2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
40 * A fs_path is a helper to dynamically build path names with unknown size.
41 * It reallocates the internal buffer on demand.
42 * It allows fast adding of path elements on the right side (normal path) and
43 * fast adding to the left side (reversed path). A reversed path can also be
44 * unreversed if needed.
53 unsigned short buf_len
:15;
54 unsigned short reversed
:1;
58 * Average path length does not exceed 200 bytes, we'll have
59 * better packing in the slab and higher chance to satisfy
60 * a allocation later during send.
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
69 /* reused for each extent */
71 struct btrfs_root
*root
;
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
82 struct file
*send_filp
;
88 u64 cmd_send_size
[BTRFS_SEND_C_MAX
+ 1];
89 u64 flags
; /* 'flags' member of btrfs_ioctl_send_args is u64 */
91 struct btrfs_root
*send_root
;
92 struct btrfs_root
*parent_root
;
93 struct clone_root
*clone_roots
;
96 /* current state of the compare_tree call */
97 struct btrfs_path
*left_path
;
98 struct btrfs_path
*right_path
;
99 struct btrfs_key
*cmp_key
;
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
108 int cur_inode_new_gen
;
109 int cur_inode_deleted
;
113 u64 cur_inode_last_extent
;
117 struct list_head new_refs
;
118 struct list_head deleted_refs
;
120 struct radix_tree_root name_cache
;
121 struct list_head name_cache_list
;
124 struct file_ra_state ra
;
129 * We process inodes by their increasing order, so if before an
130 * incremental send we reverse the parent/child relationship of
131 * directories such that a directory with a lower inode number was
132 * the parent of a directory with a higher inode number, and the one
133 * becoming the new parent got renamed too, we can't rename/move the
134 * directory with lower inode number when we finish processing it - we
135 * must process the directory with higher inode number first, then
136 * rename/move it and then rename/move the directory with lower inode
137 * number. Example follows.
139 * Tree state when the first send was performed:
151 * Tree state when the second (incremental) send is performed:
160 * The sequence of steps that lead to the second state was:
162 * mv /a/b/c/d /a/b/c2/d2
163 * mv /a/b/c /a/b/c2/d2/cc
165 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 * before we move "d", which has higher inode number.
168 * So we just memorize which move/rename operations must be performed
169 * later when their respective parent is processed and moved/renamed.
172 /* Indexed by parent directory inode number. */
173 struct rb_root pending_dir_moves
;
176 * Reverse index, indexed by the inode number of a directory that
177 * is waiting for the move/rename of its immediate parent before its
178 * own move/rename can be performed.
180 struct rb_root waiting_dir_moves
;
183 * A directory that is going to be rm'ed might have a child directory
184 * which is in the pending directory moves index above. In this case,
185 * the directory can only be removed after the move/rename of its child
186 * is performed. Example:
206 * Sequence of steps that lead to the send snapshot:
207 * rm -f /a/b/c/foo.txt
209 * mv /a/b/c/x /a/b/YY
212 * When the child is processed, its move/rename is delayed until its
213 * parent is processed (as explained above), but all other operations
214 * like update utimes, chown, chgrp, etc, are performed and the paths
215 * that it uses for those operations must use the orphanized name of
216 * its parent (the directory we're going to rm later), so we need to
217 * memorize that name.
219 * Indexed by the inode number of the directory to be deleted.
221 struct rb_root orphan_dirs
;
224 struct pending_dir_move
{
226 struct list_head list
;
230 struct list_head update_refs
;
233 struct waiting_dir_move
{
237 * There might be some directory that could not be removed because it
238 * was waiting for this directory inode to be moved first. Therefore
239 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
245 struct orphan_dir_info
{
251 struct name_cache_entry
{
252 struct list_head list
;
254 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 * more then one inum would fall into the same entry, we use radix_list
257 * to store the additional entries. radix_list is also used to store
258 * entries where two entries have the same inum but different
261 struct list_head radix_list
;
267 int need_later_update
;
272 static void inconsistent_snapshot_error(struct send_ctx
*sctx
,
273 enum btrfs_compare_tree_result result
,
276 const char *result_string
;
279 case BTRFS_COMPARE_TREE_NEW
:
280 result_string
= "new";
282 case BTRFS_COMPARE_TREE_DELETED
:
283 result_string
= "deleted";
285 case BTRFS_COMPARE_TREE_CHANGED
:
286 result_string
= "updated";
288 case BTRFS_COMPARE_TREE_SAME
:
290 result_string
= "unchanged";
294 result_string
= "unexpected";
297 btrfs_err(sctx
->send_root
->fs_info
,
298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 result_string
, what
, sctx
->cmp_key
->objectid
,
300 sctx
->send_root
->root_key
.objectid
,
302 sctx
->parent_root
->root_key
.objectid
: 0));
305 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
);
307 static struct waiting_dir_move
*
308 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
);
310 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
);
312 static int need_send_hole(struct send_ctx
*sctx
)
314 return (sctx
->parent_root
&& !sctx
->cur_inode_new
&&
315 !sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
&&
316 S_ISREG(sctx
->cur_inode_mode
));
319 static void fs_path_reset(struct fs_path
*p
)
322 p
->start
= p
->buf
+ p
->buf_len
- 1;
332 static struct fs_path
*fs_path_alloc(void)
336 p
= kmalloc(sizeof(*p
), GFP_KERNEL
);
340 p
->buf
= p
->inline_buf
;
341 p
->buf_len
= FS_PATH_INLINE_SIZE
;
346 static struct fs_path
*fs_path_alloc_reversed(void)
358 static void fs_path_free(struct fs_path
*p
)
362 if (p
->buf
!= p
->inline_buf
)
367 static int fs_path_len(struct fs_path
*p
)
369 return p
->end
- p
->start
;
372 static int fs_path_ensure_buf(struct fs_path
*p
, int len
)
380 if (p
->buf_len
>= len
)
383 if (len
> PATH_MAX
) {
388 path_len
= p
->end
- p
->start
;
389 old_buf_len
= p
->buf_len
;
392 * First time the inline_buf does not suffice
394 if (p
->buf
== p
->inline_buf
) {
395 tmp_buf
= kmalloc(len
, GFP_KERNEL
);
397 memcpy(tmp_buf
, p
->buf
, old_buf_len
);
399 tmp_buf
= krealloc(p
->buf
, len
, GFP_KERNEL
);
405 * The real size of the buffer is bigger, this will let the fast path
406 * happen most of the time
408 p
->buf_len
= ksize(p
->buf
);
411 tmp_buf
= p
->buf
+ old_buf_len
- path_len
- 1;
412 p
->end
= p
->buf
+ p
->buf_len
- 1;
413 p
->start
= p
->end
- path_len
;
414 memmove(p
->start
, tmp_buf
, path_len
+ 1);
417 p
->end
= p
->start
+ path_len
;
422 static int fs_path_prepare_for_add(struct fs_path
*p
, int name_len
,
428 new_len
= p
->end
- p
->start
+ name_len
;
429 if (p
->start
!= p
->end
)
431 ret
= fs_path_ensure_buf(p
, new_len
);
436 if (p
->start
!= p
->end
)
438 p
->start
-= name_len
;
439 *prepared
= p
->start
;
441 if (p
->start
!= p
->end
)
452 static int fs_path_add(struct fs_path
*p
, const char *name
, int name_len
)
457 ret
= fs_path_prepare_for_add(p
, name_len
, &prepared
);
460 memcpy(prepared
, name
, name_len
);
466 static int fs_path_add_path(struct fs_path
*p
, struct fs_path
*p2
)
471 ret
= fs_path_prepare_for_add(p
, p2
->end
- p2
->start
, &prepared
);
474 memcpy(prepared
, p2
->start
, p2
->end
- p2
->start
);
480 static int fs_path_add_from_extent_buffer(struct fs_path
*p
,
481 struct extent_buffer
*eb
,
482 unsigned long off
, int len
)
487 ret
= fs_path_prepare_for_add(p
, len
, &prepared
);
491 read_extent_buffer(eb
, prepared
, off
, len
);
497 static int fs_path_copy(struct fs_path
*p
, struct fs_path
*from
)
501 p
->reversed
= from
->reversed
;
504 ret
= fs_path_add_path(p
, from
);
510 static void fs_path_unreverse(struct fs_path
*p
)
519 len
= p
->end
- p
->start
;
521 p
->end
= p
->start
+ len
;
522 memmove(p
->start
, tmp
, len
+ 1);
526 static struct btrfs_path
*alloc_path_for_send(void)
528 struct btrfs_path
*path
;
530 path
= btrfs_alloc_path();
533 path
->search_commit_root
= 1;
534 path
->skip_locking
= 1;
535 path
->need_commit_sem
= 1;
539 static int write_buf(struct file
*filp
, const void *buf
, u32 len
, loff_t
*off
)
549 ret
= vfs_write(filp
, (__force
const char __user
*)buf
+ pos
,
551 /* TODO handle that correctly */
552 /*if (ret == -ERESTARTSYS) {
571 static int tlv_put(struct send_ctx
*sctx
, u16 attr
, const void *data
, int len
)
573 struct btrfs_tlv_header
*hdr
;
574 int total_len
= sizeof(*hdr
) + len
;
575 int left
= sctx
->send_max_size
- sctx
->send_size
;
577 if (unlikely(left
< total_len
))
580 hdr
= (struct btrfs_tlv_header
*) (sctx
->send_buf
+ sctx
->send_size
);
581 hdr
->tlv_type
= cpu_to_le16(attr
);
582 hdr
->tlv_len
= cpu_to_le16(len
);
583 memcpy(hdr
+ 1, data
, len
);
584 sctx
->send_size
+= total_len
;
589 #define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
597 TLV_PUT_DEFINE_INT(64)
599 static int tlv_put_string(struct send_ctx
*sctx
, u16 attr
,
600 const char *str
, int len
)
604 return tlv_put(sctx
, attr
, str
, len
);
607 static int tlv_put_uuid(struct send_ctx
*sctx
, u16 attr
,
610 return tlv_put(sctx
, attr
, uuid
, BTRFS_UUID_SIZE
);
613 static int tlv_put_btrfs_timespec(struct send_ctx
*sctx
, u16 attr
,
614 struct extent_buffer
*eb
,
615 struct btrfs_timespec
*ts
)
617 struct btrfs_timespec bts
;
618 read_extent_buffer(eb
, &bts
, (unsigned long)ts
, sizeof(bts
));
619 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
623 #define TLV_PUT(sctx, attrtype, attrlen, data) \
625 ret = tlv_put(sctx, attrtype, attrlen, data); \
627 goto tlv_put_failure; \
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
634 goto tlv_put_failure; \
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
645 goto tlv_put_failure; \
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
652 goto tlv_put_failure; \
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
658 goto tlv_put_failure; \
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
664 goto tlv_put_failure; \
667 static int send_header(struct send_ctx
*sctx
)
669 struct btrfs_stream_header hdr
;
671 strcpy(hdr
.magic
, BTRFS_SEND_STREAM_MAGIC
);
672 hdr
.version
= cpu_to_le32(BTRFS_SEND_STREAM_VERSION
);
674 return write_buf(sctx
->send_filp
, &hdr
, sizeof(hdr
),
679 * For each command/item we want to send to userspace, we call this function.
