Merge tag 'chrome-platform-for-linus-4.13' of git://git.kernel.org/pub/scm/linux...
[linux/fpc-iii.git] / fs / btrfs / raid56.c
blob6f845d219cd6d0c6d8a8dfc26019ca6c7be122af
1 /*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/mm.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT 1
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
54 #define RBIO_CACHE_BIT 2
57 * set when it is safe to trust the stripe_pages for caching
59 #define RBIO_CACHE_READY_BIT 3
61 #define RBIO_CACHE_SIZE 1024
63 enum btrfs_rbio_ops {
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
70 struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
79 struct list_head hash_list;
82 * LRU list for the stripe cache
84 struct list_head stripe_cache;
87 * for scheduling work in the helper threads
89 struct btrfs_work work;
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
103 * the stripe lock to the next pending IO
105 struct list_head plug_list;
108 * flags that tell us if it is safe to
109 * merge with this bio
111 unsigned long flags;
113 /* size of each individual stripe on disk */
114 int stripe_len;
116 /* number of data stripes (no p/q) */
117 int nr_data;
119 int real_stripes;
121 int stripe_npages;
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
128 enum btrfs_rbio_ops operation;
130 /* first bad stripe */
131 int faila;
133 /* second bad stripe (for raid6 use) */
134 int failb;
136 int scrubp;
138 * number of pages needed to represent the full
139 * stripe
141 int nr_pages;
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
148 int bio_list_bytes;
150 int generic_bio_cnt;
152 refcount_t refs;
154 atomic_t stripes_pending;
156 atomic_t error;
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
166 struct page **stripe_pages;
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
172 struct page **bio_pages;
175 * bitmap to record which horizontal stripe has data
177 unsigned long *dbitmap;
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
208 int table_size;
210 if (info->stripe_hash_table)
211 return 0;
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kvzalloc(table_size, GFP_KERNEL);
222 if (!table)
223 return -ENOMEM;
225 spin_lock_init(&table->cache_lock);
226 INIT_LIST_HEAD(&table->stripe_cache);
228 h = table->table;
230 for (i = 0; i < num_entries; i++) {
231 cur = h + i;
232 INIT_LIST_HEAD(&cur->hash_list);
233 spin_lock_init(&cur->lock);
234 init_waitqueue_head(&cur->wait);
237 x = cmpxchg(&info->stripe_hash_table, NULL, table);
238 if (x)
239 kvfree(x);
240 return 0;
244 * caching an rbio means to copy anything from the
245 * bio_pages array into the stripe_pages array. We
246 * use the page uptodate bit in the stripe cache array
247 * to indicate if it has valid data
249 * once the caching is done, we set the cache ready
250 * bit.
252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
254 int i;
255 char *s;
256 char *d;
257 int ret;
259 ret = alloc_rbio_pages(rbio);
260 if (ret)
261 return;
263 for (i = 0; i < rbio->nr_pages; i++) {
264 if (!rbio->bio_pages[i])
265 continue;
267 s = kmap(rbio->bio_pages[i]);
268 d = kmap(rbio->stripe_pages[i]);
270 memcpy(d, s, PAGE_SIZE);
272 kunmap(rbio->bio_pages[i]);
273 kunmap(rbio->stripe_pages[i]);
274 SetPageUptodate(rbio->stripe_pages[i]);
276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280 * we hash on the first logical address of the stripe
282 static int rbio_bucket(struct btrfs_raid_bio *rbio)
284 u64 num = rbio->bbio->raid_map[0];
287 * we shift down quite a bit. We're using byte
288 * addressing, and most of the lower bits are zeros.
289 * This tends to upset hash_64, and it consistently
290 * returns just one or two different values.
292 * shifting off the lower bits fixes things.
294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298 * stealing an rbio means taking all the uptodate pages from the stripe
299 * array in the source rbio and putting them into the destination rbio
301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
303 int i;
304 struct page *s;
305 struct page *d;
307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 return;
310 for (i = 0; i < dest->nr_pages; i++) {
311 s = src->stripe_pages[i];
312 if (!s || !PageUptodate(s)) {
313 continue;
316 d = dest->stripe_pages[i];
317 if (d)
318 __free_page(d);
320 dest->stripe_pages[i] = s;
321 src->stripe_pages[i] = NULL;
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
330 * must be called with dest->rbio_list_lock held
332 static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
337 dest->generic_bio_cnt += victim->generic_bio_cnt;
338 bio_list_init(&victim->bio_list);
342 * used to prune items that are in the cache. The caller
343 * must hold the hash table lock.
345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
347 int bucket = rbio_bucket(rbio);
348 struct btrfs_stripe_hash_table *table;
349 struct btrfs_stripe_hash *h;
350 int freeit = 0;
353 * check the bit again under the hash table lock.
355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 return;
358 table = rbio->fs_info->stripe_hash_table;
359 h = table->table + bucket;
361 /* hold the lock for the bucket because we may be
362 * removing it from the hash table
364 spin_lock(&h->lock);
367 * hold the lock for the bio list because we need
368 * to make sure the bio list is empty
370 spin_lock(&rbio->bio_list_lock);
372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 list_del_init(&rbio->stripe_cache);
374 table->cache_size -= 1;
375 freeit = 1;
377 /* if the bio list isn't empty, this rbio is
378 * still involved in an IO. We take it out
379 * of the cache list, and drop the ref that
380 * was held for the list.
382 * If the bio_list was empty, we also remove
383 * the rbio from the hash_table, and drop
384 * the corresponding ref
386 if (bio_list_empty(&rbio->bio_list)) {
387 if (!list_empty(&rbio->hash_list)) {
388 list_del_init(&rbio->hash_list);
389 refcount_dec(&rbio->refs);
390 BUG_ON(!list_empty(&rbio->plug_list));
395 spin_unlock(&rbio->bio_list_lock);
396 spin_unlock(&h->lock);
398 if (freeit)
399 __free_raid_bio(rbio);
403 * prune a given rbio from the cache
405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
407 struct btrfs_stripe_hash_table *table;
408 unsigned long flags;
410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 return;
413 table = rbio->fs_info->stripe_hash_table;
415 spin_lock_irqsave(&table->cache_lock, flags);
416 __remove_rbio_from_cache(rbio);
417 spin_unlock_irqrestore(&table->cache_lock, flags);
421 * remove everything in the cache
423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
425 struct btrfs_stripe_hash_table *table;
426 unsigned long flags;
427 struct btrfs_raid_bio *rbio;
429 table = info->stripe_hash_table;
431 spin_lock_irqsave(&table->cache_lock, flags);
432 while (!list_empty(&table->stripe_cache)) {
433 rbio = list_entry(table->stripe_cache.next,
434 struct btrfs_raid_bio,
435 stripe_cache);
436 __remove_rbio_from_cache(rbio);
438 spin_unlock_irqrestore(&table->cache_lock, flags);
442 * remove all cached entries and free the hash table
443 * used by unmount
445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
447 if (!info->stripe_hash_table)
448 return;
449 btrfs_clear_rbio_cache(info);
450 kvfree(info->stripe_hash_table);
451 info->stripe_hash_table = NULL;
455 * insert an rbio into the stripe cache. It
456 * must have already been prepared by calling
457 * cache_rbio_pages
459 * If this rbio was already cached, it gets
460 * moved to the front of the lru.
462 * If the size of the rbio cache is too big, we
463 * prune an item.
465 static void cache_rbio(struct btrfs_raid_bio *rbio)
467 struct btrfs_stripe_hash_table *table;
468 unsigned long flags;
470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 return;
473 table = rbio->fs_info->stripe_hash_table;
475 spin_lock_irqsave(&table->cache_lock, flags);
476 spin_lock(&rbio->bio_list_lock);
478 /* bump our ref if we were not in the list before */
479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
480 refcount_inc(&rbio->refs);
482 if (!list_empty(&rbio->stripe_cache)){
483 list_move(&rbio->stripe_cache, &table->stripe_cache);
484 } else {
485 list_add(&rbio->stripe_cache, &table->stripe_cache);
486 table->cache_size += 1;
489 spin_unlock(&rbio->bio_list_lock);
491 if (table->cache_size > RBIO_CACHE_SIZE) {
492 struct btrfs_raid_bio *found;
494 found = list_entry(table->stripe_cache.prev,
495 struct btrfs_raid_bio,
496 stripe_cache);
498 if (found != rbio)
499 __remove_rbio_from_cache(found);
502 spin_unlock_irqrestore(&table->cache_lock, flags);
506 * helper function to run the xor_blocks api. It is only
507 * able to do MAX_XOR_BLOCKS at a time, so we need to
508 * loop through.
