_info
,
2617 btrfs_free_delayed_extent_op(extent_op
);
2621 * Need to reset must_insert_reserved if
2622 * there was an error so the abort stuff
2623 * can cleanup the reserved space
2626 if (must_insert_reserved
)
2627 locked_ref
->must_insert_reserved
= 1;
2628 spin_lock(&delayed_refs
->lock
);
2629 locked_ref
->processing
= 0;
2630 delayed_refs
->num_heads_ready
++;
2631 spin_unlock(&delayed_refs
->lock
);
2632 btrfs_debug(fs_info
,
2633 "run_delayed_extent_op returned %d",
2635 btrfs_delayed_ref_unlock(locked_ref
);
2642 * Need to drop our head ref lock and re-acquire the
2643 * delayed ref lock and then re-check to make sure
2646 spin_unlock(&locked_ref
->lock
);
2647 spin_lock(&delayed_refs
->lock
);
2648 spin_lock(&locked_ref
->lock
);
2649 if (!list_empty(&locked_ref
->ref_list
) ||
2650 locked_ref
->extent_op
) {
2651 spin_unlock(&locked_ref
->lock
);
2652 spin_unlock(&delayed_refs
->lock
);
2656 delayed_refs
->num_heads
--;
2657 rb_erase(&locked_ref
->href_node
,
2658 &delayed_refs
->href_root
);
2659 spin_unlock(&delayed_refs
->lock
);
2663 list_del(&ref
->list
);
2664 if (!list_empty(&ref
->add_list
))
2665 list_del(&ref
->add_list
);
2667 atomic_dec(&delayed_refs
->num_entries
);
2669 if (!btrfs_delayed_ref_is_head(ref
)) {
2671 * when we play the delayed ref, also correct the
2674 switch (ref
->action
) {
2675 case BTRFS_ADD_DELAYED_REF
:
2676 case BTRFS_ADD_DELAYED_EXTENT
:
2677 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2679 case BTRFS_DROP_DELAYED_REF
:
2680 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2686 spin_unlock(&locked_ref
->lock
);
2688 ret
= run_one_delayed_ref(trans
, fs_info
, ref
, extent_op
,
2689 must_insert_reserved
);
2691 btrfs_free_delayed_extent_op(extent_op
);
2693 spin_lock(&delayed_refs
->lock
);
2694 locked_ref
->processing
= 0;
2695 delayed_refs
->num_heads_ready
++;
2696 spin_unlock(&delayed_refs
->lock
);
2697 btrfs_delayed_ref_unlock(locked_ref
);
2698 btrfs_put_delayed_ref(ref
);
2699 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d",
2705 * If this node is a head, that means all the refs in this head
2706 * have been dealt with, and we will pick the next head to deal
2707 * with, so we must unlock the head and drop it from the cluster
2708 * list before we release it.
2710 if (btrfs_delayed_ref_is_head(ref
)) {
2711 if (locked_ref
->is_data
&&
2712 locked_ref
->total_ref_mod
< 0) {
2713 spin_lock(&delayed_refs
->lock
);
2714 delayed_refs
->pending_csums
-= ref
->num_bytes
;
2715 spin_unlock(&delayed_refs
->lock
);
2717 btrfs_delayed_ref_unlock(locked_ref
);
2720 btrfs_put_delayed_ref(ref
);
2726 * We don't want to include ref heads since we can have empty ref heads
2727 * and those will drastically skew our runtime down since we just do
2728 * accounting, no actual extent tree updates.
2730 if (actual_count
> 0) {
2731 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2735 * We weigh the current average higher than our current runtime
2736 * to avoid large swings in the average.
2738 spin_lock(&delayed_refs
->lock
);
2739 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2740 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2741 spin_unlock(&delayed_refs
->lock
);
2746 #ifdef SCRAMBLE_DELAYED_REFS
2748 * Normally delayed refs get processed in ascending bytenr order. This
2749 * correlates in most cases to the order added. To expose dependencies on this
2750 * order, we start to process the tree in the middle instead of the beginning
2752 static u64
find_middle(struct rb_root
*root
)
2754 struct rb_node
*n
= root
->rb_node
;
2755 struct btrfs_delayed_ref_node
*entry
;
2758 u64 first
= 0, last
= 0;
2762 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2763 first
= entry
->bytenr
;
2767 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2768 last
= entry
->bytenr
;
2773 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2774 WARN_ON(!entry
->in_tree
);
2776 middle
= entry
->bytenr
;
2789 static inline u64
heads_to_leaves(struct btrfs_fs_info
*fs_info
, u64 heads
)
2793 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2794 sizeof(struct btrfs_extent_inline_ref
));
2795 if (!btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2796 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2799 * We don't ever fill up leaves all the way so multiply by 2 just to be
2800 * closer to what we're really going to want to use.
2802 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(fs_info
));
2806 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2807 * would require to store the csums for that many bytes.
2809 u64
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info
*fs_info
, u64 csum_bytes
)
2812 u64 num_csums_per_leaf
;
2815 csum_size
= BTRFS_MAX_ITEM_SIZE(fs_info
);
2816 num_csums_per_leaf
= div64_u64(csum_size
,
2817 (u64
)btrfs_super_csum_size(fs_info
->super_copy
));
2818 num_csums
= div64_u64(csum_bytes
, fs_info
->sectorsize
);
2819 num_csums
+= num_csums_per_leaf
- 1;
2820 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2824 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2825 struct btrfs_fs_info
*fs_info
)
2827 struct btrfs_block_rsv
*global_rsv
;
2828 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2829 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2830 u64 num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2831 u64 num_bytes
, num_dirty_bgs_bytes
;
2834 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2835 num_heads
= heads_to_leaves(fs_info
, num_heads
);
2837 num_bytes
+= (num_heads
- 1) * fs_info
->nodesize
;
2839 num_bytes
+= btrfs_csum_bytes_to_leaves(fs_info
, csum_bytes
) *
2841 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(fs_info
,
2843 global_rsv
= &fs_info
->global_block_rsv
;
2846 * If we can't allocate any more chunks lets make sure we have _lots_ of
2847 * wiggle room since running delayed refs can create more delayed refs.
2849 if (global_rsv
->space_info
->full
) {
2850 num_dirty_bgs_bytes
<<= 1;
2854 spin_lock(&global_rsv
->lock
);
2855 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2857 spin_unlock(&global_rsv
->lock
);
2861 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2862 struct btrfs_fs_info
*fs_info
)
2865 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2870 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2871 val
= num_entries
* avg_runtime
;
2872 if (val
>= NSEC_PER_SEC
)
2874 if (val
>= NSEC_PER_SEC
/ 2)
2877 return btrfs_check_space_for_delayed_refs(trans
, fs_info
);
2880 struct async_delayed_refs
{
2881 struct btrfs_root
*root
;
2886 struct completion wait
;
2887 struct btrfs_work work
;
2890 static inline struct async_delayed_refs
*
2891 to_async_delayed_refs(struct btrfs_work
*work
)
2893 return container_of(work
, struct async_delayed_refs
, work
);
2896 static void delayed_ref_async_start(struct btrfs_work
*work
)
2898 struct async_delayed_refs
*async
= to_async_delayed_refs(work
);
2899 struct btrfs_trans_handle
*trans
;
2900 struct btrfs_fs_info
*fs_info
= async
->root
->fs_info
;
2903 /* if the commit is already started, we don't need to wait here */
2904 if (btrfs_transaction_blocked(fs_info
))
2907 trans
= btrfs_join_transaction(async
->root
);
2908 if (IS_ERR(trans
)) {
2909 async
->error
= PTR_ERR(trans
);
2914 * trans->sync means that when we call end_transaction, we won't
2915 * wait on delayed refs
2919 /* Don't bother flushing if we got into a different transaction */
2920 if (trans
->transid
> async
->transid
)
2923 ret
= btrfs_run_delayed_refs(trans
, fs_info
, async
->count
);
2927 ret
= btrfs_end_transaction(trans
);
2928 if (ret
&& !async
->error
)
2932 complete(&async
->wait
);
2937 int btrfs_async_run_delayed_refs(struct btrfs_fs_info
*fs_info
,
2938 unsigned long count
, u64 transid
, int wait
)
2940 struct async_delayed_refs
*async
;
2943 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2947 async
->root
= fs_info
->tree_root
;
2948 async
->count
= count
;
2950 async
->transid
= transid
;
2955 init_completion(&async
->wait
);
2957 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2958 delayed_ref_async_start
, NULL
, NULL
);
2960 btrfs_queue_work(fs_info
->extent_workers
, &async
->work
);
2963 wait_for_completion(&async
->wait
);
2972 * this starts processing the delayed reference count updates and
2973 * extent insertions we have queued up so far. count can be
2974 * 0, which means to process everything in the tree at the start
2975 * of the run (but not newly added entries), or it can be some target
2976 * number you'd like to process.
2978 * Returns 0 on success or if called with an aborted transaction
2979 * Returns <0 on error and aborts the transaction
2981 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2982 struct btrfs_fs_info
*fs_info
, unsigned long count
)
2984 struct rb_node
*node
;
2985 struct btrfs_delayed_ref_root
*delayed_refs
;
2986 struct btrfs_delayed_ref_head
*head
;
2988 int run_all
= count
== (unsigned long)-1;
2989 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
2991 /* We'll clean this up in btrfs_cleanup_transaction */
2995 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE
, &fs_info
->flags
))
2998 delayed_refs
= &trans
->transaction
->delayed_refs
;
3000 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
3003 #ifdef SCRAMBLE_DELAYED_REFS
3004 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
3006 trans
->can_flush_pending_bgs
= false;
3007 ret
= __btrfs_run_delayed_refs(trans
, fs_info
, count
);
3009 btrfs_abort_transaction(trans
, ret
);
3014 if (!list_empty(&trans
->new_bgs
))
3015 btrfs_create_pending_block_groups(trans
, fs_info
);
3017 spin_lock(&delayed_refs
->lock
);
3018 node
= rb_first(&delayed_refs
->href_root
);
3020 spin_unlock(&delayed_refs
->lock
);
3025 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
3027 if (btrfs_delayed_ref_is_head(&head
->node
)) {
3028 struct btrfs_delayed_ref_node
*ref
;
3031 refcount_inc(&ref
->refs
);
3033 spin_unlock(&delayed_refs
->lock
);
3035 * Mutex was contended, block until it's
3036 * released and try again
3038 mutex_lock(&head
->mutex
);
3039 mutex_unlock(&head
->mutex
);
3041 btrfs_put_delayed_ref(ref
);
3047 node
= rb_next(node
);
3049 spin_unlock(&delayed_refs
->lock
);
3054 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
3058 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
3059 struct btrfs_fs_info
*fs_info
,
3060 u64 bytenr
, u64 num_bytes
, u64 flags
,
3061 int level
, int is_data
)
3063 struct btrfs_delayed_extent_op
*extent_op
;
3066 extent_op
= btrfs_alloc_delayed_extent_op();
3070 extent_op
->flags_to_set
= flags
;
3071 extent_op
->update_flags
= true;
3072 extent_op
->update_key
= false;
3073 extent_op
->is_data
= is_data
? true : false;
3074 extent_op
->level
= level
;
3076 ret
= btrfs_add_delayed_extent_op(fs_info
, trans
, bytenr
,
3077 num_bytes
, extent_op
);
3079 btrfs_free_delayed_extent_op(extent_op
);
3083 static noinline
int check_delayed_ref(struct btrfs_root
*root
,
3084 struct btrfs_path
*path
,
3085 u64 objectid
, u64 offset
, u64 bytenr
)
3087 struct btrfs_delayed_ref_head
*head
;
3088 struct btrfs_delayed_ref_node
*ref
;
3089 struct btrfs_delayed_data_ref
*data_ref
;
3090 struct btrfs_delayed_ref_root
*delayed_refs
;
3091 struct btrfs_transaction
*cur_trans
;
3094 cur_trans
= root
->fs_info
->running_transaction
;
3098 delayed_refs
= &cur_trans
->delayed_refs
;
3099 spin_lock(&delayed_refs
->lock
);
3100 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
3102 spin_unlock(&delayed_refs
->lock
);
3106 if (!mutex_trylock(&head
->mutex
)) {
3107 refcount_inc(&head
->node
.refs
);
3108 spin_unlock(&delayed_refs
->lock
);
3110 btrfs_release_path(path
);
3113 * Mutex was contended, block until it's released and let
3116 mutex_lock(&head
->mutex
);
3117 mutex_unlock(&head
->mutex
);
3118 btrfs_put_delayed_ref(&head
->node
);
3121 spin_unlock(&delayed_refs
->lock
);
3123 spin_lock(&head
->lock
);
3124 list_for_each_entry(ref
, &head
->ref_list
, list
) {
3125 /* If it's a shared ref we know a cross reference exists */
3126 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
3131 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
3134 * If our ref doesn't match the one we're currently looking at
3135 * then we have a cross reference.
3137 if (data_ref
->root
!= root
->root_key
.objectid
||
3138 data_ref
->objectid
!= objectid
||
3139 data_ref
->offset
!= offset
) {
3144 spin_unlock(&head
->lock
);
3145 mutex_unlock(&head
->mutex
);
3149 static noinline
int check_committed_ref(struct btrfs_root
*root
,
3150 struct btrfs_path
*path
,
3151 u64 objectid
, u64 offset
, u64 bytenr
)
3153 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3154 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3155 struct extent_buffer
*leaf
;
3156 struct btrfs_extent_data_ref
*ref
;
3157 struct btrfs_extent_inline_ref
*iref
;
3158 struct btrfs_extent_item
*ei
;
3159 struct btrfs_key key
;
3163 key
.objectid
= bytenr
;
3164 key
.offset
= (u64
)-1;
3165 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3167 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
3170 BUG_ON(ret
== 0); /* Corruption */
3173 if (path
->slots
[0] == 0)
3177 leaf
= path
->nodes
[0];
3178 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3180 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
3184 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3185 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3186 if (item_size
< sizeof(*ei
)) {
3187 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
3191 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
3193 if (item_size
!= sizeof(*ei
) +
3194 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
3197 if (btrfs_extent_generation(leaf
, ei
) <=
3198 btrfs_root_last_snapshot(&root
->root_item
))
3201 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3202 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
3203 BTRFS_EXTENT_DATA_REF_KEY
)
3206 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3207 if (btrfs_extent_refs(leaf
, ei
) !=
3208 btrfs_extent_data_ref_count(leaf
, ref
) ||
3209 btrfs_extent_data_ref_root(leaf
, ref
) !=
3210 root
->root_key
.objectid
||
3211 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3212 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3220 int btrfs_cross_ref_exist(struct btrfs_root
*root
, u64 objectid
, u64 offset
,
3223 struct btrfs_path
*path
;
3227 path
= btrfs_alloc_path();
3232 ret
= check_committed_ref(root
, path
, objectid
,
3234 if (ret
&& ret
!= -ENOENT
)
3237 ret2
= check_delayed_ref(root
, path
, objectid
,
3239 } while (ret2
== -EAGAIN
);
3241 if (ret2
&& ret2
!= -ENOENT
) {
3246 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3249 btrfs_free_path(path
);
3250 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3255 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3256 struct btrfs_root
*root
,
3257 struct extent_buffer
*buf
,
3258 int full_backref
, int inc
)
3260 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3266 struct btrfs_key key
;
3267 struct btrfs_file_extent_item
*fi
;
3271 int (*process_func
)(struct btrfs_trans_handle
*,
3272 struct btrfs_fs_info
*,
3273 u64
, u64
, u64
, u64
, u64
, u64
);
3276 if (btrfs_is_testing(fs_info
))
3279 ref_root
= btrfs_header_owner(buf
);
3280 nritems
= btrfs_header_nritems(buf
);
3281 level
= btrfs_header_level(buf
);
3283 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3287 process_func
= btrfs_inc_extent_ref
;
3289 process_func
= btrfs_free_extent
;
3292 parent
= buf
->start
;
3296 for (i
= 0; i
< nritems
; i
++) {
3298 btrfs_item_key_to_cpu(buf
, &key
, i
);
3299 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3301 fi
= btrfs_item_ptr(buf
, i
,
3302 struct btrfs_file_extent_item
);
3303 if (btrfs_file_extent_type(buf
, fi
) ==
3304 BTRFS_FILE_EXTENT_INLINE
)
3306 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3310 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3311 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3312 ret
= process_func(trans
, fs_info
, bytenr
, num_bytes
,
3313 parent
, ref_root
, key
.objectid
,
3318 bytenr
= btrfs_node_blockptr(buf
, i
);
3319 num_bytes
= fs_info
->nodesize
;
3320 ret
= process_func(trans
, fs_info
, bytenr
, num_bytes
,
3321 parent
, ref_root
, level
- 1, 0);
3331 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3332 struct extent_buffer
*buf
, int full_backref
)
3334 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3337 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3338 struct extent_buffer
*buf
, int full_backref
)
3340 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3343 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3344 struct btrfs_fs_info
*fs_info
,
3345 struct btrfs_path
*path
,
3346 struct btrfs_block_group_cache
*cache
)
3349 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3351 struct extent_buffer
*leaf
;
3353 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3360 leaf
= path
->nodes
[0];
3361 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3362 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3363 btrfs_mark_buffer_dirty(leaf
);
3365 btrfs_release_path(path
);
3370 static struct btrfs_block_group_cache
*
3371 next_block_group(struct btrfs_fs_info
*fs_info
,
3372 struct btrfs_block_group_cache
*cache
)
3374 struct rb_node
*node
;
3376 spin_lock(&fs_info
->block_group_cache_lock
);
3378 /* If our block group was removed, we need a full search. */
3379 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3380 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3382 spin_unlock(&fs_info
->block_group_cache_lock
);
3383 btrfs_put_block_group(cache
);
3384 cache
= btrfs_lookup_first_block_group(fs_info
, next_bytenr
); return cache
;
3386 node
= rb_next(&cache
->cache_node
);
3387 btrfs_put_block_group(cache
);
3389 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3391 btrfs_get_block_group(cache
);
3394 spin_unlock(&fs_info
->block_group_cache_lock
);
3398 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3399 struct btrfs_trans_handle
*trans
,
3400 struct btrfs_path
*path
)
3402 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3403 struct btrfs_root
*root
= fs_info
->tree_root
;
3404 struct inode
*inode
= NULL
;
3405 struct extent_changeset
*data_reserved
= NULL
;
3407 int dcs
= BTRFS_DC_ERROR
;
3413 * If this block group is smaller than 100 megs don't bother caching the
3416 if (block_group
->key
.offset
< (100 * SZ_1M
)) {
3417 spin_lock(&block_group
->lock
);
3418 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3419 spin_unlock(&block_group
->lock
);
3426 inode
= lookup_free_space_inode(fs_info
, block_group
, path
);
3427 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3428 ret
= PTR_ERR(inode
);
3429 btrfs_release_path(path
);
3433 if (IS_ERR(inode
)) {
3437 if (block_group
->ro
)
3440 ret
= create_free_space_inode(fs_info
, trans
, block_group
,
3447 /* We've already setup this transaction, go ahead and exit */
3448 if (block_group
->cache_generation
== trans
->transid
&&
3449 i_size_read(inode
)) {
3450 dcs
= BTRFS_DC_SETUP
;
3455 * We want to set the generation to 0, that way if anything goes wrong
3456 * from here on out we know not to trust this cache when we load up next
3459 BTRFS_I(inode
)->generation
= 0;
3460 ret
= btrfs_update_inode(trans
, root
, inode
);
3463 * So theoretically we could recover from this, simply set the
3464 * super cache generation to 0 so we know to invalidate the
3465 * cache, but then we'd have to keep track of the block groups
3466 * that fail this way so we know we _have_ to reset this cache
3467 * before the next commit or risk reading stale cache. So to
3468 * limit our exposure to horrible edge cases lets just abort the
3469 * transaction, this only happens in really bad situations
3472 btrfs_abort_transaction(trans
, ret
);
3477 if (i_size_read(inode
) > 0) {
3478 ret
= btrfs_check_trunc_cache_free_space(fs_info
,
3479 &fs_info
->global_block_rsv
);
3483 ret
= btrfs_truncate_free_space_cache(trans
, NULL
, inode
);
3488 spin_lock(&block_group
->lock
);
3489 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3490 !btrfs_test_opt(fs_info
, SPACE_CACHE
)) {
3492 * don't bother trying to write stuff out _if_
3493 * a) we're not cached,
3494 * b) we're with nospace_cache mount option,
3495 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3497 dcs
= BTRFS_DC_WRITTEN
;
3498 spin_unlock(&block_group
->lock
);
3501 spin_unlock(&block_group
->lock
);
3504 * We hit an ENOSPC when setting up the cache in this transaction, just
3505 * skip doing the setup, we've already cleared the cache so we're safe.
3507 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
3513 * Try to preallocate enough space based on how big the block group is.
3514 * Keep in mind this has to include any pinned space which could end up
3515 * taking up quite a bit since it's not folded into the other space
3518 num_pages
= div_u64(block_group
->key
.offset
, SZ_256M
);
3523 num_pages
*= PAGE_SIZE
;
3525 ret
= btrfs_check_data_free_space(inode
, &data_reserved
, 0, num_pages
);
3529 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3530 num_pages
, num_pages
,
3533 * Our cache requires contiguous chunks so that we don't modify a bunch
3534 * of metadata or split extents when writing the cache out, which means
3535 * we can enospc if we are heavily fragmented in addition to just normal
3536 * out of space conditions. So if we hit this just skip setting up any
3537 * other block groups for this transaction, maybe we'll unpin enough
3538 * space the next time around.
3541 dcs
= BTRFS_DC_SETUP
;
3542 else if (ret
== -ENOSPC
)
3543 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
3548 btrfs_release_path(path
);
3550 spin_lock(&block_group
->lock
);
3551 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3552 block_group
->cache_generation
= trans
->transid
;
3553 block_group
->disk_cache_state
= dcs
;
3554 spin_unlock(&block_group
->lock
);
3556 extent_changeset_free(data_reserved
);
3560 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3561 struct btrfs_fs_info
*fs_info
)
3563 struct btrfs_block_group_cache
*cache
, *tmp
;
3564 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3565 struct btrfs_path
*path
;
3567 if (list_empty(&cur_trans
->dirty_bgs
) ||
3568 !btrfs_test_opt(fs_info
, SPACE_CACHE
))
3571 path
= btrfs_alloc_path();
3575 /* Could add new block groups, use _safe just in case */
3576 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3578 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3579 cache_save_setup(cache
, trans
, path
);
3582 btrfs_free_path(path
);
3587 * transaction commit does final block group cache writeback during a
3588 * critical section where nothing is allowed to change the FS. This is
3589 * required in order for the cache to actually match the block group,
3590 * but can introduce a lot of latency into the commit.
3592 * So, btrfs_start_dirty_block_groups is here to kick off block group
3593 * cache IO. There's a chance we'll have to redo some of it if the
3594 * block group changes again during the commit, but it greatly reduces
3595 * the commit latency by getting rid of the easy block groups while
3596 * we're still allowing others to join the commit.
3598 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3599 struct btrfs_fs_info
*fs_info
)
3601 struct btrfs_block_group_cache
*cache
;
3602 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3605 struct btrfs_path
*path
= NULL
;
3607 struct list_head
*io
= &cur_trans
->io_bgs
;
3608 int num_started
= 0;
3611 spin_lock(&cur_trans
->dirty_bgs_lock
);
3612 if (list_empty(&cur_trans
->dirty_bgs
)) {
3613 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3616 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3617 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3621 * make sure all the block groups on our dirty list actually
3624 btrfs_create_pending_block_groups(trans
, fs_info
);
3627 path
= btrfs_alloc_path();
3633 * cache_write_mutex is here only to save us from balance or automatic
3634 * removal of empty block groups deleting this block group while we are
3635 * writing out the cache
3637 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3638 while (!list_empty(&dirty
)) {
3639 cache
= list_first_entry(&dirty
,
3640 struct btrfs_block_group_cache
,
3643 * this can happen if something re-dirties a block
3644 * group that is already under IO. Just wait for it to
3645 * finish and then do it all again
3647 if (!list_empty(&cache
->io_list
)) {
3648 list_del_init(&cache
->io_list
);
3649 btrfs_wait_cache_io(trans
, cache
, path
);
3650 btrfs_put_block_group(cache
);
3655 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3656 * if it should update the cache_state. Don't delete
3657 * until after we wait.
3659 * Since we're not running in the commit critical section
3660 * we need the dirty_bgs_lock to protect from update_block_group
3662 spin_lock(&cur_trans
->dirty_bgs_lock
);
3663 list_del_init(&cache
->dirty_list
);
3664 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3668 cache_save_setup(cache
, trans
, path
);
3670 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3671 cache
->io_ctl
.inode
= NULL
;
3672 ret
= btrfs_write_out_cache(fs_info
, trans
,
3674 if (ret
== 0 && cache
->io_ctl
.inode
) {
3679 * the cache_write_mutex is protecting
3682 list_add_tail(&cache
->io_list
, io
);
3685 * if we failed to write the cache, the
3686 * generation will be bad and life goes on
3692 ret
= write_one_cache_group(trans
, fs_info
,
3695 * Our block group might still be attached to the list
3696 * of new block groups in the transaction handle of some
3697 * other task (struct btrfs_trans_handle->new_bgs). This
3698 * means its block group item isn't yet in the extent
3699 * tree. If this happens ignore the error, as we will
3700 * try again later in the critical section of the
3701 * transaction commit.
3703 if (ret
== -ENOENT
) {
3705 spin_lock(&cur_trans
->dirty_bgs_lock
);
3706 if (list_empty(&cache
->dirty_list
)) {
3707 list_add_tail(&cache
->dirty_list
,
3708 &cur_trans
->dirty_bgs
);
3709 btrfs_get_block_group(cache
);
3711 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3713 btrfs_abort_transaction(trans
, ret
);
3717 /* if its not on the io list, we need to put the block group */
3719 btrfs_put_block_group(cache
);
3725 * Avoid blocking other tasks for too long. It might even save
3726 * us from writing caches for block groups that are going to be
3729 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3730 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3732 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3735 * go through delayed refs for all the stuff we've just kicked off
3736 * and then loop back (just once)
3738 ret
= btrfs_run_delayed_refs(trans
, fs_info
, 0);
3739 if (!ret
&& loops
== 0) {
3741 spin_lock(&cur_trans
->dirty_bgs_lock
);
3742 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3744 * dirty_bgs_lock protects us from concurrent block group
3745 * deletes too (not just cache_write_mutex).