681 static int begin_cmd(struct send_ctx
*sctx
, int cmd
)
683 struct btrfs_cmd_header
*hdr
;
685 if (WARN_ON(!sctx
->send_buf
))
688 BUG_ON(sctx
->send_size
);
690 sctx
->send_size
+= sizeof(*hdr
);
691 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
692 hdr
->cmd
= cpu_to_le16(cmd
);
697 static int send_cmd(struct send_ctx
*sctx
)
700 struct btrfs_cmd_header
*hdr
;
703 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
704 hdr
->len
= cpu_to_le32(sctx
->send_size
- sizeof(*hdr
));
707 crc
= btrfs_crc32c(0, (unsigned char *)sctx
->send_buf
, sctx
->send_size
);
708 hdr
->crc
= cpu_to_le32(crc
);
710 ret
= write_buf(sctx
->send_filp
, sctx
->send_buf
, sctx
->send_size
,
713 sctx
->total_send_size
+= sctx
->send_size
;
714 sctx
->cmd_send_size
[le16_to_cpu(hdr
->cmd
)] += sctx
->send_size
;
721 * Sends a move instruction to user space
723 static int send_rename(struct send_ctx
*sctx
,
724 struct fs_path
*from
, struct fs_path
*to
)
726 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
729 btrfs_debug(fs_info
, "send_rename %s -> %s", from
->start
, to
->start
);
731 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RENAME
);
735 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, from
);
736 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_TO
, to
);
738 ret
= send_cmd(sctx
);
746 * Sends a link instruction to user space
748 static int send_link(struct send_ctx
*sctx
,
749 struct fs_path
*path
, struct fs_path
*lnk
)
751 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
754 btrfs_debug(fs_info
, "send_link %s -> %s", path
->start
, lnk
->start
);
756 ret
= begin_cmd(sctx
, BTRFS_SEND_C_LINK
);
760 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
761 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, lnk
);
763 ret
= send_cmd(sctx
);
771 * Sends an unlink instruction to user space
773 static int send_unlink(struct send_ctx
*sctx
, struct fs_path
*path
)
775 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
778 btrfs_debug(fs_info
, "send_unlink %s", path
->start
);
780 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UNLINK
);
784 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
786 ret
= send_cmd(sctx
);
794 * Sends a rmdir instruction to user space
796 static int send_rmdir(struct send_ctx
*sctx
, struct fs_path
*path
)
798 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
801 btrfs_debug(fs_info
, "send_rmdir %s", path
->start
);
803 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RMDIR
);
807 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
809 ret
= send_cmd(sctx
);
817 * Helper function to retrieve some fields from an inode item.
819 static int __get_inode_info(struct btrfs_root
*root
, struct btrfs_path
*path
,
820 u64 ino
, u64
*size
, u64
*gen
, u64
*mode
, u64
*uid
,
824 struct btrfs_inode_item
*ii
;
825 struct btrfs_key key
;
828 key
.type
= BTRFS_INODE_ITEM_KEY
;
830 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
837 ii
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
838 struct btrfs_inode_item
);
840 *size
= btrfs_inode_size(path
->nodes
[0], ii
);
842 *gen
= btrfs_inode_generation(path
->nodes
[0], ii
);
844 *mode
= btrfs_inode_mode(path
->nodes
[0], ii
);
846 *uid
= btrfs_inode_uid(path
->nodes
[0], ii
);
848 *gid
= btrfs_inode_gid(path
->nodes
[0], ii
);
850 *rdev
= btrfs_inode_rdev(path
->nodes
[0], ii
);
855 static int get_inode_info(struct btrfs_root
*root
,
856 u64 ino
, u64
*size
, u64
*gen
,
857 u64
*mode
, u64
*uid
, u64
*gid
,
860 struct btrfs_path
*path
;
863 path
= alloc_path_for_send();
866 ret
= __get_inode_info(root
, path
, ino
, size
, gen
, mode
, uid
, gid
,
868 btrfs_free_path(path
);
872 typedef int (*iterate_inode_ref_t
)(int num
, u64 dir
, int index
,
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
882 * path must point to the INODE_REF or INODE_EXTREF when called.
884 static int iterate_inode_ref(struct btrfs_root
*root
, struct btrfs_path
*path
,
885 struct btrfs_key
*found_key
, int resolve
,
886 iterate_inode_ref_t iterate
, void *ctx
)
888 struct extent_buffer
*eb
= path
->nodes
[0];
889 struct btrfs_item
*item
;
890 struct btrfs_inode_ref
*iref
;
891 struct btrfs_inode_extref
*extref
;
892 struct btrfs_path
*tmp_path
;
896 int slot
= path
->slots
[0];
903 unsigned long name_off
;
904 unsigned long elem_size
;
907 p
= fs_path_alloc_reversed();
911 tmp_path
= alloc_path_for_send();
918 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
919 ptr
= (unsigned long)btrfs_item_ptr(eb
, slot
,
920 struct btrfs_inode_ref
);
921 item
= btrfs_item_nr(slot
);
922 total
= btrfs_item_size(eb
, item
);
923 elem_size
= sizeof(*iref
);
925 ptr
= btrfs_item_ptr_offset(eb
, slot
);
926 total
= btrfs_item_size_nr(eb
, slot
);
927 elem_size
= sizeof(*extref
);
930 while (cur
< total
) {
933 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
934 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur
);
935 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
936 name_off
= (unsigned long)(iref
+ 1);
937 index
= btrfs_inode_ref_index(eb
, iref
);
938 dir
= found_key
->offset
;
940 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur
);
941 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
942 name_off
= (unsigned long)&extref
->name
;
943 index
= btrfs_inode_extref_index(eb
, extref
);
944 dir
= btrfs_inode_extref_parent(eb
, extref
);
948 start
= btrfs_ref_to_path(root
, tmp_path
, name_len
,
952 ret
= PTR_ERR(start
);
955 if (start
< p
->buf
) {
956 /* overflow , try again with larger buffer */
957 ret
= fs_path_ensure_buf(p
,
958 p
->buf_len
+ p
->buf
- start
);
961 start
= btrfs_ref_to_path(root
, tmp_path
,
966 ret
= PTR_ERR(start
);
969 BUG_ON(start
< p
->buf
);
973 ret
= fs_path_add_from_extent_buffer(p
, eb
, name_off
,
979 cur
+= elem_size
+ name_len
;
980 ret
= iterate(num
, dir
, index
, p
, ctx
);
987 btrfs_free_path(tmp_path
);
992 typedef int (*iterate_dir_item_t
)(int num
, struct btrfs_key
*di_key
,
993 const char *name
, int name_len
,
994 const char *data
, int data_len
,
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1002 * path must point to the dir item when called.