510 static void run_xor(void **pages, int src_cnt, ssize_t len)
512 int src_off = 0;
513 int xor_src_cnt = 0;
514 void *dest = pages[src_cnt];
516 while(src_cnt > 0) {
517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
520 src_cnt -= xor_src_cnt;
521 src_off += xor_src_cnt;
526 * returns true if the bio list inside this rbio
527 * covers an entire stripe (no rmw required).
528 * Must be called with the bio list lock held, or
529 * at a time when you know it is impossible to add
530 * new bios into the list
532 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
534 unsigned long size = rbio->bio_list_bytes;
535 int ret = 1;
537 if (size != rbio->nr_data * rbio->stripe_len)
538 ret = 0;
540 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
541 return ret;
544 static int rbio_is_full(struct btrfs_raid_bio *rbio)
546 unsigned long flags;
547 int ret;
549 spin_lock_irqsave(&rbio->bio_list_lock, flags);
550 ret = __rbio_is_full(rbio);
551 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
552 return ret;
556 * returns 1 if it is safe to merge two rbios together.
557 * The merging is safe if the two rbios correspond to
558 * the same stripe and if they are both going in the same
559 * direction (read vs write), and if neither one is
560 * locked for final IO
562 * The caller is responsible for locking such that
563 * rmw_locked is safe to test
565 static int rbio_can_merge(struct btrfs_raid_bio *last,
566 struct btrfs_raid_bio *cur)
568 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
569 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
570 return 0;
573 * we can't merge with cached rbios, since the
574 * idea is that when we merge the destination
575 * rbio is going to run our IO for us. We can
576 * steal from cached rbios though, other functions
577 * handle that.
579 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
580 test_bit(RBIO_CACHE_BIT, &cur->flags))
581 return 0;
583 if (last->bbio->raid_map[0] !=
584 cur->bbio->raid_map[0])
585 return 0;
587 /* we can't merge with different operations */
588 if (last->operation != cur->operation)
589 return 0;
591 * We've need read the full stripe from the drive.
592 * check and repair the parity and write the new results.
594 * We're not allowed to add any new bios to the
595 * bio list here, anyone else that wants to
596 * change this stripe needs to do their own rmw.
598 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
599 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
600 return 0;
602 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
603 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
604 return 0;
606 return 1;
609 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
610 int index)
612 return stripe * rbio->stripe_npages + index;
616 * these are just the pages from the rbio array, not from anything
617 * the FS sent down to us
619 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
620 int index)
622 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
626 * helper to index into the pstripe
628 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
630 return rbio_stripe_page(rbio, rbio->nr_data, index);
634 * helper to index into the qstripe, returns null
635 * if there is no qstripe
637 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
639 if (rbio->nr_data + 1 == rbio->real_stripes)
640 return NULL;
641 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
645 * The first stripe in the table for a logical address
646 * has the lock. rbios are added in one of three ways:
648 * 1) Nobody has the stripe locked yet. The rbio is given
649 * the lock and 0 is returned. The caller must start the IO
650 * themselves.
652 * 2) Someone has the stripe locked, but we're able to merge
653 * with the lock owner. The rbio is freed and the IO will
654 * start automatically along with the existing rbio. 1 is returned.
656 * 3) Someone has the stripe locked, but we're not able to merge.
657 * The rbio is added to the lock owner's plug list, or merged into
658 * an rbio already on the plug list. When the lock owner unlocks,
659 * the next rbio on the list is run and the IO is started automatically.
660 * 1 is returned
662 * If we return 0, the caller still owns the rbio and must continue with
663 * IO submission. If we return 1, the caller must assume the rbio has
664 * already been freed.
666 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
668 int bucket = rbio_bucket(rbio);
669 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
670 struct btrfs_raid_bio *cur;
671 struct btrfs_raid_bio *pending;
672 unsigned long flags;
673 DEFINE_WAIT(wait);
674 struct btrfs_raid_bio *freeit = NULL;
675 struct btrfs_raid_bio *cache_drop = NULL;
676 int ret = 0;
678 spin_lock_irqsave(&h->lock, flags);
679 list_for_each_entry(cur, &h->hash_list, hash_list) {
680 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
681 spin_lock(&cur->bio_list_lock);
683 /* can we steal this cached rbio's pages? */
684 if (bio_list_empty(&cur->bio_list) &&
685 list_empty(&cur->plug_list) &&
686 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
687 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
688 list_del_init(&cur->hash_list);
689 refcount_dec(&cur->refs);
691 steal_rbio(cur, rbio);
692 cache_drop = cur;
693 spin_unlock(&cur->bio_list_lock);
695 goto lockit;
698 /* can we merge into the lock owner? */
699 if (rbio_can_merge(cur, rbio)) {
700 merge_rbio(cur, rbio);
701 spin_unlock(&cur->bio_list_lock);
702 freeit = rbio;
703 ret = 1;
704 goto out;
709 * we couldn't merge with the running
710 * rbio, see if we can merge with the
711 * pending ones. We don't have to
712 * check for rmw_locked because there
713 * is no way they are inside finish_rmw
714 * right now
716 list_for_each_entry(pending, &cur->plug_list,
717 plug_list) {
718 if (rbio_can_merge(pending, rbio)) {
719 merge_rbio(pending, rbio);
720 spin_unlock(&cur->bio_list_lock);
721 freeit = rbio;
722 ret = 1;
723 goto out;
727 /* no merging, put us on the tail of the plug list,
728 * our rbio will be started with the currently
729 * running rbio unlocks
731 list_add_tail(&rbio->plug_list, &cur->plug_list);
732 spin_unlock(&cur->bio_list_lock);
733 ret = 1;
734 goto out;
737 lockit:
738 refcount_inc(&rbio->refs);
739 list_add(&rbio->hash_list, &h->hash_list);
740 out:
741 spin_unlock_irqrestore(&h->lock, flags);
742 if (cache_drop)
743 remove_rbio_from_cache(cache_drop);
744 if (freeit)
745 __free_raid_bio(freeit);
746 return ret;
750 * called as rmw or parity rebuild is completed. If the plug list has more
751 * rbios waiting for this stripe, the next one on the list will be started
753 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
755 int bucket;
756 struct btrfs_stripe_hash *h;
757 unsigned long flags;
758 int keep_cache = 0;
760 bucket = rbio_bucket(rbio);
761 h = rbio->fs_info->stripe_hash_table->table + bucket;
763 if (list_empty(&rbio->plug_list))
764 cache_rbio(rbio);
766 spin_lock_irqsave(&h->lock, flags);
767 spin_lock(&rbio->bio_list_lock);
769 if (!list_empty(&rbio->hash_list)) {
771 * if we're still cached and there is no other IO
772 * to perform, just leave this rbio here for others
773 * to steal from later
775 if (list_empty(&rbio->plug_list) &&
776 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
777 keep_cache = 1;
778 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
779 BUG_ON(!bio_list_empty(&rbio->bio_list));
780 goto done;
783 list_del_init(&rbio->hash_list);
784 refcount_dec(&rbio->refs);
787 * we use the plug list to hold all the rbios
788 * waiting for the chance to lock this stripe.
789 * hand the lock over to one of them.