3747 if (!list_empty(&dirty
)) {
3748 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3751 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3752 } else if (ret
< 0) {
3753 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
3756 btrfs_free_path(path
);
3760 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3761 struct btrfs_fs_info
*fs_info
)
3763 struct btrfs_block_group_cache
*cache
;
3764 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3767 struct btrfs_path
*path
;
3768 struct list_head
*io
= &cur_trans
->io_bgs
;
3769 int num_started
= 0;
3771 path
= btrfs_alloc_path();
3776 * Even though we are in the critical section of the transaction commit,
3777 * we can still have concurrent tasks adding elements to this
3778 * transaction's list of dirty block groups. These tasks correspond to
3779 * endio free space workers started when writeback finishes for a
3780 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3781 * allocate new block groups as a result of COWing nodes of the root
3782 * tree when updating the free space inode. The writeback for the space
3783 * caches is triggered by an earlier call to
3784 * btrfs_start_dirty_block_groups() and iterations of the following
3786 * Also we want to do the cache_save_setup first and then run the
3787 * delayed refs to make sure we have the best chance at doing this all
3790 spin_lock(&cur_trans
->dirty_bgs_lock
);
3791 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3792 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3793 struct btrfs_block_group_cache
,
3797 * this can happen if cache_save_setup re-dirties a block
3798 * group that is already under IO. Just wait for it to
3799 * finish and then do it all again
3801 if (!list_empty(&cache
->io_list
)) {
3802 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3803 list_del_init(&cache
->io_list
);
3804 btrfs_wait_cache_io(trans
, cache
, path
);
3805 btrfs_put_block_group(cache
);
3806 spin_lock(&cur_trans
->dirty_bgs_lock
);
3810 * don't remove from the dirty list until after we've waited
3813 list_del_init(&cache
->dirty_list
);
3814 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3817 cache_save_setup(cache
, trans
, path
);
3820 ret
= btrfs_run_delayed_refs(trans
, fs_info
,
3821 (unsigned long) -1);
3823 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3824 cache
->io_ctl
.inode
= NULL
;
3825 ret
= btrfs_write_out_cache(fs_info
, trans
,
3827 if (ret
== 0 && cache
->io_ctl
.inode
) {
3830 list_add_tail(&cache
->io_list
, io
);
3833 * if we failed to write the cache, the
3834 * generation will be bad and life goes on
3840 ret
= write_one_cache_group(trans
, fs_info
,
3843 * One of the free space endio workers might have
3844 * created a new block group while updating a free space
3845 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3846 * and hasn't released its transaction handle yet, in
3847 * which case the new block group is still attached to
3848 * its transaction handle and its creation has not
3849 * finished yet (no block group item in the extent tree
3850 * yet, etc). If this is the case, wait for all free
3851 * space endio workers to finish and retry. This is a
3852 * a very rare case so no need for a more efficient and
3855 if (ret
== -ENOENT
) {
3856 wait_event(cur_trans
->writer_wait
,
3857 atomic_read(&cur_trans
->num_writers
) == 1);
3858 ret
= write_one_cache_group(trans
, fs_info
,
3862 btrfs_abort_transaction(trans
, ret
);
3865 /* if its not on the io list, we need to put the block group */
3867 btrfs_put_block_group(cache
);
3868 spin_lock(&cur_trans
->dirty_bgs_lock
);
3870 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3872 while (!list_empty(io
)) {
3873 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3875 list_del_init(&cache
->io_list
);
3876 btrfs_wait_cache_io(trans
, cache
, path
);
3877 btrfs_put_block_group(cache
);
3880 btrfs_free_path(path
);
3884 int btrfs_extent_readonly(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3886 struct btrfs_block_group_cache
*block_group
;
3889 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
3890 if (!block_group
|| block_group
->ro
)
3893 btrfs_put_block_group(block_group
);
3897 bool btrfs_inc_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3899 struct btrfs_block_group_cache
*bg
;
3902 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3906 spin_lock(&bg
->lock
);
3910 atomic_inc(&bg
->nocow_writers
);
3911 spin_unlock(&bg
->lock
);
3913 /* no put on block group, done by btrfs_dec_nocow_writers */
3915 btrfs_put_block_group(bg
);
3921 void btrfs_dec_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3923 struct btrfs_block_group_cache
*bg
;
3925 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3927 if (atomic_dec_and_test(&bg
->nocow_writers
))
3928 wake_up_atomic_t(&bg
->nocow_writers
);
3930 * Once for our lookup and once for the lookup done by a previous call
3931 * to btrfs_inc_nocow_writers()
3933 btrfs_put_block_group(bg
);
3934 btrfs_put_block_group(bg
);
3937 static int btrfs_wait_nocow_writers_atomic_t(atomic_t
*a
)
3943 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache
*bg
)
3945 wait_on_atomic_t(&bg
->nocow_writers
,
3946 btrfs_wait_nocow_writers_atomic_t
,
3947 TASK_UNINTERRUPTIBLE
);
3950 static const char *alloc_name(u64 flags
)
3953 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3955 case BTRFS_BLOCK_GROUP_METADATA
:
3957 case BTRFS_BLOCK_GROUP_DATA
:
3959 case BTRFS_BLOCK_GROUP_SYSTEM
:
3963 return "invalid-combination";
3967 static int create_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3968 struct btrfs_space_info
**new)
3971 struct btrfs_space_info
*space_info
;
3975 space_info
= kzalloc(sizeof(*space_info
), GFP_NOFS
);
3979 ret
= percpu_counter_init(&space_info
->total_bytes_pinned
, 0,
3986 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3987 INIT_LIST_HEAD(&space_info
->block_groups
[i
]);
3988 init_rwsem(&space_info
->groups_sem
);
3989 spin_lock_init(&space_info
->lock
);
3990 space_info
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3991 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3992 init_waitqueue_head(&space_info
->wait
);
3993 INIT_LIST_HEAD(&space_info
->ro_bgs
);
3994 INIT_LIST_HEAD(&space_info
->tickets
);
3995 INIT_LIST_HEAD(&space_info
->priority_tickets
);
3997 ret
= kobject_init_and_add(&space_info
->kobj
, &space_info_ktype
,
3998 info
->space_info_kobj
, "%s",
3999 alloc_name(space_info
->flags
));
4001 percpu_counter_destroy(&space_info
->total_bytes_pinned
);
4007 list_add_rcu(&space_info
->list
, &info
->space_info
);
4008 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4009 info
->data_sinfo
= space_info
;
4014 static void update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
4015 u64 total_bytes
, u64 bytes_used
,
4017 struct btrfs_space_info
**space_info
)
4019 struct btrfs_space_info
*found
;
4022 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
4023 BTRFS_BLOCK_GROUP_RAID10
))
4028 found
= __find_space_info(info
, flags
);
4030 spin_lock(&found
->lock
);
4031 found
->total_bytes
+= total_bytes
;
4032 found
->disk_total
+= total_bytes
* factor
;
4033 found
->bytes_used
+= bytes_used
;
4034 found
->disk_used
+= bytes_used
* factor
;
4035 found
->bytes_readonly
+= bytes_readonly
;
4036 if (total_bytes
> 0)
4038 space_info_add_new_bytes(info
, found
, total_bytes
-
4039 bytes_used
- bytes_readonly
);
4040 spin_unlock(&found
->lock
);
4041 *space_info
= found
;
4044 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
4046 u64 extra_flags
= chunk_to_extended(flags
) &
4047 BTRFS_EXTENDED_PROFILE_MASK
;
4049 write_seqlock(&fs_info
->profiles_lock
);
4050 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4051 fs_info
->avail_data_alloc_bits
|= extra_flags
;
4052 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4053 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
4054 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4055 fs_info
->avail_system_alloc_bits
|= extra_flags
;
4056 write_sequnlock(&fs_info
->profiles_lock
);
4060 * returns target flags in extended format or 0 if restripe for this
4061 * chunk_type is not in progress
4063 * should be called with either volume_mutex or balance_lock held
4065 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
4067 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4073 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
4074 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4075 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
4076 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
4077 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4078 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
4079 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
4080 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4081 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
4088 * @flags: available profiles in extended format (see ctree.h)
4090 * Returns reduced profile in chunk format. If profile changing is in
4091 * progress (either running or paused) picks the target profile (if it's
4092 * already available), otherwise falls back to plain reducing.
4094 static u64
btrfs_reduce_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 flags
)
4096 u64 num_devices
= fs_info
->fs_devices
->rw_devices
;
4102 * see if restripe for this chunk_type is in progress, if so
4103 * try to reduce to the target profile
4105 spin_lock(&fs_info
->balance_lock
);
4106 target
= get_restripe_target(fs_info
, flags
);
4108 /* pick target profile only if it's already available */
4109 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
4110 spin_unlock(&fs_info
->balance_lock
);
4111 return extended_to_chunk(target
);
4114 spin_unlock(&fs_info
->balance_lock
);
4116 /* First, mask out the RAID levels which aren't possible */
4117 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
4118 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
4119 allowed
|= btrfs_raid_group
[raid_type
];
4123 if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
4124 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
4125 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
4126 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
4127 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
4128 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
4129 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
4130 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
4131 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
4132 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
4134 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
4136 return extended_to_chunk(flags
| allowed
);
4139 static u64
get_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 orig_flags
)
4146 seq
= read_seqbegin(&fs_info
->profiles_lock
);
4148 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4149 flags
|= fs_info
->avail_data_alloc_bits
;
4150 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4151 flags
|= fs_info
->avail_system_alloc_bits
;
4152 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4153 flags
|= fs_info
->avail_metadata_alloc_bits
;
4154 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
4156 return btrfs_reduce_alloc_profile(fs_info
, flags
);
4159 static u64
get_alloc_profile_by_root(struct btrfs_root
*root
, int data
)
4161 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4166 flags
= BTRFS_BLOCK_GROUP_DATA
;
4167 else if (root
== fs_info
->chunk_root
)
4168 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
4170 flags
= BTRFS_BLOCK_GROUP_METADATA
;
4172 ret
= get_alloc_profile(fs_info
, flags
);
4176 u64
btrfs_data_alloc_profile(struct btrfs_fs_info
*fs_info
)
4178 return get_alloc_profile(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
4181 u64
btrfs_metadata_alloc_profile(struct btrfs_fs_info
*fs_info
)
4183 return get_alloc_profile(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4186 u64
btrfs_system_alloc_profile(struct btrfs_fs_info
*fs_info
)
4188 return get_alloc_profile(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4191 static u64
btrfs_space_info_used(struct btrfs_space_info
*s_info
,
4192 bool may_use_included
)
4195 return s_info
->bytes_used
+ s_info
->bytes_reserved
+
4196 s_info
->bytes_pinned
+ s_info
->bytes_readonly
+
4197 (may_use_included
? s_info
->bytes_may_use
: 0);
4200 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode
*inode
, u64 bytes
)
4202 struct btrfs_space_info
*data_sinfo
;
4203 struct btrfs_root
*root
= inode
->root
;
4204 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4207 int need_commit
= 2;
4208 int have_pinned_space
;
4210 /* make sure bytes are sectorsize aligned */
4211 bytes
= ALIGN(bytes
, fs_info
->sectorsize
);
4213 if (btrfs_is_free_space_inode(inode
)) {
4215 ASSERT(current
->journal_info
);
4218 data_sinfo
= fs_info
->data_sinfo
;
4223 /* make sure we have enough space to handle the data first */
4224 spin_lock(&data_sinfo
->lock
);
4225 used
= btrfs_space_info_used(data_sinfo
, true);
4227 if (used
+ bytes
> data_sinfo
->total_bytes
) {
4228 struct btrfs_trans_handle
*trans
;
4231 * if we don't have enough free bytes in this space then we need
4232 * to alloc a new chunk.
4234 if (!data_sinfo
->full
) {
4237 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
4238 spin_unlock(&data_sinfo
->lock
);
4240 alloc_target
= btrfs_data_alloc_profile(fs_info
);
4242 * It is ugly that we don't call nolock join
4243 * transaction for the free space inode case here.
4244 * But it is safe because we only do the data space
4245 * reservation for the free space cache in the
4246 * transaction context, the common join transaction
4247 * just increase the counter of the current transaction
4248 * handler, doesn't try to acquire the trans_lock of
4251 trans
= btrfs_join_transaction(root
);
4253 return PTR_ERR(trans
);
4255 ret
= do_chunk_alloc(trans
, fs_info
, alloc_target
,
4256 CHUNK_ALLOC_NO_FORCE
);
4257 btrfs_end_transaction(trans
);
4262 have_pinned_space
= 1;
4268 data_sinfo
= fs_info
->data_sinfo
;
4274 * If we don't have enough pinned space to deal with this
4275 * allocation, and no removed chunk in current transaction,
4276 * don't bother committing the transaction.
4278 have_pinned_space
= percpu_counter_compare(
4279 &data_sinfo
->total_bytes_pinned
,
4280 used
+ bytes
- data_sinfo
->total_bytes
);
4281 spin_unlock(&data_sinfo
->lock
);
4283 /* commit the current transaction and try again */
4286 !atomic_read(&fs_info
->open_ioctl_trans
)) {
4289 if (need_commit
> 0) {
4290 btrfs_start_delalloc_roots(fs_info
, 0, -1);
4291 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0,
4295 trans
= btrfs_join_transaction(root
);
4297 return PTR_ERR(trans
);
4298 if (have_pinned_space
>= 0 ||
4299 test_bit(BTRFS_TRANS_HAVE_FREE_BGS
,
4300 &trans
->transaction
->flags
) ||
4302 ret
= btrfs_commit_transaction(trans
);
4306 * The cleaner kthread might still be doing iput
4307 * operations. Wait for it to finish so that
4308 * more space is released.
4310 mutex_lock(&fs_info
->cleaner_delayed_iput_mutex
);
4311 mutex_unlock(&fs_info
->cleaner_delayed_iput_mutex
);
4314 btrfs_end_transaction(trans
);
4318 trace_btrfs_space_reservation(fs_info
,
4319 "space_info:enospc",
4320 data_sinfo
->flags
, bytes
, 1);
4323 data_sinfo
->bytes_may_use
+= bytes
;
4324 trace_btrfs_space_reservation(fs_info
, "space_info",
4325 data_sinfo
->flags
, bytes
, 1);
4326 spin_unlock(&data_sinfo
->lock
);
4331 int btrfs_check_data_free_space(struct inode
*inode
,
4332 struct extent_changeset
**reserved
, u64 start
, u64 len
)
4334 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4337 /* align the range */
4338 len
= round_up(start
+ len
, fs_info
->sectorsize
) -
4339 round_down(start
, fs_info
->sectorsize
);
4340 start
= round_down(start
, fs_info
->sectorsize
);
4342 ret
= btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode
), len
);
4346 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4347 ret
= btrfs_qgroup_reserve_data(inode
, reserved
, start
, len
);
4349 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4356 * Called if we need to clear a data reservation for this inode
4357 * Normally in a error case.
4359 * This one will *NOT* use accurate qgroup reserved space API, just for case
4360 * which we can't sleep and is sure it won't affect qgroup reserved space.
4361 * Like clear_bit_hook().
4363 void btrfs_free_reserved_data_space_noquota(struct inode
*inode
, u64 start
,
4366 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4367 struct btrfs_space_info
*data_sinfo
;
4369 /* Make sure the range is aligned to sectorsize */
4370 len
= round_up(start
+ len
, fs_info
->sectorsize
) -
4371 round_down(start
, fs_info
->sectorsize
);
4372 start
= round_down(start
, fs_info
->sectorsize
);
4374 data_sinfo
= fs_info
->data_sinfo
;
4375 spin_lock(&data_sinfo
->lock
);
4376 if (WARN_ON(data_sinfo
->bytes_may_use
< len
))
4377 data_sinfo
->bytes_may_use
= 0;
4379 data_sinfo
->bytes_may_use
-= len
;
4380 trace_btrfs_space_reservation(fs_info
, "space_info",
4381 data_sinfo
->flags
, len
, 0);
4382 spin_unlock(&data_sinfo
->lock
);
4386 * Called if we need to clear a data reservation for this inode
4387 * Normally in a error case.
4389 * This one will handle the per-inode data rsv map for accurate reserved
4392 void btrfs_free_reserved_data_space(struct inode
*inode
,
4393 struct extent_changeset
*reserved
, u64 start
, u64 len
)
4395 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4397 /* Make sure the range is aligned to sectorsize */
4398 len
= round_up(start
+ len
, root
->fs_info
->sectorsize
) -
4399 round_down(start
, root
->fs_info
->sectorsize
);
4400 start
= round_down(start
, root
->fs_info
->sectorsize
);
4402 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4403 btrfs_qgroup_free_data(inode
, reserved
, start
, len
);
4406 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
4408 struct list_head
*head
= &info
->space_info
;
4409 struct btrfs_space_info
*found
;
4412 list_for_each_entry_rcu(found
, head
, list
) {
4413 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4414 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4419 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4421 return (global
->size
<< 1);
4424 static int should_alloc_chunk(struct btrfs_fs_info
*fs_info
,
4425 struct btrfs_space_info
*sinfo
, int force
)
4427 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4428 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
4429 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
4432 if (force
== CHUNK_ALLOC_FORCE
)
4436 * We need to take into account the global rsv because for all intents
4437 * and purposes it's used space. Don't worry about locking the
4438 * global_rsv, it doesn't change except when the transaction commits.
4440 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4441 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
4444 * in limited mode, we want to have some free space up to
4445 * about 1% of the FS size.
4447 if (force
== CHUNK_ALLOC_LIMITED
) {
4448 thresh
= btrfs_super_total_bytes(fs_info
->super_copy
);
4449 thresh
= max_t(u64
, SZ_64M
, div_factor_fine(thresh
, 1));
4451 if (num_bytes
- num_allocated
< thresh
)
4455 if (num_allocated
+ SZ_2M
< div_factor(num_bytes
, 8))
4460 static u64
get_profile_num_devs(struct btrfs_fs_info
*fs_info
, u64 type
)
4464 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4465 BTRFS_BLOCK_GROUP_RAID0
|
4466 BTRFS_BLOCK_GROUP_RAID5
|
4467 BTRFS_BLOCK_GROUP_RAID6
))
4468 num_dev
= fs_info
->fs_devices
->rw_devices
;
4469 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4472 num_dev
= 1; /* DUP or single */
4478 * If @is_allocation is true, reserve space in the system space info necessary
4479 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4482 void check_system_chunk(struct btrfs_trans_handle
*trans
,
4483 struct btrfs_fs_info
*fs_info
, u64 type
)
4485 struct btrfs_space_info
*info
;
4492 * Needed because we can end up allocating a system chunk and for an
4493 * atomic and race free space reservation in the chunk block reserve.
4495 ASSERT(mutex_is_locked(&fs_info
->chunk_mutex
));
4497 info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4498 spin_lock(&info
->lock
);
4499 left
= info
->total_bytes
- btrfs_space_info_used(info
, true);
4500 spin_unlock(&info
->lock
);
4502 num_devs
= get_profile_num_devs(fs_info
, type
);
4504 /* num_devs device items to update and 1 chunk item to add or remove */
4505 thresh
= btrfs_calc_trunc_metadata_size(fs_info
, num_devs
) +
4506 btrfs_calc_trans_metadata_size(fs_info
, 1);
4508 if (left
< thresh
&& btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
4509 btrfs_info(fs_info
, "left=%llu, need=%llu, flags=%llu",
4510 left
, thresh
, type
);
4511 dump_space_info(fs_info
, info
, 0, 0);
4514 if (left
< thresh
) {
4515 u64 flags
= btrfs_system_alloc_profile(fs_info
);
4518 * Ignore failure to create system chunk. We might end up not
4519 * needing it, as we might not need to COW all nodes/leafs from
4520 * the paths we visit in the chunk tree (they were already COWed
4521 * or created in the current transaction for example).
4523 ret
= btrfs_alloc_chunk(trans
, fs_info
, flags
);
4527 ret
= btrfs_block_rsv_add(fs_info
->chunk_root
,
4528 &fs_info
->chunk_block_rsv
,
4529 thresh
, BTRFS_RESERVE_NO_FLUSH
);
4531 trans
->chunk_bytes_reserved
+= thresh
;
4536 * If force is CHUNK_ALLOC_FORCE:
4537 * - return 1 if it successfully allocates a chunk,
4538 * - return errors including -ENOSPC otherwise.
4539 * If force is NOT CHUNK_ALLOC_FORCE:
4540 * - return 0 if it doesn't need to allocate a new chunk,
4541 * - return 1 if it successfully allocates a chunk,
4542 * - return errors including -ENOSPC otherwise.
4544 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4545 struct btrfs_fs_info
*fs_info
, u64 flags
, int force
)
4547 struct btrfs_space_info
*space_info
;
4548 int wait_for_alloc
= 0;
4551 /* Don't re-enter if we're already allocating a chunk */
4552 if (trans
->allocating_chunk
)
4555 space_info
= __find_space_info(fs_info
, flags
);
4557 ret
= create_space_info(fs_info
, flags
, &space_info
);
4563 spin_lock(&space_info
->lock
);
4564 if (force
< space_info
->force_alloc
)
4565 force
= space_info
->force_alloc
;
4566 if (space_info
->full
) {
4567 if (should_alloc_chunk(fs_info
, space_info
, force
))
4571 spin_unlock(&space_info
->lock
);
4575 if (!should_alloc_chunk(fs_info
, space_info
, force
)) {
4576 spin_unlock(&space_info
->lock
);
4578 } else if (space_info
->chunk_alloc
) {
4581 space_info
->chunk_alloc
= 1;
4584 spin_unlock(&space_info
->lock
);
4586 mutex_lock(&fs_info
->chunk_mutex
);
4589 * The chunk_mutex is held throughout the entirety of a chunk
4590 * allocation, so once we've acquired the chunk_mutex we know that the
4591 * other guy is done and we need to recheck and see if we should
4594 if (wait_for_alloc
) {
4595 mutex_unlock(&fs_info
->chunk_mutex
);
4600 trans
->allocating_chunk
= true;
4603 * If we have mixed data/metadata chunks we want to make sure we keep
4604 * allocating mixed chunks instead of individual chunks.
4606 if (btrfs_mixed_space_info(space_info
))
4607 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4610 * if we're doing a data chunk, go ahead and make sure that
4611 * we keep a reasonable number of metadata chunks allocated in the
4614 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4615 fs_info
->data_chunk_allocations
++;
4616 if (!(fs_info
->data_chunk_allocations
%
4617 fs_info
->metadata_ratio
))
4618 force_metadata_allocation(fs_info
);
4622 * Check if we have enough space in SYSTEM chunk because we may need
4623 * to update devices.
4625 check_system_chunk(trans
, fs_info
, flags
);
4627 ret
= btrfs_alloc_chunk(trans
, fs_info
, flags
);
4628 trans
->allocating_chunk
= false;
4630 spin_lock(&space_info
->lock
);
4631 if (ret
< 0 && ret
!= -ENOSPC
)
4634 space_info
->full
= 1;
4638 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4640 space_info
->chunk_alloc
= 0;
4641 spin_unlock(&space_info
->lock
);
4642 mutex_unlock(&fs_info
->chunk_mutex
);
4644 * When we allocate a new chunk we reserve space in the chunk block
4645 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4646 * add new nodes/leafs to it if we end up needing to do it when
4647 * inserting the chunk item and updating device items as part of the
4648 * second phase of chunk allocation, performed by
4649 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4650 * large number of new block groups to create in our transaction
4651 * handle's new_bgs list to avoid exhausting the chunk block reserve
4652 * in extreme cases - like having a single transaction create many new
4653 * block groups when starting to write out the free space caches of all
4654 * the block groups that were made dirty during the lifetime of the
4657 if (trans
->can_flush_pending_bgs
&&
4658 trans
->chunk_bytes_reserved
>= (u64
)SZ_2M
) {
4659 btrfs_create_pending_block_groups(trans
, fs_info
);
4660 btrfs_trans_release_chunk_metadata(trans
);
4665 static int can_overcommit(struct btrfs_fs_info
*fs_info
,
4666 struct btrfs_space_info
*space_info
, u64 bytes
,
4667 enum btrfs_reserve_flush_enum flush
,
4670 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4676 /* Don't overcommit when in mixed mode. */
4677 if (space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4681 profile
= btrfs_system_alloc_profile(fs_info
);
4683 profile
= btrfs_metadata_alloc_profile(fs_info
);
4685 used
= btrfs_space_info_used(space_info
, false);
4688 * We only want to allow over committing if we have lots of actual space
4689 * free, but if we don't have enough space to handle the global reserve
4690 * space then we could end up having a real enospc problem when trying
4691 * to allocate a chunk or some other such important allocation.
4693 spin_lock(&global_rsv
->lock
);
4694 space_size
= calc_global_rsv_need_space(global_rsv
);
4695 spin_unlock(&global_rsv
->lock
);
4696 if (used
+ space_size
>= space_info
->total_bytes
)
4699 used
+= space_info
->bytes_may_use
;
4701 avail
= atomic64_read(&fs_info
->free_chunk_space
);
4704 * If we have dup, raid1 or raid10 then only half of the free
4705 * space is actually useable. For raid56, the space info used
4706 * doesn't include the parity drive, so we don't have to
4709 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4710 BTRFS_BLOCK_GROUP_RAID1
|
4711 BTRFS_BLOCK_GROUP_RAID10
))
4715 * If we aren't flushing all things, let us overcommit up to
4716 * 1/2th of the space. If we can flush, don't let us overcommit
4717 * too much, let it overcommit up to 1/8 of the space.
4719 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4724 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4729 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info
*fs_info
,
4730 unsigned long nr_pages
, int nr_items
)
4732 struct super_block
*sb
= fs_info
->sb
;
4734 if (down_read_trylock(&sb
->s_umount
)) {
4735 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4736 up_read(&sb
->s_umount
);
4739 * We needn't worry the filesystem going from r/w to r/o though
4740 * we don't acquire ->s_umount mutex, because the filesystem
4741 * should guarantee the delalloc inodes list be empty after
4742 * the filesystem is readonly(all dirty pages are written to
4745 btrfs_start_delalloc_roots(fs_info
, 0, nr_items
);
4746 if (!current
->journal_info
)
4747 btrfs_wait_ordered_roots(fs_info
, nr_items
, 0, (u64
)-1);
4751 static inline u64
calc_reclaim_items_nr(struct btrfs_fs_info
*fs_info
,
4757 bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
4758 nr
= div64_u64(to_reclaim
, bytes
);
4764 #define EXTENT_SIZE_PER_ITEM SZ_256K
4767 * shrink metadata reservation for delalloc
4769 static void shrink_delalloc(struct btrfs_fs_info
*fs_info
, u64 to_reclaim
,
4770 u64 orig
, bool wait_ordered
)
4772 struct btrfs_block_rsv
*block_rsv
;
4773 struct btrfs_space_info
*space_info
;
4774 struct btrfs_trans_handle
*trans
;
4779 unsigned long nr_pages
;
4781 enum btrfs_reserve_flush_enum flush
;
4783 /* Calc the number of the pages we need flush for space reservation */
4784 items
= calc_reclaim_items_nr(fs_info
, to_reclaim
);
4785 to_reclaim
= items
* EXTENT_SIZE_PER_ITEM
;
4787 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4788 block_rsv
= &fs_info
->delalloc_block_rsv
;
4789 space_info
= block_rsv
->space_info
;
4791 delalloc_bytes
= percpu_counter_sum_positive(
4792 &fs_info
->delalloc_bytes
);
4793 if (delalloc_bytes
== 0) {
4797 btrfs_wait_ordered_roots(fs_info
, items
, 0, (u64
)-1);
4802 while (delalloc_bytes
&& loops
< 3) {
4803 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4804 nr_pages
= max_reclaim
>> PAGE_SHIFT
;
4805 btrfs_writeback_inodes_sb_nr(fs_info
, nr_pages
, items
);
4807 * We need to wait for the async pages to actually start before
4810 max_reclaim
= atomic_read(&fs_info
->async_delalloc_pages
);
4814 if (max_reclaim
<= nr_pages
)
4817 max_reclaim
-= nr_pages
;
4819 wait_event(fs_info
->async_submit_wait
,
4820 atomic_read(&fs_info
->async_delalloc_pages
) <=
4824 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4826 flush
= BTRFS_RESERVE_NO_FLUSH
;
4827 spin_lock(&space_info
->lock
);
4828 if (can_overcommit(fs_info
, space_info
, orig
, flush
, false)) {
4829 spin_unlock(&space_info
->lock
);
4832 if (list_empty(&space_info
->tickets
) &&
4833 list_empty(&space_info
->priority_tickets
)) {
4834 spin_unlock(&space_info
->lock
);
4837 spin_unlock(&space_info
->lock
);
4840 if (wait_ordered
&& !trans
) {
4841 btrfs_wait_ordered_roots(fs_info
, items
, 0, (u64
)-1);
4843 time_left
= schedule_timeout_killable(1);
4847 delalloc_bytes
= percpu_counter_sum_positive(
4848 &fs_info
->delalloc_bytes
);
4853 * maybe_commit_transaction - possibly commit the transaction if its ok to
4854 * @root - the root we're allocating for
4855 * @bytes - the number of bytes we want to reserve
4856 * @force - force the commit
4858 * This will check to make sure that committing the transaction will actually
4859 * get us somewhere and then commit the transaction if it does. Otherwise it
4860 * will return -ENOSPC.