1004 static int iterate_dir_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
1005 struct btrfs_key
*found_key
,
1006 iterate_dir_item_t iterate
, void *ctx
)
1009 struct extent_buffer
*eb
;
1010 struct btrfs_item
*item
;
1011 struct btrfs_dir_item
*di
;
1012 struct btrfs_key di_key
;
1025 * Start with a small buffer (1 page). If later we end up needing more
1026 * space, which can happen for xattrs on a fs with a leaf size greater
1027 * then the page size, attempt to increase the buffer. Typically xattr
1031 buf
= kmalloc(buf_len
, GFP_KERNEL
);
1037 eb
= path
->nodes
[0];
1038 slot
= path
->slots
[0];
1039 item
= btrfs_item_nr(slot
);
1040 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
1043 total
= btrfs_item_size(eb
, item
);
1046 while (cur
< total
) {
1047 name_len
= btrfs_dir_name_len(eb
, di
);
1048 data_len
= btrfs_dir_data_len(eb
, di
);
1049 type
= btrfs_dir_type(eb
, di
);
1050 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1052 if (type
== BTRFS_FT_XATTR
) {
1053 if (name_len
> XATTR_NAME_MAX
) {
1054 ret
= -ENAMETOOLONG
;
1057 if (name_len
+ data_len
>
1058 BTRFS_MAX_XATTR_SIZE(root
->fs_info
)) {
1066 if (name_len
+ data_len
> PATH_MAX
) {
1067 ret
= -ENAMETOOLONG
;
1072 ret
= btrfs_is_name_len_valid(eb
, path
->slots
[0],
1073 (unsigned long)(di
+ 1), name_len
+ data_len
);
1078 if (name_len
+ data_len
> buf_len
) {
1079 buf_len
= name_len
+ data_len
;
1080 if (is_vmalloc_addr(buf
)) {
1084 char *tmp
= krealloc(buf
, buf_len
,
1085 GFP_KERNEL
| __GFP_NOWARN
);
1092 buf
= kvmalloc(buf_len
, GFP_KERNEL
);
1100 read_extent_buffer(eb
, buf
, (unsigned long)(di
+ 1),
1101 name_len
+ data_len
);
1103 len
= sizeof(*di
) + name_len
+ data_len
;
1104 di
= (struct btrfs_dir_item
*)((char *)di
+ len
);
1107 ret
= iterate(num
, &di_key
, buf
, name_len
, buf
+ name_len
,
1108 data_len
, type
, ctx
);
1124 static int __copy_first_ref(int num
, u64 dir
, int index
,
1125 struct fs_path
*p
, void *ctx
)
1128 struct fs_path
*pt
= ctx
;
1130 ret
= fs_path_copy(pt
, p
);
1134 /* we want the first only */
1139 * Retrieve the first path of an inode. If an inode has more then one
1140 * ref/hardlink, this is ignored.
1142 static int get_inode_path(struct btrfs_root
*root
,
1143 u64 ino
, struct fs_path
*path
)
1146 struct btrfs_key key
, found_key
;
1147 struct btrfs_path
*p
;
1149 p
= alloc_path_for_send();
1153 fs_path_reset(path
);
1156 key
.type
= BTRFS_INODE_REF_KEY
;
1159 ret
= btrfs_search_slot_for_read(root
, &key
, p
, 1, 0);
1166 btrfs_item_key_to_cpu(p
->nodes
[0], &found_key
, p
->slots
[0]);
1167 if (found_key
.objectid
!= ino
||
1168 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1169 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1174 ret
= iterate_inode_ref(root
, p
, &found_key
, 1,
1175 __copy_first_ref
, path
);
1185 struct backref_ctx
{
1186 struct send_ctx
*sctx
;
1188 struct btrfs_path
*path
;
1189 /* number of total found references */
1193 * used for clones found in send_root. clones found behind cur_objectid
1194 * and cur_offset are not considered as allowed clones.
1199 /* may be truncated in case it's the last extent in a file */
1202 /* data offset in the file extent item */
1205 /* Just to check for bugs in backref resolving */
1209 static int __clone_root_cmp_bsearch(const void *key
, const void *elt
)
1211 u64 root
= (u64
)(uintptr_t)key
;
1212 struct clone_root
*cr
= (struct clone_root
*)elt
;
1214 if (root
< cr
->root
->objectid
)
1216 if (root
> cr
->root
->objectid
)
1221 static int __clone_root_cmp_sort(const void *e1
, const void *e2
)
1223 struct clone_root
*cr1
= (struct clone_root
*)e1
;
1224 struct clone_root
*cr2
= (struct clone_root
*)e2
;
1226 if (cr1
->root
->objectid
< cr2
->root
->objectid
)
1228 if (cr1
->root
->objectid
> cr2
->root
->objectid
)
1234 * Called for every backref that is found for the current extent.
1235 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1237 static int __iterate_backrefs(u64 ino
, u64 offset
, u64 root
, void *ctx_
)
1239 struct backref_ctx
*bctx
= ctx_
;
1240 struct clone_root
*found
;
1244 /* First check if the root is in the list of accepted clone sources */
1245 found
= bsearch((void *)(uintptr_t)root
, bctx
->sctx
->clone_roots
,
1246 bctx
->sctx
->clone_roots_cnt
,
1247 sizeof(struct clone_root
),
1248 __clone_root_cmp_bsearch
);
1252 if (found
->root
== bctx
->sctx
->send_root
&&
1253 ino
== bctx
->cur_objectid
&&
1254 offset
== bctx
->cur_offset
) {
1255 bctx
->found_itself
= 1;
1259 * There are inodes that have extents that lie behind its i_size. Don't
1260 * accept clones from these extents.
1262 ret
= __get_inode_info(found
->root
, bctx
->path
, ino
, &i_size
, NULL
, NULL
,
1264 btrfs_release_path(bctx
->path
);
1268 if (offset
+ bctx
->data_offset
+ bctx
->extent_len
> i_size
)
1272 * Make sure we don't consider clones from send_root that are
1273 * behind the current inode/offset.
1275 if (found
->root
== bctx
->sctx
->send_root
) {
1277 * TODO for the moment we don't accept clones from the inode
1278 * that is currently send. We may change this when
1279 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1282 if (ino
>= bctx
->cur_objectid
)
1285 if (ino
> bctx
->cur_objectid
)
1287 if (offset
+ bctx
->extent_len
> bctx
->cur_offset
)
1293 found
->found_refs
++;
1294 if (ino
< found
->ino
) {
1296 found
->offset
= offset
;
1297 } else if (found
->ino
== ino
) {
1299 * same extent found more then once in the same file.
1301 if (found
->offset
> offset
+ bctx
->extent_len
)
1302 found
->offset
= offset
;
1309 * Given an inode, offset and extent item, it finds a good clone for a clone
1310 * instruction. Returns -ENOENT when none could be found. The function makes
1311 * sure that the returned clone is usable at the point where sending is at the
1312 * moment. This means, that no clones are accepted which lie behind the current
1315 * path must point to the extent item when called.
1317 static int find_extent_clone(struct send_ctx
*sctx
,
1318 struct btrfs_path
*path
,
1319 u64 ino
, u64 data_offset
,
1321 struct clone_root
**found
)
1323 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
1329 u64 extent_item_pos
;
1331 struct btrfs_file_extent_item
*fi
;
1332 struct extent_buffer
*eb
= path
->nodes
[0];
1333 struct backref_ctx
*backref_ctx
= NULL
;
1334 struct clone_root
*cur_clone_root
;
1335 struct btrfs_key found_key
;
1336 struct btrfs_path
*tmp_path
;
1340 tmp_path
= alloc_path_for_send();
1344 /* We only use this path under the commit sem */
1345 tmp_path
->need_commit_sem
= 0;
1347 backref_ctx
= kmalloc(sizeof(*backref_ctx
), GFP_KERNEL
);
1353 backref_ctx
->path
= tmp_path
;
1355 if (data_offset
>= ino_size
) {
1357 * There may be extents that lie behind the file's size.
1358 * I at least had this in combination with snapshotting while
1359 * writing large files.
1365 fi
= btrfs_item_ptr(eb
, path
->slots
[0],
1366 struct btrfs_file_extent_item
);
1367 extent_type
= btrfs_file_extent_type(eb
, fi
);
1368 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1372 compressed
= btrfs_file_extent_compression(eb
, fi
);
1374 num_bytes
= btrfs_file_extent_num_bytes(eb
, fi
);
1375 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1376 if (disk_byte
== 0) {
1380 logical
= disk_byte
+ btrfs_file_extent_offset(eb
, fi
);
1382 down_read(&fs_info
->commit_root_sem
);
1383 ret
= extent_from_logical(fs_info
, disk_byte
, tmp_path
,
1384 &found_key
, &flags
);
1385 up_read(&fs_info
->commit_root_sem
);
1386 btrfs_release_path(tmp_path
);
1390 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1396 * Setup the clone roots.