791 if (!list_empty(&rbio->plug_list)) {
792 struct btrfs_raid_bio *next;
793 struct list_head *head = rbio->plug_list.next;
795 next = list_entry(head, struct btrfs_raid_bio,
796 plug_list);
798 list_del_init(&rbio->plug_list);
800 list_add(&next->hash_list, &h->hash_list);
801 refcount_inc(&next->refs);
802 spin_unlock(&rbio->bio_list_lock);
803 spin_unlock_irqrestore(&h->lock, flags);
805 if (next->operation == BTRFS_RBIO_READ_REBUILD)
806 async_read_rebuild(next);
807 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
808 steal_rbio(rbio, next);
809 async_read_rebuild(next);
810 } else if (next->operation == BTRFS_RBIO_WRITE) {
811 steal_rbio(rbio, next);
812 async_rmw_stripe(next);
813 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
814 steal_rbio(rbio, next);
815 async_scrub_parity(next);
818 goto done_nolock;
820 * The barrier for this waitqueue_active is not needed,
821 * we're protected by h->lock and can't miss a wakeup.
823 } else if (waitqueue_active(&h->wait)) {
824 spin_unlock(&rbio->bio_list_lock);
825 spin_unlock_irqrestore(&h->lock, flags);
826 wake_up(&h->wait);
827 goto done_nolock;
830 done:
831 spin_unlock(&rbio->bio_list_lock);
832 spin_unlock_irqrestore(&h->lock, flags);
834 done_nolock:
835 if (!keep_cache)
836 remove_rbio_from_cache(rbio);
839 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
841 int i;
843 if (!refcount_dec_and_test(&rbio->refs))
844 return;
846 WARN_ON(!list_empty(&rbio->stripe_cache));
847 WARN_ON(!list_empty(&rbio->hash_list));
848 WARN_ON(!bio_list_empty(&rbio->bio_list));
850 for (i = 0; i < rbio->nr_pages; i++) {
851 if (rbio->stripe_pages[i]) {
852 __free_page(rbio->stripe_pages[i]);
853 rbio->stripe_pages[i] = NULL;
857 btrfs_put_bbio(rbio->bbio);
858 kfree(rbio);
861 static void free_raid_bio(struct btrfs_raid_bio *rbio)
863 unlock_stripe(rbio);
864 __free_raid_bio(rbio);
868 * this frees the rbio and runs through all the bios in the
869 * bio_list and calls end_io on them
871 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
873 struct bio *cur = bio_list_get(&rbio->bio_list);
874 struct bio *next;
876 if (rbio->generic_bio_cnt)
877 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
879 free_raid_bio(rbio);
881 while (cur) {
882 next = cur->bi_next;
883 cur->bi_next = NULL;
884 cur->bi_status = err;
885 bio_endio(cur);
886 cur = next;
891 * end io function used by finish_rmw. When we finally
892 * get here, we've written a full stripe
894 static void raid_write_end_io(struct bio *bio)
896 struct btrfs_raid_bio *rbio = bio->bi_private;
897 blk_status_t err = bio->bi_status;
898 int max_errors;
900 if (err)
901 fail_bio_stripe(rbio, bio);
903 bio_put(bio);
905 if (!atomic_dec_and_test(&rbio->stripes_pending))
906 return;
908 err = 0;
910 /* OK, we have read all the stripes we need to. */
911 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
912 0 : rbio->bbio->max_errors;
913 if (atomic_read(&rbio->error) > max_errors)
914 err = BLK_STS_IOERR;
916 rbio_orig_end_io(rbio, err);
920 * the read/modify/write code wants to use the original bio for
921 * any pages it included, and then use the rbio for everything
922 * else. This function decides if a given index (stripe number)
923 * and page number in that stripe fall inside the original bio
924 * or the rbio.
926 * if you set bio_list_only, you'll get a NULL back for any ranges
927 * that are outside the bio_list
929 * This doesn't take any refs on anything, you get a bare page pointer
930 * and the caller must bump refs as required.
932 * You must call index_rbio_pages once before you can trust
933 * the answers from this function.
935 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
936 int index, int pagenr, int bio_list_only)
938 int chunk_page;
939 struct page *p = NULL;
941 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
943 spin_lock_irq(&rbio->bio_list_lock);
944 p = rbio->bio_pages[chunk_page];
945 spin_unlock_irq(&rbio->bio_list_lock);
947 if (p || bio_list_only)
948 return p;
950 return rbio->stripe_pages[chunk_page];
954 * number of pages we need for the entire stripe across all the
955 * drives
957 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
959 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
963 * allocation and initial setup for the btrfs_raid_bio. Not
964 * this does not allocate any pages for rbio->pages.
966 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
967 struct btrfs_bio *bbio,
968 u64 stripe_len)
970 struct btrfs_raid_bio *rbio;
971 int nr_data = 0;
972 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
973 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
974 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
975 void *p;
977 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
978 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
979 sizeof(long), GFP_NOFS);
980 if (!rbio)
981 return ERR_PTR(-ENOMEM);
983 bio_list_init(&rbio->bio_list);
984 INIT_LIST_HEAD(&rbio->plug_list);
985 spin_lock_init(&rbio->bio_list_lock);
986 INIT_LIST_HEAD(&rbio->stripe_cache);
987 INIT_LIST_HEAD(&rbio->hash_list);
988 rbio->bbio = bbio;
989 rbio->fs_info = fs_info;
990 rbio->stripe_len = stripe_len;
991 rbio->nr_pages = num_pages;
992 rbio->real_stripes = real_stripes;
993 rbio->stripe_npages = stripe_npages;
994 rbio->faila = -1;
995 rbio->failb = -1;
996 refcount_set(&rbio->refs, 1);
997 atomic_set(&rbio->error, 0);
998 atomic_set(&rbio->stripes_pending, 0);
1001 * the stripe_pages and bio_pages array point to the extra
1002 * memory we allocated past the end of the rbio
1004 p = rbio + 1;
1005 rbio->stripe_pages = p;
1006 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1007 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1009 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1010 nr_data = real_stripes - 1;
1011 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1012 nr_data = real_stripes - 2;
1013 else
1014 BUG();
1016 rbio->nr_data = nr_data;
1017 return rbio;
1020 /* allocate pages for all the stripes in the bio, including parity */
1021 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1023 int i;
1024 struct page *page;
1026 for (i = 0; i < rbio->nr_pages; i++) {
1027 if (rbio->stripe_pages[i])
1028 continue;
1029 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1030 if (!page)
1031 return -ENOMEM;
1032 rbio->stripe_pages[i] = page;
1034 return 0;
1037 /* only allocate pages for p/q stripes */
1038 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1040 int i;
1041 struct page *page;
1043 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1045 for (; i < rbio->nr_pages; i++) {
1046 if (rbio->stripe_pages[i])
1047 continue;
1048 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1049 if (!page)
1050 return -ENOMEM;
1051 rbio->stripe_pages[i] = page;
1053 return 0;
1057 * add a single page from a specific stripe into our list of bios for IO
1058 * this will try to merge into existing bios if possible, and returns
1059 * zero if all went well.
1061 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1062 struct bio_list *bio_list,
1063 struct page *page,
1064 int stripe_nr,
1065 unsigned long page_index,
1066 unsigned long bio_max_len)
1068 struct bio *last = bio_list->tail;
1069 u64 last_end = 0;
1070 int ret;
1071 struct bio *bio;
1072 struct btrfs_bio_stripe *stripe;
1073 u64 disk_start;
1075 stripe = &rbio->bbio->stripes[stripe_nr];
1076 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1078 /* if the device is missing, just fail this stripe */
1079 if (!stripe->dev->bdev)
1080 return fail_rbio_index(rbio, stripe_nr);
1082 /* see if we can add this page onto our existing bio */
1083 if (last) {
1084 last_end = (u64)last->bi_iter.bi_sector << 9;
1085 last_end += last->bi_iter.bi_size;
1088 * we can't merge these if they are from different
1089 * devices or if they are not contiguous
1091 if (last_end == disk_start && stripe->dev->bdev &&
1092 !last->bi_status &&
1093 last->bi_bdev == stripe->dev->bdev) {
1094 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1095 if (ret == PAGE_SIZE)
1096 return 0;
1100 /* put a new bio on the list */
1101 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1102 bio->bi_iter.bi_size = 0;
1103 bio->bi_bdev = stripe->dev->bdev;
1104 bio->bi_iter.bi_sector = disk_start >> 9;
1106 bio_add_page(bio, page, PAGE_SIZE, 0);
1107 bio_list_add(bio_list, bio);
1108 return 0;
1112 * while we're doing the read/modify/write cycle, we could
1113 * have errors in reading pages off the disk. This checks
1114 * for errors and if we're not able to read the page it'll
1115 * trigger parity reconstruction. The rmw will be finished
1116 * after we've reconstructed the failed stripes
1118 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1120 if (rbio->faila >= 0 || rbio->failb >= 0) {
1121 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1122 __raid56_parity_recover(rbio);
1123 } else {
1124 finish_rmw(rbio);
1129 * helper function to walk our bio list and populate the bio_pages array with
1130 * the result. This seems expensive, but it is faster than constantly
1131 * searching through the bio list as we setup the IO in finish_rmw or stripe
1132 * reconstruction.