4862 static int may_commit_transaction(struct btrfs_fs_info
*fs_info
,
4863 struct btrfs_space_info
*space_info
,
4864 u64 bytes
, int force
)
4866 struct btrfs_block_rsv
*delayed_rsv
= &fs_info
->delayed_block_rsv
;
4867 struct btrfs_trans_handle
*trans
;
4869 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4876 /* See if there is enough pinned space to make this reservation */
4877 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4882 * See if there is some space in the delayed insertion reservation for
4885 if (space_info
!= delayed_rsv
->space_info
)
4888 spin_lock(&delayed_rsv
->lock
);
4889 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4890 bytes
- delayed_rsv
->size
) < 0) {
4891 spin_unlock(&delayed_rsv
->lock
);
4894 spin_unlock(&delayed_rsv
->lock
);
4897 trans
= btrfs_join_transaction(fs_info
->extent_root
);
4901 return btrfs_commit_transaction(trans
);
4904 struct reserve_ticket
{
4907 struct list_head list
;
4908 wait_queue_head_t wait
;
4911 static int flush_space(struct btrfs_fs_info
*fs_info
,
4912 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4913 u64 orig_bytes
, int state
)
4915 struct btrfs_root
*root
= fs_info
->extent_root
;
4916 struct btrfs_trans_handle
*trans
;
4921 case FLUSH_DELAYED_ITEMS_NR
:
4922 case FLUSH_DELAYED_ITEMS
:
4923 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4924 nr
= calc_reclaim_items_nr(fs_info
, num_bytes
) * 2;
4928 trans
= btrfs_join_transaction(root
);
4929 if (IS_ERR(trans
)) {
4930 ret
= PTR_ERR(trans
);
4933 ret
= btrfs_run_delayed_items_nr(trans
, fs_info
, nr
);
4934 btrfs_end_transaction(trans
);
4936 case FLUSH_DELALLOC
:
4937 case FLUSH_DELALLOC_WAIT
:
4938 shrink_delalloc(fs_info
, num_bytes
* 2, orig_bytes
,
4939 state
== FLUSH_DELALLOC_WAIT
);
4942 trans
= btrfs_join_transaction(root
);
4943 if (IS_ERR(trans
)) {
4944 ret
= PTR_ERR(trans
);
4947 ret
= do_chunk_alloc(trans
, fs_info
,
4948 btrfs_metadata_alloc_profile(fs_info
),
4949 CHUNK_ALLOC_NO_FORCE
);
4950 btrfs_end_transaction(trans
);
4951 if (ret
> 0 || ret
== -ENOSPC
)
4955 ret
= may_commit_transaction(fs_info
, space_info
,
4963 trace_btrfs_flush_space(fs_info
, space_info
->flags
, num_bytes
,
4964 orig_bytes
, state
, ret
);
4969 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info
*fs_info
,
4970 struct btrfs_space_info
*space_info
,
4973 struct reserve_ticket
*ticket
;
4978 list_for_each_entry(ticket
, &space_info
->tickets
, list
)
4979 to_reclaim
+= ticket
->bytes
;
4980 list_for_each_entry(ticket
, &space_info
->priority_tickets
, list
)
4981 to_reclaim
+= ticket
->bytes
;
4985 to_reclaim
= min_t(u64
, num_online_cpus() * SZ_1M
, SZ_16M
);
4986 if (can_overcommit(fs_info
, space_info
, to_reclaim
,
4987 BTRFS_RESERVE_FLUSH_ALL
, system_chunk
))
4990 used
= btrfs_space_info_used(space_info
, true);
4992 if (can_overcommit(fs_info
, space_info
, SZ_1M
,
4993 BTRFS_RESERVE_FLUSH_ALL
, system_chunk
))
4994 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4996 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4998 if (used
> expected
)
4999 to_reclaim
= used
- expected
;
5002 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
5003 space_info
->bytes_reserved
);
5007 static inline int need_do_async_reclaim(struct btrfs_fs_info
*fs_info
,
5008 struct btrfs_space_info
*space_info
,
5009 u64 used
, bool system_chunk
)
5011 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
5013 /* If we're just plain full then async reclaim just slows us down. */
5014 if ((space_info
->bytes_used
+ space_info
->bytes_reserved
) >= thresh
)
5017 if (!btrfs_calc_reclaim_metadata_size(fs_info
, space_info
,
5021 return (used
>= thresh
&& !btrfs_fs_closing(fs_info
) &&
5022 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
5025 static void wake_all_tickets(struct list_head
*head
)
5027 struct reserve_ticket
*ticket
;
5029 while (!list_empty(head
)) {
5030 ticket
= list_first_entry(head
, struct reserve_ticket
, list
);
5031 list_del_init(&ticket
->list
);
5032 ticket
->error
= -ENOSPC
;
5033 wake_up(&ticket
->wait
);
5038 * This is for normal flushers, we can wait all goddamned day if we want to. We
5039 * will loop and continuously try to flush as long as we are making progress.
5040 * We count progress as clearing off tickets each time we have to loop.
5042 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
5044 struct btrfs_fs_info
*fs_info
;
5045 struct btrfs_space_info
*space_info
;
5048 int commit_cycles
= 0;
5049 u64 last_tickets_id
;
5051 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
5052 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5054 spin_lock(&space_info
->lock
);
5055 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
, space_info
,
5058 space_info
->flush
= 0;
5059 spin_unlock(&space_info
->lock
);
5062 last_tickets_id
= space_info
->tickets_id
;
5063 spin_unlock(&space_info
->lock
);
5065 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5067 struct reserve_ticket
*ticket
;
5070 ret
= flush_space(fs_info
, space_info
, to_reclaim
, to_reclaim
,
5072 spin_lock(&space_info
->lock
);
5073 if (list_empty(&space_info
->tickets
)) {
5074 space_info
->flush
= 0;
5075 spin_unlock(&space_info
->lock
);
5078 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
,
5081 ticket
= list_first_entry(&space_info
->tickets
,
5082 struct reserve_ticket
, list
);
5083 if (last_tickets_id
== space_info
->tickets_id
) {
5086 last_tickets_id
= space_info
->tickets_id
;
5087 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5092 if (flush_state
> COMMIT_TRANS
) {
5094 if (commit_cycles
> 2) {
5095 wake_all_tickets(&space_info
->tickets
);
5096 space_info
->flush
= 0;
5098 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5101 spin_unlock(&space_info
->lock
);
5102 } while (flush_state
<= COMMIT_TRANS
);
5105 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
5107 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
5110 static void priority_reclaim_metadata_space(struct btrfs_fs_info
*fs_info
,
5111 struct btrfs_space_info
*space_info
,
5112 struct reserve_ticket
*ticket
)
5115 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5117 spin_lock(&space_info
->lock
);
5118 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
, space_info
,
5121 spin_unlock(&space_info
->lock
);
5124 spin_unlock(&space_info
->lock
);
5127 flush_space(fs_info
, space_info
, to_reclaim
, to_reclaim
,
5130 spin_lock(&space_info
->lock
);
5131 if (ticket
->bytes
== 0) {
5132 spin_unlock(&space_info
->lock
);
5135 spin_unlock(&space_info
->lock
);
5138 * Priority flushers can't wait on delalloc without
5141 if (flush_state
== FLUSH_DELALLOC
||
5142 flush_state
== FLUSH_DELALLOC_WAIT
)
5143 flush_state
= ALLOC_CHUNK
;
5144 } while (flush_state
< COMMIT_TRANS
);
5147 static int wait_reserve_ticket(struct btrfs_fs_info
*fs_info
,
5148 struct btrfs_space_info
*space_info
,
5149 struct reserve_ticket
*ticket
, u64 orig_bytes
)
5155 spin_lock(&space_info
->lock
);
5156 while (ticket
->bytes
> 0 && ticket
->error
== 0) {
5157 ret
= prepare_to_wait_event(&ticket
->wait
, &wait
, TASK_KILLABLE
);
5162 spin_unlock(&space_info
->lock
);
5166 finish_wait(&ticket
->wait
, &wait
);
5167 spin_lock(&space_info
->lock
);
5170 ret
= ticket
->error
;
5171 if (!list_empty(&ticket
->list
))
5172 list_del_init(&ticket
->list
);
5173 if (ticket
->bytes
&& ticket
->bytes
< orig_bytes
) {
5174 u64 num_bytes
= orig_bytes
- ticket
->bytes
;
5175 space_info
->bytes_may_use
-= num_bytes
;
5176 trace_btrfs_space_reservation(fs_info
, "space_info",
5177 space_info
->flags
, num_bytes
, 0);
5179 spin_unlock(&space_info
->lock
);
5185 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5186 * @root - the root we're allocating for
5187 * @space_info - the space info we want to allocate from
5188 * @orig_bytes - the number of bytes we want
5189 * @flush - whether or not we can flush to make our reservation
5191 * This will reserve orig_bytes number of bytes from the space info associated
5192 * with the block_rsv. If there is not enough space it will make an attempt to
5193 * flush out space to make room. It will do this by flushing delalloc if
5194 * possible or committing the transaction. If flush is 0 then no attempts to
5195 * regain reservations will be made and this will fail if there is not enough
5198 static int __reserve_metadata_bytes(struct btrfs_fs_info
*fs_info
,
5199 struct btrfs_space_info
*space_info
,
5201 enum btrfs_reserve_flush_enum flush
,
5204 struct reserve_ticket ticket
;
5209 ASSERT(!current
->journal_info
|| flush
!= BTRFS_RESERVE_FLUSH_ALL
);
5211 spin_lock(&space_info
->lock
);
5213 used
= btrfs_space_info_used(space_info
, true);
5216 * If we have enough space then hooray, make our reservation and carry
5217 * on. If not see if we can overcommit, and if we can, hooray carry on.
5218 * If not things get more complicated.
5220 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
5221 space_info
->bytes_may_use
+= orig_bytes
;
5222 trace_btrfs_space_reservation(fs_info
, "space_info",
5223 space_info
->flags
, orig_bytes
, 1);
5225 } else if (can_overcommit(fs_info
, space_info
, orig_bytes
, flush
,
5227 space_info
->bytes_may_use
+= orig_bytes
;
5228 trace_btrfs_space_reservation(fs_info
, "space_info",
5229 space_info
->flags
, orig_bytes
, 1);
5234 * If we couldn't make a reservation then setup our reservation ticket
5235 * and kick the async worker if it's not already running.
5237 * If we are a priority flusher then we just need to add our ticket to
5238 * the list and we will do our own flushing further down.
5240 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
5241 ticket
.bytes
= orig_bytes
;
5243 init_waitqueue_head(&ticket
.wait
);
5244 if (flush
== BTRFS_RESERVE_FLUSH_ALL
) {
5245 list_add_tail(&ticket
.list
, &space_info
->tickets
);
5246 if (!space_info
->flush
) {
5247 space_info
->flush
= 1;
5248 trace_btrfs_trigger_flush(fs_info
,
5252 queue_work(system_unbound_wq
,
5253 &fs_info
->async_reclaim_work
);
5256 list_add_tail(&ticket
.list
,
5257 &space_info
->priority_tickets
);
5259 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
5262 * We will do the space reservation dance during log replay,
5263 * which means we won't have fs_info->fs_root set, so don't do
5264 * the async reclaim as we will panic.
5266 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
) &&
5267 need_do_async_reclaim(fs_info
, space_info
,
5268 used
, system_chunk
) &&
5269 !work_busy(&fs_info
->async_reclaim_work
)) {
5270 trace_btrfs_trigger_flush(fs_info
, space_info
->flags
,
5271 orig_bytes
, flush
, "preempt");
5272 queue_work(system_unbound_wq
,
5273 &fs_info
->async_reclaim_work
);
5276 spin_unlock(&space_info
->lock
);
5277 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
5280 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
5281 return wait_reserve_ticket(fs_info
, space_info
, &ticket
,
5285 priority_reclaim_metadata_space(fs_info
, space_info
, &ticket
);
5286 spin_lock(&space_info
->lock
);
5288 if (ticket
.bytes
< orig_bytes
) {
5289 u64 num_bytes
= orig_bytes
- ticket
.bytes
;
5290 space_info
->bytes_may_use
-= num_bytes
;
5291 trace_btrfs_space_reservation(fs_info
, "space_info",
5296 list_del_init(&ticket
.list
);
5299 spin_unlock(&space_info
->lock
);
5300 ASSERT(list_empty(&ticket
.list
));
5305 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5306 * @root - the root we're allocating for
5307 * @block_rsv - the block_rsv we're allocating for
5308 * @orig_bytes - the number of bytes we want
5309 * @flush - whether or not we can flush to make our reservation
5311 * This will reserve orgi_bytes number of bytes from the space info associated
5312 * with the block_rsv. If there is not enough space it will make an attempt to
5313 * flush out space to make room. It will do this by flushing delalloc if
5314 * possible or committing the transaction. If flush is 0 then no attempts to
5315 * regain reservations will be made and this will fail if there is not enough
5318 static int reserve_metadata_bytes(struct btrfs_root
*root
,
5319 struct btrfs_block_rsv
*block_rsv
,
5321 enum btrfs_reserve_flush_enum flush
)
5323 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5324 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5326 bool system_chunk
= (root
== fs_info
->chunk_root
);
5328 ret
= __reserve_metadata_bytes(fs_info
, block_rsv
->space_info
,
5329 orig_bytes
, flush
, system_chunk
);
5330 if (ret
== -ENOSPC
&&
5331 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
5332 if (block_rsv
!= global_rsv
&&
5333 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
5337 trace_btrfs_space_reservation(fs_info
, "space_info:enospc",
5338 block_rsv
->space_info
->flags
,
5343 static struct btrfs_block_rsv
*get_block_rsv(
5344 const struct btrfs_trans_handle
*trans
,
5345 const struct btrfs_root
*root
)
5347 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5348 struct btrfs_block_rsv
*block_rsv
= NULL
;
5350 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
5351 (root
== fs_info
->csum_root
&& trans
->adding_csums
) ||
5352 (root
== fs_info
->uuid_root
))
5353 block_rsv
= trans
->block_rsv
;
5356 block_rsv
= root
->block_rsv
;
5359 block_rsv
= &fs_info
->empty_block_rsv
;
5364 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
5368 spin_lock(&block_rsv
->lock
);
5369 if (block_rsv
->reserved
>= num_bytes
) {
5370 block_rsv
->reserved
-= num_bytes
;
5371 if (block_rsv
->reserved
< block_rsv
->size
)
5372 block_rsv
->full
= 0;
5375 spin_unlock(&block_rsv
->lock
);
5379 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
5380 u64 num_bytes
, int update_size
)
5382 spin_lock(&block_rsv
->lock
);
5383 block_rsv
->reserved
+= num_bytes
;
5385 block_rsv
->size
+= num_bytes
;
5386 else if (block_rsv
->reserved
>= block_rsv
->size
)
5387 block_rsv
->full
= 1;
5388 spin_unlock(&block_rsv
->lock
);
5391 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
5392 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
5395 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5398 if (global_rsv
->space_info
!= dest
->space_info
)
5401 spin_lock(&global_rsv
->lock
);
5402 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
5403 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
5404 spin_unlock(&global_rsv
->lock
);
5407 global_rsv
->reserved
-= num_bytes
;
5408 if (global_rsv
->reserved
< global_rsv
->size
)
5409 global_rsv
->full
= 0;
5410 spin_unlock(&global_rsv
->lock
);
5412 block_rsv_add_bytes(dest
, num_bytes
, 1);
5417 * This is for space we already have accounted in space_info->bytes_may_use, so
5418 * basically when we're returning space from block_rsv's.
5420 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
5421 struct btrfs_space_info
*space_info
,
5424 struct reserve_ticket
*ticket
;
5425 struct list_head
*head
;
5427 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_NO_FLUSH
;
5428 bool check_overcommit
= false;
5430 spin_lock(&space_info
->lock
);
5431 head
= &space_info
->priority_tickets
;
5434 * If we are over our limit then we need to check and see if we can
5435 * overcommit, and if we can't then we just need to free up our space
5436 * and not satisfy any requests.
5438 used
= btrfs_space_info_used(space_info
, true);
5439 if (used
- num_bytes
>= space_info
->total_bytes
)
5440 check_overcommit
= true;
5442 while (!list_empty(head
) && num_bytes
) {
5443 ticket
= list_first_entry(head
, struct reserve_ticket
,
5446 * We use 0 bytes because this space is already reserved, so
5447 * adding the ticket space would be a double count.
5449 if (check_overcommit
&&
5450 !can_overcommit(fs_info
, space_info
, 0, flush
, false))
5452 if (num_bytes
>= ticket
->bytes
) {
5453 list_del_init(&ticket
->list
);
5454 num_bytes
-= ticket
->bytes
;
5456 space_info
->tickets_id
++;
5457 wake_up(&ticket
->wait
);
5459 ticket
->bytes
-= num_bytes
;
5464 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5465 head
= &space_info
->tickets
;
5466 flush
= BTRFS_RESERVE_FLUSH_ALL
;
5469 space_info
->bytes_may_use
-= num_bytes
;
5470 trace_btrfs_space_reservation(fs_info
, "space_info",
5471 space_info
->flags
, num_bytes
, 0);
5472 spin_unlock(&space_info
->lock
);
5476 * This is for newly allocated space that isn't accounted in
5477 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5478 * we use this helper.
5480 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
5481 struct btrfs_space_info
*space_info
,
5484 struct reserve_ticket
*ticket
;
5485 struct list_head
*head
= &space_info
->priority_tickets
;
5488 while (!list_empty(head
) && num_bytes
) {
5489 ticket
= list_first_entry(head
, struct reserve_ticket
,
5491 if (num_bytes
>= ticket
->bytes
) {
5492 trace_btrfs_space_reservation(fs_info
, "space_info",
5495 list_del_init(&ticket
->list
);
5496 num_bytes
-= ticket
->bytes
;
5497 space_info
->bytes_may_use
+= ticket
->bytes
;
5499 space_info
->tickets_id
++;
5500 wake_up(&ticket
->wait
);
5502 trace_btrfs_space_reservation(fs_info
, "space_info",
5505 space_info
->bytes_may_use
+= num_bytes
;
5506 ticket
->bytes
-= num_bytes
;
5511 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5512 head
= &space_info
->tickets
;
5517 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
5518 struct btrfs_block_rsv
*block_rsv
,
5519 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
5521 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
5523 spin_lock(&block_rsv
->lock
);
5524 if (num_bytes
== (u64
)-1)
5525 num_bytes
= block_rsv
->size
;
5526 block_rsv
->size
-= num_bytes
;
5527 if (block_rsv
->reserved
>= block_rsv
->size
) {
5528 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5529 block_rsv
->reserved
= block_rsv
->size
;
5530 block_rsv
->full
= 1;
5534 spin_unlock(&block_rsv
->lock
);
5536 if (num_bytes
> 0) {
5538 spin_lock(&dest
->lock
);
5542 bytes_to_add
= dest
->size
- dest
->reserved
;
5543 bytes_to_add
= min(num_bytes
, bytes_to_add
);
5544 dest
->reserved
+= bytes_to_add
;
5545 if (dest
->reserved
>= dest
->size
)
5547 num_bytes
-= bytes_to_add
;
5549 spin_unlock(&dest
->lock
);
5552 space_info_add_old_bytes(fs_info
, space_info
,
5557 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src
,
5558 struct btrfs_block_rsv
*dst
, u64 num_bytes
,
5563 ret
= block_rsv_use_bytes(src
, num_bytes
);
5567 block_rsv_add_bytes(dst
, num_bytes
, update_size
);
5571 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
5573 memset(rsv
, 0, sizeof(*rsv
));
5574 spin_lock_init(&rsv
->lock
);
5578 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_fs_info
*fs_info
,
5579 unsigned short type
)
5581 struct btrfs_block_rsv
*block_rsv
;
5583 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
5587 btrfs_init_block_rsv(block_rsv
, type
);
5588 block_rsv
->space_info
= __find_space_info(fs_info
,
5589 BTRFS_BLOCK_GROUP_METADATA
);
5593 void btrfs_free_block_rsv(struct btrfs_fs_info
*fs_info
,
5594 struct btrfs_block_rsv
*rsv
)
5598 btrfs_block_rsv_release(fs_info
, rsv
, (u64
)-1);
5602 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
5607 int btrfs_block_rsv_add(struct btrfs_root
*root
,
5608 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
5609 enum btrfs_reserve_flush_enum flush
)
5616 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5618 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5625 int btrfs_block_rsv_check(struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5633 spin_lock(&block_rsv
->lock
);
5634 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5635 if (block_rsv
->reserved
>= num_bytes
)
5637 spin_unlock(&block_rsv
->lock
);
5642 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5643 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5644 enum btrfs_reserve_flush_enum flush
)
5652 spin_lock(&block_rsv
->lock
);
5653 num_bytes
= min_reserved
;
5654 if (block_rsv
->reserved
>= num_bytes
)
5657 num_bytes
-= block_rsv
->reserved
;
5658 spin_unlock(&block_rsv
->lock
);
5663 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5665 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5672 void btrfs_block_rsv_release(struct btrfs_fs_info
*fs_info
,
5673 struct btrfs_block_rsv
*block_rsv
,
5676 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5678 if (global_rsv
== block_rsv
||
5679 block_rsv
->space_info
!= global_rsv
->space_info
)
5681 block_rsv_release_bytes(fs_info
, block_rsv
, global_rsv
, num_bytes
);
5684 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5686 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5687 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5691 * The global block rsv is based on the size of the extent tree, the
5692 * checksum tree and the root tree. If the fs is empty we want to set
5693 * it to a minimal amount for safety.
5695 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
) +
5696 btrfs_root_used(&fs_info
->csum_root
->root_item
) +
5697 btrfs_root_used(&fs_info
->tree_root
->root_item
);
5698 num_bytes
= max_t(u64
, num_bytes
, SZ_16M
);
5700 spin_lock(&sinfo
->lock
);
5701 spin_lock(&block_rsv
->lock
);
5703 block_rsv
->size
= min_t(u64
, num_bytes
, SZ_512M
);
5705 if (block_rsv
->reserved
< block_rsv
->size
) {
5706 num_bytes
= btrfs_space_info_used(sinfo
, true);
5707 if (sinfo
->total_bytes
> num_bytes
) {
5708 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5709 num_bytes
= min(num_bytes
,
5710 block_rsv
->size
- block_rsv
->reserved
);
5711 block_rsv
->reserved
+= num_bytes
;
5712 sinfo
->bytes_may_use
+= num_bytes
;
5713 trace_btrfs_space_reservation(fs_info
, "space_info",
5714 sinfo
->flags
, num_bytes
,
5717 } else if (block_rsv
->reserved
> block_rsv
->size
) {
5718 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5719 sinfo
->bytes_may_use
-= num_bytes
;
5720 trace_btrfs_space_reservation(fs_info
, "space_info",
5721 sinfo
->flags
, num_bytes
, 0);
5722 block_rsv
->reserved
= block_rsv
->size
;
5725 if (block_rsv
->reserved
== block_rsv
->size
)
5726 block_rsv
->full
= 1;
5728 block_rsv
->full
= 0;
5730 spin_unlock(&block_rsv
->lock
);
5731 spin_unlock(&sinfo
->lock
);
5734 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5736 struct btrfs_space_info
*space_info
;
5738 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5739 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5741 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5742 fs_info
->global_block_rsv
.space_info
= space_info
;
5743 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
5744 fs_info
->trans_block_rsv
.space_info
= space_info
;
5745 fs_info
->empty_block_rsv
.space_info
= space_info
;
5746 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5748 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5749 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5750 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5751 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5752 if (fs_info
->quota_root
)
5753 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5754 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5756 update_global_block_rsv(fs_info
);
5759 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5761 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5763 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
5764 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
5765 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5766 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5767 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5768 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5769 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5770 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5773 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5774 struct btrfs_fs_info
*fs_info
)
5776 if (!trans
->block_rsv
)
5779 if (!trans
->bytes_reserved
)
5782 trace_btrfs_space_reservation(fs_info
, "transaction",
5783 trans
->transid
, trans
->bytes_reserved
, 0);
5784 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
5785 trans
->bytes_reserved
);
5786 trans
->bytes_reserved
= 0;
5790 * To be called after all the new block groups attached to the transaction
5791 * handle have been created (btrfs_create_pending_block_groups()).
5793 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
5795 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5797 if (!trans
->chunk_bytes_reserved
)
5800 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
5802 block_rsv_release_bytes(fs_info
, &fs_info
->chunk_block_rsv
, NULL
,
5803 trans
->chunk_bytes_reserved
);
5804 trans
->chunk_bytes_reserved
= 0;
5807 /* Can only return 0 or -ENOSPC */
5808 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5809 struct btrfs_inode
*inode
)
5811 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5812 struct btrfs_root
*root
= inode
->root
;
5814 * We always use trans->block_rsv here as we will have reserved space
5815 * for our orphan when starting the transaction, using get_block_rsv()
5816 * here will sometimes make us choose the wrong block rsv as we could be
5817 * doing a reloc inode for a non refcounted root.
5819 struct btrfs_block_rsv
*src_rsv
= trans
->block_rsv
;
5820 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5823 * We need to hold space in order to delete our orphan item once we've
5824 * added it, so this takes the reservation so we can release it later
5825 * when we are truly done with the orphan item.