1398 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1399 cur_clone_root
= sctx
->clone_roots
+ i
;
1400 cur_clone_root
->ino
= (u64
)-1;
1401 cur_clone_root
->offset
= 0;
1402 cur_clone_root
->found_refs
= 0;
1405 backref_ctx
->sctx
= sctx
;
1406 backref_ctx
->found
= 0;
1407 backref_ctx
->cur_objectid
= ino
;
1408 backref_ctx
->cur_offset
= data_offset
;
1409 backref_ctx
->found_itself
= 0;
1410 backref_ctx
->extent_len
= num_bytes
;
1412 * For non-compressed extents iterate_extent_inodes() gives us extent
1413 * offsets that already take into account the data offset, but not for
1414 * compressed extents, since the offset is logical and not relative to
1415 * the physical extent locations. We must take this into account to
1416 * avoid sending clone offsets that go beyond the source file's size,
1417 * which would result in the clone ioctl failing with -EINVAL on the
1420 if (compressed
== BTRFS_COMPRESS_NONE
)
1421 backref_ctx
->data_offset
= 0;
1423 backref_ctx
->data_offset
= btrfs_file_extent_offset(eb
, fi
);
1426 * The last extent of a file may be too large due to page alignment.
1427 * We need to adjust extent_len in this case so that the checks in
1428 * __iterate_backrefs work.
1430 if (data_offset
+ num_bytes
>= ino_size
)
1431 backref_ctx
->extent_len
= ino_size
- data_offset
;
1434 * Now collect all backrefs.
1436 if (compressed
== BTRFS_COMPRESS_NONE
)
1437 extent_item_pos
= logical
- found_key
.objectid
;
1439 extent_item_pos
= 0;
1440 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1441 extent_item_pos
, 1, __iterate_backrefs
,
1447 if (!backref_ctx
->found_itself
) {
1448 /* found a bug in backref code? */
1451 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1452 ino
, data_offset
, disk_byte
, found_key
.objectid
);
1456 btrfs_debug(fs_info
,
1457 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1458 data_offset
, ino
, num_bytes
, logical
);
1460 if (!backref_ctx
->found
)
1461 btrfs_debug(fs_info
, "no clones found");
1463 cur_clone_root
= NULL
;
1464 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1465 if (sctx
->clone_roots
[i
].found_refs
) {
1466 if (!cur_clone_root
)
1467 cur_clone_root
= sctx
->clone_roots
+ i
;
1468 else if (sctx
->clone_roots
[i
].root
== sctx
->send_root
)
1469 /* prefer clones from send_root over others */
1470 cur_clone_root
= sctx
->clone_roots
+ i
;
1475 if (cur_clone_root
) {
1476 *found
= cur_clone_root
;
1483 btrfs_free_path(tmp_path
);
1488 static int read_symlink(struct btrfs_root
*root
,
1490 struct fs_path
*dest
)
1493 struct btrfs_path
*path
;
1494 struct btrfs_key key
;
1495 struct btrfs_file_extent_item
*ei
;
1501 path
= alloc_path_for_send();
1506 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1508 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1513 * An empty symlink inode. Can happen in rare error paths when
1514 * creating a symlink (transaction committed before the inode
1515 * eviction handler removed the symlink inode items and a crash
1516 * happened in between or the subvol was snapshoted in between).
1517 * Print an informative message to dmesg/syslog so that the user
1518 * can delete the symlink.
1520 btrfs_err(root
->fs_info
,
1521 "Found empty symlink inode %llu at root %llu",
1522 ino
, root
->root_key
.objectid
);
1527 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1528 struct btrfs_file_extent_item
);
1529 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
1530 compression
= btrfs_file_extent_compression(path
->nodes
[0], ei
);
1531 BUG_ON(type
!= BTRFS_FILE_EXTENT_INLINE
);
1532 BUG_ON(compression
);
1534 off
= btrfs_file_extent_inline_start(ei
);
1535 len
= btrfs_file_extent_inline_len(path
->nodes
[0], path
->slots
[0], ei
);
1537 ret
= fs_path_add_from_extent_buffer(dest
, path
->nodes
[0], off
, len
);
1540 btrfs_free_path(path
);
1545 * Helper function to generate a file name that is unique in the root of
1546 * send_root and parent_root. This is used to generate names for orphan inodes.
1548 static int gen_unique_name(struct send_ctx
*sctx
,
1550 struct fs_path
*dest
)
1553 struct btrfs_path
*path
;
1554 struct btrfs_dir_item
*di
;
1559 path
= alloc_path_for_send();
1564 len
= snprintf(tmp
, sizeof(tmp
), "o%llu-%llu-%llu",
1566 ASSERT(len
< sizeof(tmp
));
1568 di
= btrfs_lookup_dir_item(NULL
, sctx
->send_root
,
1569 path
, BTRFS_FIRST_FREE_OBJECTID
,
1570 tmp
, strlen(tmp
), 0);
1571 btrfs_release_path(path
);
1577 /* not unique, try again */
1582 if (!sctx
->parent_root
) {
1588 di
= btrfs_lookup_dir_item(NULL
, sctx
->parent_root
,
1589 path
, BTRFS_FIRST_FREE_OBJECTID
,
1590 tmp
, strlen(tmp
), 0);
1591 btrfs_release_path(path
);
1597 /* not unique, try again */
1605 ret
= fs_path_add(dest
, tmp
, strlen(tmp
));
1608 btrfs_free_path(path
);
1613 inode_state_no_change
,
1614 inode_state_will_create
,
1615 inode_state_did_create
,
1616 inode_state_will_delete
,
1617 inode_state_did_delete
,
1620 static int get_cur_inode_state(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1628 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &left_gen
, NULL
, NULL
,
1630 if (ret
< 0 && ret
!= -ENOENT
)
1634 if (!sctx
->parent_root
) {
1635 right_ret
= -ENOENT
;
1637 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
, &right_gen
,
1638 NULL
, NULL
, NULL
, NULL
);
1639 if (ret
< 0 && ret
!= -ENOENT
)
1644 if (!left_ret
&& !right_ret
) {
1645 if (left_gen
== gen
&& right_gen
== gen
) {
1646 ret
= inode_state_no_change
;
1647 } else if (left_gen
== gen
) {
1648 if (ino
< sctx
->send_progress
)
1649 ret
= inode_state_did_create
;
1651 ret
= inode_state_will_create
;
1652 } else if (right_gen
== gen
) {
1653 if (ino
< sctx
->send_progress
)
1654 ret
= inode_state_did_delete
;
1656 ret
= inode_state_will_delete
;
1660 } else if (!left_ret
) {
1661 if (left_gen
== gen
) {
1662 if (ino
< sctx
->send_progress
)
1663 ret
= inode_state_did_create
;
1665 ret
= inode_state_will_create
;
1669 } else if (!right_ret
) {
1670 if (right_gen
== gen
) {
1671 if (ino
< sctx
->send_progress
)
1672 ret
= inode_state_did_delete
;
1674 ret
= inode_state_will_delete
;
1686 static int is_inode_existent(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1690 if (ino
== BTRFS_FIRST_FREE_OBJECTID
)
1693 ret
= get_cur_inode_state(sctx
, ino
, gen
);
1697 if (ret
== inode_state_no_change
||
1698 ret
== inode_state_did_create
||
1699 ret
== inode_state_will_delete
)
1709 * Helper function to lookup a dir item in a dir.
1711 static int lookup_dir_item_inode(struct btrfs_root
*root
,
1712 u64 dir
, const char *name
, int name_len
,
1717 struct btrfs_dir_item
*di
;
1718 struct btrfs_key key
;
1719 struct btrfs_path
*path
;
1721 path
= alloc_path_for_send();
1725 di
= btrfs_lookup_dir_item(NULL
, root
, path
,
1726 dir
, name
, name_len
, 0);
1735 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1736 if (key
.type
== BTRFS_ROOT_ITEM_KEY
) {
1740 *found_inode
= key
.objectid
;
1741 *found_type
= btrfs_dir_type(path
->nodes
[0], di
);
1744 btrfs_free_path(path
);
1749 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1750 * generation of the parent dir and the name of the dir entry.
1752 static int get_first_ref(struct btrfs_root
*root
, u64 ino
,
1753 u64
*dir
, u64
*dir_gen
, struct fs_path
*name
)
1756 struct btrfs_key key
;
1757 struct btrfs_key found_key
;
1758 struct btrfs_path
*path
;
1762 path
= alloc_path_for_send();
1767 key
.type
= BTRFS_INODE_REF_KEY
;
1770 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
1774 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1776 if (ret
|| found_key
.objectid
!= ino
||
1777 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1778 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1783 if (found_key
.type
== BTRFS_INODE_REF_KEY
) {
1784 struct btrfs_inode_ref
*iref
;
1785 iref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1786 struct btrfs_inode_ref
);
1787 len
= btrfs_inode_ref_name_len(path
->nodes
[0], iref
);
1788 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1789 (unsigned long)(iref
+ 1),
1791 parent_dir
= found_key
.offset
;
1793 struct btrfs_inode_extref
*extref
;
1794 extref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1795 struct btrfs_inode_extref
);
1796 len
= btrfs_inode_extref_name_len(path
->nodes
[0], extref
);
1797 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1798 (unsigned long)&extref
->name
, len
);
1799 parent_dir
= btrfs_inode_extref_parent(path
->nodes
[0], extref
);
1803 btrfs_release_path(path
);
1806 ret
= get_inode_info(root
, parent_dir
, NULL
, dir_gen
, NULL
,
1815 btrfs_free_path(path
);
1819 static int is_first_ref(struct btrfs_root
*root
,
1821 const char *name
, int name_len
)
1824 struct fs_path
*tmp_name
;
1827 tmp_name
= fs_path_alloc();
1831 ret
= get_first_ref(root
, ino
, &tmp_dir
, NULL
, tmp_name
);
1835 if (dir
!= tmp_dir
|| name_len
!= fs_path_len(tmp_name
)) {
1840 ret
= !memcmp(tmp_name
->start
, name
, name_len
);
1843 fs_path_free(tmp_name
);
1848 * Used by process_recorded_refs to determine if a new ref would overwrite an
1849 * already existing ref. In case it detects an overwrite, it returns the
1850 * inode/gen in who_ino/who_gen.