1134 * This must be called before you trust the answers from page_in_rbio
1136 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1138 struct bio *bio;
1139 struct bio_vec *bvec;
1140 u64 start;
1141 unsigned long stripe_offset;
1142 unsigned long page_index;
1143 int i;
1145 spin_lock_irq(&rbio->bio_list_lock);
1146 bio_list_for_each(bio, &rbio->bio_list) {
1147 start = (u64)bio->bi_iter.bi_sector << 9;
1148 stripe_offset = start - rbio->bbio->raid_map[0];
1149 page_index = stripe_offset >> PAGE_SHIFT;
1151 bio_for_each_segment_all(bvec, bio, i)
1152 rbio->bio_pages[page_index + i] = bvec->bv_page;
1154 spin_unlock_irq(&rbio->bio_list_lock);
1158 * this is called from one of two situations. We either
1159 * have a full stripe from the higher layers, or we've read all
1160 * the missing bits off disk.
1162 * This will calculate the parity and then send down any
1163 * changed blocks.
1165 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1167 struct btrfs_bio *bbio = rbio->bbio;
1168 void *pointers[rbio->real_stripes];
1169 int nr_data = rbio->nr_data;
1170 int stripe;
1171 int pagenr;
1172 int p_stripe = -1;
1173 int q_stripe = -1;
1174 struct bio_list bio_list;
1175 struct bio *bio;
1176 int ret;
1178 bio_list_init(&bio_list);
1180 if (rbio->real_stripes - rbio->nr_data == 1) {
1181 p_stripe = rbio->real_stripes - 1;
1182 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1183 p_stripe = rbio->real_stripes - 2;
1184 q_stripe = rbio->real_stripes - 1;
1185 } else {
1186 BUG();
1189 /* at this point we either have a full stripe,
1190 * or we've read the full stripe from the drive.
1191 * recalculate the parity and write the new results.
1193 * We're not allowed to add any new bios to the
1194 * bio list here, anyone else that wants to
1195 * change this stripe needs to do their own rmw.
1197 spin_lock_irq(&rbio->bio_list_lock);
1198 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1199 spin_unlock_irq(&rbio->bio_list_lock);
1201 atomic_set(&rbio->error, 0);
1204 * now that we've set rmw_locked, run through the
1205 * bio list one last time and map the page pointers
1207 * We don't cache full rbios because we're assuming
1208 * the higher layers are unlikely to use this area of
1209 * the disk again soon. If they do use it again,
1210 * hopefully they will send another full bio.
1212 index_rbio_pages(rbio);
1213 if (!rbio_is_full(rbio))
1214 cache_rbio_pages(rbio);
1215 else
1216 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1218 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1219 struct page *p;
1220 /* first collect one page from each data stripe */
1221 for (stripe = 0; stripe < nr_data; stripe++) {
1222 p = page_in_rbio(rbio, stripe, pagenr, 0);
1223 pointers[stripe] = kmap(p);
1226 /* then add the parity stripe */
1227 p = rbio_pstripe_page(rbio, pagenr);
1228 SetPageUptodate(p);
1229 pointers[stripe++] = kmap(p);
1231 if (q_stripe != -1) {
1234 * raid6, add the qstripe and call the
1235 * library function to fill in our p/q
1237 p = rbio_qstripe_page(rbio, pagenr);
1238 SetPageUptodate(p);
1239 pointers[stripe++] = kmap(p);
1241 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1242 pointers);
1243 } else {
1244 /* raid5 */
1245 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1246 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1250 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1251 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1255 * time to start writing. Make bios for everything from the
1256 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1257 * everything else.
1259 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1260 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1261 struct page *page;
1262 if (stripe < rbio->nr_data) {
1263 page = page_in_rbio(rbio, stripe, pagenr, 1);
1264 if (!page)
1265 continue;
1266 } else {
1267 page = rbio_stripe_page(rbio, stripe, pagenr);
1270 ret = rbio_add_io_page(rbio, &bio_list,
1271 page, stripe, pagenr, rbio->stripe_len);
1272 if (ret)
1273 goto cleanup;
1277 if (likely(!bbio->num_tgtdevs))
1278 goto write_data;
1280 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1281 if (!bbio->tgtdev_map[stripe])
1282 continue;
1284 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1285 struct page *page;
1286 if (stripe < rbio->nr_data) {
1287 page = page_in_rbio(rbio, stripe, pagenr, 1);
1288 if (!page)
1289 continue;
1290 } else {
1291 page = rbio_stripe_page(rbio, stripe, pagenr);
1294 ret = rbio_add_io_page(rbio, &bio_list, page,
1295 rbio->bbio->tgtdev_map[stripe],
1296 pagenr, rbio->stripe_len);
1297 if (ret)
1298 goto cleanup;
1302 write_data:
1303 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1304 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1306 while (1) {
1307 bio = bio_list_pop(&bio_list);
1308 if (!bio)
1309 break;
1311 bio->bi_private = rbio;
1312 bio->bi_end_io = raid_write_end_io;
1313 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1315 submit_bio(bio);
1317 return;
1319 cleanup:
1320 rbio_orig_end_io(rbio, -EIO);
1324 * helper to find the stripe number for a given bio. Used to figure out which
1325 * stripe has failed. This expects the bio to correspond to a physical disk,
1326 * so it looks up based on physical sector numbers.
1328 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1329 struct bio *bio)
1331 u64 physical = bio->bi_iter.bi_sector;
1332 u64 stripe_start;
1333 int i;
1334 struct btrfs_bio_stripe *stripe;
1336 physical <<= 9;
1338 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1339 stripe = &rbio->bbio->stripes[i];
1340 stripe_start = stripe->physical;
1341 if (physical >= stripe_start &&
1342 physical < stripe_start + rbio->stripe_len &&
1343 bio->bi_bdev == stripe->dev->bdev) {
1344 return i;
1347 return -1;
1351 * helper to find the stripe number for a given
1352 * bio (before mapping). Used to figure out which stripe has
1353 * failed. This looks up based on logical block numbers.
1355 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1356 struct bio *bio)
1358 u64 logical = bio->bi_iter.bi_sector;
1359 u64 stripe_start;
1360 int i;
1362 logical <<= 9;
1364 for (i = 0; i < rbio->nr_data; i++) {
1365 stripe_start = rbio->bbio->raid_map[i];
1366 if (logical >= stripe_start &&
1367 logical < stripe_start + rbio->stripe_len) {
1368 return i;
1371 return -1;
1375 * returns -EIO if we had too many failures
1377 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1379 unsigned long flags;
1380 int ret = 0;
1382 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1384 /* we already know this stripe is bad, move on */
1385 if (rbio->faila == failed || rbio->failb == failed)
1386 goto out;
1388 if (rbio->faila == -1) {
1389 /* first failure on this rbio */
1390 rbio->faila = failed;
1391 atomic_inc(&rbio->error);
1392 } else if (rbio->failb == -1) {
1393 /* second failure on this rbio */
1394 rbio->failb = failed;
1395 atomic_inc(&rbio->error);
1396 } else {
1397 ret = -EIO;
1399 out:
1400 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1402 return ret;
1406 * helper to fail a stripe based on a physical disk
1407 * bio.