5827 u64 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
5829 trace_btrfs_space_reservation(fs_info
, "orphan", btrfs_ino(inode
),
5831 return btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
5834 void btrfs_orphan_release_metadata(struct btrfs_inode
*inode
)
5836 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5837 struct btrfs_root
*root
= inode
->root
;
5838 u64 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
5840 trace_btrfs_space_reservation(fs_info
, "orphan", btrfs_ino(inode
),
5842 btrfs_block_rsv_release(fs_info
, root
->orphan_block_rsv
, num_bytes
);
5846 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5847 * root: the root of the parent directory
5848 * rsv: block reservation
5849 * items: the number of items that we need do reservation
5850 * qgroup_reserved: used to return the reserved size in qgroup
5852 * This function is used to reserve the space for snapshot/subvolume
5853 * creation and deletion. Those operations are different with the
5854 * common file/directory operations, they change two fs/file trees
5855 * and root tree, the number of items that the qgroup reserves is
5856 * different with the free space reservation. So we can not use
5857 * the space reservation mechanism in start_transaction().
5859 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5860 struct btrfs_block_rsv
*rsv
,
5862 u64
*qgroup_reserved
,
5863 bool use_global_rsv
)
5867 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5868 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5870 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
5871 /* One for parent inode, two for dir entries */
5872 num_bytes
= 3 * fs_info
->nodesize
;
5873 ret
= btrfs_qgroup_reserve_meta(root
, num_bytes
, true);
5880 *qgroup_reserved
= num_bytes
;
5882 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, items
);
5883 rsv
->space_info
= __find_space_info(fs_info
,
5884 BTRFS_BLOCK_GROUP_METADATA
);
5885 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5886 BTRFS_RESERVE_FLUSH_ALL
);
5888 if (ret
== -ENOSPC
&& use_global_rsv
)
5889 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
, 1);
5891 if (ret
&& *qgroup_reserved
)
5892 btrfs_qgroup_free_meta(root
, *qgroup_reserved
);
5897 void btrfs_subvolume_release_metadata(struct btrfs_fs_info
*fs_info
,
5898 struct btrfs_block_rsv
*rsv
)
5900 btrfs_block_rsv_release(fs_info
, rsv
, (u64
)-1);
5904 * drop_outstanding_extent - drop an outstanding extent
5905 * @inode: the inode we're dropping the extent for
5906 * @num_bytes: the number of bytes we're releasing.
5908 * This is called when we are freeing up an outstanding extent, either called
5909 * after an error or after an extent is written. This will return the number of
5910 * reserved extents that need to be freed. This must be called with
5911 * BTRFS_I(inode)->lock held.
5913 static unsigned drop_outstanding_extent(struct btrfs_inode
*inode
,
5916 unsigned drop_inode_space
= 0;
5917 unsigned dropped_extents
= 0;
5918 unsigned num_extents
;
5920 num_extents
= count_max_extents(num_bytes
);
5921 ASSERT(num_extents
);
5922 ASSERT(inode
->outstanding_extents
>= num_extents
);
5923 inode
->outstanding_extents
-= num_extents
;
5925 if (inode
->outstanding_extents
== 0 &&
5926 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5927 &inode
->runtime_flags
))
5928 drop_inode_space
= 1;
5931 * If we have more or the same amount of outstanding extents than we have
5932 * reserved then we need to leave the reserved extents count alone.
5934 if (inode
->outstanding_extents
>= inode
->reserved_extents
)
5935 return drop_inode_space
;
5937 dropped_extents
= inode
->reserved_extents
- inode
->outstanding_extents
;
5938 inode
->reserved_extents
-= dropped_extents
;
5939 return dropped_extents
+ drop_inode_space
;
5943 * calc_csum_metadata_size - return the amount of metadata space that must be
5944 * reserved/freed for the given bytes.
5945 * @inode: the inode we're manipulating
5946 * @num_bytes: the number of bytes in question
5947 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5949 * This adjusts the number of csum_bytes in the inode and then returns the
5950 * correct amount of metadata that must either be reserved or freed. We
5951 * calculate how many checksums we can fit into one leaf and then divide the
5952 * number of bytes that will need to be checksumed by this value to figure out
5953 * how many checksums will be required. If we are adding bytes then the number
5954 * may go up and we will return the number of additional bytes that must be
5955 * reserved. If it is going down we will return the number of bytes that must
5958 * This must be called with BTRFS_I(inode)->lock held.
5960 static u64
calc_csum_metadata_size(struct btrfs_inode
*inode
, u64 num_bytes
,
5963 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5964 u64 old_csums
, num_csums
;
5966 if (inode
->flags
& BTRFS_INODE_NODATASUM
&& inode
->csum_bytes
== 0)
5969 old_csums
= btrfs_csum_bytes_to_leaves(fs_info
, inode
->csum_bytes
);
5971 inode
->csum_bytes
+= num_bytes
;
5973 inode
->csum_bytes
-= num_bytes
;
5974 num_csums
= btrfs_csum_bytes_to_leaves(fs_info
, inode
->csum_bytes
);
5976 /* No change, no need to reserve more */
5977 if (old_csums
== num_csums
)
5981 return btrfs_calc_trans_metadata_size(fs_info
,
5982 num_csums
- old_csums
);
5984 return btrfs_calc_trans_metadata_size(fs_info
, old_csums
- num_csums
);
5987 int btrfs_delalloc_reserve_metadata(struct btrfs_inode
*inode
, u64 num_bytes
)
5989 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5990 struct btrfs_root
*root
= inode
->root
;
5991 struct btrfs_block_rsv
*block_rsv
= &fs_info
->delalloc_block_rsv
;
5994 unsigned nr_extents
;
5995 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5997 bool delalloc_lock
= true;
6000 bool release_extra
= false;
6002 /* If we are a free space inode we need to not flush since we will be in
6003 * the middle of a transaction commit. We also don't need the delalloc
6004 * mutex since we won't race with anybody. We need this mostly to make
6005 * lockdep shut its filthy mouth.
6007 * If we have a transaction open (can happen if we call truncate_block
6008 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6010 if (btrfs_is_free_space_inode(inode
)) {
6011 flush
= BTRFS_RESERVE_NO_FLUSH
;
6012 delalloc_lock
= false;
6013 } else if (current
->journal_info
) {
6014 flush
= BTRFS_RESERVE_FLUSH_LIMIT
;
6017 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
6018 btrfs_transaction_in_commit(fs_info
))
6019 schedule_timeout(1);
6022 mutex_lock(&inode
->delalloc_mutex
);
6024 num_bytes
= ALIGN(num_bytes
, fs_info
->sectorsize
);
6026 spin_lock(&inode
->lock
);
6027 nr_extents
= count_max_extents(num_bytes
);
6028 inode
->outstanding_extents
+= nr_extents
;
6031 if (inode
->outstanding_extents
> inode
->reserved_extents
)
6032 nr_extents
+= inode
->outstanding_extents
-
6033 inode
->reserved_extents
;
6035 /* We always want to reserve a slot for updating the inode. */
6036 to_reserve
= btrfs_calc_trans_metadata_size(fs_info
, nr_extents
+ 1);
6037 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
6038 csum_bytes
= inode
->csum_bytes
;
6039 spin_unlock(&inode
->lock
);
6041 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
6042 ret
= btrfs_qgroup_reserve_meta(root
,
6043 nr_extents
* fs_info
->nodesize
, true);
6048 ret
= btrfs_block_rsv_add(root
, block_rsv
, to_reserve
, flush
);
6049 if (unlikely(ret
)) {
6050 btrfs_qgroup_free_meta(root
,
6051 nr_extents
* fs_info
->nodesize
);
6055 spin_lock(&inode
->lock
);
6056 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
6057 &inode
->runtime_flags
)) {
6058 to_reserve
-= btrfs_calc_trans_metadata_size(fs_info
, 1);
6059 release_extra
= true;
6061 inode
->reserved_extents
+= nr_extents
;
6062 spin_unlock(&inode
->lock
);
6065 mutex_unlock(&inode
->delalloc_mutex
);
6068 trace_btrfs_space_reservation(fs_info
, "delalloc",
6069 btrfs_ino(inode
), to_reserve
, 1);
6071 btrfs_block_rsv_release(fs_info
, block_rsv
,
6072 btrfs_calc_trans_metadata_size(fs_info
, 1));
6076 spin_lock(&inode
->lock
);
6077 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6079 * If the inodes csum_bytes is the same as the original
6080 * csum_bytes then we know we haven't raced with any free()ers
6081 * so we can just reduce our inodes csum bytes and carry on.
6083 if (inode
->csum_bytes
== csum_bytes
) {
6084 calc_csum_metadata_size(inode
, num_bytes
, 0);
6086 u64 orig_csum_bytes
= inode
->csum_bytes
;
6090 * This is tricky, but first we need to figure out how much we
6091 * freed from any free-ers that occurred during this
6092 * reservation, so we reset ->csum_bytes to the csum_bytes
6093 * before we dropped our lock, and then call the free for the
6094 * number of bytes that were freed while we were trying our
6097 bytes
= csum_bytes
- inode
->csum_bytes
;
6098 inode
->csum_bytes
= csum_bytes
;
6099 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
6103 * Now we need to see how much we would have freed had we not
6104 * been making this reservation and our ->csum_bytes were not
6105 * artificially inflated.
6107 inode
->csum_bytes
= csum_bytes
- num_bytes
;
6108 bytes
= csum_bytes
- orig_csum_bytes
;
6109 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
6112 * Now reset ->csum_bytes to what it should be. If bytes is
6113 * more than to_free then we would have freed more space had we
6114 * not had an artificially high ->csum_bytes, so we need to free
6115 * the remainder. If bytes is the same or less then we don't
6116 * need to do anything, the other free-ers did the correct
6119 inode
->csum_bytes
= orig_csum_bytes
- num_bytes
;
6120 if (bytes
> to_free
)
6121 to_free
= bytes
- to_free
;
6125 spin_unlock(&inode
->lock
);
6127 to_free
+= btrfs_calc_trans_metadata_size(fs_info
, dropped
);
6130 btrfs_block_rsv_release(fs_info
, block_rsv
, to_free
);
6131 trace_btrfs_space_reservation(fs_info
, "delalloc",
6132 btrfs_ino(inode
), to_free
, 0);
6135 mutex_unlock(&inode
->delalloc_mutex
);
6140 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6141 * @inode: the inode to release the reservation for
6142 * @num_bytes: the number of bytes we're releasing
6144 * This will release the metadata reservation for an inode. This can be called
6145 * once we complete IO for a given set of bytes to release their metadata
6148 void btrfs_delalloc_release_metadata(struct btrfs_inode
*inode
, u64 num_bytes
)
6150 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6154 num_bytes
= ALIGN(num_bytes
, fs_info
->sectorsize
);
6155 spin_lock(&inode
->lock
);
6156 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6159 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
6160 spin_unlock(&inode
->lock
);
6162 to_free
+= btrfs_calc_trans_metadata_size(fs_info
, dropped
);
6164 if (btrfs_is_testing(fs_info
))
6167 trace_btrfs_space_reservation(fs_info
, "delalloc", btrfs_ino(inode
),
6170 btrfs_block_rsv_release(fs_info
, &fs_info
->delalloc_block_rsv
, to_free
);
6174 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6176 * @inode: inode we're writing to
6177 * @start: start range we are writing to
6178 * @len: how long the range we are writing to
6179 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6180 * current reservation.
6182 * This will do the following things
6184 * o reserve space in data space info for num bytes
6185 * and reserve precious corresponding qgroup space
6186 * (Done in check_data_free_space)
6188 * o reserve space for metadata space, based on the number of outstanding
6189 * extents and how much csums will be needed
6190 * also reserve metadata space in a per root over-reserve method.
6191 * o add to the inodes->delalloc_bytes
6192 * o add it to the fs_info's delalloc inodes list.
6193 * (Above 3 all done in delalloc_reserve_metadata)
6195 * Return 0 for success
6196 * Return <0 for error(-ENOSPC or -EQUOT)
6198 int btrfs_delalloc_reserve_space(struct inode
*inode
,
6199 struct extent_changeset
**reserved
, u64 start
, u64 len
)
6203 ret
= btrfs_check_data_free_space(inode
, reserved
, start
, len
);
6206 ret
= btrfs_delalloc_reserve_metadata(BTRFS_I(inode
), len
);
6208 btrfs_free_reserved_data_space(inode
, *reserved
, start
, len
);
6213 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6214 * @inode: inode we're releasing space for
6215 * @start: start position of the space already reserved
6216 * @len: the len of the space already reserved
6218 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6219 * called in the case that we don't need the metadata AND data reservations
6220 * anymore. So if there is an error or we insert an inline extent.
6222 * This function will release the metadata space that was not used and will
6223 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6224 * list if there are no delalloc bytes left.
6225 * Also it will handle the qgroup reserved space.
6227 void btrfs_delalloc_release_space(struct inode
*inode
,
6228 struct extent_changeset
*reserved
, u64 start
, u64 len
)
6230 btrfs_delalloc_release_metadata(BTRFS_I(inode
), len
);
6231 btrfs_free_reserved_data_space(inode
, reserved
, start
, len
);
6234 static int update_block_group(struct btrfs_trans_handle
*trans
,
6235 struct btrfs_fs_info
*info
, u64 bytenr
,
6236 u64 num_bytes
, int alloc
)
6238 struct btrfs_block_group_cache
*cache
= NULL
;
6239 u64 total
= num_bytes
;
6244 /* block accounting for super block */
6245 spin_lock(&info
->delalloc_root_lock
);
6246 old_val
= btrfs_super_bytes_used(info
->super_copy
);
6248 old_val
+= num_bytes
;
6250 old_val
-= num_bytes
;
6251 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
6252 spin_unlock(&info
->delalloc_root_lock
);
6255 cache
= btrfs_lookup_block_group(info
, bytenr
);
6258 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
6259 BTRFS_BLOCK_GROUP_RAID1
|
6260 BTRFS_BLOCK_GROUP_RAID10
))
6265 * If this block group has free space cache written out, we
6266 * need to make sure to load it if we are removing space. This
6267 * is because we need the unpinning stage to actually add the
6268 * space back to the block group, otherwise we will leak space.
6270 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
6271 cache_block_group(cache
, 1);
6273 byte_in_group
= bytenr
- cache
->key
.objectid
;
6274 WARN_ON(byte_in_group
> cache
->key
.offset
);
6276 spin_lock(&cache
->space_info
->lock
);
6277 spin_lock(&cache
->lock
);
6279 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
6280 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
6281 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
6283 old_val
= btrfs_block_group_used(&cache
->item
);
6284 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
6286 old_val
+= num_bytes
;
6287 btrfs_set_block_group_used(&cache
->item
, old_val
);
6288 cache
->reserved
-= num_bytes
;
6289 cache
->space_info
->bytes_reserved
-= num_bytes
;
6290 cache
->space_info
->bytes_used
+= num_bytes
;
6291 cache
->space_info
->disk_used
+= num_bytes
* factor
;
6292 spin_unlock(&cache
->lock
);
6293 spin_unlock(&cache
->space_info
->lock
);
6295 old_val
-= num_bytes
;
6296 btrfs_set_block_group_used(&cache
->item
, old_val
);
6297 cache
->pinned
+= num_bytes
;
6298 cache
->space_info
->bytes_pinned
+= num_bytes
;
6299 cache
->space_info
->bytes_used
-= num_bytes
;
6300 cache
->space_info
->disk_used
-= num_bytes
* factor
;
6301 spin_unlock(&cache
->lock
);
6302 spin_unlock(&cache
->space_info
->lock
);
6304 trace_btrfs_space_reservation(info
, "pinned",
6305 cache
->space_info
->flags
,
6307 percpu_counter_add(&cache
->space_info
->total_bytes_pinned
,
6309 set_extent_dirty(info
->pinned_extents
,
6310 bytenr
, bytenr
+ num_bytes
- 1,
6311 GFP_NOFS
| __GFP_NOFAIL
);
6314 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
6315 if (list_empty(&cache
->dirty_list
)) {
6316 list_add_tail(&cache
->dirty_list
,
6317 &trans
->transaction
->dirty_bgs
);
6318 trans
->transaction
->num_dirty_bgs
++;
6319 btrfs_get_block_group(cache
);
6321 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
6324 * No longer have used bytes in this block group, queue it for
6325 * deletion. We do this after adding the block group to the
6326 * dirty list to avoid races between cleaner kthread and space
6329 if (!alloc
&& old_val
== 0) {
6330 spin_lock(&info
->unused_bgs_lock
);
6331 if (list_empty(&cache
->bg_list
)) {
6332 btrfs_get_block_group(cache
);
6333 list_add_tail(&cache
->bg_list
,
6336 spin_unlock(&info
->unused_bgs_lock
);
6339 btrfs_put_block_group(cache
);
6341 bytenr
+= num_bytes
;
6346 static u64
first_logical_byte(struct btrfs_fs_info
*fs_info
, u64 search_start
)
6348 struct btrfs_block_group_cache
*cache
;
6351 spin_lock(&fs_info
->block_group_cache_lock
);
6352 bytenr
= fs_info
->first_logical_byte
;
6353 spin_unlock(&fs_info
->block_group_cache_lock
);
6355 if (bytenr
< (u64
)-1)
6358 cache
= btrfs_lookup_first_block_group(fs_info
, search_start
);
6362 bytenr
= cache
->key
.objectid
;
6363 btrfs_put_block_group(cache
);
6368 static int pin_down_extent(struct btrfs_fs_info
*fs_info
,
6369 struct btrfs_block_group_cache
*cache
,
6370 u64 bytenr
, u64 num_bytes
, int reserved
)
6372 spin_lock(&cache
->space_info
->lock
);
6373 spin_lock(&cache
->lock
);
6374 cache
->pinned
+= num_bytes
;
6375 cache
->space_info
->bytes_pinned
+= num_bytes
;
6377 cache
->reserved
-= num_bytes
;
6378 cache
->space_info
->bytes_reserved
-= num_bytes
;
6380 spin_unlock(&cache
->lock
);
6381 spin_unlock(&cache
->space_info
->lock
);
6383 trace_btrfs_space_reservation(fs_info
, "pinned",
6384 cache
->space_info
->flags
, num_bytes
, 1);
6385 percpu_counter_add(&cache
->space_info
->total_bytes_pinned
, num_bytes
);
6386 set_extent_dirty(fs_info
->pinned_extents
, bytenr
,
6387 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
6392 * this function must be called within transaction
6394 int btrfs_pin_extent(struct btrfs_fs_info
*fs_info
,
6395 u64 bytenr
, u64 num_bytes
, int reserved
)
6397 struct btrfs_block_group_cache
*cache
;
6399 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
6400 BUG_ON(!cache
); /* Logic error */
6402 pin_down_extent(fs_info
, cache
, bytenr
, num_bytes
, reserved
);
6404 btrfs_put_block_group(cache
);
6409 * this function must be called within transaction
6411 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info
*fs_info
,
6412 u64 bytenr
, u64 num_bytes
)
6414 struct btrfs_block_group_cache
*cache
;
6417 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
6422 * pull in the free space cache (if any) so that our pin
6423 * removes the free space from the cache. We have load_only set
6424 * to one because the slow code to read in the free extents does check
6425 * the pinned extents.
6427 cache_block_group(cache
, 1);
6429 pin_down_extent(fs_info
, cache
, bytenr
, num_bytes
, 0);
6431 /* remove us from the free space cache (if we're there at all) */
6432 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
6433 btrfs_put_block_group(cache
);
6437 static int __exclude_logged_extent(struct btrfs_fs_info
*fs_info
,
6438 u64 start
, u64 num_bytes
)
6441 struct btrfs_block_group_cache
*block_group
;
6442 struct btrfs_caching_control
*caching_ctl
;
6444 block_group
= btrfs_lookup_block_group(fs_info
, start
);
6448 cache_block_group(block_group
, 0);
6449 caching_ctl
= get_caching_control(block_group
);
6453 BUG_ON(!block_group_cache_done(block_group
));
6454 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6456 mutex_lock(&caching_ctl
->mutex
);
6458 if (start
>= caching_ctl
->progress
) {
6459 ret
= add_excluded_extent(fs_info
, start
, num_bytes
);
6460 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6461 ret
= btrfs_remove_free_space(block_group
,
6464 num_bytes
= caching_ctl
->progress
- start
;
6465 ret
= btrfs_remove_free_space(block_group
,
6470 num_bytes
= (start
+ num_bytes
) -
6471 caching_ctl
->progress
;
6472 start
= caching_ctl
->progress
;
6473 ret
= add_excluded_extent(fs_info
, start
, num_bytes
);
6476 mutex_unlock(&caching_ctl
->mutex
);
6477 put_caching_control(caching_ctl
);
6479 btrfs_put_block_group(block_group
);
6483 int btrfs_exclude_logged_extents(struct btrfs_fs_info
*fs_info
,
6484 struct extent_buffer
*eb
)
6486 struct btrfs_file_extent_item
*item
;
6487 struct btrfs_key key
;
6491 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
))
6494 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
6495 btrfs_item_key_to_cpu(eb
, &key
, i
);
6496 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6498 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
6499 found_type
= btrfs_file_extent_type(eb
, item
);
6500 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
6502 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
6504 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
6505 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
6506 __exclude_logged_extent(fs_info
, key
.objectid
, key
.offset
);
6513 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6515 atomic_inc(&bg
->reservations
);
6518 void btrfs_dec_block_group_reservations(struct btrfs_fs_info
*fs_info
,
6521 struct btrfs_block_group_cache
*bg
;
6523 bg
= btrfs_lookup_block_group(fs_info
, start
);
6525 if (atomic_dec_and_test(&bg
->reservations
))
6526 wake_up_atomic_t(&bg
->reservations
);
6527 btrfs_put_block_group(bg
);
6530 static int btrfs_wait_bg_reservations_atomic_t(atomic_t
*a
)
6536 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6538 struct btrfs_space_info
*space_info
= bg
->space_info
;
6542 if (!(bg
->flags
& BTRFS_BLOCK_GROUP_DATA
))
6546 * Our block group is read only but before we set it to read only,
6547 * some task might have had allocated an extent from it already, but it
6548 * has not yet created a respective ordered extent (and added it to a
6549 * root's list of ordered extents).
6550 * Therefore wait for any task currently allocating extents, since the
6551 * block group's reservations counter is incremented while a read lock
6552 * on the groups' semaphore is held and decremented after releasing
6553 * the read access on that semaphore and creating the ordered extent.
6555 down_write(&space_info
->groups_sem
);
6556 up_write(&space_info
->groups_sem
);
6558 wait_on_atomic_t(&bg
->reservations
,
6559 btrfs_wait_bg_reservations_atomic_t
,
6560 TASK_UNINTERRUPTIBLE
);
6564 * btrfs_add_reserved_bytes - update the block_group and space info counters
6565 * @cache: The cache we are manipulating
6566 * @ram_bytes: The number of bytes of file content, and will be same to
6567 * @num_bytes except for the compress path.
6568 * @num_bytes: The number of bytes in question
6569 * @delalloc: The blocks are allocated for the delalloc write
6571 * This is called by the allocator when it reserves space. If this is a
6572 * reservation and the block group has become read only we cannot make the
6573 * reservation and return -EAGAIN, otherwise this function always succeeds.
6575 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6576 u64 ram_bytes
, u64 num_bytes
, int delalloc
)
6578 struct btrfs_space_info
*space_info
= cache
->space_info
;
6581 spin_lock(&space_info
->lock
);
6582 spin_lock(&cache
->lock
);
6586 cache
->reserved
+= num_bytes
;
6587 space_info
->bytes_reserved
+= num_bytes
;
6589 trace_btrfs_space_reservation(cache
->fs_info
,
6590 "space_info", space_info
->flags
,
6592 space_info
->bytes_may_use
-= ram_bytes
;
6594 cache
->delalloc_bytes
+= num_bytes
;
6596 spin_unlock(&cache
->lock
);
6597 spin_unlock(&space_info
->lock
);
6602 * btrfs_free_reserved_bytes - update the block_group and space info counters
6603 * @cache: The cache we are manipulating
6604 * @num_bytes: The number of bytes in question
6605 * @delalloc: The blocks are allocated for the delalloc write
6607 * This is called by somebody who is freeing space that was never actually used
6608 * on disk. For example if you reserve some space for a new leaf in transaction
6609 * A and before transaction A commits you free that leaf, you call this with
6610 * reserve set to 0 in order to clear the reservation.
6613 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6614 u64 num_bytes
, int delalloc
)
6616 struct btrfs_space_info
*space_info
= cache
->space_info
;
6619 spin_lock(&space_info
->lock
);
6620 spin_lock(&cache
->lock
);
6622 space_info
->bytes_readonly
+= num_bytes
;
6623 cache
->reserved
-= num_bytes
;
6624 space_info
->bytes_reserved
-= num_bytes
;
6627 cache
->delalloc_bytes
-= num_bytes
;
6628 spin_unlock(&cache
->lock
);
6629 spin_unlock(&space_info
->lock
);
6632 void btrfs_prepare_extent_commit(struct btrfs_fs_info
*fs_info
)
6634 struct btrfs_caching_control
*next
;
6635 struct btrfs_caching_control
*caching_ctl
;
6636 struct btrfs_block_group_cache
*cache
;
6638 down_write(&fs_info
->commit_root_sem
);
6640 list_for_each_entry_safe(caching_ctl
, next
,
6641 &fs_info
->caching_block_groups
, list
) {
6642 cache
= caching_ctl
->block_group
;
6643 if (block_group_cache_done(cache
)) {
6644 cache
->last_byte_to_unpin
= (u64
)-1;
6645 list_del_init(&caching_ctl
->list
);
6646 put_caching_control(caching_ctl
);
6648 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
6652 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6653 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
6655 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
6657 up_write(&fs_info
->commit_root_sem
);
6659 update_global_block_rsv(fs_info
);
6663 * Returns the free cluster for the given space info and sets empty_cluster to
6664 * what it should be based on the mount options.