1851 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1852 * to make sure later references to the overwritten inode are possible.
1853 * Orphanizing is however only required for the first ref of an inode.
1854 * process_recorded_refs does an additional is_first_ref check to see if
1855 * orphanizing is really required.
1857 static int will_overwrite_ref(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
1858 const char *name
, int name_len
,
1859 u64
*who_ino
, u64
*who_gen
)
1863 u64 other_inode
= 0;
1866 if (!sctx
->parent_root
)
1869 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1874 * If we have a parent root we need to verify that the parent dir was
1875 * not deleted and then re-created, if it was then we have no overwrite
1876 * and we can just unlink this entry.
1878 if (sctx
->parent_root
&& dir
!= BTRFS_FIRST_FREE_OBJECTID
) {
1879 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
,
1881 if (ret
< 0 && ret
!= -ENOENT
)
1891 ret
= lookup_dir_item_inode(sctx
->parent_root
, dir
, name
, name_len
,
1892 &other_inode
, &other_type
);
1893 if (ret
< 0 && ret
!= -ENOENT
)
1901 * Check if the overwritten ref was already processed. If yes, the ref
1902 * was already unlinked/moved, so we can safely assume that we will not
1903 * overwrite anything at this point in time.
1905 if (other_inode
> sctx
->send_progress
||
1906 is_waiting_for_move(sctx
, other_inode
)) {
1907 ret
= get_inode_info(sctx
->parent_root
, other_inode
, NULL
,
1908 who_gen
, NULL
, NULL
, NULL
, NULL
);
1913 *who_ino
= other_inode
;
1923 * Checks if the ref was overwritten by an already processed inode. This is
1924 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1925 * thus the orphan name needs be used.
1926 * process_recorded_refs also uses it to avoid unlinking of refs that were
1929 static int did_overwrite_ref(struct send_ctx
*sctx
,
1930 u64 dir
, u64 dir_gen
,
1931 u64 ino
, u64 ino_gen
,
1932 const char *name
, int name_len
)
1939 if (!sctx
->parent_root
)
1942 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1946 if (dir
!= BTRFS_FIRST_FREE_OBJECTID
) {
1947 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &gen
, NULL
,
1949 if (ret
< 0 && ret
!= -ENOENT
)
1959 /* check if the ref was overwritten by another ref */
1960 ret
= lookup_dir_item_inode(sctx
->send_root
, dir
, name
, name_len
,
1961 &ow_inode
, &other_type
);
1962 if (ret
< 0 && ret
!= -ENOENT
)
1965 /* was never and will never be overwritten */
1970 ret
= get_inode_info(sctx
->send_root
, ow_inode
, NULL
, &gen
, NULL
, NULL
,
1975 if (ow_inode
== ino
&& gen
== ino_gen
) {
1981 * We know that it is or will be overwritten. Check this now.
1982 * The current inode being processed might have been the one that caused
1983 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1984 * the current inode being processed.
1986 if ((ow_inode
< sctx
->send_progress
) ||
1987 (ino
!= sctx
->cur_ino
&& ow_inode
== sctx
->cur_ino
&&
1988 gen
== sctx
->cur_inode_gen
))
1998 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1999 * that got overwritten. This is used by process_recorded_refs to determine
2000 * if it has to use the path as returned by get_cur_path or the orphan name.
2002 static int did_overwrite_first_ref(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2005 struct fs_path
*name
= NULL
;
2009 if (!sctx
->parent_root
)
2012 name
= fs_path_alloc();
2016 ret
= get_first_ref(sctx
->parent_root
, ino
, &dir
, &dir_gen
, name
);
2020 ret
= did_overwrite_ref(sctx
, dir
, dir_gen
, ino
, gen
,
2021 name
->start
, fs_path_len(name
));
2029 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2030 * so we need to do some special handling in case we have clashes. This function
2031 * takes care of this with the help of name_cache_entry::radix_list.
2032 * In case of error, nce is kfreed.
2034 static int name_cache_insert(struct send_ctx
*sctx
,
2035 struct name_cache_entry
*nce
)
2038 struct list_head
*nce_head
;
2040 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2041 (unsigned long)nce
->ino
);
2043 nce_head
= kmalloc(sizeof(*nce_head
), GFP_KERNEL
);
2048 INIT_LIST_HEAD(nce_head
);
2050 ret
= radix_tree_insert(&sctx
->name_cache
, nce
->ino
, nce_head
);
2057 list_add_tail(&nce
->radix_list
, nce_head
);
2058 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2059 sctx
->name_cache_size
++;
2064 static void name_cache_delete(struct send_ctx
*sctx
,
2065 struct name_cache_entry
*nce
)
2067 struct list_head
*nce_head
;
2069 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2070 (unsigned long)nce
->ino
);
2072 btrfs_err(sctx
->send_root
->fs_info
,
2073 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2074 nce
->ino
, sctx
->name_cache_size
);
2077 list_del(&nce
->radix_list
);
2078 list_del(&nce
->list
);
2079 sctx
->name_cache_size
--;
2082 * We may not get to the final release of nce_head if the lookup fails
2084 if (nce_head
&& list_empty(nce_head
)) {
2085 radix_tree_delete(&sctx
->name_cache
, (unsigned long)nce
->ino
);
2090 static struct name_cache_entry
*name_cache_search(struct send_ctx
*sctx
,
2093 struct list_head
*nce_head
;
2094 struct name_cache_entry
*cur
;
2096 nce_head
= radix_tree_lookup(&sctx
->name_cache
, (unsigned long)ino
);
2100 list_for_each_entry(cur
, nce_head
, radix_list
) {
2101 if (cur
->ino
== ino
&& cur
->gen
== gen
)
2108 * Removes the entry from the list and adds it back to the end. This marks the
2109 * entry as recently used so that name_cache_clean_unused does not remove it.
2111 static void name_cache_used(struct send_ctx
*sctx
, struct name_cache_entry
*nce
)
2113 list_del(&nce
->list
);
2114 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2118 * Remove some entries from the beginning of name_cache_list.
2120 static void name_cache_clean_unused(struct send_ctx
*sctx
)
2122 struct name_cache_entry
*nce
;
2124 if (sctx
->name_cache_size
< SEND_CTX_NAME_CACHE_CLEAN_SIZE
)
2127 while (sctx
->name_cache_size
> SEND_CTX_MAX_NAME_CACHE_SIZE
) {
2128 nce
= list_entry(sctx
->name_cache_list
.next
,
2129 struct name_cache_entry
, list
);
2130 name_cache_delete(sctx
, nce
);
2135 static void name_cache_free(struct send_ctx
*sctx
)
2137 struct name_cache_entry
*nce
;
2139 while (!list_empty(&sctx
->name_cache_list
)) {
2140 nce
= list_entry(sctx
->name_cache_list
.next
,
2141 struct name_cache_entry
, list
);
2142 name_cache_delete(sctx
, nce
);
2148 * Used by get_cur_path for each ref up to the root.
2149 * Returns 0 if it succeeded.
2150 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2151 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2152 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2153 * Returns <0 in case of error.
2155 static int __get_cur_name_and_parent(struct send_ctx
*sctx
,
2159 struct fs_path
*dest
)
2163 struct name_cache_entry
*nce
= NULL
;
2166 * First check if we already did a call to this function with the same
2167 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2168 * return the cached result.
2170 nce
= name_cache_search(sctx
, ino
, gen
);
2172 if (ino
< sctx
->send_progress
&& nce
->need_later_update
) {
2173 name_cache_delete(sctx
, nce
);
2177 name_cache_used(sctx
, nce
);
2178 *parent_ino
= nce
->parent_ino
;
2179 *parent_gen
= nce
->parent_gen
;
2180 ret
= fs_path_add(dest
, nce
->name
, nce
->name_len
);
2189 * If the inode is not existent yet, add the orphan name and return 1.
2190 * This should only happen for the parent dir that we determine in
2193 ret
= is_inode_existent(sctx
, ino
, gen
);
2198 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2206 * Depending on whether the inode was already processed or not, use
2207 * send_root or parent_root for ref lookup.
2209 if (ino
< sctx
->send_progress
)
2210 ret
= get_first_ref(sctx
->send_root
, ino
,
2211 parent_ino
, parent_gen
, dest
);
2213 ret
= get_first_ref(sctx
->parent_root
, ino
,
2214 parent_ino
, parent_gen
, dest
);
2219 * Check if the ref was overwritten by an inode's ref that was processed
2220 * earlier. If yes, treat as orphan and return 1.