1409 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1410 struct bio *bio)
1412 int failed = find_bio_stripe(rbio, bio);
1414 if (failed < 0)
1415 return -EIO;
1417 return fail_rbio_index(rbio, failed);
1421 * this sets each page in the bio uptodate. It should only be used on private
1422 * rbio pages, nothing that comes in from the higher layers
1424 static void set_bio_pages_uptodate(struct bio *bio)
1426 struct bio_vec *bvec;
1427 int i;
1429 bio_for_each_segment_all(bvec, bio, i)
1430 SetPageUptodate(bvec->bv_page);
1434 * end io for the read phase of the rmw cycle. All the bios here are physical
1435 * stripe bios we've read from the disk so we can recalculate the parity of the
1436 * stripe.
1438 * This will usually kick off finish_rmw once all the bios are read in, but it
1439 * may trigger parity reconstruction if we had any errors along the way
1441 static void raid_rmw_end_io(struct bio *bio)
1443 struct btrfs_raid_bio *rbio = bio->bi_private;
1445 if (bio->bi_status)
1446 fail_bio_stripe(rbio, bio);
1447 else
1448 set_bio_pages_uptodate(bio);
1450 bio_put(bio);
1452 if (!atomic_dec_and_test(&rbio->stripes_pending))
1453 return;
1455 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1456 goto cleanup;
1459 * this will normally call finish_rmw to start our write
1460 * but if there are any failed stripes we'll reconstruct
1461 * from parity first
1463 validate_rbio_for_rmw(rbio);
1464 return;
1466 cleanup:
1468 rbio_orig_end_io(rbio, -EIO);
1471 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1473 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1474 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1477 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1479 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1480 read_rebuild_work, NULL, NULL);
1482 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1486 * the stripe must be locked by the caller. It will
1487 * unlock after all the writes are done
1489 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1491 int bios_to_read = 0;
1492 struct bio_list bio_list;
1493 int ret;
1494 int pagenr;
1495 int stripe;
1496 struct bio *bio;
1498 bio_list_init(&bio_list);
1500 ret = alloc_rbio_pages(rbio);
1501 if (ret)
1502 goto cleanup;
1504 index_rbio_pages(rbio);
1506 atomic_set(&rbio->error, 0);
1508 * build a list of bios to read all the missing parts of this
1509 * stripe
1511 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1512 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1513 struct page *page;
1515 * we want to find all the pages missing from
1516 * the rbio and read them from the disk. If
1517 * page_in_rbio finds a page in the bio list
1518 * we don't need to read it off the stripe.
1520 page = page_in_rbio(rbio, stripe, pagenr, 1);
1521 if (page)
1522 continue;
1524 page = rbio_stripe_page(rbio, stripe, pagenr);
1526 * the bio cache may have handed us an uptodate
1527 * page. If so, be happy and use it
1529 if (PageUptodate(page))
1530 continue;
1532 ret = rbio_add_io_page(rbio, &bio_list, page,
1533 stripe, pagenr, rbio->stripe_len);
1534 if (ret)
1535 goto cleanup;
1539 bios_to_read = bio_list_size(&bio_list);
1540 if (!bios_to_read) {
1542 * this can happen if others have merged with
1543 * us, it means there is nothing left to read.
1544 * But if there are missing devices it may not be
1545 * safe to do the full stripe write yet.
1547 goto finish;
1551 * the bbio may be freed once we submit the last bio. Make sure
1552 * not to touch it after that
1554 atomic_set(&rbio->stripes_pending, bios_to_read);
1555 while (1) {
1556 bio = bio_list_pop(&bio_list);
1557 if (!bio)
1558 break;
1560 bio->bi_private = rbio;
1561 bio->bi_end_io = raid_rmw_end_io;
1562 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1564 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1566 submit_bio(bio);
1568 /* the actual write will happen once the reads are done */
1569 return 0;
1571 cleanup:
1572 rbio_orig_end_io(rbio, -EIO);
1573 return -EIO;
1575 finish:
1576 validate_rbio_for_rmw(rbio);
1577 return 0;
1581 * if the upper layers pass in a full stripe, we thank them by only allocating
1582 * enough pages to hold the parity, and sending it all down quickly.
1584 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1586 int ret;
1588 ret = alloc_rbio_parity_pages(rbio);
1589 if (ret) {
1590 __free_raid_bio(rbio);
1591 return ret;
1594 ret = lock_stripe_add(rbio);
1595 if (ret == 0)
1596 finish_rmw(rbio);
1597 return 0;
1601 * partial stripe writes get handed over to async helpers.
1602 * We're really hoping to merge a few more writes into this
1603 * rbio before calculating new parity
1605 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1607 int ret;
1609 ret = lock_stripe_add(rbio);
1610 if (ret == 0)
1611 async_rmw_stripe(rbio);
1612 return 0;
1616 * sometimes while we were reading from the drive to
1617 * recalculate parity, enough new bios come into create
1618 * a full stripe. So we do a check here to see if we can
1619 * go directly to finish_rmw
1621 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1623 /* head off into rmw land if we don't have a full stripe */
1624 if (!rbio_is_full(rbio))
1625 return partial_stripe_write(rbio);
1626 return full_stripe_write(rbio);
1630 * We use plugging call backs to collect full stripes.
1631 * Any time we get a partial stripe write while plugged
1632 * we collect it into a list. When the unplug comes down,
1633 * we sort the list by logical block number and merge
1634 * everything we can into the same rbios
1636 struct btrfs_plug_cb {
1637 struct blk_plug_cb cb;
1638 struct btrfs_fs_info *info;
1639 struct list_head rbio_list;
1640 struct btrfs_work work;
1644 * rbios on the plug list are sorted for easier merging.
1646 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1648 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1649 plug_list);
1650 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1651 plug_list);
1652 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1653 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1655 if (a_sector < b_sector)
1656 return -1;
1657 if (a_sector > b_sector)
1658 return 1;
1659 return 0;
1662 static void run_plug(struct btrfs_plug_cb *plug)
1664 struct btrfs_raid_bio *cur;
1665 struct btrfs_raid_bio *last = NULL;
1668 * sort our plug list then try to merge
1669 * everything we can in hopes of creating full
1670 * stripes.
1672 list_sort(NULL, &plug->rbio_list, plug_cmp);
1673 while (!list_empty(&plug->rbio_list)) {
1674 cur = list_entry(plug->rbio_list.next,
1675 struct btrfs_raid_bio, plug_list);
1676 list_del_init(&cur->plug_list);
1678 if (rbio_is_full(cur)) {
1679 /* we have a full stripe, send it down */
1680 full_stripe_write(cur);
1681 continue;
1683 if (last) {
1684 if (rbio_can_merge(last, cur)) {
1685 merge_rbio(last, cur);
1686 __free_raid_bio(cur);
1687 continue;
1690 __raid56_parity_write(last);
1692 last = cur;
1694 if (last) {
1695 __raid56_parity_write(last);
1697 kfree(plug);
1701 * if the unplug comes from schedule, we have to push the
1702 * work off to a helper thread
1704 static void unplug_work(struct btrfs_work *work)
1706 struct btrfs_plug_cb *plug;
1707 plug = container_of(work, struct btrfs_plug_cb, work);
1708 run_plug(plug);
1711 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1713 struct btrfs_plug_cb *plug;
1714 plug = container_of(cb, struct btrfs_plug_cb, cb);
1716 if (from_schedule) {
1717 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1718 unplug_work, NULL, NULL);
1719 btrfs_queue_work(plug->info->rmw_workers,
1720 &plug->work);
1721 return;
1723 run_plug(plug);
1727 * our main entry point for writes from the rest of the FS.