6666 static struct btrfs_free_cluster
*
6667 fetch_cluster_info(struct btrfs_fs_info
*fs_info
,
6668 struct btrfs_space_info
*space_info
, u64
*empty_cluster
)
6670 struct btrfs_free_cluster
*ret
= NULL
;
6671 bool ssd
= btrfs_test_opt(fs_info
, SSD
);
6674 if (btrfs_mixed_space_info(space_info
))
6678 *empty_cluster
= SZ_2M
;
6679 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
6680 ret
= &fs_info
->meta_alloc_cluster
;
6682 *empty_cluster
= SZ_64K
;
6683 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) && ssd
) {
6684 ret
= &fs_info
->data_alloc_cluster
;
6690 static int unpin_extent_range(struct btrfs_fs_info
*fs_info
,
6692 const bool return_free_space
)
6694 struct btrfs_block_group_cache
*cache
= NULL
;
6695 struct btrfs_space_info
*space_info
;
6696 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
6697 struct btrfs_free_cluster
*cluster
= NULL
;
6699 u64 total_unpinned
= 0;
6700 u64 empty_cluster
= 0;
6703 while (start
<= end
) {
6706 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
6708 btrfs_put_block_group(cache
);
6710 cache
= btrfs_lookup_block_group(fs_info
, start
);
6711 BUG_ON(!cache
); /* Logic error */
6713 cluster
= fetch_cluster_info(fs_info
,
6716 empty_cluster
<<= 1;
6719 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
6720 len
= min(len
, end
+ 1 - start
);
6722 if (start
< cache
->last_byte_to_unpin
) {
6723 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6724 if (return_free_space
)
6725 btrfs_add_free_space(cache
, start
, len
);
6729 total_unpinned
+= len
;
6730 space_info
= cache
->space_info
;
6733 * If this space cluster has been marked as fragmented and we've
6734 * unpinned enough in this block group to potentially allow a
6735 * cluster to be created inside of it go ahead and clear the
6738 if (cluster
&& cluster
->fragmented
&&
6739 total_unpinned
> empty_cluster
) {
6740 spin_lock(&cluster
->lock
);
6741 cluster
->fragmented
= 0;
6742 spin_unlock(&cluster
->lock
);
6745 spin_lock(&space_info
->lock
);
6746 spin_lock(&cache
->lock
);
6747 cache
->pinned
-= len
;
6748 space_info
->bytes_pinned
-= len
;
6750 trace_btrfs_space_reservation(fs_info
, "pinned",
6751 space_info
->flags
, len
, 0);
6752 space_info
->max_extent_size
= 0;
6753 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6755 space_info
->bytes_readonly
+= len
;
6758 spin_unlock(&cache
->lock
);
6759 if (!readonly
&& return_free_space
&&
6760 global_rsv
->space_info
== space_info
) {
6762 WARN_ON(!return_free_space
);
6763 spin_lock(&global_rsv
->lock
);
6764 if (!global_rsv
->full
) {
6765 to_add
= min(len
, global_rsv
->size
-
6766 global_rsv
->reserved
);
6767 global_rsv
->reserved
+= to_add
;
6768 space_info
->bytes_may_use
+= to_add
;
6769 if (global_rsv
->reserved
>= global_rsv
->size
)
6770 global_rsv
->full
= 1;
6771 trace_btrfs_space_reservation(fs_info
,
6777 spin_unlock(&global_rsv
->lock
);
6778 /* Add to any tickets we may have */
6780 space_info_add_new_bytes(fs_info
, space_info
,
6783 spin_unlock(&space_info
->lock
);
6787 btrfs_put_block_group(cache
);
6791 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6792 struct btrfs_fs_info
*fs_info
)
6794 struct btrfs_block_group_cache
*block_group
, *tmp
;
6795 struct list_head
*deleted_bgs
;
6796 struct extent_io_tree
*unpin
;
6801 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6802 unpin
= &fs_info
->freed_extents
[1];
6804 unpin
= &fs_info
->freed_extents
[0];
6806 while (!trans
->aborted
) {
6807 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6808 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6809 EXTENT_DIRTY
, NULL
);
6811 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6815 if (btrfs_test_opt(fs_info
, DISCARD
))
6816 ret
= btrfs_discard_extent(fs_info
, start
,
6817 end
+ 1 - start
, NULL
);
6819 clear_extent_dirty(unpin
, start
, end
);
6820 unpin_extent_range(fs_info
, start
, end
, true);
6821 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6826 * Transaction is finished. We don't need the lock anymore. We
6827 * do need to clean up the block groups in case of a transaction
6830 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
6831 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
6835 if (!trans
->aborted
)
6836 ret
= btrfs_discard_extent(fs_info
,
6837 block_group
->key
.objectid
,
6838 block_group
->key
.offset
,
6841 list_del_init(&block_group
->bg_list
);
6842 btrfs_put_block_group_trimming(block_group
);
6843 btrfs_put_block_group(block_group
);
6846 const char *errstr
= btrfs_decode_error(ret
);
6848 "Discard failed while removing blockgroup: errno=%d %s\n",
6856 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6857 struct btrfs_fs_info
*info
,
6858 struct btrfs_delayed_ref_node
*node
, u64 parent
,
6859 u64 root_objectid
, u64 owner_objectid
,
6860 u64 owner_offset
, int refs_to_drop
,
6861 struct btrfs_delayed_extent_op
*extent_op
)
6863 struct btrfs_key key
;
6864 struct btrfs_path
*path
;
6865 struct btrfs_root
*extent_root
= info
->extent_root
;
6866 struct extent_buffer
*leaf
;
6867 struct btrfs_extent_item
*ei
;
6868 struct btrfs_extent_inline_ref
*iref
;
6871 int extent_slot
= 0;
6872 int found_extent
= 0;
6876 u64 bytenr
= node
->bytenr
;
6877 u64 num_bytes
= node
->num_bytes
;
6879 bool skinny_metadata
= btrfs_fs_incompat(info
, SKINNY_METADATA
);
6881 path
= btrfs_alloc_path();
6885 path
->reada
= READA_FORWARD
;
6886 path
->leave_spinning
= 1;
6888 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6889 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6892 skinny_metadata
= 0;
6894 ret
= lookup_extent_backref(trans
, info
, path
, &iref
,
6895 bytenr
, num_bytes
, parent
,
6896 root_objectid
, owner_objectid
,
6899 extent_slot
= path
->slots
[0];
6900 while (extent_slot
>= 0) {
6901 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6903 if (key
.objectid
!= bytenr
)
6905 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6906 key
.offset
== num_bytes
) {
6910 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
6911 key
.offset
== owner_objectid
) {
6915 if (path
->slots
[0] - extent_slot
> 5)
6919 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6920 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
6921 if (found_extent
&& item_size
< sizeof(*ei
))
6924 if (!found_extent
) {
6926 ret
= remove_extent_backref(trans
, info
, path
, NULL
,
6928 is_data
, &last_ref
);
6930 btrfs_abort_transaction(trans
, ret
);
6933 btrfs_release_path(path
);
6934 path
->leave_spinning
= 1;
6936 key
.objectid
= bytenr
;
6937 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6938 key
.offset
= num_bytes
;
6940 if (!is_data
&& skinny_metadata
) {
6941 key
.type
= BTRFS_METADATA_ITEM_KEY
;
6942 key
.offset
= owner_objectid
;
6945 ret
= btrfs_search_slot(trans
, extent_root
,
6947 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
6949 * Couldn't find our skinny metadata item,
6950 * see if we have ye olde extent item.
6953 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6955 if (key
.objectid
== bytenr
&&
6956 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6957 key
.offset
== num_bytes
)
6961 if (ret
> 0 && skinny_metadata
) {
6962 skinny_metadata
= false;
6963 key
.objectid
= bytenr
;
6964 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6965 key
.offset
= num_bytes
;
6966 btrfs_release_path(path
);
6967 ret
= btrfs_search_slot(trans
, extent_root
,
6973 "umm, got %d back from search, was looking for %llu",
6976 btrfs_print_leaf(info
, path
->nodes
[0]);
6979 btrfs_abort_transaction(trans
, ret
);
6982 extent_slot
= path
->slots
[0];
6984 } else if (WARN_ON(ret
== -ENOENT
)) {
6985 btrfs_print_leaf(info
, path
->nodes
[0]);
6987 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6988 bytenr
, parent
, root_objectid
, owner_objectid
,
6990 btrfs_abort_transaction(trans
, ret
);
6993 btrfs_abort_transaction(trans
, ret
);
6997 leaf
= path
->nodes
[0];
6998 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6999 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7000 if (item_size
< sizeof(*ei
)) {
7001 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
7002 ret
= convert_extent_item_v0(trans
, info
, path
, owner_objectid
,
7005 btrfs_abort_transaction(trans
, ret
);
7009 btrfs_release_path(path
);
7010 path
->leave_spinning
= 1;
7012 key
.objectid
= bytenr
;
7013 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
7014 key
.offset
= num_bytes
;
7016 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
7020 "umm, got %d back from search, was looking for %llu",
7022 btrfs_print_leaf(info
, path
->nodes
[0]);
7025 btrfs_abort_transaction(trans
, ret
);
7029 extent_slot
= path
->slots
[0];
7030 leaf
= path
->nodes
[0];
7031 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
7034 BUG_ON(item_size
< sizeof(*ei
));
7035 ei
= btrfs_item_ptr(leaf
, extent_slot
,
7036 struct btrfs_extent_item
);
7037 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
7038 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
7039 struct btrfs_tree_block_info
*bi
;
7040 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
7041 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
7042 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
7045 refs
= btrfs_extent_refs(leaf
, ei
);
7046 if (refs
< refs_to_drop
) {
7048 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7049 refs_to_drop
, refs
, bytenr
);
7051 btrfs_abort_transaction(trans
, ret
);
7054 refs
-= refs_to_drop
;
7058 __run_delayed_extent_op(extent_op
, leaf
, ei
);
7060 * In the case of inline back ref, reference count will
7061 * be updated by remove_extent_backref
7064 BUG_ON(!found_extent
);
7066 btrfs_set_extent_refs(leaf
, ei
, refs
);
7067 btrfs_mark_buffer_dirty(leaf
);
7070 ret
= remove_extent_backref(trans
, info
, path
,
7072 is_data
, &last_ref
);
7074 btrfs_abort_transaction(trans
, ret
);
7080 BUG_ON(is_data
&& refs_to_drop
!=
7081 extent_data_ref_count(path
, iref
));
7083 BUG_ON(path
->slots
[0] != extent_slot
);
7085 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
7086 path
->slots
[0] = extent_slot
;
7092 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
7095 btrfs_abort_transaction(trans
, ret
);
7098 btrfs_release_path(path
);
7101 ret
= btrfs_del_csums(trans
, info
, bytenr
, num_bytes
);
7103 btrfs_abort_transaction(trans
, ret
);
7108 ret
= add_to_free_space_tree(trans
, info
, bytenr
, num_bytes
);
7110 btrfs_abort_transaction(trans
, ret
);
7114 ret
= update_block_group(trans
, info
, bytenr
, num_bytes
, 0);
7116 btrfs_abort_transaction(trans
, ret
);
7120 btrfs_release_path(path
);
7123 btrfs_free_path(path
);
7128 * when we free an block, it is possible (and likely) that we free the last
7129 * delayed ref for that extent as well. This searches the delayed ref tree for
7130 * a given extent, and if there are no other delayed refs to be processed, it
7131 * removes it from the tree.
7133 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
7136 struct btrfs_delayed_ref_head
*head
;
7137 struct btrfs_delayed_ref_root
*delayed_refs
;
7140 delayed_refs
= &trans
->transaction
->delayed_refs
;
7141 spin_lock(&delayed_refs
->lock
);
7142 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
7144 goto out_delayed_unlock
;
7146 spin_lock(&head
->lock
);
7147 if (!list_empty(&head
->ref_list
))
7150 if (head
->extent_op
) {
7151 if (!head
->must_insert_reserved
)
7153 btrfs_free_delayed_extent_op(head
->extent_op
);
7154 head
->extent_op
= NULL
;
7158 * waiting for the lock here would deadlock. If someone else has it
7159 * locked they are already in the process of dropping it anyway
7161 if (!mutex_trylock(&head
->mutex
))
7165 * at this point we have a head with no other entries. Go
7166 * ahead and process it.
7168 head
->node
.in_tree
= 0;
7169 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
7171 atomic_dec(&delayed_refs
->num_entries
);
7174 * we don't take a ref on the node because we're removing it from the
7175 * tree, so we just steal the ref the tree was holding.
7177 delayed_refs
->num_heads
--;
7178 if (head
->processing
== 0)
7179 delayed_refs
->num_heads_ready
--;
7180 head
->processing
= 0;
7181 spin_unlock(&head
->lock
);
7182 spin_unlock(&delayed_refs
->lock
);
7184 BUG_ON(head
->extent_op
);
7185 if (head
->must_insert_reserved
)
7188 mutex_unlock(&head
->mutex
);
7189 btrfs_put_delayed_ref(&head
->node
);
7192 spin_unlock(&head
->lock
);
7195 spin_unlock(&delayed_refs
->lock
);
7199 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
7200 struct btrfs_root
*root
,
7201 struct extent_buffer
*buf
,
7202 u64 parent
, int last_ref
)
7204 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7208 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7209 int old_ref_mod
, new_ref_mod
;
7211 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, buf
->start
,
7213 root
->root_key
.objectid
,
7214 btrfs_header_level(buf
),
7215 BTRFS_DROP_DELAYED_REF
, NULL
,
7216 &old_ref_mod
, &new_ref_mod
);
7217 BUG_ON(ret
); /* -ENOMEM */
7218 pin
= old_ref_mod
>= 0 && new_ref_mod
< 0;
7221 if (last_ref
&& btrfs_header_generation(buf
) == trans
->transid
) {
7222 struct btrfs_block_group_cache
*cache
;
7224 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7225 ret
= check_ref_cleanup(trans
, buf
->start
);
7231 cache
= btrfs_lookup_block_group(fs_info
, buf
->start
);
7233 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
7234 pin_down_extent(fs_info
, cache
, buf
->start
,
7236 btrfs_put_block_group(cache
);
7240 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
7242 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
7243 btrfs_free_reserved_bytes(cache
, buf
->len
, 0);
7244 btrfs_put_block_group(cache
);
7245 trace_btrfs_reserved_extent_free(fs_info
, buf
->start
, buf
->len
);
7249 add_pinned_bytes(fs_info
, buf
->len
, btrfs_header_level(buf
),
7250 root
->root_key
.objectid
);
7254 * Deleting the buffer, clear the corrupt flag since it doesn't
7257 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
7261 /* Can return -ENOMEM */
7262 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
7263 struct btrfs_fs_info
*fs_info
,
7264 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
7265 u64 owner
, u64 offset
)
7267 int old_ref_mod
, new_ref_mod
;
7270 if (btrfs_is_testing(fs_info
))
7275 * tree log blocks never actually go into the extent allocation
7276 * tree, just update pinning info and exit early.
7278 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7279 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
7280 /* unlocks the pinned mutex */
7281 btrfs_pin_extent(fs_info
, bytenr
, num_bytes
, 1);
7282 old_ref_mod
= new_ref_mod
= 0;
7284 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
7285 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
7287 root_objectid
, (int)owner
,
7288 BTRFS_DROP_DELAYED_REF
, NULL
,
7289 &old_ref_mod
, &new_ref_mod
);
7291 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
7293 root_objectid
, owner
, offset
,
7294 0, BTRFS_DROP_DELAYED_REF
,
7295 &old_ref_mod
, &new_ref_mod
);
7298 if (ret
== 0 && old_ref_mod
>= 0 && new_ref_mod
< 0)
7299 add_pinned_bytes(fs_info
, num_bytes
, owner
, root_objectid
);
7305 * when we wait for progress in the block group caching, its because
7306 * our allocation attempt failed at least once. So, we must sleep
7307 * and let some progress happen before we try again.
7309 * This function will sleep at least once waiting for new free space to
7310 * show up, and then it will check the block group free space numbers
7311 * for our min num_bytes. Another option is to have it go ahead
7312 * and look in the rbtree for a free extent of a given size, but this
7315 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7316 * any of the information in this block group.
7318 static noinline
void
7319 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
7322 struct btrfs_caching_control
*caching_ctl
;
7324 caching_ctl
= get_caching_control(cache
);
7328 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
7329 (cache
->free_space_ctl
->free_space
>= num_bytes
));
7331 put_caching_control(caching_ctl
);
7335 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
7337 struct btrfs_caching_control
*caching_ctl
;
7340 caching_ctl
= get_caching_control(cache
);
7342 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
7344 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
7345 if (cache
->cached
== BTRFS_CACHE_ERROR
)
7347 put_caching_control(caching_ctl
);
7351 int __get_raid_index(u64 flags
)
7353 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
7354 return BTRFS_RAID_RAID10
;
7355 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
7356 return BTRFS_RAID_RAID1
;
7357 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7358 return BTRFS_RAID_DUP
;
7359 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7360 return BTRFS_RAID_RAID0
;
7361 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
7362 return BTRFS_RAID_RAID5
;
7363 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
7364 return BTRFS_RAID_RAID6
;
7366 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
7369 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
7371 return __get_raid_index(cache
->flags
);
7374 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
7375 [BTRFS_RAID_RAID10
] = "raid10",
7376 [BTRFS_RAID_RAID1
] = "raid1",
7377 [BTRFS_RAID_DUP
] = "dup",
7378 [BTRFS_RAID_RAID0
] = "raid0",
7379 [BTRFS_RAID_SINGLE
] = "single",
7380 [BTRFS_RAID_RAID5
] = "raid5",
7381 [BTRFS_RAID_RAID6
] = "raid6",
7384 static const char *get_raid_name(enum btrfs_raid_types type
)
7386 if (type
>= BTRFS_NR_RAID_TYPES
)
7389 return btrfs_raid_type_names
[type
];
7392 enum btrfs_loop_type
{
7393 LOOP_CACHING_NOWAIT
= 0,
7394 LOOP_CACHING_WAIT
= 1,
7395 LOOP_ALLOC_CHUNK
= 2,
7396 LOOP_NO_EMPTY_SIZE
= 3,
7400 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
7404 down_read(&cache
->data_rwsem
);
7408 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
7411 btrfs_get_block_group(cache
);
7413 down_read(&cache
->data_rwsem
);
7416 static struct btrfs_block_group_cache
*
7417 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
7418 struct btrfs_free_cluster
*cluster
,
7421 struct btrfs_block_group_cache
*used_bg
= NULL
;
7423 spin_lock(&cluster
->refill_lock
);
7425 used_bg
= cluster
->block_group
;
7429 if (used_bg
== block_group
)
7432 btrfs_get_block_group(used_bg
);
7437 if (down_read_trylock(&used_bg
->data_rwsem
))
7440 spin_unlock(&cluster
->refill_lock
);
7442 /* We should only have one-level nested. */
7443 down_read_nested(&used_bg
->data_rwsem
, SINGLE_DEPTH_NESTING
);
7445 spin_lock(&cluster
->refill_lock
);
7446 if (used_bg
== cluster
->block_group
)
7449 up_read(&used_bg
->data_rwsem
);
7450 btrfs_put_block_group(used_bg
);
7455 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
7459 up_read(&cache
->data_rwsem
);
7460 btrfs_put_block_group(cache
);
7464 * walks the btree of allocated extents and find a hole of a given size.
7465 * The key ins is changed to record the hole:
7466 * ins->objectid == start position
7467 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7468 * ins->offset == the size of the hole.
7469 * Any available blocks before search_start are skipped.
7471 * If there is no suitable free space, we will record the max size of
7472 * the free space extent currently.
7474 static noinline
int find_free_extent(struct btrfs_fs_info
*fs_info
,
7475 u64 ram_bytes
, u64 num_bytes
, u64 empty_size
,
7476 u64 hint_byte
, struct btrfs_key
*ins
,
7477 u64 flags
, int delalloc
)
7480 struct btrfs_root
*root
= fs_info
->extent_root
;
7481 struct btrfs_free_cluster
*last_ptr
= NULL
;
7482 struct btrfs_block_group_cache
*block_group
= NULL
;
7483 u64 search_start
= 0;
7484 u64 max_extent_size
= 0;
7485 u64 empty_cluster
= 0;
7486 struct btrfs_space_info
*space_info
;
7488 int index
= __get_raid_index(flags
);
7489 bool failed_cluster_refill
= false;
7490 bool failed_alloc
= false;
7491 bool use_cluster
= true;
7492 bool have_caching_bg
= false;
7493 bool orig_have_caching_bg
= false;
7494 bool full_search
= false;
7496 WARN_ON(num_bytes
< fs_info
->sectorsize
);
7497 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
7501 trace_find_free_extent(fs_info
, num_bytes
, empty_size
, flags
);
7503 space_info
= __find_space_info(fs_info
, flags
);
7505 btrfs_err(fs_info
, "No space info for %llu", flags
);
7510 * If our free space is heavily fragmented we may not be able to make
7511 * big contiguous allocations, so instead of doing the expensive search
7512 * for free space, simply return ENOSPC with our max_extent_size so we
7513 * can go ahead and search for a more manageable chunk.
7515 * If our max_extent_size is large enough for our allocation simply
7516 * disable clustering since we will likely not be able to find enough
7517 * space to create a cluster and induce latency trying.
7519 if (unlikely(space_info
->max_extent_size
)) {
7520 spin_lock(&space_info
->lock
);
7521 if (space_info
->max_extent_size
&&
7522 num_bytes
> space_info
->max_extent_size
) {
7523 ins
->offset
= space_info
->max_extent_size
;
7524 spin_unlock(&space_info
->lock
);
7526 } else if (space_info
->max_extent_size
) {
7527 use_cluster
= false;
7529 spin_unlock(&space_info
->lock
);
7532 last_ptr
= fetch_cluster_info(fs_info
, space_info
, &empty_cluster
);
7534 spin_lock(&last_ptr
->lock
);
7535 if (last_ptr
->block_group
)
7536 hint_byte
= last_ptr
->window_start
;
7537 if (last_ptr
->fragmented
) {
7539 * We still set window_start so we can keep track of the
7540 * last place we found an allocation to try and save
7543 hint_byte
= last_ptr
->window_start
;
7544 use_cluster
= false;
7546 spin_unlock(&last_ptr
->lock
);
7549 search_start
= max(search_start
, first_logical_byte(fs_info
, 0));
7550 search_start
= max(search_start
, hint_byte
);
7551 if (search_start
== hint_byte
) {
7552 block_group
= btrfs_lookup_block_group(fs_info
, search_start
);
7554 * we don't want to use the block group if it doesn't match our
7555 * allocation bits, or if its not cached.
7557 * However if we are re-searching with an ideal block group
7558 * picked out then we don't care that the block group is cached.
7560 if (block_group
&& block_group_bits(block_group
, flags
) &&
7561 block_group
->cached
!= BTRFS_CACHE_NO
) {
7562 down_read(&space_info
->groups_sem
);
7563 if (list_empty(&block_group
->list
) ||
7566 * someone is removing this block group,
7567 * we can't jump into the have_block_group
7568 * target because our list pointers are not
7571 btrfs_put_block_group(block_group
);
7572 up_read(&space_info
->groups_sem
);
7574 index
= get_block_group_index(block_group
);
7575 btrfs_lock_block_group(block_group
, delalloc
);
7576 goto have_block_group
;
7578 } else if (block_group
) {
7579 btrfs_put_block_group(block_group
);
7583 have_caching_bg
= false;
7584 if (index
== 0 || index
== __get_raid_index(flags
))
7586 down_read(&space_info
->groups_sem
);
7587 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
7592 btrfs_grab_block_group(block_group
, delalloc
);
7593 search_start
= block_group
->key
.objectid
;
7596 * this can happen if we end up cycling through all the
7597 * raid types, but we want to make sure we only allocate
7598 * for the proper type.
7600 if (!block_group_bits(block_group
, flags
)) {
7601 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
7602 BTRFS_BLOCK_GROUP_RAID1
|
7603 BTRFS_BLOCK_GROUP_RAID5
|
7604 BTRFS_BLOCK_GROUP_RAID6
|
7605 BTRFS_BLOCK_GROUP_RAID10
;
7608 * if they asked for extra copies and this block group
7609 * doesn't provide them, bail. This does allow us to
7610 * fill raid0 from raid1.
7612 if ((flags
& extra
) && !(block_group
->flags
& extra
))
7617 cached
= block_group_cache_done(block_group
);
7618 if (unlikely(!cached
)) {
7619 have_caching_bg
= true;
7620 ret
= cache_block_group(block_group
, 0);
7625 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
7627 if (unlikely(block_group
->ro
))
7631 * Ok we want to try and use the cluster allocator, so
7634 if (last_ptr
&& use_cluster
) {
7635 struct btrfs_block_group_cache
*used_block_group
;
7636 unsigned long aligned_cluster
;
7638 * the refill lock keeps out other
7639 * people trying to start a new cluster
7641 used_block_group
= btrfs_lock_cluster(block_group
,
7644 if (!used_block_group
)
7645 goto refill_cluster
;
7647 if (used_block_group
!= block_group
&&
7648 (used_block_group
->ro
||
7649 !block_group_bits(used_block_group
, flags
)))
7650 goto release_cluster
;
7652 offset
= btrfs_alloc_from_cluster(used_block_group
,
7655 used_block_group
->key
.objectid
,
7658 /* we have a block, we're done */
7659 spin_unlock(&last_ptr
->refill_lock
);
7660 trace_btrfs_reserve_extent_cluster(fs_info
,
7662 search_start
, num_bytes
);
7663 if (used_block_group
!= block_group
) {
7664 btrfs_release_block_group(block_group
,
7666 block_group
= used_block_group
;
7671 WARN_ON(last_ptr
->block_group
!= used_block_group
);
7673 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7674 * set up a new clusters, so lets just skip it
7675 * and let the allocator find whatever block
7676 * it can find. If we reach this point, we
7677 * will have tried the cluster allocator
7678 * plenty of times and not have found
7679 * anything, so we are likely way too
7680 * fragmented for the clustering stuff to find
7683 * However, if the cluster is taken from the
7684 * current block group, release the cluster
7685 * first, so that we stand a better chance of
7686 * succeeding in the unclustered
7688 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
7689 used_block_group
!= block_group
) {
7690 spin_unlock(&last_ptr
->refill_lock
);
7691 btrfs_release_block_group(used_block_group
,
7693 goto unclustered_alloc
;
7697 * this cluster didn't work out, free it and
7700 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7702 if (used_block_group
!= block_group
)
7703 btrfs_release_block_group(used_block_group
,
7706 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
7707 spin_unlock(&last_ptr
->refill_lock
);
7708 goto unclustered_alloc
;
7711 aligned_cluster
= max_t(unsigned long,
7712 empty_cluster
+ empty_size
,
7713 block_group
->full_stripe_len
);
7715 /* allocate a cluster in this block group */
7716 ret
= btrfs_find_space_cluster(fs_info
, block_group
,
7717 last_ptr
, search_start
,
7722 * now pull our allocation out of this
7725 offset
= btrfs_alloc_from_cluster(block_group
,
7731 /* we found one, proceed */
7732 spin_unlock(&last_ptr
->refill_lock
);
7733 trace_btrfs_reserve_extent_cluster(fs_info
,
7734 block_group
, search_start
,
7738 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
7739 && !failed_cluster_refill
) {
7740 spin_unlock(&last_ptr
->refill_lock
);
7742 failed_cluster_refill
= true;
7743 wait_block_group_cache_progress(block_group
,
7744 num_bytes
+ empty_cluster
+ empty_size
);
7745 goto have_block_group
;
7749 * at this point we either didn't find a cluster
7750 * or we weren't able to allocate a block from our
7751 * cluster. Free the cluster we've been trying
7752 * to use, and go to the next block group
7754 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7755 spin_unlock(&last_ptr
->refill_lock
);
7761 * We are doing an unclustered alloc, set the fragmented flag so
7762 * we don't bother trying to setup a cluster again until we get
7765 if (unlikely(last_ptr
)) {
7766 spin_lock(&last_ptr
->lock
);
7767 last_ptr
->fragmented
= 1;
7768 spin_unlock(&last_ptr
->lock
);
7771 struct btrfs_free_space_ctl
*ctl
=
7772 block_group
->free_space_ctl
;
7774 spin_lock(&ctl
->tree_lock
);
7775 if (ctl
->free_space
<
7776 num_bytes
+ empty_cluster
+ empty_size
) {
7777 if (ctl
->free_space
> max_extent_size
)
7778 max_extent_size
= ctl
->free_space
;
7779 spin_unlock(&ctl
->tree_lock
);
7782 spin_unlock(&ctl
->tree_lock
);
7785 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7786 num_bytes
, empty_size
,
7789 * If we didn't find a chunk, and we haven't failed on this
7790 * block group before, and this block group is in the middle of
7791 * caching and we are ok with waiting, then go ahead and wait
7792 * for progress to be made, and set failed_alloc to true.