2222 ret
= did_overwrite_ref(sctx
, *parent_ino
, *parent_gen
, ino
, gen
,
2223 dest
->start
, dest
->end
- dest
->start
);
2227 fs_path_reset(dest
);
2228 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2236 * Store the result of the lookup in the name cache.
2238 nce
= kmalloc(sizeof(*nce
) + fs_path_len(dest
) + 1, GFP_KERNEL
);
2246 nce
->parent_ino
= *parent_ino
;
2247 nce
->parent_gen
= *parent_gen
;
2248 nce
->name_len
= fs_path_len(dest
);
2250 strcpy(nce
->name
, dest
->start
);
2252 if (ino
< sctx
->send_progress
)
2253 nce
->need_later_update
= 0;
2255 nce
->need_later_update
= 1;
2257 nce_ret
= name_cache_insert(sctx
, nce
);
2260 name_cache_clean_unused(sctx
);
2267 * Magic happens here. This function returns the first ref to an inode as it
2268 * would look like while receiving the stream at this point in time.
2269 * We walk the path up to the root. For every inode in between, we check if it
2270 * was already processed/sent. If yes, we continue with the parent as found
2271 * in send_root. If not, we continue with the parent as found in parent_root.
2272 * If we encounter an inode that was deleted at this point in time, we use the
2273 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2274 * that were not created yet and overwritten inodes/refs.
2276 * When do we have have orphan inodes:
2277 * 1. When an inode is freshly created and thus no valid refs are available yet
2278 * 2. When a directory lost all it's refs (deleted) but still has dir items
2279 * inside which were not processed yet (pending for move/delete). If anyone
2280 * tried to get the path to the dir items, it would get a path inside that
2282 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2283 * of an unprocessed inode. If in that case the first ref would be
2284 * overwritten, the overwritten inode gets "orphanized". Later when we
2285 * process this overwritten inode, it is restored at a new place by moving
2288 * sctx->send_progress tells this function at which point in time receiving
2291 static int get_cur_path(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2292 struct fs_path
*dest
)
2295 struct fs_path
*name
= NULL
;
2296 u64 parent_inode
= 0;
2300 name
= fs_path_alloc();
2307 fs_path_reset(dest
);
2309 while (!stop
&& ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
2310 struct waiting_dir_move
*wdm
;
2312 fs_path_reset(name
);
2314 if (is_waiting_for_rm(sctx
, ino
)) {
2315 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2318 ret
= fs_path_add_path(dest
, name
);
2322 wdm
= get_waiting_dir_move(sctx
, ino
);
2323 if (wdm
&& wdm
->orphanized
) {
2324 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2327 ret
= get_first_ref(sctx
->parent_root
, ino
,
2328 &parent_inode
, &parent_gen
, name
);
2330 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
2340 ret
= fs_path_add_path(dest
, name
);
2351 fs_path_unreverse(dest
);
2356 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2358 static int send_subvol_begin(struct send_ctx
*sctx
)
2361 struct btrfs_root
*send_root
= sctx
->send_root
;
2362 struct btrfs_root
*parent_root
= sctx
->parent_root
;
2363 struct btrfs_path
*path
;
2364 struct btrfs_key key
;
2365 struct btrfs_root_ref
*ref
;
2366 struct extent_buffer
*leaf
;
2370 path
= btrfs_alloc_path();
2374 name
= kmalloc(BTRFS_PATH_NAME_MAX
, GFP_KERNEL
);
2376 btrfs_free_path(path
);
2380 key
.objectid
= send_root
->objectid
;
2381 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2384 ret
= btrfs_search_slot_for_read(send_root
->fs_info
->tree_root
,
2393 leaf
= path
->nodes
[0];
2394 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2395 if (key
.type
!= BTRFS_ROOT_BACKREF_KEY
||
2396 key
.objectid
!= send_root
->objectid
) {
2400 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
2401 namelen
= btrfs_root_ref_name_len(leaf
, ref
);
2402 read_extent_buffer(leaf
, name
, (unsigned long)(ref
+ 1), namelen
);
2403 btrfs_release_path(path
);
2406 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SNAPSHOT
);
2410 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SUBVOL
);
2415 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_PATH
, name
, namelen
);
2417 if (!btrfs_is_empty_uuid(sctx
->send_root
->root_item
.received_uuid
))
2418 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2419 sctx
->send_root
->root_item
.received_uuid
);
2421 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2422 sctx
->send_root
->root_item
.uuid
);
2424 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CTRANSID
,
2425 le64_to_cpu(sctx
->send_root
->root_item
.ctransid
));
2427 if (!btrfs_is_empty_uuid(parent_root
->root_item
.received_uuid
))
2428 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2429 parent_root
->root_item
.received_uuid
);
2431 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2432 parent_root
->root_item
.uuid
);
2433 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
2434 le64_to_cpu(sctx
->parent_root
->root_item
.ctransid
));
2437 ret
= send_cmd(sctx
);
2441 btrfs_free_path(path
);
2446 static int send_truncate(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 size
)
2448 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2452 btrfs_debug(fs_info
, "send_truncate %llu size=%llu", ino
, size
);
2454 p
= fs_path_alloc();
2458 ret
= begin_cmd(sctx
, BTRFS_SEND_C_TRUNCATE
);
2462 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2465 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2466 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, size
);
2468 ret
= send_cmd(sctx
);
2476 static int send_chmod(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 mode
)
2478 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2482 btrfs_debug(fs_info
, "send_chmod %llu mode=%llu", ino
, mode
);
2484 p
= fs_path_alloc();
2488 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHMOD
);
2492 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2495 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2496 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
& 07777);
2498 ret
= send_cmd(sctx
);
2506 static int send_chown(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 uid
, u64 gid
)
2508 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2512 btrfs_debug(fs_info
, "send_chown %llu uid=%llu, gid=%llu",
2515 p
= fs_path_alloc();
2519 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHOWN
);
2523 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2526 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2527 TLV_PUT_U64(sctx
, BTRFS_SEND_A_UID
, uid
);
2528 TLV_PUT_U64(sctx
, BTRFS_SEND_A_GID
, gid
);
2530 ret
= send_cmd(sctx
);
2538 static int send_utimes(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2540 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2542 struct fs_path
*p
= NULL
;
2543 struct btrfs_inode_item
*ii
;
2544 struct btrfs_path
*path
= NULL
;
2545 struct extent_buffer
*eb
;
2546 struct btrfs_key key
;
2549 btrfs_debug(fs_info
, "send_utimes %llu", ino
);
2551 p
= fs_path_alloc();
2555 path
= alloc_path_for_send();
2562 key
.type
= BTRFS_INODE_ITEM_KEY
;
2564 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2570 eb
= path
->nodes
[0];
2571 slot
= path
->slots
[0];
2572 ii
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
2574 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UTIMES
);
2578 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2581 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2582 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_ATIME
, eb
, &ii
->atime
);
2583 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_MTIME
, eb
, &ii
->mtime
);
2584 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_CTIME
, eb
, &ii
->ctime
);
2585 /* TODO Add otime support when the otime patches get into upstream */
2587 ret
= send_cmd(sctx
);
2592 btrfs_free_path(path
);
2597 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2598 * a valid path yet because we did not process the refs yet. So, the inode
2599 * is created as orphan.
2601 static int send_create_inode(struct send_ctx
*sctx
, u64 ino
)
2603 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2611 btrfs_debug(fs_info
, "send_create_inode %llu", ino
);
2613 p
= fs_path_alloc();
2617 if (ino
!= sctx
->cur_ino
) {
2618 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &gen
, &mode
,
2623 gen
= sctx
->cur_inode_gen
;
2624 mode
= sctx
->cur_inode_mode
;
2625 rdev
= sctx
->cur_inode_rdev
;
2628 if (S_ISREG(mode
)) {
2629 cmd
= BTRFS_SEND_C_MKFILE
;
2630 } else if (S_ISDIR(mode
)) {
2631 cmd
= BTRFS_SEND_C_MKDIR
;
2632 } else if (S_ISLNK(mode
)) {
2633 cmd
= BTRFS_SEND_C_SYMLINK
;
2634 } else if (S_ISCHR(mode
) || S_ISBLK(mode
)) {
2635 cmd
= BTRFS_SEND_C_MKNOD
;
2636 } else if (S_ISFIFO(mode
)) {
2637 cmd
= BTRFS_SEND_C_MKFIFO
;
2638 } else if (S_ISSOCK(mode
)) {
2639 cmd
= BTRFS_SEND_C_MKSOCK
;
2641 btrfs_warn(sctx
->send_root
->fs_info
, "unexpected inode type %o",
2642 (int)(mode
& S_IFMT
));
2647 ret
= begin_cmd(sctx
, cmd
);
2651 ret
= gen_unique_name(sctx
, ino
, gen
, p
);
2655 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2656 TLV_PUT_U64(sctx
, BTRFS_SEND_A_INO
, ino
);
2658 if (S_ISLNK(mode
)) {
2660 ret
= read_symlink(sctx
->send_root
, ino
, p
);
2663 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, p
);
2664 } else if (S_ISCHR(mode
) || S_ISBLK(mode
) ||
2665 S_ISFIFO(mode
) || S_ISSOCK(mode
)) {
2666 TLV_PUT_U64(sctx
, BTRFS_SEND_A_RDEV
, new_encode_dev(rdev
));
2667 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
);
2670 ret
= send_cmd(sctx
);
2682 * We need some special handling for inodes that get processed before the parent
2683 * directory got created. See process_recorded_refs for details.