1729 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1730 struct btrfs_bio *bbio, u64 stripe_len)
1732 struct btrfs_raid_bio *rbio;
1733 struct btrfs_plug_cb *plug = NULL;
1734 struct blk_plug_cb *cb;
1735 int ret;
1737 rbio = alloc_rbio(fs_info, bbio, stripe_len);
1738 if (IS_ERR(rbio)) {
1739 btrfs_put_bbio(bbio);
1740 return PTR_ERR(rbio);
1742 bio_list_add(&rbio->bio_list, bio);
1743 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1744 rbio->operation = BTRFS_RBIO_WRITE;
1746 btrfs_bio_counter_inc_noblocked(fs_info);
1747 rbio->generic_bio_cnt = 1;
1750 * don't plug on full rbios, just get them out the door
1751 * as quickly as we can
1753 if (rbio_is_full(rbio)) {
1754 ret = full_stripe_write(rbio);
1755 if (ret)
1756 btrfs_bio_counter_dec(fs_info);
1757 return ret;
1760 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1761 if (cb) {
1762 plug = container_of(cb, struct btrfs_plug_cb, cb);
1763 if (!plug->info) {
1764 plug->info = fs_info;
1765 INIT_LIST_HEAD(&plug->rbio_list);
1767 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1768 ret = 0;
1769 } else {
1770 ret = __raid56_parity_write(rbio);
1771 if (ret)
1772 btrfs_bio_counter_dec(fs_info);
1774 return ret;
1778 * all parity reconstruction happens here. We've read in everything
1779 * we can find from the drives and this does the heavy lifting of
1780 * sorting the good from the bad.
1782 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1784 int pagenr, stripe;
1785 void **pointers;
1786 int faila = -1, failb = -1;
1787 struct page *page;
1788 int err;
1789 int i;
1791 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1792 if (!pointers) {
1793 err = -ENOMEM;
1794 goto cleanup_io;
1797 faila = rbio->faila;
1798 failb = rbio->failb;
1800 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1801 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1802 spin_lock_irq(&rbio->bio_list_lock);
1803 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1804 spin_unlock_irq(&rbio->bio_list_lock);
1807 index_rbio_pages(rbio);
1809 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1811 * Now we just use bitmap to mark the horizontal stripes in
1812 * which we have data when doing parity scrub.
1814 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1815 !test_bit(pagenr, rbio->dbitmap))
1816 continue;
1818 /* setup our array of pointers with pages
1819 * from each stripe
1821 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1823 * if we're rebuilding a read, we have to use
1824 * pages from the bio list
1826 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1827 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1828 (stripe == faila || stripe == failb)) {
1829 page = page_in_rbio(rbio, stripe, pagenr, 0);
1830 } else {
1831 page = rbio_stripe_page(rbio, stripe, pagenr);
1833 pointers[stripe] = kmap(page);
1836 /* all raid6 handling here */
1837 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1839 * single failure, rebuild from parity raid5
1840 * style
1842 if (failb < 0) {
1843 if (faila == rbio->nr_data) {
1845 * Just the P stripe has failed, without
1846 * a bad data or Q stripe.
1847 * TODO, we should redo the xor here.
1849 err = -EIO;
1850 goto cleanup;
1853 * a single failure in raid6 is rebuilt
1854 * in the pstripe code below
1856 goto pstripe;
1859 /* make sure our ps and qs are in order */
1860 if (faila > failb) {
1861 int tmp = failb;
1862 failb = faila;
1863 faila = tmp;
1866 /* if the q stripe is failed, do a pstripe reconstruction
1867 * from the xors.
1868 * If both the q stripe and the P stripe are failed, we're
1869 * here due to a crc mismatch and we can't give them the
1870 * data they want
1872 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1873 if (rbio->bbio->raid_map[faila] ==
1874 RAID5_P_STRIPE) {
1875 err = -EIO;
1876 goto cleanup;
1879 * otherwise we have one bad data stripe and
1880 * a good P stripe. raid5!
1882 goto pstripe;
1885 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1886 raid6_datap_recov(rbio->real_stripes,
1887 PAGE_SIZE, faila, pointers);
1888 } else {
1889 raid6_2data_recov(rbio->real_stripes,
1890 PAGE_SIZE, faila, failb,
1891 pointers);
1893 } else {
1894 void *p;
1896 /* rebuild from P stripe here (raid5 or raid6) */
1897 BUG_ON(failb != -1);
1898 pstripe:
1899 /* Copy parity block into failed block to start with */
1900 memcpy(pointers[faila],
1901 pointers[rbio->nr_data],
1902 PAGE_SIZE);
1904 /* rearrange the pointer array */
1905 p = pointers[faila];
1906 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1907 pointers[stripe] = pointers[stripe + 1];
1908 pointers[rbio->nr_data - 1] = p;
1910 /* xor in the rest */
1911 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1913 /* if we're doing this rebuild as part of an rmw, go through
1914 * and set all of our private rbio pages in the
1915 * failed stripes as uptodate. This way finish_rmw will
1916 * know they can be trusted. If this was a read reconstruction,
1917 * other endio functions will fiddle the uptodate bits
1919 if (rbio->operation == BTRFS_RBIO_WRITE) {
1920 for (i = 0; i < rbio->stripe_npages; i++) {
1921 if (faila != -1) {
1922 page = rbio_stripe_page(rbio, faila, i);
1923 SetPageUptodate(page);
1925 if (failb != -1) {
1926 page = rbio_stripe_page(rbio, failb, i);
1927 SetPageUptodate(page);
1931 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1933 * if we're rebuilding a read, we have to use
1934 * pages from the bio list
1936 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1937 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1938 (stripe == faila || stripe == failb)) {
1939 page = page_in_rbio(rbio, stripe, pagenr, 0);
1940 } else {
1941 page = rbio_stripe_page(rbio, stripe, pagenr);
1943 kunmap(page);
1947 err = 0;
1948 cleanup:
1949 kfree(pointers);
1951 cleanup_io:
1952 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1953 if (err == 0)
1954 cache_rbio_pages(rbio);
1955 else
1956 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1958 rbio_orig_end_io(rbio, err);
1959 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1960 rbio_orig_end_io(rbio, err);
1961 } else if (err == 0) {
1962 rbio->faila = -1;
1963 rbio->failb = -1;
1965 if (rbio->operation == BTRFS_RBIO_WRITE)
1966 finish_rmw(rbio);
1967 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1968 finish_parity_scrub(rbio, 0);
1969 else
1970 BUG();
1971 } else {
1972 rbio_orig_end_io(rbio, err);
1977 * This is called only for stripes we've read from disk to
1978 * reconstruct the parity.
1980 static void raid_recover_end_io(struct bio *bio)
1982 struct btrfs_raid_bio *rbio = bio->bi_private;
1985 * we only read stripe pages off the disk, set them
1986 * up to date if there were no errors
1988 if (bio->bi_status)
1989 fail_bio_stripe(rbio, bio);
1990 else
1991 set_bio_pages_uptodate(bio);
1992 bio_put(bio);
1994 if (!atomic_dec_and_test(&rbio->stripes_pending))
1995 return;
1997 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1998 rbio_orig_end_io(rbio, -EIO);
1999 else
2000 __raid_recover_end_io(rbio);
2004 * reads everything we need off the disk to reconstruct
2005 * the parity. endio handlers trigger final reconstruction
2006 * when the IO is done.
2008 * This is used both for reads from the higher layers and for
2009 * parity construction required to finish a rmw cycle.
2011 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2013 int bios_to_read = 0;
2014 struct bio_list bio_list;
2015 int ret;
2016 int pagenr;
2017 int stripe;
2018 struct bio *bio;
2020 bio_list_init(&bio_list);
2022 ret = alloc_rbio_pages(rbio);
2023 if (ret)
2024 goto cleanup;
2026 atomic_set(&rbio->error, 0);
2029 * read everything that hasn't failed. Thanks to the
2030 * stripe cache, it is possible that some or all of these
2031 * pages are going to be uptodate.
2033 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2034 if (rbio->faila == stripe || rbio->failb == stripe) {
2035 atomic_inc(&rbio->error);
2036 continue;
2039 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2040 struct page *p;
2043 * the rmw code may have already read this
2044 * page in
2046 p = rbio_stripe_page(rbio, stripe, pagenr);
2047 if (PageUptodate(p))
2048 continue;
2050 ret = rbio_add_io_page(rbio, &bio_list,
2051 rbio_stripe_page(rbio, stripe, pagenr),
2052 stripe, pagenr, rbio->stripe_len);
2053 if (ret < 0)
2054 goto cleanup;
2058 bios_to_read = bio_list_size(&bio_list);
2059 if (!bios_to_read) {
2061 * we might have no bios to read just because the pages
2062 * were up to date, or we might have no bios to read because
2063 * the devices were gone.