7794 * If failed_alloc is true then we've already waited on this
7795 * block group once and should move on to the next block group.
7797 if (!offset
&& !failed_alloc
&& !cached
&&
7798 loop
> LOOP_CACHING_NOWAIT
) {
7799 wait_block_group_cache_progress(block_group
,
7800 num_bytes
+ empty_size
);
7801 failed_alloc
= true;
7802 goto have_block_group
;
7803 } else if (!offset
) {
7807 search_start
= ALIGN(offset
, fs_info
->stripesize
);
7809 /* move on to the next group */
7810 if (search_start
+ num_bytes
>
7811 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7812 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7816 if (offset
< search_start
)
7817 btrfs_add_free_space(block_group
, offset
,
7818 search_start
- offset
);
7819 BUG_ON(offset
> search_start
);
7821 ret
= btrfs_add_reserved_bytes(block_group
, ram_bytes
,
7822 num_bytes
, delalloc
);
7823 if (ret
== -EAGAIN
) {
7824 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7827 btrfs_inc_block_group_reservations(block_group
);
7829 /* we are all good, lets return */
7830 ins
->objectid
= search_start
;
7831 ins
->offset
= num_bytes
;
7833 trace_btrfs_reserve_extent(fs_info
, block_group
,
7834 search_start
, num_bytes
);
7835 btrfs_release_block_group(block_group
, delalloc
);
7838 failed_cluster_refill
= false;
7839 failed_alloc
= false;
7840 BUG_ON(index
!= get_block_group_index(block_group
));
7841 btrfs_release_block_group(block_group
, delalloc
);
7843 up_read(&space_info
->groups_sem
);
7845 if ((loop
== LOOP_CACHING_NOWAIT
) && have_caching_bg
7846 && !orig_have_caching_bg
)
7847 orig_have_caching_bg
= true;
7849 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7852 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7856 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7857 * caching kthreads as we move along
7858 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7859 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7860 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7863 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7865 if (loop
== LOOP_CACHING_NOWAIT
) {
7867 * We want to skip the LOOP_CACHING_WAIT step if we
7868 * don't have any uncached bgs and we've already done a
7869 * full search through.
7871 if (orig_have_caching_bg
|| !full_search
)
7872 loop
= LOOP_CACHING_WAIT
;
7874 loop
= LOOP_ALLOC_CHUNK
;
7879 if (loop
== LOOP_ALLOC_CHUNK
) {
7880 struct btrfs_trans_handle
*trans
;
7883 trans
= current
->journal_info
;
7887 trans
= btrfs_join_transaction(root
);
7889 if (IS_ERR(trans
)) {
7890 ret
= PTR_ERR(trans
);
7894 ret
= do_chunk_alloc(trans
, fs_info
, flags
,
7898 * If we can't allocate a new chunk we've already looped
7899 * through at least once, move on to the NO_EMPTY_SIZE
7903 loop
= LOOP_NO_EMPTY_SIZE
;
7906 * Do not bail out on ENOSPC since we
7907 * can do more things.
7909 if (ret
< 0 && ret
!= -ENOSPC
)
7910 btrfs_abort_transaction(trans
, ret
);
7914 btrfs_end_transaction(trans
);
7919 if (loop
== LOOP_NO_EMPTY_SIZE
) {
7921 * Don't loop again if we already have no empty_size and
7924 if (empty_size
== 0 &&
7925 empty_cluster
== 0) {
7934 } else if (!ins
->objectid
) {
7936 } else if (ins
->objectid
) {
7937 if (!use_cluster
&& last_ptr
) {
7938 spin_lock(&last_ptr
->lock
);
7939 last_ptr
->window_start
= ins
->objectid
;
7940 spin_unlock(&last_ptr
->lock
);
7945 if (ret
== -ENOSPC
) {
7946 spin_lock(&space_info
->lock
);
7947 space_info
->max_extent_size
= max_extent_size
;
7948 spin_unlock(&space_info
->lock
);
7949 ins
->offset
= max_extent_size
;
7954 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
7955 struct btrfs_space_info
*info
, u64 bytes
,
7956 int dump_block_groups
)
7958 struct btrfs_block_group_cache
*cache
;
7961 spin_lock(&info
->lock
);
7962 btrfs_info(fs_info
, "space_info %llu has %llu free, is %sfull",
7964 info
->total_bytes
- btrfs_space_info_used(info
, true),
7965 info
->full
? "" : "not ");
7967 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7968 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
7969 info
->bytes_reserved
, info
->bytes_may_use
,
7970 info
->bytes_readonly
);
7971 spin_unlock(&info
->lock
);
7973 if (!dump_block_groups
)
7976 down_read(&info
->groups_sem
);
7978 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
7979 spin_lock(&cache
->lock
);
7981 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7982 cache
->key
.objectid
, cache
->key
.offset
,
7983 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
7984 cache
->reserved
, cache
->ro
? "[readonly]" : "");
7985 btrfs_dump_free_space(cache
, bytes
);
7986 spin_unlock(&cache
->lock
);
7988 if (++index
< BTRFS_NR_RAID_TYPES
)
7990 up_read(&info
->groups_sem
);
7993 int btrfs_reserve_extent(struct btrfs_root
*root
, u64 ram_bytes
,
7994 u64 num_bytes
, u64 min_alloc_size
,
7995 u64 empty_size
, u64 hint_byte
,
7996 struct btrfs_key
*ins
, int is_data
, int delalloc
)
7998 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7999 bool final_tried
= num_bytes
== min_alloc_size
;
8003 flags
= get_alloc_profile_by_root(root
, is_data
);
8005 WARN_ON(num_bytes
< fs_info
->sectorsize
);
8006 ret
= find_free_extent(fs_info
, ram_bytes
, num_bytes
, empty_size
,
8007 hint_byte
, ins
, flags
, delalloc
);
8008 if (!ret
&& !is_data
) {
8009 btrfs_dec_block_group_reservations(fs_info
, ins
->objectid
);
8010 } else if (ret
== -ENOSPC
) {
8011 if (!final_tried
&& ins
->offset
) {
8012 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
8013 num_bytes
= round_down(num_bytes
,
8014 fs_info
->sectorsize
);
8015 num_bytes
= max(num_bytes
, min_alloc_size
);
8016 ram_bytes
= num_bytes
;
8017 if (num_bytes
== min_alloc_size
)
8020 } else if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
8021 struct btrfs_space_info
*sinfo
;
8023 sinfo
= __find_space_info(fs_info
, flags
);
8025 "allocation failed flags %llu, wanted %llu",
8028 dump_space_info(fs_info
, sinfo
, num_bytes
, 1);
8035 static int __btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
8037 int pin
, int delalloc
)
8039 struct btrfs_block_group_cache
*cache
;
8042 cache
= btrfs_lookup_block_group(fs_info
, start
);
8044 btrfs_err(fs_info
, "Unable to find block group for %llu",
8050 pin_down_extent(fs_info
, cache
, start
, len
, 1);
8052 if (btrfs_test_opt(fs_info
, DISCARD
))
8053 ret
= btrfs_discard_extent(fs_info
, start
, len
, NULL
);
8054 btrfs_add_free_space(cache
, start
, len
);
8055 btrfs_free_reserved_bytes(cache
, len
, delalloc
);
8056 trace_btrfs_reserved_extent_free(fs_info
, start
, len
);
8059 btrfs_put_block_group(cache
);
8063 int btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
8064 u64 start
, u64 len
, int delalloc
)
8066 return __btrfs_free_reserved_extent(fs_info
, start
, len
, 0, delalloc
);
8069 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info
*fs_info
,
8072 return __btrfs_free_reserved_extent(fs_info
, start
, len
, 1, 0);
8075 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8076 struct btrfs_fs_info
*fs_info
,
8077 u64 parent
, u64 root_objectid
,
8078 u64 flags
, u64 owner
, u64 offset
,
8079 struct btrfs_key
*ins
, int ref_mod
)
8082 struct btrfs_extent_item
*extent_item
;
8083 struct btrfs_extent_inline_ref
*iref
;
8084 struct btrfs_path
*path
;
8085 struct extent_buffer
*leaf
;
8090 type
= BTRFS_SHARED_DATA_REF_KEY
;
8092 type
= BTRFS_EXTENT_DATA_REF_KEY
;
8094 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
8096 path
= btrfs_alloc_path();
8100 path
->leave_spinning
= 1;
8101 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8104 btrfs_free_path(path
);
8108 leaf
= path
->nodes
[0];
8109 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8110 struct btrfs_extent_item
);
8111 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
8112 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8113 btrfs_set_extent_flags(leaf
, extent_item
,
8114 flags
| BTRFS_EXTENT_FLAG_DATA
);
8116 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8117 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
8119 struct btrfs_shared_data_ref
*ref
;
8120 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
8121 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8122 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
8124 struct btrfs_extent_data_ref
*ref
;
8125 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
8126 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
8127 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
8128 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
8129 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
8132 btrfs_mark_buffer_dirty(path
->nodes
[0]);
8133 btrfs_free_path(path
);
8135 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8140 ret
= update_block_group(trans
, fs_info
, ins
->objectid
, ins
->offset
, 1);
8141 if (ret
) { /* -ENOENT, logic error */
8142 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8143 ins
->objectid
, ins
->offset
);
8146 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
, ins
->offset
);
8150 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
8151 struct btrfs_fs_info
*fs_info
,
8152 u64 parent
, u64 root_objectid
,
8153 u64 flags
, struct btrfs_disk_key
*key
,
8154 int level
, struct btrfs_key
*ins
)
8157 struct btrfs_extent_item
*extent_item
;
8158 struct btrfs_tree_block_info
*block_info
;
8159 struct btrfs_extent_inline_ref
*iref
;
8160 struct btrfs_path
*path
;
8161 struct extent_buffer
*leaf
;
8162 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
8163 u64 num_bytes
= ins
->offset
;
8164 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
8166 if (!skinny_metadata
)
8167 size
+= sizeof(*block_info
);
8169 path
= btrfs_alloc_path();
8171 btrfs_free_and_pin_reserved_extent(fs_info
, ins
->objectid
,
8176 path
->leave_spinning
= 1;
8177 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8180 btrfs_free_path(path
);
8181 btrfs_free_and_pin_reserved_extent(fs_info
, ins
->objectid
,
8186 leaf
= path
->nodes
[0];
8187 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8188 struct btrfs_extent_item
);
8189 btrfs_set_extent_refs(leaf
, extent_item
, 1);
8190 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8191 btrfs_set_extent_flags(leaf
, extent_item
,
8192 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
8194 if (skinny_metadata
) {
8195 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8196 num_bytes
= fs_info
->nodesize
;
8198 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
8199 btrfs_set_tree_block_key(leaf
, block_info
, key
);
8200 btrfs_set_tree_block_level(leaf
, block_info
, level
);
8201 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
8205 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
8206 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8207 BTRFS_SHARED_BLOCK_REF_KEY
);
8208 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8210 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8211 BTRFS_TREE_BLOCK_REF_KEY
);
8212 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
8215 btrfs_mark_buffer_dirty(leaf
);
8216 btrfs_free_path(path
);
8218 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8223 ret
= update_block_group(trans
, fs_info
, ins
->objectid
,
8224 fs_info
->nodesize
, 1);
8225 if (ret
) { /* -ENOENT, logic error */
8226 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8227 ins
->objectid
, ins
->offset
);
8231 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
,
8236 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8237 u64 root_objectid
, u64 owner
,
8238 u64 offset
, u64 ram_bytes
,
8239 struct btrfs_key
*ins
)
8241 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
8244 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
8246 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, ins
->objectid
,
8247 ins
->offset
, 0, root_objectid
, owner
,
8249 BTRFS_ADD_DELAYED_EXTENT
, NULL
, NULL
);
8254 * this is used by the tree logging recovery code. It records that
8255 * an extent has been allocated and makes sure to clear the free
8256 * space cache bits as well
8258 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
8259 struct btrfs_fs_info
*fs_info
,
8260 u64 root_objectid
, u64 owner
, u64 offset
,
8261 struct btrfs_key
*ins
)
8264 struct btrfs_block_group_cache
*block_group
;
8265 struct btrfs_space_info
*space_info
;
8268 * Mixed block groups will exclude before processing the log so we only
8269 * need to do the exclude dance if this fs isn't mixed.
8271 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
8272 ret
= __exclude_logged_extent(fs_info
, ins
->objectid
,
8278 block_group
= btrfs_lookup_block_group(fs_info
, ins
->objectid
);
8282 space_info
= block_group
->space_info
;
8283 spin_lock(&space_info
->lock
);
8284 spin_lock(&block_group
->lock
);
8285 space_info
->bytes_reserved
+= ins
->offset
;
8286 block_group
->reserved
+= ins
->offset
;
8287 spin_unlock(&block_group
->lock
);
8288 spin_unlock(&space_info
->lock
);
8290 ret
= alloc_reserved_file_extent(trans
, fs_info
, 0, root_objectid
,
8291 0, owner
, offset
, ins
, 1);
8292 btrfs_put_block_group(block_group
);
8296 static struct extent_buffer
*
8297 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
8298 u64 bytenr
, int level
)
8300 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8301 struct extent_buffer
*buf
;
8303 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
8307 btrfs_set_header_generation(buf
, trans
->transid
);
8308 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
8309 btrfs_tree_lock(buf
);
8310 clean_tree_block(fs_info
, buf
);
8311 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
8313 btrfs_set_lock_blocking(buf
);
8314 set_extent_buffer_uptodate(buf
);
8316 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
8317 buf
->log_index
= root
->log_transid
% 2;
8319 * we allow two log transactions at a time, use different
8320 * EXENT bit to differentiate dirty pages.
8322 if (buf
->log_index
== 0)
8323 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
8324 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8326 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
8327 buf
->start
+ buf
->len
- 1);
8329 buf
->log_index
= -1;
8330 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
8331 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8333 trans
->dirty
= true;
8334 /* this returns a buffer locked for blocking */
8338 static struct btrfs_block_rsv
*
8339 use_block_rsv(struct btrfs_trans_handle
*trans
,
8340 struct btrfs_root
*root
, u32 blocksize
)
8342 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8343 struct btrfs_block_rsv
*block_rsv
;
8344 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
8346 bool global_updated
= false;
8348 block_rsv
= get_block_rsv(trans
, root
);
8350 if (unlikely(block_rsv
->size
== 0))
8353 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
8357 if (block_rsv
->failfast
)
8358 return ERR_PTR(ret
);
8360 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
8361 global_updated
= true;
8362 update_global_block_rsv(fs_info
);
8366 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
8367 static DEFINE_RATELIMIT_STATE(_rs
,
8368 DEFAULT_RATELIMIT_INTERVAL
* 10,
8369 /*DEFAULT_RATELIMIT_BURST*/ 1);
8370 if (__ratelimit(&_rs
))
8372 "BTRFS: block rsv returned %d\n", ret
);
8375 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
8376 BTRFS_RESERVE_NO_FLUSH
);
8380 * If we couldn't reserve metadata bytes try and use some from
8381 * the global reserve if its space type is the same as the global
8384 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
8385 block_rsv
->space_info
== global_rsv
->space_info
) {
8386 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
8390 return ERR_PTR(ret
);
8393 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
8394 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
8396 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
8397 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
8401 * finds a free extent and does all the dirty work required for allocation
8402 * returns the tree buffer or an ERR_PTR on error.
8404 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
8405 struct btrfs_root
*root
,
8406 u64 parent
, u64 root_objectid
,
8407 const struct btrfs_disk_key
*key
,
8408 int level
, u64 hint
,
8411 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8412 struct btrfs_key ins
;
8413 struct btrfs_block_rsv
*block_rsv
;
8414 struct extent_buffer
*buf
;
8415 struct btrfs_delayed_extent_op
*extent_op
;
8418 u32 blocksize
= fs_info
->nodesize
;
8419 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
8421 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8422 if (btrfs_is_testing(fs_info
)) {
8423 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
8426 root
->alloc_bytenr
+= blocksize
;
8431 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
8432 if (IS_ERR(block_rsv
))
8433 return ERR_CAST(block_rsv
);
8435 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
, blocksize
,
8436 empty_size
, hint
, &ins
, 0, 0);
8440 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
8443 goto out_free_reserved
;
8446 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
8448 parent
= ins
.objectid
;
8449 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8453 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
8454 extent_op
= btrfs_alloc_delayed_extent_op();
8460 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
8462 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
8463 extent_op
->flags_to_set
= flags
;
8464 extent_op
->update_key
= skinny_metadata
? false : true;
8465 extent_op
->update_flags
= true;
8466 extent_op
->is_data
= false;
8467 extent_op
->level
= level
;
8469 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, ins
.objectid
,
8471 root_objectid
, level
,
8472 BTRFS_ADD_DELAYED_EXTENT
,
8473 extent_op
, NULL
, NULL
);
8475 goto out_free_delayed
;
8480 btrfs_free_delayed_extent_op(extent_op
);
8482 free_extent_buffer(buf
);
8484 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 0);
8486 unuse_block_rsv(fs_info
, block_rsv
, blocksize
);
8487 return ERR_PTR(ret
);
8490 struct walk_control
{
8491 u64 refs
[BTRFS_MAX_LEVEL
];
8492 u64 flags
[BTRFS_MAX_LEVEL
];
8493 struct btrfs_key update_progress
;
8504 #define DROP_REFERENCE 1
8505 #define UPDATE_BACKREF 2
8507 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
8508 struct btrfs_root
*root
,
8509 struct walk_control
*wc
,
8510 struct btrfs_path
*path
)
8512 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8518 struct btrfs_key key
;
8519 struct extent_buffer
*eb
;
8524 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
8525 wc
->reada_count
= wc
->reada_count
* 2 / 3;
8526 wc
->reada_count
= max(wc
->reada_count
, 2);
8528 wc
->reada_count
= wc
->reada_count
* 3 / 2;
8529 wc
->reada_count
= min_t(int, wc
->reada_count
,
8530 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
8533 eb
= path
->nodes
[wc
->level
];
8534 nritems
= btrfs_header_nritems(eb
);
8536 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
8537 if (nread
>= wc
->reada_count
)
8541 bytenr
= btrfs_node_blockptr(eb
, slot
);
8542 generation
= btrfs_node_ptr_generation(eb
, slot
);
8544 if (slot
== path
->slots
[wc
->level
])
8547 if (wc
->stage
== UPDATE_BACKREF
&&
8548 generation
<= root
->root_key
.offset
)
8551 /* We don't lock the tree block, it's OK to be racy here */
8552 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
,
8553 wc
->level
- 1, 1, &refs
,
8555 /* We don't care about errors in readahead. */
8560 if (wc
->stage
== DROP_REFERENCE
) {
8564 if (wc
->level
== 1 &&
8565 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8567 if (!wc
->update_ref
||
8568 generation
<= root
->root_key
.offset
)
8570 btrfs_node_key_to_cpu(eb
, &key
, slot
);
8571 ret
= btrfs_comp_cpu_keys(&key
,
8572 &wc
->update_progress
);
8576 if (wc
->level
== 1 &&
8577 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8581 readahead_tree_block(fs_info
, bytenr
);
8584 wc
->reada_slot
= slot
;
8588 * helper to process tree block while walking down the tree.
8590 * when wc->stage == UPDATE_BACKREF, this function updates
8591 * back refs for pointers in the block.
8593 * NOTE: return value 1 means we should stop walking down.
8595 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
8596 struct btrfs_root
*root
,
8597 struct btrfs_path
*path
,
8598 struct walk_control
*wc
, int lookup_info
)
8600 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8601 int level
= wc
->level
;
8602 struct extent_buffer
*eb
= path
->nodes
[level
];
8603 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8606 if (wc
->stage
== UPDATE_BACKREF
&&
8607 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
8611 * when reference count of tree block is 1, it won't increase
8612 * again. once full backref flag is set, we never clear it.
8615 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
8616 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
8617 BUG_ON(!path
->locks
[level
]);
8618 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
8619 eb
->start
, level
, 1,
8622 BUG_ON(ret
== -ENOMEM
);
8625 BUG_ON(wc
->refs
[level
] == 0);
8628 if (wc
->stage
== DROP_REFERENCE
) {
8629 if (wc
->refs
[level
] > 1)
8632 if (path
->locks
[level
] && !wc
->keep_locks
) {
8633 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8634 path
->locks
[level
] = 0;
8639 /* wc->stage == UPDATE_BACKREF */
8640 if (!(wc
->flags
[level
] & flag
)) {
8641 BUG_ON(!path
->locks
[level
]);
8642 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8643 BUG_ON(ret
); /* -ENOMEM */
8644 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8645 BUG_ON(ret
); /* -ENOMEM */
8646 ret
= btrfs_set_disk_extent_flags(trans
, fs_info
, eb
->start
,
8648 btrfs_header_level(eb
), 0);
8649 BUG_ON(ret
); /* -ENOMEM */
8650 wc
->flags
[level
] |= flag
;
8654 * the block is shared by multiple trees, so it's not good to
8655 * keep the tree lock
8657 if (path
->locks
[level
] && level
> 0) {
8658 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8659 path
->locks
[level
] = 0;
8665 * helper to process tree block pointer.
8667 * when wc->stage == DROP_REFERENCE, this function checks
8668 * reference count of the block pointed to. if the block
8669 * is shared and we need update back refs for the subtree
8670 * rooted at the block, this function changes wc->stage to
8671 * UPDATE_BACKREF. if the block is shared and there is no
8672 * need to update back, this function drops the reference
8675 * NOTE: return value 1 means we should stop walking down.
8677 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8678 struct btrfs_root
*root
,
8679 struct btrfs_path
*path
,
8680 struct walk_control
*wc
, int *lookup_info
)
8682 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8687 struct btrfs_key key
;
8688 struct extent_buffer
*next
;
8689 int level
= wc
->level
;
8692 bool need_account
= false;
8694 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8695 path
->slots
[level
]);
8697 * if the lower level block was created before the snapshot
8698 * was created, we know there is no need to update back refs
8701 if (wc
->stage
== UPDATE_BACKREF
&&
8702 generation
<= root
->root_key
.offset
) {
8707 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8708 blocksize
= fs_info
->nodesize
;
8710 next
= find_extent_buffer(fs_info
, bytenr
);
8712 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
8714 return PTR_ERR(next
);
8716 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8720 btrfs_tree_lock(next
);
8721 btrfs_set_lock_blocking(next
);
8723 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
, level
- 1, 1,
8724 &wc
->refs
[level
- 1],
8725 &wc
->flags
[level
- 1]);
8729 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8730 btrfs_err(fs_info
, "Missing references.");
8736 if (wc
->stage
== DROP_REFERENCE
) {
8737 if (wc
->refs
[level
- 1] > 1) {
8738 need_account
= true;
8740 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8743 if (!wc
->update_ref
||
8744 generation
<= root
->root_key
.offset
)
8747 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8748 path
->slots
[level
]);
8749 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8753 wc
->stage
= UPDATE_BACKREF
;
8754 wc
->shared_level
= level
- 1;
8758 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8762 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8763 btrfs_tree_unlock(next
);
8764 free_extent_buffer(next
);
8770 if (reada
&& level
== 1)
8771 reada_walk_down(trans
, root
, wc
, path
);
8772 next
= read_tree_block(fs_info
, bytenr
, generation
);
8774 return PTR_ERR(next
);
8775 } else if (!extent_buffer_uptodate(next
)) {
8776 free_extent_buffer(next
);
8779 btrfs_tree_lock(next
);
8780 btrfs_set_lock_blocking(next
);
8784 ASSERT(level
== btrfs_header_level(next
));
8785 if (level
!= btrfs_header_level(next
)) {
8786 btrfs_err(root
->fs_info
, "mismatched level");
8790 path
->nodes
[level
] = next
;
8791 path
->slots
[level
] = 0;
8792 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8798 wc
->refs
[level
- 1] = 0;
8799 wc
->flags
[level
- 1] = 0;
8800 if (wc
->stage
== DROP_REFERENCE
) {
8801 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8802 parent
= path
->nodes
[level
]->start
;
8804 ASSERT(root
->root_key
.objectid
==
8805 btrfs_header_owner(path
->nodes
[level
]));
8806 if (root
->root_key
.objectid
!=
8807 btrfs_header_owner(path
->nodes
[level
])) {
8808 btrfs_err(root
->fs_info
,
8809 "mismatched block owner");
8817 ret
= btrfs_qgroup_trace_subtree(trans
, root
, next
,
8818 generation
, level
- 1);
8820 btrfs_err_rl(fs_info
,
8821 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8825 ret
= btrfs_free_extent(trans
, fs_info
, bytenr
, blocksize
,
8826 parent
, root
->root_key
.objectid
,
8836 btrfs_tree_unlock(next
);
8837 free_extent_buffer(next
);
8843 * helper to process tree block while walking up the tree.
8845 * when wc->stage == DROP_REFERENCE, this function drops
8846 * reference count on the block.
8848 * when wc->stage == UPDATE_BACKREF, this function changes
8849 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8850 * to UPDATE_BACKREF previously while processing the block.
8852 * NOTE: return value 1 means we should stop walking up.
8854 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
8855 struct btrfs_root
*root
,
8856 struct btrfs_path
*path
,
8857 struct walk_control
*wc
)
8859 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8861 int level
= wc
->level
;
8862 struct extent_buffer
*eb
= path
->nodes
[level
];
8865 if (wc
->stage
== UPDATE_BACKREF
) {
8866 BUG_ON(wc
->shared_level
< level
);
8867 if (level
< wc
->shared_level
)
8870 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
8874 wc
->stage
= DROP_REFERENCE
;
8875 wc
->shared_level
= -1;
8876 path
->slots
[level
] = 0;
8879 * check reference count again if the block isn't locked.