2684 * This function does the check if we already created the dir out of order.
2686 static int did_create_dir(struct send_ctx
*sctx
, u64 dir
)
2689 struct btrfs_path
*path
= NULL
;
2690 struct btrfs_key key
;
2691 struct btrfs_key found_key
;
2692 struct btrfs_key di_key
;
2693 struct extent_buffer
*eb
;
2694 struct btrfs_dir_item
*di
;
2697 path
= alloc_path_for_send();
2704 key
.type
= BTRFS_DIR_INDEX_KEY
;
2706 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2711 eb
= path
->nodes
[0];
2712 slot
= path
->slots
[0];
2713 if (slot
>= btrfs_header_nritems(eb
)) {
2714 ret
= btrfs_next_leaf(sctx
->send_root
, path
);
2717 } else if (ret
> 0) {
2724 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
2725 if (found_key
.objectid
!= key
.objectid
||
2726 found_key
.type
!= key
.type
) {
2731 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2732 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2734 if (di_key
.type
!= BTRFS_ROOT_ITEM_KEY
&&
2735 di_key
.objectid
< sctx
->send_progress
) {
2744 btrfs_free_path(path
);
2749 * Only creates the inode if it is:
2750 * 1. Not a directory
2751 * 2. Or a directory which was not created already due to out of order
2752 * directories. See did_create_dir and process_recorded_refs for details.
2754 static int send_create_inode_if_needed(struct send_ctx
*sctx
)
2758 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2759 ret
= did_create_dir(sctx
, sctx
->cur_ino
);
2768 ret
= send_create_inode(sctx
, sctx
->cur_ino
);
2776 struct recorded_ref
{
2777 struct list_head list
;
2779 struct fs_path
*full_path
;
2785 static void set_ref_path(struct recorded_ref
*ref
, struct fs_path
*path
)
2787 ref
->full_path
= path
;
2788 ref
->name
= (char *)kbasename(ref
->full_path
->start
);
2789 ref
->name_len
= ref
->full_path
->end
- ref
->name
;
2793 * We need to process new refs before deleted refs, but compare_tree gives us
2794 * everything mixed. So we first record all refs and later process them.
2795 * This function is a helper to record one ref.
2797 static int __record_ref(struct list_head
*head
, u64 dir
,
2798 u64 dir_gen
, struct fs_path
*path
)
2800 struct recorded_ref
*ref
;
2802 ref
= kmalloc(sizeof(*ref
), GFP_KERNEL
);
2807 ref
->dir_gen
= dir_gen
;
2808 set_ref_path(ref
, path
);
2809 list_add_tail(&ref
->list
, head
);
2813 static int dup_ref(struct recorded_ref
*ref
, struct list_head
*list
)
2815 struct recorded_ref
*new;
2817 new = kmalloc(sizeof(*ref
), GFP_KERNEL
);
2821 new->dir
= ref
->dir
;
2822 new->dir_gen
= ref
->dir_gen
;
2823 new->full_path
= NULL
;
2824 INIT_LIST_HEAD(&new->list
);
2825 list_add_tail(&new->list
, list
);
2829 static void __free_recorded_refs(struct list_head
*head
)
2831 struct recorded_ref
*cur
;
2833 while (!list_empty(head
)) {
2834 cur
= list_entry(head
->next
, struct recorded_ref
, list
);
2835 fs_path_free(cur
->full_path
);
2836 list_del(&cur
->list
);
2841 static void free_recorded_refs(struct send_ctx
*sctx
)
2843 __free_recorded_refs(&sctx
->new_refs
);
2844 __free_recorded_refs(&sctx
->deleted_refs
);
2848 * Renames/moves a file/dir to its orphan name. Used when the first
2849 * ref of an unprocessed inode gets overwritten and for all non empty
2852 static int orphanize_inode(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2853 struct fs_path
*path
)
2856 struct fs_path
*orphan
;
2858 orphan
= fs_path_alloc();
2862 ret
= gen_unique_name(sctx
, ino
, gen
, orphan
);
2866 ret
= send_rename(sctx
, path
, orphan
);
2869 fs_path_free(orphan
);
2873 static struct orphan_dir_info
*
2874 add_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2876 struct rb_node
**p
= &sctx
->orphan_dirs
.rb_node
;
2877 struct rb_node
*parent
= NULL
;
2878 struct orphan_dir_info
*entry
, *odi
;
2880 odi
= kmalloc(sizeof(*odi
), GFP_KERNEL
);
2882 return ERR_PTR(-ENOMEM
);
2888 entry
= rb_entry(parent
, struct orphan_dir_info
, node
);
2889 if (dir_ino
< entry
->ino
) {
2891 } else if (dir_ino
> entry
->ino
) {
2892 p
= &(*p
)->rb_right
;
2899 rb_link_node(&odi
->node
, parent
, p
);
2900 rb_insert_color(&odi
->node
, &sctx
->orphan_dirs
);
2904 static struct orphan_dir_info
*
2905 get_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2907 struct rb_node
*n
= sctx
->orphan_dirs
.rb_node
;
2908 struct orphan_dir_info
*entry
;
2911 entry
= rb_entry(n
, struct orphan_dir_info
, node
);
2912 if (dir_ino
< entry
->ino
)
2914 else if (dir_ino
> entry
->ino
)
2922 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
)
2924 struct orphan_dir_info
*odi
= get_orphan_dir_info(sctx
, dir_ino
);
2929 static void free_orphan_dir_info(struct send_ctx
*sctx
,
2930 struct orphan_dir_info
*odi
)
2934 rb_erase(&odi
->node
, &sctx
->orphan_dirs
);
2939 * Returns 1 if a directory can be removed at this point in time.
2940 * We check this by iterating all dir items and checking if the inode behind
2941 * the dir item was already processed.
2943 static int can_rmdir(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
2947 struct btrfs_root
*root
= sctx
->parent_root
;
2948 struct btrfs_path
*path
;
2949 struct btrfs_key key
;
2950 struct btrfs_key found_key
;
2951 struct btrfs_key loc
;
2952 struct btrfs_dir_item
*di
;
2955 * Don't try to rmdir the top/root subvolume dir.
2957 if (dir
== BTRFS_FIRST_FREE_OBJECTID
)
2960 path
= alloc_path_for_send();
2965 key
.type
= BTRFS_DIR_INDEX_KEY
;
2967 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2972 struct waiting_dir_move
*dm
;
2974 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
2975 ret
= btrfs_next_leaf(root
, path
);
2982 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2984 if (found_key
.objectid
!= key
.objectid
||
2985 found_key
.type
!= key
.type
)
2988 di
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2989 struct btrfs_dir_item
);
2990 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &loc
);
2992 dm
= get_waiting_dir_move(sctx
, loc
.objectid
);
2994 struct orphan_dir_info
*odi
;
2996 odi
= add_orphan_dir_info(sctx
, dir
);
3002 dm
->rmdir_ino
= dir
;
3007 if (loc
.objectid
> send_progress
) {
3008 struct orphan_dir_info
*odi
;
3010 odi
= get_orphan_dir_info(sctx
, dir
);
3011 free_orphan_dir_info(sctx
, odi
);
3022 btrfs_free_path(path
);
3026 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
)
3028 struct waiting_dir_move
*entry
= get_waiting_dir_move(sctx
, ino
);
3030 return entry
!= NULL
;
3033 static int add_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
, bool orphanized
)
3035 struct rb_node
**p
= &sctx
->waiting_dir_moves
.rb_node
;
3036 struct rb_node
*parent
= NULL
;
3037 struct waiting_dir_move
*entry
, *dm
;
3039 dm
= kmalloc(sizeof(*dm
), GFP_KERNEL
);
3044 dm
->orphanized
= orphanized
;
3048 entry
= rb_entry(parent
, struct waiting_dir_move
, node
);
3049 if (ino
< entry
->ino
) {
3051 } else if (ino
> entry
->ino
) {
3052 p
= &(*p
)->rb_right
;
3059 rb_link_node(&dm
->node
, parent
, p
);
3060 rb_insert_color(&dm
->node
, &sctx
->waiting_dir_moves
);
3064 static struct waiting_dir_move
*
3065 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
)
3067 struct rb_node
*n
= sctx
->waiting_dir_moves
.rb_node
;
3068 struct waiting_dir_move
*entry
;
3071 entry
= rb_entry(n
, struct waiting_dir_move
, node
);
3072 if (ino
< entry
->ino
)
3074 else if (ino
> entry
->ino
)
3082 static void free_waiting_dir_move(struct send_ctx
*sctx
,
3083 struct waiting_dir_move
*dm
)
3087 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
3091 static int add_pending_dir_move(struct send_ctx
*sctx
,
3095 struct list_head