2065 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2066 __raid_recover_end_io(rbio);
2067 goto out;
2068 } else {
2069 goto cleanup;
2074 * the bbio may be freed once we submit the last bio. Make sure
2075 * not to touch it after that
2077 atomic_set(&rbio->stripes_pending, bios_to_read);
2078 while (1) {
2079 bio = bio_list_pop(&bio_list);
2080 if (!bio)
2081 break;
2083 bio->bi_private = rbio;
2084 bio->bi_end_io = raid_recover_end_io;
2085 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2087 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2089 submit_bio(bio);
2091 out:
2092 return 0;
2094 cleanup:
2095 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2096 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2097 rbio_orig_end_io(rbio, -EIO);
2098 return -EIO;
2102 * the main entry point for reads from the higher layers. This
2103 * is really only called when the normal read path had a failure,
2104 * so we assume the bio they send down corresponds to a failed part
2105 * of the drive.
2107 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2108 struct btrfs_bio *bbio, u64 stripe_len,
2109 int mirror_num, int generic_io)
2111 struct btrfs_raid_bio *rbio;
2112 int ret;
2114 if (generic_io) {
2115 ASSERT(bbio->mirror_num == mirror_num);
2116 btrfs_io_bio(bio)->mirror_num = mirror_num;
2119 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2120 if (IS_ERR(rbio)) {
2121 if (generic_io)
2122 btrfs_put_bbio(bbio);
2123 return PTR_ERR(rbio);
2126 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2127 bio_list_add(&rbio->bio_list, bio);
2128 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2130 rbio->faila = find_logical_bio_stripe(rbio, bio);
2131 if (rbio->faila == -1) {
2132 btrfs_warn(fs_info,
2133 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2134 __func__, (u64)bio->bi_iter.bi_sector << 9,
2135 (u64)bio->bi_iter.bi_size, bbio->map_type);
2136 if (generic_io)
2137 btrfs_put_bbio(bbio);
2138 kfree(rbio);
2139 return -EIO;
2142 if (generic_io) {
2143 btrfs_bio_counter_inc_noblocked(fs_info);
2144 rbio->generic_bio_cnt = 1;
2145 } else {
2146 btrfs_get_bbio(bbio);
2150 * reconstruct from the q stripe if they are
2151 * asking for mirror 3
2153 if (mirror_num == 3)
2154 rbio->failb = rbio->real_stripes - 2;
2156 ret = lock_stripe_add(rbio);
2159 * __raid56_parity_recover will end the bio with
2160 * any errors it hits. We don't want to return
2161 * its error value up the stack because our caller
2162 * will end up calling bio_endio with any nonzero
2163 * return
2165 if (ret == 0)
2166 __raid56_parity_recover(rbio);
2168 * our rbio has been added to the list of
2169 * rbios that will be handled after the
2170 * currently lock owner is done
2172 return 0;
2176 static void rmw_work(struct btrfs_work *work)
2178 struct btrfs_raid_bio *rbio;
2180 rbio = container_of(work, struct btrfs_raid_bio, work);
2181 raid56_rmw_stripe(rbio);
2184 static void read_rebuild_work(struct btrfs_work *work)
2186 struct btrfs_raid_bio *rbio;
2188 rbio = container_of(work, struct btrfs_raid_bio, work);
2189 __raid56_parity_recover(rbio);
2193 * The following code is used to scrub/replace the parity stripe
2195 * Caller must have already increased bio_counter for getting @bbio.
2197 * Note: We need make sure all the pages that add into the scrub/replace
2198 * raid bio are correct and not be changed during the scrub/replace. That
2199 * is those pages just hold metadata or file data with checksum.
2202 struct btrfs_raid_bio *
2203 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2204 struct btrfs_bio *bbio, u64 stripe_len,
2205 struct btrfs_device *scrub_dev,
2206 unsigned long *dbitmap, int stripe_nsectors)
2208 struct btrfs_raid_bio *rbio;
2209 int i;
2211 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2212 if (IS_ERR(rbio))
2213 return NULL;
2214 bio_list_add(&rbio->bio_list, bio);
2216 * This is a special bio which is used to hold the completion handler
2217 * and make the scrub rbio is similar to the other types
2219 ASSERT(!bio->bi_iter.bi_size);
2220 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2222 for (i = 0; i < rbio->real_stripes; i++) {
2223 if (bbio->stripes[i].dev == scrub_dev) {
2224 rbio->scrubp = i;
2225 break;
2229 /* Now we just support the sectorsize equals to page size */
2230 ASSERT(fs_info->sectorsize == PAGE_SIZE);
2231 ASSERT(rbio->stripe_npages == stripe_nsectors);
2232 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2235 * We have already increased bio_counter when getting bbio, record it
2236 * so we can free it at rbio_orig_end_io().
2238 rbio->generic_bio_cnt = 1;
2240 return rbio;
2243 /* Used for both parity scrub and missing. */
2244 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2245 u64 logical)
2247 int stripe_offset;
2248 int index;
2250 ASSERT(logical >= rbio->bbio->raid_map[0]);
2251 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2252 rbio->stripe_len * rbio->nr_data);
2253 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2254 index = stripe_offset >> PAGE_SHIFT;
2255 rbio->bio_pages[index] = page;
2259 * We just scrub the parity that we have correct data on the same horizontal,
2260 * so we needn't allocate all pages for all the stripes.
2262 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2264 int i;
2265 int bit;
2266 int index;
2267 struct page *page;
2269 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2270 for (i = 0; i < rbio->real_stripes; i++) {
2271 index = i * rbio->stripe_npages + bit;
2272 if (rbio->stripe_pages[index])
2273 continue;
2275 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2276 if (!page)
2277 return -ENOMEM;
2278 rbio->stripe_pages[index] = page;
2281 return 0;
2284 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2285 int need_check)
2287 struct btrfs_bio *bbio = rbio->bbio;
2288 void *pointers[rbio->real_stripes];
2289 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2290 int nr_data = rbio->nr_data;
2291 int stripe;
2292 int pagenr;
2293 int p_stripe = -1;
2294 int q_stripe = -1;
2295 struct page *p_page = NULL;
2296 struct page *q_page = NULL;
2297 struct bio_list bio_list;
2298 struct bio *bio;
2299 int is_replace = 0;
2300 int ret;
2302 bio_list_init(&bio_list);
2304 if (rbio->real_stripes - rbio->nr_data == 1) {
2305 p_stripe = rbio->real_stripes - 1;
2306 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2307 p_stripe = rbio->real_stripes - 2;
2308 q_stripe = rbio->real_stripes - 1;
2309 } else {
2310 BUG();
2313 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2314 is_replace = 1;
2315 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2319 * Because the higher layers(scrubber) are unlikely to
2320 * use this area of the disk again soon, so don't cache
2321 * it.
2323 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2325 if (!need_check)
2326 goto writeback;
2328 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2329 if (!p_page)
2330 goto cleanup;
2331 SetPageUptodate(p_page);
2333 if (q_stripe != -1) {
2334 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2335 if (!q_page) {
2336 __free_page(p_page);
2337 goto cleanup;
2339 SetPageUptodate(q_page);
2342 atomic_set(&rbio->error, 0);
2344 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2345 struct page *p;
2346 void *parity;
2347 /* first collect one page from each data stripe */
2348 for (stripe = 0; stripe < nr_data; stripe++) {
2349 p = page_in_rbio(rbio, stripe, pagenr, 0);
2350 pointers[stripe] = kmap(p);
2353 /* then add the parity stripe */
2354 pointers[stripe++] = kmap(p_page);
2356 if (q_stripe != -1) {
2359 * raid6, add the qstripe and call the
2360 * library function to fill in our p/q
2362 pointers[stripe++] = kmap(q_page);
2364 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2365 pointers);
2366 } else {
2367 /* raid5 */
2368 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2369 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2372 /* Check scrubbing parity and repair it */
2373 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2374 parity = kmap(p);
2375 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2376 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2377 else
2378 /* Parity is right, needn't writeback */
2379 bitmap_clear(rbio->dbitmap, pagenr, 1);
2380 kunmap(p);
2382 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2383 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2386 __free_page(p_page);
2387 if (q_page)
2388 __free_page(q_page);
2390 writeback:
2392 * time to start writing. Make bios for everything from the
2393 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2394 * everything else.