8880 * we should start walking down the tree again if reference
8883 if (!path
->locks
[level
]) {
8885 btrfs_tree_lock(eb
);
8886 btrfs_set_lock_blocking(eb
);
8887 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8889 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
8890 eb
->start
, level
, 1,
8894 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8895 path
->locks
[level
] = 0;
8898 BUG_ON(wc
->refs
[level
] == 0);
8899 if (wc
->refs
[level
] == 1) {
8900 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8901 path
->locks
[level
] = 0;
8907 /* wc->stage == DROP_REFERENCE */
8908 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
8910 if (wc
->refs
[level
] == 1) {
8912 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8913 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
8915 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8916 BUG_ON(ret
); /* -ENOMEM */
8917 ret
= btrfs_qgroup_trace_leaf_items(trans
, fs_info
, eb
);
8919 btrfs_err_rl(fs_info
,
8920 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8924 /* make block locked assertion in clean_tree_block happy */
8925 if (!path
->locks
[level
] &&
8926 btrfs_header_generation(eb
) == trans
->transid
) {
8927 btrfs_tree_lock(eb
);
8928 btrfs_set_lock_blocking(eb
);
8929 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8931 clean_tree_block(fs_info
, eb
);
8934 if (eb
== root
->node
) {
8935 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8938 BUG_ON(root
->root_key
.objectid
!=
8939 btrfs_header_owner(eb
));
8941 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8942 parent
= path
->nodes
[level
+ 1]->start
;
8944 BUG_ON(root
->root_key
.objectid
!=
8945 btrfs_header_owner(path
->nodes
[level
+ 1]));
8948 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
8950 wc
->refs
[level
] = 0;
8951 wc
->flags
[level
] = 0;
8955 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
8956 struct btrfs_root
*root
,
8957 struct btrfs_path
*path
,
8958 struct walk_control
*wc
)
8960 int level
= wc
->level
;
8961 int lookup_info
= 1;
8964 while (level
>= 0) {
8965 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
8972 if (path
->slots
[level
] >=
8973 btrfs_header_nritems(path
->nodes
[level
]))
8976 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
8978 path
->slots
[level
]++;
8987 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
8988 struct btrfs_root
*root
,
8989 struct btrfs_path
*path
,
8990 struct walk_control
*wc
, int max_level
)
8992 int level
= wc
->level
;
8995 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
8996 while (level
< max_level
&& path
->nodes
[level
]) {
8998 if (path
->slots
[level
] + 1 <
8999 btrfs_header_nritems(path
->nodes
[level
])) {
9000 path
->slots
[level
]++;
9003 ret
= walk_up_proc(trans
, root
, path
, wc
);
9007 if (path
->locks
[level
]) {
9008 btrfs_tree_unlock_rw(path
->nodes
[level
],
9009 path
->locks
[level
]);
9010 path
->locks
[level
] = 0;
9012 free_extent_buffer(path
->nodes
[level
]);
9013 path
->nodes
[level
] = NULL
;
9021 * drop a subvolume tree.
9023 * this function traverses the tree freeing any blocks that only
9024 * referenced by the tree.
9026 * when a shared tree block is found. this function decreases its
9027 * reference count by one. if update_ref is true, this function
9028 * also make sure backrefs for the shared block and all lower level
9029 * blocks are properly updated.
9031 * If called with for_reloc == 0, may exit early with -EAGAIN
9033 int btrfs_drop_snapshot(struct btrfs_root
*root
,
9034 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
9037 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9038 struct btrfs_path
*path
;
9039 struct btrfs_trans_handle
*trans
;
9040 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
9041 struct btrfs_root_item
*root_item
= &root
->root_item
;
9042 struct walk_control
*wc
;
9043 struct btrfs_key key
;
9047 bool root_dropped
= false;
9049 btrfs_debug(fs_info
, "Drop subvolume %llu", root
->objectid
);
9051 path
= btrfs_alloc_path();
9057 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9059 btrfs_free_path(path
);
9064 trans
= btrfs_start_transaction(tree_root
, 0);
9065 if (IS_ERR(trans
)) {
9066 err
= PTR_ERR(trans
);
9071 trans
->block_rsv
= block_rsv
;
9073 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
9074 level
= btrfs_header_level(root
->node
);
9075 path
->nodes
[level
] = btrfs_lock_root_node(root
);
9076 btrfs_set_lock_blocking(path
->nodes
[level
]);
9077 path
->slots
[level
] = 0;
9078 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9079 memset(&wc
->update_progress
, 0,
9080 sizeof(wc
->update_progress
));
9082 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
9083 memcpy(&wc
->update_progress
, &key
,
9084 sizeof(wc
->update_progress
));
9086 level
= root_item
->drop_level
;
9088 path
->lowest_level
= level
;
9089 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
9090 path
->lowest_level
= 0;
9098 * unlock our path, this is safe because only this
9099 * function is allowed to delete this snapshot
9101 btrfs_unlock_up_safe(path
, 0);
9103 level
= btrfs_header_level(root
->node
);
9105 btrfs_tree_lock(path
->nodes
[level
]);
9106 btrfs_set_lock_blocking(path
->nodes
[level
]);
9107 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9109 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
9110 path
->nodes
[level
]->start
,
9111 level
, 1, &wc
->refs
[level
],
9117 BUG_ON(wc
->refs
[level
] == 0);
9119 if (level
== root_item
->drop_level
)
9122 btrfs_tree_unlock(path
->nodes
[level
]);
9123 path
->locks
[level
] = 0;
9124 WARN_ON(wc
->refs
[level
] != 1);
9130 wc
->shared_level
= -1;
9131 wc
->stage
= DROP_REFERENCE
;
9132 wc
->update_ref
= update_ref
;
9134 wc
->for_reloc
= for_reloc
;
9135 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
9139 ret
= walk_down_tree(trans
, root
, path
, wc
);
9145 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
9152 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
9156 if (wc
->stage
== DROP_REFERENCE
) {
9158 btrfs_node_key(path
->nodes
[level
],
9159 &root_item
->drop_progress
,
9160 path
->slots
[level
]);
9161 root_item
->drop_level
= level
;
9164 BUG_ON(wc
->level
== 0);
9165 if (btrfs_should_end_transaction(trans
) ||
9166 (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
))) {
9167 ret
= btrfs_update_root(trans
, tree_root
,
9171 btrfs_abort_transaction(trans
, ret
);
9176 btrfs_end_transaction_throttle(trans
);
9177 if (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
)) {
9178 btrfs_debug(fs_info
,
9179 "drop snapshot early exit");
9184 trans
= btrfs_start_transaction(tree_root
, 0);
9185 if (IS_ERR(trans
)) {
9186 err
= PTR_ERR(trans
);
9190 trans
->block_rsv
= block_rsv
;
9193 btrfs_release_path(path
);
9197 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
9199 btrfs_abort_transaction(trans
, ret
);
9203 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
9204 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
9207 btrfs_abort_transaction(trans
, ret
);
9210 } else if (ret
> 0) {
9211 /* if we fail to delete the orphan item this time
9212 * around, it'll get picked up the next time.
9214 * The most common failure here is just -ENOENT.
9216 btrfs_del_orphan_item(trans
, tree_root
,
9217 root
->root_key
.objectid
);
9221 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
9222 btrfs_add_dropped_root(trans
, root
);
9224 free_extent_buffer(root
->node
);
9225 free_extent_buffer(root
->commit_root
);
9226 btrfs_put_fs_root(root
);
9228 root_dropped
= true;
9230 btrfs_end_transaction_throttle(trans
);
9233 btrfs_free_path(path
);
9236 * So if we need to stop dropping the snapshot for whatever reason we
9237 * need to make sure to add it back to the dead root list so that we
9238 * keep trying to do the work later. This also cleans up roots if we
9239 * don't have it in the radix (like when we recover after a power fail
9240 * or unmount) so we don't leak memory.
9242 if (!for_reloc
&& root_dropped
== false)
9243 btrfs_add_dead_root(root
);
9244 if (err
&& err
!= -EAGAIN
)
9245 btrfs_handle_fs_error(fs_info
, err
, NULL
);
9250 * drop subtree rooted at tree block 'node'.
9252 * NOTE: this function will unlock and release tree block 'node'
9253 * only used by relocation code
9255 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
9256 struct btrfs_root
*root
,
9257 struct extent_buffer
*node
,
9258 struct extent_buffer
*parent
)
9260 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9261 struct btrfs_path
*path
;
9262 struct walk_control
*wc
;
9268 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
9270 path
= btrfs_alloc_path();
9274 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9276 btrfs_free_path(path
);
9280 btrfs_assert_tree_locked(parent
);
9281 parent_level
= btrfs_header_level(parent
);
9282 extent_buffer_get(parent
);
9283 path
->nodes
[parent_level
] = parent
;
9284 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
9286 btrfs_assert_tree_locked(node
);
9287 level
= btrfs_header_level(node
);
9288 path
->nodes
[level
] = node
;
9289 path
->slots
[level
] = 0;
9290 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9292 wc
->refs
[parent_level
] = 1;
9293 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
9295 wc
->shared_level
= -1;
9296 wc
->stage
= DROP_REFERENCE
;
9300 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
9303 wret
= walk_down_tree(trans
, root
, path
, wc
);
9309 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
9317 btrfs_free_path(path
);
9321 static u64
update_block_group_flags(struct btrfs_fs_info
*fs_info
, u64 flags
)
9327 * if restripe for this chunk_type is on pick target profile and
9328 * return, otherwise do the usual balance
9330 stripped
= get_restripe_target(fs_info
, flags
);
9332 return extended_to_chunk(stripped
);
9334 num_devices
= fs_info
->fs_devices
->rw_devices
;
9336 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
9337 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
9338 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
9340 if (num_devices
== 1) {
9341 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9342 stripped
= flags
& ~stripped
;
9344 /* turn raid0 into single device chunks */
9345 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
9348 /* turn mirroring into duplication */
9349 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9350 BTRFS_BLOCK_GROUP_RAID10
))
9351 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
9353 /* they already had raid on here, just return */
9354 if (flags
& stripped
)
9357 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9358 stripped
= flags
& ~stripped
;
9360 /* switch duplicated blocks with raid1 */
9361 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
9362 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
9364 /* this is drive concat, leave it alone */
9370 static int inc_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
9372 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9374 u64 min_allocable_bytes
;
9378 * We need some metadata space and system metadata space for
9379 * allocating chunks in some corner cases until we force to set
9380 * it to be readonly.
9383 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
9385 min_allocable_bytes
= SZ_1M
;
9387 min_allocable_bytes
= 0;
9389 spin_lock(&sinfo
->lock
);
9390 spin_lock(&cache
->lock
);
9398 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
9399 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
9401 if (btrfs_space_info_used(sinfo
, true) + num_bytes
+
9402 min_allocable_bytes
<= sinfo
->total_bytes
) {
9403 sinfo
->bytes_readonly
+= num_bytes
;
9405 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
9409 spin_unlock(&cache
->lock
);
9410 spin_unlock(&sinfo
->lock
);
9414 int btrfs_inc_block_group_ro(struct btrfs_fs_info
*fs_info
,
9415 struct btrfs_block_group_cache
*cache
)
9418 struct btrfs_trans_handle
*trans
;
9423 trans
= btrfs_join_transaction(fs_info
->extent_root
);
9425 return PTR_ERR(trans
);
9428 * we're not allowed to set block groups readonly after the dirty
9429 * block groups cache has started writing. If it already started,
9430 * back off and let this transaction commit
9432 mutex_lock(&fs_info
->ro_block_group_mutex
);
9433 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
9434 u64 transid
= trans
->transid
;
9436 mutex_unlock(&fs_info
->ro_block_group_mutex
);
9437 btrfs_end_transaction(trans
);
9439 ret
= btrfs_wait_for_commit(fs_info
, transid
);
9446 * if we are changing raid levels, try to allocate a corresponding
9447 * block group with the new raid level.
9449 alloc_flags
= update_block_group_flags(fs_info
, cache
->flags
);
9450 if (alloc_flags
!= cache
->flags
) {
9451 ret
= do_chunk_alloc(trans
, fs_info
, alloc_flags
,
9454 * ENOSPC is allowed here, we may have enough space
9455 * already allocated at the new raid level to
9464 ret
= inc_block_group_ro(cache
, 0);
9467 alloc_flags
= get_alloc_profile(fs_info
, cache
->space_info
->flags
);
9468 ret
= do_chunk_alloc(trans
, fs_info
, alloc_flags
,
9472 ret
= inc_block_group_ro(cache
, 0);
9474 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
9475 alloc_flags
= update_block_group_flags(fs_info
, cache
->flags
);
9476 mutex_lock(&fs_info
->chunk_mutex
);
9477 check_system_chunk(trans
, fs_info
, alloc_flags
);
9478 mutex_unlock(&fs_info
->chunk_mutex
);
9480 mutex_unlock(&fs_info
->ro_block_group_mutex
);
9482 btrfs_end_transaction(trans
);
9486 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
9487 struct btrfs_fs_info
*fs_info
, u64 type
)
9489 u64 alloc_flags
= get_alloc_profile(fs_info
, type
);
9491 return do_chunk_alloc(trans
, fs_info
, alloc_flags
, CHUNK_ALLOC_FORCE
);
9495 * helper to account the unused space of all the readonly block group in the
9496 * space_info. takes mirrors into account.
9498 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
9500 struct btrfs_block_group_cache
*block_group
;
9504 /* It's df, we don't care if it's racy */
9505 if (list_empty(&sinfo
->ro_bgs
))
9508 spin_lock(&sinfo
->lock
);
9509 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
9510 spin_lock(&block_group
->lock
);
9512 if (!block_group
->ro
) {
9513 spin_unlock(&block_group
->lock
);
9517 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9518 BTRFS_BLOCK_GROUP_RAID10
|
9519 BTRFS_BLOCK_GROUP_DUP
))
9524 free_bytes
+= (block_group
->key
.offset
-
9525 btrfs_block_group_used(&block_group
->item
)) *
9528 spin_unlock(&block_group
->lock
);
9530 spin_unlock(&sinfo
->lock
);
9535 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache
*cache
)
9537 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9542 spin_lock(&sinfo
->lock
);
9543 spin_lock(&cache
->lock
);
9545 num_bytes
= cache
->key
.offset
- cache
->reserved
-
9546 cache
->pinned
- cache
->bytes_super
-
9547 btrfs_block_group_used(&cache
->item
);
9548 sinfo
->bytes_readonly
-= num_bytes
;
9549 list_del_init(&cache
->ro_list
);
9551 spin_unlock(&cache
->lock
);
9552 spin_unlock(&sinfo
->lock
);
9556 * checks to see if its even possible to relocate this block group.
9558 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9559 * ok to go ahead and try.
9561 int btrfs_can_relocate(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
9563 struct btrfs_root
*root
= fs_info
->extent_root
;
9564 struct btrfs_block_group_cache
*block_group
;
9565 struct btrfs_space_info
*space_info
;
9566 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
9567 struct btrfs_device
*device
;
9568 struct btrfs_trans_handle
*trans
;
9578 debug
= btrfs_test_opt(fs_info
, ENOSPC_DEBUG
);
9580 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
9582 /* odd, couldn't find the block group, leave it alone */
9586 "can't find block group for bytenr %llu",
9591 min_free
= btrfs_block_group_used(&block_group
->item
);
9593 /* no bytes used, we're good */
9597 space_info
= block_group
->space_info
;
9598 spin_lock(&space_info
->lock
);
9600 full
= space_info
->full
;
9603 * if this is the last block group we have in this space, we can't
9604 * relocate it unless we're able to allocate a new chunk below.
9606 * Otherwise, we need to make sure we have room in the space to handle
9607 * all of the extents from this block group. If we can, we're good
9609 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
9610 (btrfs_space_info_used(space_info
, false) + min_free
<
9611 space_info
->total_bytes
)) {
9612 spin_unlock(&space_info
->lock
);
9615 spin_unlock(&space_info
->lock
);
9618 * ok we don't have enough space, but maybe we have free space on our
9619 * devices to allocate new chunks for relocation, so loop through our
9620 * alloc devices and guess if we have enough space. if this block
9621 * group is going to be restriped, run checks against the target
9622 * profile instead of the current one.
9634 target
= get_restripe_target(fs_info
, block_group
->flags
);
9636 index
= __get_raid_index(extended_to_chunk(target
));
9639 * this is just a balance, so if we were marked as full
9640 * we know there is no space for a new chunk
9645 "no space to alloc new chunk for block group %llu",
9646 block_group
->key
.objectid
);
9650 index
= get_block_group_index(block_group
);
9653 if (index
== BTRFS_RAID_RAID10
) {
9657 } else if (index
== BTRFS_RAID_RAID1
) {
9659 } else if (index
== BTRFS_RAID_DUP
) {
9662 } else if (index
== BTRFS_RAID_RAID0
) {
9663 dev_min
= fs_devices
->rw_devices
;
9664 min_free
= div64_u64(min_free
, dev_min
);
9667 /* We need to do this so that we can look at pending chunks */
9668 trans
= btrfs_join_transaction(root
);
9669 if (IS_ERR(trans
)) {
9670 ret
= PTR_ERR(trans
);
9674 mutex_lock(&fs_info
->chunk_mutex
);
9675 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9679 * check to make sure we can actually find a chunk with enough
9680 * space to fit our block group in.
9682 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9683 !device
->is_tgtdev_for_dev_replace
) {
9684 ret
= find_free_dev_extent(trans
, device
, min_free
,
9689 if (dev_nr
>= dev_min
)
9695 if (debug
&& ret
== -1)
9697 "no space to allocate a new chunk for block group %llu",
9698 block_group
->key
.objectid
);
9699 mutex_unlock(&fs_info
->chunk_mutex
);
9700 btrfs_end_transaction(trans
);
9702 btrfs_put_block_group(block_group
);
9706 static int find_first_block_group(struct btrfs_fs_info
*fs_info
,
9707 struct btrfs_path
*path
,
9708 struct btrfs_key
*key
)
9710 struct btrfs_root
*root
= fs_info
->extent_root
;
9712 struct btrfs_key found_key
;
9713 struct extent_buffer
*leaf
;
9716 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9721 slot
= path
->slots
[0];
9722 leaf
= path
->nodes
[0];
9723 if (slot
>= btrfs_header_nritems(leaf
)) {
9724 ret
= btrfs_next_leaf(root
, path
);
9731 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9733 if (found_key
.objectid
>= key
->objectid
&&
9734 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9735 struct extent_map_tree
*em_tree
;
9736 struct extent_map
*em
;
9738 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9739 read_lock(&em_tree
->lock
);
9740 em
= lookup_extent_mapping(em_tree
, found_key
.objectid
,
9742 read_unlock(&em_tree
->lock
);
9745 "logical %llu len %llu found bg but no related chunk",
9746 found_key
.objectid
, found_key
.offset
);
9751 free_extent_map(em
);
9760 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9762 struct btrfs_block_group_cache
*block_group
;
9766 struct inode
*inode
;
9768 block_group
= btrfs_lookup_first_block_group(info
, last
);
9769 while (block_group
) {
9770 spin_lock(&block_group
->lock
);
9771 if (block_group
->iref
)
9773 spin_unlock(&block_group
->lock
);
9774 block_group
= next_block_group(info
, block_group
);
9783 inode
= block_group
->inode
;
9784 block_group
->iref
= 0;
9785 block_group
->inode
= NULL
;
9786 spin_unlock(&block_group
->lock
);
9787 ASSERT(block_group
->io_ctl
.inode
== NULL
);
9789 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9790 btrfs_put_block_group(block_group
);
9795 * Must be called only after stopping all workers, since we could have block
9796 * group caching kthreads running, and therefore they could race with us if we
9797 * freed the block groups before stopping them.
9799 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9801 struct btrfs_block_group_cache
*block_group
;
9802 struct btrfs_space_info
*space_info
;
9803 struct btrfs_caching_control
*caching_ctl
;
9806 down_write(&info
->commit_root_sem
);
9807 while (!list_empty(&info
->caching_block_groups
)) {
9808 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9809 struct btrfs_caching_control
, list
);
9810 list_del(&caching_ctl
->list
);
9811 put_caching_control(caching_ctl
);
9813 up_write(&info
->commit_root_sem
);
9815 spin_lock(&info
->unused_bgs_lock
);
9816 while (!list_empty(&info
->unused_bgs
)) {
9817 block_group
= list_first_entry(&info
->unused_bgs
,
9818 struct btrfs_block_group_cache
,
9820 list_del_init(&block_group
->bg_list
);
9821 btrfs_put_block_group(block_group
);
9823 spin_unlock(&info
->unused_bgs_lock
);
9825 spin_lock(&info
->block_group_cache_lock
);
9826 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9827 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9829 rb_erase(&block_group
->cache_node
,
9830 &info
->block_group_cache_tree
);
9831 RB_CLEAR_NODE(&block_group
->cache_node
);
9832 spin_unlock(&info
->block_group_cache_lock
);
9834 down_write(&block_group
->space_info
->groups_sem
);
9835 list_del(&block_group
->list
);
9836 up_write(&block_group
->space_info
->groups_sem
);
9839 * We haven't cached this block group, which means we could
9840 * possibly have excluded extents on this block group.
9842 if (block_group
->cached
== BTRFS_CACHE_NO
||
9843 block_group
->cached
== BTRFS_CACHE_ERROR
)
9844 free_excluded_extents(info
, block_group
);
9846 btrfs_remove_free_space_cache(block_group
);
9847 ASSERT(block_group
->cached
!= BTRFS_CACHE_STARTED
);
9848 ASSERT(list_empty(&block_group
->dirty_list
));
9849 ASSERT(list_empty(&block_group
->io_list
));
9850 ASSERT(list_empty(&block_group
->bg_list
));
9851 ASSERT(atomic_read(&block_group
->count
) == 1);
9852 btrfs_put_block_group(block_group
);
9854 spin_lock(&info
->block_group_cache_lock
);
9856 spin_unlock(&info
->block_group_cache_lock
);
9858 /* now that all the block groups are freed, go through and
9859 * free all the space_info structs. This is only called during
9860 * the final stages of unmount, and so we know nobody is
9861 * using them. We call synchronize_rcu() once before we start,
9862 * just to be on the safe side.
9866 release_global_block_rsv(info
);
9868 while (!list_empty(&info
->space_info
)) {
9871 space_info
= list_entry(info
->space_info
.next
,
9872 struct btrfs_space_info
,
9876 * Do not hide this behind enospc_debug, this is actually
9877 * important and indicates a real bug if this happens.
9879 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
9880 space_info
->bytes_reserved
> 0 ||
9881 space_info
->bytes_may_use
> 0))
9882 dump_space_info(info
, space_info
, 0, 0);
9883 list_del(&space_info
->list
);
9884 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
9885 struct kobject
*kobj
;
9886 kobj
= space_info
->block_group_kobjs
[i
];
9887 space_info
->block_group_kobjs
[i
] = NULL
;
9893 kobject_del(&space_info
->kobj
);
9894 kobject_put(&space_info
->kobj
);
9899 static void __link_block_group(struct btrfs_space_info
*space_info
,
9900 struct btrfs_block_group_cache
*cache
)
9902 int index
= get_block_group_index(cache
);
9905 down_write(&space_info
->groups_sem
);
9906 if (list_empty(&space_info
->block_groups
[index
]))
9908 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
9909 up_write(&space_info
->groups_sem
);
9912 struct raid_kobject
*rkobj
;
9915 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
9918 rkobj
->raid_type
= index
;
9919 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
9920 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
9921 "%s", get_raid_name(index
));
9923 kobject_put(&rkobj
->kobj
);
9926 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
9931 btrfs_warn(cache
->fs_info
,
9932 "failed to add kobject for block cache, ignoring");
9935 static struct btrfs_block_group_cache
*
9936 btrfs_create_block_group_cache(struct btrfs_fs_info
*fs_info
,
9937 u64 start
, u64 size
)
9939 struct btrfs_block_group_cache
*cache
;
9941 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
9945 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
9947 if (!cache
->free_space_ctl
) {
9952 cache
->key
.objectid
= start
;
9953 cache
->key
.offset
= size
;
9954 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9956 cache
->sectorsize
= fs_info
->sectorsize
;
9957 cache
->fs_info
= fs_info
;
9958 cache
->full_stripe_len
= btrfs_full_stripe_len(fs_info
,
9959 &fs_info
->mapping_tree
,
9961 set_free_space_tree_thresholds(cache
);
9963 atomic_set(&cache
->count
, 1);
9964 spin_lock_init(&cache
->lock
);
9965 init_rwsem(&cache
->data_rwsem
);
9966 INIT_LIST_HEAD(&cache
->list
);
9967 INIT_LIST_HEAD(&cache
->cluster_list
);
9968 INIT_LIST_HEAD(&cache
->bg_list
);
9969 INIT_LIST_HEAD(&cache
->ro_list
);
9970 INIT_LIST_HEAD(&cache
->dirty_list
);
9971 INIT_LIST_HEAD(&cache
->io_list
);
9972 btrfs_init_free_space_ctl(cache
);
9973 atomic_set(&cache
->trimming
, 0);
9974 mutex_init(&cache
->free_space_lock
);
9975 btrfs_init_full_stripe_locks_tree(&cache
->full_stripe_locks_root
);
9980 int btrfs_read_block_groups(struct btrfs_fs_info
*info
)
9982 struct btrfs_path
*path
;
9984 struct btrfs_block_group_cache
*cache
;
9985 struct btrfs_space_info
*space_info
;
9986 struct btrfs_key key
;
9987 struct btrfs_key found_key
;
9988 struct extent_buffer
*leaf
;
9994 feature
= btrfs_super_incompat_flags(info
->super_copy
);
9995 mixed
= !!(feature
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
);
9999 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10000 path
= btrfs_alloc_path();
10003 path
->reada
= READA_FORWARD
;
10005 cache_gen
= btrfs_super_cache_generation(info
->super_copy
);
10006 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
10007 btrfs_super_generation(info
->super_copy
) != cache_gen
)
10009 if (btrfs_test_opt(info
, CLEAR_CACHE
))
10013 ret
= find_first_block_group(info
, path
, &key
);
10019 leaf
= path
->nodes
[0];
10020 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
10022 cache
= btrfs_create_block_group_cache(info
, found_key
.objectid
,
10031 * When we mount with old space cache, we need to
10032 * set BTRFS_DC_CLEAR and set dirty flag.
10034 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10035 * truncate the old free space cache inode and
10037 * b) Setting 'dirty flag' makes sure that we flush
10038 * the new space cache info onto disk.
10040 if (btrfs_test_opt(info
, SPACE_CACHE
))
10041 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
10044 read_extent_buffer(leaf
, &cache
->item
,
10045 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
10046 sizeof(cache
->item
));
10047 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
10049 ((cache
->flags
& BTRFS_BLOCK_GROUP_METADATA
) &&
10050 (cache
->flags
& BTRFS_BLOCK_GROUP_DATA
))) {
10052 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10053 cache
->key
.objectid
);
10058 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
10059 btrfs_release_path(path
);
10062 * We need to exclude the super stripes now so that the space
10063 * info has super bytes accounted for, otherwise we'll think
10064 * we have more space than we actually do.
10066 ret
= exclude_super_stripes(info
, cache
);
10069 * We may have excluded something, so call this just in
10072 free_excluded_extents(info
, cache
);
10073 btrfs_put_block_group(cache
);
10078 * check for two cases, either we are full, and therefore
10079 * don't need to bother with the caching work since we won't
10080 * find any space, or we are empty, and we can just add all
10081 * the space in and be done with it. This saves us _alot_ of
10082 * time, particularly in the full case.