2396 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2397 struct page *page;
2399 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2400 ret = rbio_add_io_page(rbio, &bio_list,
2401 page, rbio->scrubp, pagenr, rbio->stripe_len);
2402 if (ret)
2403 goto cleanup;
2406 if (!is_replace)
2407 goto submit_write;
2409 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2410 struct page *page;
2412 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2413 ret = rbio_add_io_page(rbio, &bio_list, page,
2414 bbio->tgtdev_map[rbio->scrubp],
2415 pagenr, rbio->stripe_len);
2416 if (ret)
2417 goto cleanup;
2420 submit_write:
2421 nr_data = bio_list_size(&bio_list);
2422 if (!nr_data) {
2423 /* Every parity is right */
2424 rbio_orig_end_io(rbio, 0);
2425 return;
2428 atomic_set(&rbio->stripes_pending, nr_data);
2430 while (1) {
2431 bio = bio_list_pop(&bio_list);
2432 if (!bio)
2433 break;
2435 bio->bi_private = rbio;
2436 bio->bi_end_io = raid_write_end_io;
2437 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2439 submit_bio(bio);
2441 return;
2443 cleanup:
2444 rbio_orig_end_io(rbio, -EIO);
2447 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2449 if (stripe >= 0 && stripe < rbio->nr_data)
2450 return 1;
2451 return 0;
2455 * While we're doing the parity check and repair, we could have errors
2456 * in reading pages off the disk. This checks for errors and if we're
2457 * not able to read the page it'll trigger parity reconstruction. The
2458 * parity scrub will be finished after we've reconstructed the failed
2459 * stripes
2461 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2463 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2464 goto cleanup;
2466 if (rbio->faila >= 0 || rbio->failb >= 0) {
2467 int dfail = 0, failp = -1;
2469 if (is_data_stripe(rbio, rbio->faila))
2470 dfail++;
2471 else if (is_parity_stripe(rbio->faila))
2472 failp = rbio->faila;
2474 if (is_data_stripe(rbio, rbio->failb))
2475 dfail++;
2476 else if (is_parity_stripe(rbio->failb))
2477 failp = rbio->failb;
2480 * Because we can not use a scrubbing parity to repair
2481 * the data, so the capability of the repair is declined.
2482 * (In the case of RAID5, we can not repair anything)
2484 if (dfail > rbio->bbio->max_errors - 1)
2485 goto cleanup;
2488 * If all data is good, only parity is correctly, just
2489 * repair the parity.
2491 if (dfail == 0) {
2492 finish_parity_scrub(rbio, 0);
2493 return;
2497 * Here means we got one corrupted data stripe and one
2498 * corrupted parity on RAID6, if the corrupted parity
2499 * is scrubbing parity, luckily, use the other one to repair
2500 * the data, or we can not repair the data stripe.
2502 if (failp != rbio->scrubp)
2503 goto cleanup;
2505 __raid_recover_end_io(rbio);
2506 } else {
2507 finish_parity_scrub(rbio, 1);
2509 return;
2511 cleanup:
2512 rbio_orig_end_io(rbio, -EIO);
2516 * end io for the read phase of the rmw cycle. All the bios here are physical
2517 * stripe bios we've read from the disk so we can recalculate the parity of the
2518 * stripe.
2520 * This will usually kick off finish_rmw once all the bios are read in, but it
2521 * may trigger parity reconstruction if we had any errors along the way
2523 static void raid56_parity_scrub_end_io(struct bio *bio)
2525 struct btrfs_raid_bio *rbio = bio->bi_private;
2527 if (bio->bi_status)
2528 fail_bio_stripe(rbio, bio);
2529 else
2530 set_bio_pages_uptodate(bio);
2532 bio_put(bio);
2534 if (!atomic_dec_and_test(&rbio->stripes_pending))
2535 return;
2538 * this will normally call finish_rmw to start our write
2539 * but if there are any failed stripes we'll reconstruct
2540 * from parity first
2542 validate_rbio_for_parity_scrub(rbio);
2545 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2547 int bios_to_read = 0;
2548 struct bio_list bio_list;
2549 int ret;
2550 int pagenr;
2551 int stripe;
2552 struct bio *bio;
2554 ret = alloc_rbio_essential_pages(rbio);
2555 if (ret)
2556 goto cleanup;
2558 bio_list_init(&bio_list);
2560 atomic_set(&rbio->error, 0);
2562 * build a list of bios to read all the missing parts of this
2563 * stripe
2565 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2566 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2567 struct page *page;
2569 * we want to find all the pages missing from
2570 * the rbio and read them from the disk. If
2571 * page_in_rbio finds a page in the bio list
2572 * we don't need to read it off the stripe.
2574 page = page_in_rbio(rbio, stripe, pagenr, 1);
2575 if (page)
2576 continue;
2578 page = rbio_stripe_page(rbio, stripe, pagenr);
2580 * the bio cache may have handed us an uptodate
2581 * page. If so, be happy and use it
2583 if (PageUptodate(page))
2584 continue;
2586 ret = rbio_add_io_page(rbio, &bio_list, page,
2587 stripe, pagenr, rbio->stripe_len);
2588 if (ret)
2589 goto cleanup;
2593 bios_to_read = bio_list_size(&bio_list);
2594 if (!bios_to_read) {
2596 * this can happen if others have merged with
2597 * us, it means there is nothing left to read.
2598 * But if there are missing devices it may not be
2599 * safe to do the full stripe write yet.
2601 goto finish;
2605 * the bbio may be freed once we submit the last bio. Make sure
2606 * not to touch it after that
2608 atomic_set(&rbio->stripes_pending, bios_to_read);
2609 while (1) {
2610 bio = bio_list_pop(&bio_list);
2611 if (!bio)
2612 break;
2614 bio->bi_private = rbio;
2615 bio->bi_end_io = raid56_parity_scrub_end_io;
2616 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2618 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2620 submit_bio(bio);
2622 /* the actual write will happen once the reads are done */
2623 return;
2625 cleanup:
2626 rbio_orig_end_io(rbio, -EIO);
2627 return;
2629 finish:
2630 validate_rbio_for_parity_scrub(rbio);
2633 static void scrub_parity_work(struct btrfs_work *work)
2635 struct btrfs_raid_bio *rbio;
2637 rbio = container_of(work, struct btrfs_raid_bio, work);
2638 raid56_parity_scrub_stripe(rbio);
2641 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2643 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2644 scrub_parity_work, NULL, NULL);
2646 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2649 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2651 if (!lock_stripe_add(rbio))
2652 async_scrub_parity(rbio);
2655 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2657 struct btrfs_raid_bio *
2658 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2659 struct btrfs_bio *bbio, u64 length)
2661 struct btrfs_raid_bio *rbio;
2663 rbio = alloc_rbio(fs_info, bbio, length);
2664 if (IS_ERR(rbio))
2665 return NULL;
2667 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2668 bio_list_add(&rbio->bio_list, bio);
2670 * This is a special bio which is used to hold the completion handler
2671 * and make the scrub rbio is similar to the other types
2673 ASSERT(!bio->bi_iter.bi_size);
2675 rbio->faila = find_logical_bio_stripe(rbio, bio);
2676 if (rbio->faila == -1) {
2677 BUG();
2678 kfree(rbio);
2679 return NULL;
2683 * When we get bbio, we have already increased bio_counter, record it
2684 * so we can free it at rbio_orig_end_io()
2686 rbio->generic_bio_cnt = 1;
2688 return rbio;
2691 static void missing_raid56_work(struct btrfs_work *work)
2693 struct btrfs_raid_bio *rbio;
2695 rbio = container_of(work, struct btrfs_raid_bio, work);
2696 __raid56_parity_recover(rbio);
2699 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2701 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2702 missing_raid56_work, NULL, NULL);
2704 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2707 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2709 if (!lock_stripe_add(rbio))
2710 async_missing_raid56(rbio);