10084 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
10085 cache
->last_byte_to_unpin
= (u64
)-1;
10086 cache
->cached
= BTRFS_CACHE_FINISHED
;
10087 free_excluded_extents(info
, cache
);
10088 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10089 cache
->last_byte_to_unpin
= (u64
)-1;
10090 cache
->cached
= BTRFS_CACHE_FINISHED
;
10091 add_new_free_space(cache
, info
,
10092 found_key
.objectid
,
10093 found_key
.objectid
+
10095 free_excluded_extents(info
, cache
);
10098 ret
= btrfs_add_block_group_cache(info
, cache
);
10100 btrfs_remove_free_space_cache(cache
);
10101 btrfs_put_block_group(cache
);
10105 trace_btrfs_add_block_group(info
, cache
, 0);
10106 update_space_info(info
, cache
->flags
, found_key
.offset
,
10107 btrfs_block_group_used(&cache
->item
),
10108 cache
->bytes_super
, &space_info
);
10110 cache
->space_info
= space_info
;
10112 __link_block_group(space_info
, cache
);
10114 set_avail_alloc_bits(info
, cache
->flags
);
10115 if (btrfs_chunk_readonly(info
, cache
->key
.objectid
)) {
10116 inc_block_group_ro(cache
, 1);
10117 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10118 spin_lock(&info
->unused_bgs_lock
);
10119 /* Should always be true but just in case. */
10120 if (list_empty(&cache
->bg_list
)) {
10121 btrfs_get_block_group(cache
);
10122 list_add_tail(&cache
->bg_list
,
10123 &info
->unused_bgs
);
10125 spin_unlock(&info
->unused_bgs_lock
);
10129 list_for_each_entry_rcu(space_info
, &info
->space_info
, list
) {
10130 if (!(get_alloc_profile(info
, space_info
->flags
) &
10131 (BTRFS_BLOCK_GROUP_RAID10
|
10132 BTRFS_BLOCK_GROUP_RAID1
|
10133 BTRFS_BLOCK_GROUP_RAID5
|
10134 BTRFS_BLOCK_GROUP_RAID6
|
10135 BTRFS_BLOCK_GROUP_DUP
)))
10138 * avoid allocating from un-mirrored block group if there are
10139 * mirrored block groups.
10141 list_for_each_entry(cache
,
10142 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
10144 inc_block_group_ro(cache
, 1);
10145 list_for_each_entry(cache
,
10146 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
10148 inc_block_group_ro(cache
, 1);
10151 init_global_block_rsv(info
);
10154 btrfs_free_path(path
);
10158 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
10159 struct btrfs_fs_info
*fs_info
)
10161 struct btrfs_block_group_cache
*block_group
, *tmp
;
10162 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
10163 struct btrfs_block_group_item item
;
10164 struct btrfs_key key
;
10166 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
10168 trans
->can_flush_pending_bgs
= false;
10169 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
10173 spin_lock(&block_group
->lock
);
10174 memcpy(&item
, &block_group
->item
, sizeof(item
));
10175 memcpy(&key
, &block_group
->key
, sizeof(key
));
10176 spin_unlock(&block_group
->lock
);
10178 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
10181 btrfs_abort_transaction(trans
, ret
);
10182 ret
= btrfs_finish_chunk_alloc(trans
, fs_info
, key
.objectid
,
10185 btrfs_abort_transaction(trans
, ret
);
10186 add_block_group_free_space(trans
, fs_info
, block_group
);
10187 /* already aborted the transaction if it failed. */
10189 list_del_init(&block_group
->bg_list
);
10191 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
10194 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
10195 struct btrfs_fs_info
*fs_info
, u64 bytes_used
,
10196 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
10199 struct btrfs_block_group_cache
*cache
;
10202 btrfs_set_log_full_commit(fs_info
, trans
);
10204 cache
= btrfs_create_block_group_cache(fs_info
, chunk_offset
, size
);
10208 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
10209 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
10210 btrfs_set_block_group_flags(&cache
->item
, type
);
10212 cache
->flags
= type
;
10213 cache
->last_byte_to_unpin
= (u64
)-1;
10214 cache
->cached
= BTRFS_CACHE_FINISHED
;
10215 cache
->needs_free_space
= 1;
10216 ret
= exclude_super_stripes(fs_info
, cache
);
10219 * We may have excluded something, so call this just in
10222 free_excluded_extents(fs_info
, cache
);
10223 btrfs_put_block_group(cache
);
10227 add_new_free_space(cache
, fs_info
, chunk_offset
, chunk_offset
+ size
);
10229 free_excluded_extents(fs_info
, cache
);
10231 #ifdef CONFIG_BTRFS_DEBUG
10232 if (btrfs_should_fragment_free_space(cache
)) {
10233 u64 new_bytes_used
= size
- bytes_used
;
10235 bytes_used
+= new_bytes_used
>> 1;
10236 fragment_free_space(cache
);
10240 * Ensure the corresponding space_info object is created and
10241 * assigned to our block group. We want our bg to be added to the rbtree
10242 * with its ->space_info set.
10244 cache
->space_info
= __find_space_info(fs_info
, cache
->flags
);
10245 if (!cache
->space_info
) {
10246 ret
= create_space_info(fs_info
, cache
->flags
,
10247 &cache
->space_info
);
10249 btrfs_remove_free_space_cache(cache
);
10250 btrfs_put_block_group(cache
);
10255 ret
= btrfs_add_block_group_cache(fs_info
, cache
);
10257 btrfs_remove_free_space_cache(cache
);
10258 btrfs_put_block_group(cache
);
10263 * Now that our block group has its ->space_info set and is inserted in
10264 * the rbtree, update the space info's counters.
10266 trace_btrfs_add_block_group(fs_info
, cache
, 1);
10267 update_space_info(fs_info
, cache
->flags
, size
, bytes_used
,
10268 cache
->bytes_super
, &cache
->space_info
);
10269 update_global_block_rsv(fs_info
);
10271 __link_block_group(cache
->space_info
, cache
);
10273 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
10275 set_avail_alloc_bits(fs_info
, type
);
10279 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
10281 u64 extra_flags
= chunk_to_extended(flags
) &
10282 BTRFS_EXTENDED_PROFILE_MASK
;
10284 write_seqlock(&fs_info
->profiles_lock
);
10285 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
10286 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
10287 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
10288 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
10289 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
10290 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
10291 write_sequnlock(&fs_info
->profiles_lock
);
10294 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
10295 struct btrfs_fs_info
*fs_info
, u64 group_start
,
10296 struct extent_map
*em
)
10298 struct btrfs_root
*root
= fs_info
->extent_root
;
10299 struct btrfs_path
*path
;
10300 struct btrfs_block_group_cache
*block_group
;
10301 struct btrfs_free_cluster
*cluster
;
10302 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
10303 struct btrfs_key key
;
10304 struct inode
*inode
;
10305 struct kobject
*kobj
= NULL
;
10309 struct btrfs_caching_control
*caching_ctl
= NULL
;
10312 block_group
= btrfs_lookup_block_group(fs_info
, group_start
);
10313 BUG_ON(!block_group
);
10314 BUG_ON(!block_group
->ro
);
10317 * Free the reserved super bytes from this block group before
10320 free_excluded_extents(fs_info
, block_group
);
10322 memcpy(&key
, &block_group
->key
, sizeof(key
));
10323 index
= get_block_group_index(block_group
);
10324 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
10325 BTRFS_BLOCK_GROUP_RAID1
|
10326 BTRFS_BLOCK_GROUP_RAID10
))
10331 /* make sure this block group isn't part of an allocation cluster */
10332 cluster
= &fs_info
->data_alloc_cluster
;
10333 spin_lock(&cluster
->refill_lock
);
10334 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10335 spin_unlock(&cluster
->refill_lock
);
10338 * make sure this block group isn't part of a metadata
10339 * allocation cluster
10341 cluster
= &fs_info
->meta_alloc_cluster
;
10342 spin_lock(&cluster
->refill_lock
);
10343 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10344 spin_unlock(&cluster
->refill_lock
);
10346 path
= btrfs_alloc_path();
10353 * get the inode first so any iput calls done for the io_list
10354 * aren't the final iput (no unlinks allowed now)
10356 inode
= lookup_free_space_inode(fs_info
, block_group
, path
);
10358 mutex_lock(&trans
->transaction
->cache_write_mutex
);
10360 * make sure our free spache cache IO is done before remove the
10363 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10364 if (!list_empty(&block_group
->io_list
)) {
10365 list_del_init(&block_group
->io_list
);
10367 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
10369 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10370 btrfs_wait_cache_io(trans
, block_group
, path
);
10371 btrfs_put_block_group(block_group
);
10372 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10375 if (!list_empty(&block_group
->dirty_list
)) {
10376 list_del_init(&block_group
->dirty_list
);
10377 btrfs_put_block_group(block_group
);
10379 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10380 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
10382 if (!IS_ERR(inode
)) {
10383 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10385 btrfs_add_delayed_iput(inode
);
10388 clear_nlink(inode
);
10389 /* One for the block groups ref */
10390 spin_lock(&block_group
->lock
);
10391 if (block_group
->iref
) {
10392 block_group
->iref
= 0;
10393 block_group
->inode
= NULL
;
10394 spin_unlock(&block_group
->lock
);
10397 spin_unlock(&block_group
->lock
);
10399 /* One for our lookup ref */
10400 btrfs_add_delayed_iput(inode
);
10403 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
10404 key
.offset
= block_group
->key
.objectid
;
10407 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
10411 btrfs_release_path(path
);
10413 ret
= btrfs_del_item(trans
, tree_root
, path
);
10416 btrfs_release_path(path
);
10419 spin_lock(&fs_info
->block_group_cache_lock
);
10420 rb_erase(&block_group
->cache_node
,
10421 &fs_info
->block_group_cache_tree
);
10422 RB_CLEAR_NODE(&block_group
->cache_node
);
10424 if (fs_info
->first_logical_byte
== block_group
->key
.objectid
)
10425 fs_info
->first_logical_byte
= (u64
)-1;
10426 spin_unlock(&fs_info
->block_group_cache_lock
);
10428 down_write(&block_group
->space_info
->groups_sem
);
10430 * we must use list_del_init so people can check to see if they
10431 * are still on the list after taking the semaphore
10433 list_del_init(&block_group
->list
);
10434 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
10435 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
10436 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
10437 clear_avail_alloc_bits(fs_info
, block_group
->flags
);
10439 up_write(&block_group
->space_info
->groups_sem
);
10445 if (block_group
->has_caching_ctl
)
10446 caching_ctl
= get_caching_control(block_group
);
10447 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
10448 wait_block_group_cache_done(block_group
);
10449 if (block_group
->has_caching_ctl
) {
10450 down_write(&fs_info
->commit_root_sem
);
10451 if (!caching_ctl
) {
10452 struct btrfs_caching_control
*ctl
;
10454 list_for_each_entry(ctl
,
10455 &fs_info
->caching_block_groups
, list
)
10456 if (ctl
->block_group
== block_group
) {
10458 refcount_inc(&caching_ctl
->count
);
10463 list_del_init(&caching_ctl
->list
);
10464 up_write(&fs_info
->commit_root_sem
);
10466 /* Once for the caching bgs list and once for us. */
10467 put_caching_control(caching_ctl
);
10468 put_caching_control(caching_ctl
);
10472 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10473 if (!list_empty(&block_group
->dirty_list
)) {
10476 if (!list_empty(&block_group
->io_list
)) {
10479 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10480 btrfs_remove_free_space_cache(block_group
);
10482 spin_lock(&block_group
->space_info
->lock
);
10483 list_del_init(&block_group
->ro_list
);
10485 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
10486 WARN_ON(block_group
->space_info
->total_bytes
10487 < block_group
->key
.offset
);
10488 WARN_ON(block_group
->space_info
->bytes_readonly
10489 < block_group
->key
.offset
);
10490 WARN_ON(block_group
->space_info
->disk_total
10491 < block_group
->key
.offset
* factor
);
10493 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
10494 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
10495 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
10497 spin_unlock(&block_group
->space_info
->lock
);
10499 memcpy(&key
, &block_group
->key
, sizeof(key
));
10501 mutex_lock(&fs_info
->chunk_mutex
);
10502 if (!list_empty(&em
->list
)) {
10503 /* We're in the transaction->pending_chunks list. */
10504 free_extent_map(em
);
10506 spin_lock(&block_group
->lock
);
10507 block_group
->removed
= 1;
10509 * At this point trimming can't start on this block group, because we
10510 * removed the block group from the tree fs_info->block_group_cache_tree
10511 * so no one can't find it anymore and even if someone already got this
10512 * block group before we removed it from the rbtree, they have already
10513 * incremented block_group->trimming - if they didn't, they won't find
10514 * any free space entries because we already removed them all when we
10515 * called btrfs_remove_free_space_cache().
10517 * And we must not remove the extent map from the fs_info->mapping_tree
10518 * to prevent the same logical address range and physical device space
10519 * ranges from being reused for a new block group. This is because our
10520 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10521 * completely transactionless, so while it is trimming a range the
10522 * currently running transaction might finish and a new one start,
10523 * allowing for new block groups to be created that can reuse the same
10524 * physical device locations unless we take this special care.
10526 * There may also be an implicit trim operation if the file system
10527 * is mounted with -odiscard. The same protections must remain
10528 * in place until the extents have been discarded completely when
10529 * the transaction commit has completed.
10531 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
10533 * Make sure a trimmer task always sees the em in the pinned_chunks list
10534 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10535 * before checking block_group->removed).
10539 * Our em might be in trans->transaction->pending_chunks which
10540 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10541 * and so is the fs_info->pinned_chunks list.
10543 * So at this point we must be holding the chunk_mutex to avoid
10544 * any races with chunk allocation (more specifically at
10545 * volumes.c:contains_pending_extent()), to ensure it always
10546 * sees the em, either in the pending_chunks list or in the
10547 * pinned_chunks list.
10549 list_move_tail(&em
->list
, &fs_info
->pinned_chunks
);
10551 spin_unlock(&block_group
->lock
);
10554 struct extent_map_tree
*em_tree
;
10556 em_tree
= &fs_info
->mapping_tree
.map_tree
;
10557 write_lock(&em_tree
->lock
);
10559 * The em might be in the pending_chunks list, so make sure the
10560 * chunk mutex is locked, since remove_extent_mapping() will
10561 * delete us from that list.
10563 remove_extent_mapping(em_tree
, em
);
10564 write_unlock(&em_tree
->lock
);
10565 /* once for the tree */
10566 free_extent_map(em
);
10569 mutex_unlock(&fs_info
->chunk_mutex
);
10571 ret
= remove_block_group_free_space(trans
, fs_info
, block_group
);
10575 btrfs_put_block_group(block_group
);
10576 btrfs_put_block_group(block_group
);
10578 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
10584 ret
= btrfs_del_item(trans
, root
, path
);
10586 btrfs_free_path(path
);
10590 struct btrfs_trans_handle
*
10591 btrfs_start_trans_remove_block_group(struct btrfs_fs_info
*fs_info
,
10592 const u64 chunk_offset
)
10594 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
.map_tree
;
10595 struct extent_map
*em
;
10596 struct map_lookup
*map
;
10597 unsigned int num_items
;
10599 read_lock(&em_tree
->lock
);
10600 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
10601 read_unlock(&em_tree
->lock
);
10602 ASSERT(em
&& em
->start
== chunk_offset
);
10605 * We need to reserve 3 + N units from the metadata space info in order
10606 * to remove a block group (done at btrfs_remove_chunk() and at
10607 * btrfs_remove_block_group()), which are used for:
10609 * 1 unit for adding the free space inode's orphan (located in the tree
10611 * 1 unit for deleting the block group item (located in the extent
10613 * 1 unit for deleting the free space item (located in tree of tree
10615 * N units for deleting N device extent items corresponding to each
10616 * stripe (located in the device tree).
10618 * In order to remove a block group we also need to reserve units in the
10619 * system space info in order to update the chunk tree (update one or
10620 * more device items and remove one chunk item), but this is done at
10621 * btrfs_remove_chunk() through a call to check_system_chunk().
10623 map
= em
->map_lookup
;
10624 num_items
= 3 + map
->num_stripes
;
10625 free_extent_map(em
);
10627 return btrfs_start_transaction_fallback_global_rsv(fs_info
->extent_root
,
10632 * Process the unused_bgs list and remove any that don't have any allocated
10633 * space inside of them.
10635 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
10637 struct btrfs_block_group_cache
*block_group
;
10638 struct btrfs_space_info
*space_info
;
10639 struct btrfs_trans_handle
*trans
;
10642 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
10645 spin_lock(&fs_info
->unused_bgs_lock
);
10646 while (!list_empty(&fs_info
->unused_bgs
)) {
10650 block_group
= list_first_entry(&fs_info
->unused_bgs
,
10651 struct btrfs_block_group_cache
,
10653 list_del_init(&block_group
->bg_list
);
10655 space_info
= block_group
->space_info
;
10657 if (ret
|| btrfs_mixed_space_info(space_info
)) {
10658 btrfs_put_block_group(block_group
);
10661 spin_unlock(&fs_info
->unused_bgs_lock
);
10663 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
10665 /* Don't want to race with allocators so take the groups_sem */
10666 down_write(&space_info
->groups_sem
);
10667 spin_lock(&block_group
->lock
);
10668 if (block_group
->reserved
||
10669 btrfs_block_group_used(&block_group
->item
) ||
10671 list_is_singular(&block_group
->list
)) {
10673 * We want to bail if we made new allocations or have
10674 * outstanding allocations in this block group. We do
10675 * the ro check in case balance is currently acting on
10676 * this block group.
10678 spin_unlock(&block_group
->lock
);
10679 up_write(&space_info
->groups_sem
);
10682 spin_unlock(&block_group
->lock
);
10684 /* We don't want to force the issue, only flip if it's ok. */
10685 ret
= inc_block_group_ro(block_group
, 0);
10686 up_write(&space_info
->groups_sem
);
10693 * Want to do this before we do anything else so we can recover
10694 * properly if we fail to join the transaction.
10696 trans
= btrfs_start_trans_remove_block_group(fs_info
,
10697 block_group
->key
.objectid
);
10698 if (IS_ERR(trans
)) {
10699 btrfs_dec_block_group_ro(block_group
);
10700 ret
= PTR_ERR(trans
);
10705 * We could have pending pinned extents for this block group,
10706 * just delete them, we don't care about them anymore.
10708 start
= block_group
->key
.objectid
;
10709 end
= start
+ block_group
->key
.offset
- 1;
10711 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10712 * btrfs_finish_extent_commit(). If we are at transaction N,
10713 * another task might be running finish_extent_commit() for the
10714 * previous transaction N - 1, and have seen a range belonging
10715 * to the block group in freed_extents[] before we were able to
10716 * clear the whole block group range from freed_extents[]. This
10717 * means that task can lookup for the block group after we
10718 * unpinned it from freed_extents[] and removed it, leading to
10719 * a BUG_ON() at btrfs_unpin_extent_range().
10721 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
10722 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
10725 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10726 btrfs_dec_block_group_ro(block_group
);
10729 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
10732 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10733 btrfs_dec_block_group_ro(block_group
);
10736 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10738 /* Reset pinned so btrfs_put_block_group doesn't complain */
10739 spin_lock(&space_info
->lock
);
10740 spin_lock(&block_group
->lock
);
10742 space_info
->bytes_pinned
-= block_group
->pinned
;
10743 space_info
->bytes_readonly
+= block_group
->pinned
;
10744 percpu_counter_add(&space_info
->total_bytes_pinned
,
10745 -block_group
->pinned
);
10746 block_group
->pinned
= 0;
10748 spin_unlock(&block_group
->lock
);
10749 spin_unlock(&space_info
->lock
);
10751 /* DISCARD can flip during remount */
10752 trimming
= btrfs_test_opt(fs_info
, DISCARD
);
10754 /* Implicit trim during transaction commit. */
10756 btrfs_get_block_group_trimming(block_group
);
10759 * Btrfs_remove_chunk will abort the transaction if things go
10762 ret
= btrfs_remove_chunk(trans
, fs_info
,
10763 block_group
->key
.objectid
);
10767 btrfs_put_block_group_trimming(block_group
);
10772 * If we're not mounted with -odiscard, we can just forget
10773 * about this block group. Otherwise we'll need to wait
10774 * until transaction commit to do the actual discard.
10777 spin_lock(&fs_info
->unused_bgs_lock
);
10779 * A concurrent scrub might have added us to the list
10780 * fs_info->unused_bgs, so use a list_move operation
10781 * to add the block group to the deleted_bgs list.
10783 list_move(&block_group
->bg_list
,
10784 &trans
->transaction
->deleted_bgs
);
10785 spin_unlock(&fs_info
->unused_bgs_lock
);
10786 btrfs_get_block_group(block_group
);
10789 btrfs_end_transaction(trans
);
10791 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
10792 btrfs_put_block_group(block_group
);
10793 spin_lock(&fs_info
->unused_bgs_lock
);
10795 spin_unlock(&fs_info
->unused_bgs_lock
);
10798 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
10800 struct btrfs_space_info
*space_info
;
10801 struct btrfs_super_block
*disk_super
;
10807 disk_super
= fs_info
->super_copy
;
10808 if (!btrfs_super_root(disk_super
))
10811 features
= btrfs_super_incompat_flags(disk_super
);
10812 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
10815 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
10816 ret
= create_space_info(fs_info
, flags
, &space_info
);
10821 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
10822 ret
= create_space_info(fs_info
, flags
, &space_info
);
10824 flags
= BTRFS_BLOCK_GROUP_METADATA
;
10825 ret
= create_space_info(fs_info
, flags
, &space_info
);
10829 flags
= BTRFS_BLOCK_GROUP_DATA
;
10830 ret
= create_space_info(fs_info
, flags
, &space_info
);
10836 int btrfs_error_unpin_extent_range(struct btrfs_fs_info
*fs_info
,
10837 u64 start
, u64 end
)
10839 return unpin_extent_range(fs_info
, start
, end
, false);
10843 * It used to be that old block groups would be left around forever.
10844 * Iterating over them would be enough to trim unused space. Since we
10845 * now automatically remove them, we also need to iterate over unallocated
10848 * We don't want a transaction for this since the discard may take a
10849 * substantial amount of time. We don't require that a transaction be
10850 * running, but we do need to take a running transaction into account
10851 * to ensure that we're not discarding chunks that were released in
10852 * the current transaction.
10854 * Holding the chunks lock will prevent other threads from allocating
10855 * or releasing chunks, but it won't prevent a running transaction
10856 * from committing and releasing the memory that the pending chunks
10857 * list head uses. For that, we need to take a reference to the
10860 static int btrfs_trim_free_extents(struct btrfs_device
*device
,
10861 u64 minlen
, u64
*trimmed
)
10863 u64 start
= 0, len
= 0;
10868 /* Not writeable = nothing to do. */
10869 if (!device
->writeable
)
10872 /* No free space = nothing to do. */
10873 if (device
->total_bytes
<= device
->bytes_used
)
10879 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
10880 struct btrfs_transaction
*trans
;
10883 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
10887 down_read(&fs_info
->commit_root_sem
);
10889 spin_lock(&fs_info
->trans_lock
);
10890 trans
= fs_info
->running_transaction
;
10892 refcount_inc(&trans
->use_count
);
10893 spin_unlock(&fs_info
->trans_lock
);
10895 ret
= find_free_dev_extent_start(trans
, device
, minlen
, start
,
10898 btrfs_put_transaction(trans
);
10901 up_read(&fs_info
->commit_root_sem
);
10902 mutex_unlock(&fs_info
->chunk_mutex
);
10903 if (ret
== -ENOSPC
)
10908 ret
= btrfs_issue_discard(device
->bdev
, start
, len
, &bytes
);
10909 up_read(&fs_info
->commit_root_sem
);
10910 mutex_unlock(&fs_info
->chunk_mutex
);
10918 if (fatal_signal_pending(current
)) {
10919 ret
= -ERESTARTSYS
;
10929 int btrfs_trim_fs(struct btrfs_fs_info
*fs_info
, struct fstrim_range
*range
)
10931 struct btrfs_block_group_cache
*cache
= NULL
;
10932 struct btrfs_device
*device
;
10933 struct list_head
*devices
;
10938 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
10942 * try to trim all FS space, our block group may start from non-zero.
10944 if (range
->len
== total_bytes
)
10945 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
10947 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
10950 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
10951 btrfs_put_block_group(cache
);
10955 start
= max(range
->start
, cache
->key
.objectid
);
10956 end
= min(range
->start
+ range
->len
,
10957 cache
->key
.objectid
+ cache
->key
.offset
);
10959 if (end
- start
>= range
->minlen
) {
10960 if (!block_group_cache_done(cache
)) {
10961 ret
= cache_block_group(cache
, 0);
10963 btrfs_put_block_group(cache
);
10966 ret
= wait_block_group_cache_done(cache
);
10968 btrfs_put_block_group(cache
);
10972 ret
= btrfs_trim_block_group(cache
,
10978 trimmed
+= group_trimmed
;
10980 btrfs_put_block_group(cache
);
10985 cache
= next_block_group(fs_info
, cache
);
10988 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
10989 devices
= &fs_info
->fs_devices
->alloc_list
;
10990 list_for_each_entry(device
, devices
, dev_alloc_list
) {
10991 ret
= btrfs_trim_free_extents(device
, range
->minlen
,
10996 trimmed
+= group_trimmed
;
10998 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
11000 range
->len
= trimmed
;
11005 * btrfs_{start,end}_write_no_snapshoting() are similar to
11006 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11007 * data into the page cache through nocow before the subvolume is snapshoted,
11008 * but flush the data into disk after the snapshot creation, or to prevent
11009 * operations while snapshoting is ongoing and that cause the snapshot to be
11010 * inconsistent (writes followed by expanding truncates for example).
11012 void btrfs_end_write_no_snapshoting(struct btrfs_root
*root
)
11014 percpu_counter_dec(&root
->subv_writers
->counter
);
11016 * Make sure counter is updated before we wake up waiters.
11019 if (waitqueue_active(&root
->subv_writers
->wait
))
11020 wake_up(&root
->subv_writers
->wait
);
11023 int btrfs_start_write_no_snapshoting(struct btrfs_root
*root
)
11025 if (atomic_read(&root
->will_be_snapshoted
))
11028 percpu_counter_inc(&root
->subv_writers
->counter
);
11030 * Make sure counter is updated before we check for snapshot creation.
11033 if (atomic_read(&root
->will_be_snapshoted
)) {
11034 btrfs_end_write_no_snapshoting(root
);
11040 static int wait_snapshoting_atomic_t(atomic_t
*a
)
11046 void btrfs_wait_for_snapshot_creation(struct btrfs_root
*root
)
11051 ret
= btrfs_start_write_no_snapshoting(root
);
11054 wait_on_atomic_t(&root
->will_be_snapshoted
,
11055 wait_snapshoting_atomic_t
,
11056 TASK_UNINTERRUPTIBLE
);