*new_refs
,
3096 struct list_head
*deleted_refs
,
3097 const bool is_orphan
)
3099 struct rb_node
**p
= &sctx
->pending_dir_moves
.rb_node
;
3100 struct rb_node
*parent
= NULL
;
3101 struct pending_dir_move
*entry
= NULL
, *pm
;
3102 struct recorded_ref
*cur
;
3106 pm
= kmalloc(sizeof(*pm
), GFP_KERNEL
);
3109 pm
->parent_ino
= parent_ino
;
3112 INIT_LIST_HEAD(&pm
->list
);
3113 INIT_LIST_HEAD(&pm
->update_refs
);
3114 RB_CLEAR_NODE(&pm
->node
);
3118 entry
= rb_entry(parent
, struct pending_dir_move
, node
);
3119 if (parent_ino
< entry
->parent_ino
) {
3121 } else if (parent_ino
> entry
->parent_ino
) {
3122 p
= &(*p
)->rb_right
;
3129 list_for_each_entry(cur
, deleted_refs
, list
) {
3130 ret
= dup_ref(cur
, &pm
->update_refs
);
3134 list_for_each_entry(cur
, new_refs
, list
) {
3135 ret
= dup_ref(cur
, &pm
->update_refs
);
3140 ret
= add_waiting_dir_move(sctx
, pm
->ino
, is_orphan
);
3145 list_add_tail(&pm
->list
, &entry
->list
);
3147 rb_link_node(&pm
->node
, parent
, p
);
3148 rb_insert_color(&pm
->node
, &sctx
->pending_dir_moves
);
3153 __free_recorded_refs(&pm
->update_refs
);
3159 static struct pending_dir_move
*get_pending_dir_moves(struct send_ctx
*sctx
,
3162 struct rb_node
*n
= sctx
->pending_dir_moves
.rb_node
;
3163 struct pending_dir_move
*entry
;
3166 entry
= rb_entry(n
, struct pending_dir_move
, node
);
3167 if (parent_ino
< entry
->parent_ino
)
3169 else if (parent_ino
> entry
->parent_ino
)
3177 static int path_loop(struct send_ctx
*sctx
, struct fs_path
*name
,
3178 u64 ino
, u64 gen
, u64
*ancestor_ino
)
3181 u64 parent_inode
= 0;
3183 u64 start_ino
= ino
;
3186 while (ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
3187 fs_path_reset(name
);
3189 if (is_waiting_for_rm(sctx
, ino
))
3191 if (is_waiting_for_move(sctx
, ino
)) {
3192 if (*ancestor_ino
== 0)
3193 *ancestor_ino
= ino
;
3194 ret
= get_first_ref(sctx
->parent_root
, ino
,
3195 &parent_inode
, &parent_gen
, name
);
3197 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
3207 if (parent_inode
== start_ino
) {
3209 if (*ancestor_ino
== 0)
3210 *ancestor_ino
= ino
;
3219 static int apply_dir_move(struct send_ctx
*sctx
, struct pending_dir_move
*pm
)
3221 struct fs_path
*from_path
= NULL
;
3222 struct fs_path
*to_path
= NULL
;
3223 struct fs_path
*name
= NULL
;
3224 u64 orig_progress
= sctx
->send_progress
;
3225 struct recorded_ref
*cur
;
3226 u64 parent_ino
, parent_gen
;
3227 struct waiting_dir_move
*dm
= NULL
;
3233 name
= fs_path_alloc();
3234 from_path
= fs_path_alloc();
3235 if (!name
|| !from_path
) {
3240 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3242 rmdir_ino
= dm
->rmdir_ino
;
3243 is_orphan
= dm
->orphanized
;
3244 free_waiting_dir_move(sctx
, dm
);
3247 ret
= gen_unique_name(sctx
, pm
->ino
,
3248 pm
->gen
, from_path
);
3250 ret
= get_first_ref(sctx
->parent_root
, pm
->ino
,
3251 &parent_ino
, &parent_gen
, name
);
3254 ret
= get_cur_path(sctx
, parent_ino
, parent_gen
,
3258 ret
= fs_path_add_path(from_path
, name
);
3263 sctx
->send_progress
= sctx
->cur_ino
+ 1;
3264 ret
= path_loop(sctx
, name
, pm
->ino
, pm
->gen
, &ancestor
);
3268 LIST_HEAD(deleted_refs
);
3269 ASSERT(ancestor
> BTRFS_FIRST_FREE_OBJECTID
);
3270 ret
= add_pending_dir_move(sctx
, pm
->ino
, pm
->gen
, ancestor
,
3271 &pm
->update_refs
, &deleted_refs
,
3276 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3278 dm
->rmdir_ino
= rmdir_ino
;
3282 fs_path_reset(name
);
3285 ret
= get_cur_path(sctx
, pm
->ino
, pm
->gen
, to_path
);
3289 ret
= send_rename(sctx
, from_path
, to_path
);
3294 struct orphan_dir_info
*odi
;
3296 odi
= get_orphan_dir_info(sctx
, rmdir_ino
);
3298 /* already deleted */
3301 ret
= can_rmdir(sctx
, rmdir_ino
, odi
->gen
, sctx
->cur_ino
);
3307 name
= fs_path_alloc();
3312 ret
= get_cur_path(sctx
, rmdir_ino
, odi
->gen
, name
);
3315 ret
= send_rmdir(sctx
, name
);
3318 free_orphan_dir_info(sctx
, odi
);
3322 ret
= send_utimes(sctx
, pm
->ino
, pm
->gen
);
3327 * After rename/move, need to update the utimes of both new parent(s)
3328 * and old parent(s).
3330 list_for_each_entry(cur
, &pm
->update_refs
, list
) {
3332 * The parent inode might have been deleted in the send snapshot
3334 ret
= get_inode_info(sctx
->send_root
, cur
->dir
, NULL
,
3335 NULL
, NULL
, NULL
, NULL
, NULL
);
3336 if (ret
== -ENOENT
) {
3343 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3350 fs_path_free(from_path
);
3351 fs_path_free(to_path
);
3352 sctx
->send_progress
= orig_progress
;
3357 static void free_pending_move(struct send_ctx
*sctx
, struct pending_dir_move
*m
)
3359 if (!list_empty(&m
->list
))
3361 if (!RB_EMPTY_NODE(&m
->node
))
3362 rb_erase(&m
->node
, &sctx
->pending_dir_moves
);
3363 __free_recorded_refs(&m
->update_refs
);
3367 static void tail_append_pending_moves(struct pending_dir_move
*moves
,
3368 struct list_head
*stack
)
3370 if (list_empty(&moves
->list
)) {
3371 list_add_tail(&moves
->list
, stack
);
3374 list_splice_init(&moves
->list
, &list
);
3375 list_add_tail(&moves
->list
, stack
);
3376 list_splice_tail(&list
, stack
);
3380 static int apply_children_dir_moves(struct send_ctx
*sctx
)
3382 struct pending_dir_move
*pm
;
3383 struct list_head stack
;
3384 u64 parent_ino
= sctx
->cur_ino
;
3387 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3391 INIT_LIST_HEAD(&stack
);
3392 tail_append_pending_moves(pm
, &stack
);
3394 while (!list_empty(&stack
)) {
3395 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3396 parent_ino
= pm
->ino
;
3397 ret
= apply_dir_move(sctx
, pm
);
3398 free_pending_move(sctx
, pm
);
3401 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3403 tail_append_pending_moves(pm
, &stack
);
3408 while (!list_empty(&stack
)) {
3409 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3410 free_pending_move(sctx
, pm
);
3416 * We might need to delay a directory rename even when no ancestor directory
3417 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3418 * renamed. This happens when we rename a directory to the old name (the name
3419 * in the parent root) of some other unrelated directory that got its rename
3420 * delayed due to some ancestor with higher number that got renamed.
3426 * |---- a/ (ino 257)
3427 * | |---- file (ino 260)
3429 * |---- b/ (ino 258)
3430 * |---- c/ (ino 259)
3434 * |---- a/ (ino 258)
3435 * |---- x/ (ino 259)
3436 * |---- y/ (ino 257)
3437 * |----- file (ino 260)
3439 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3440 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3441 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3444 * 1 - rename 259 from 'c' to 'x'
3445 * 2 - rename 257 from 'a' to 'x/y'
3446 * 3 - rename 258 from 'b' to 'a'
3448 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3449 * be done right away and < 0 on error.
3451 static int wait_for_dest_dir_move(struct send_ctx
*sctx
,
3452 struct recorded_ref
*parent_ref
,
3453 const bool is_orphan
)
3455 struct btrfs_fs_info
*fs_info
= sctx
->parent_root
->fs_info
;
3456 struct btrfs_path
*path
;
3457 struct btrfs_key key
;
3458 struct btrfs_key di_key
;
3459 struct btrfs_dir_item
*di
;
3463 struct waiting_dir_move
*wdm
;
3465 if (RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
))
3468 path
= alloc_path_for_send();
3472 key
.objectid
= parent_ref
->dir
;
3473 key
.type
= BTRFS_DIR_ITEM_KEY
;
3474 key
.offset
= btrfs_name_hash(parent_ref
->name
, parent_ref
->name_len
);
3476 ret
= btrfs_search_slot(NULL
, sctx
->parent_root
, &key
, path
, 0, 0);
3479 } else if (ret
> 0) {
3484 di
= btrfs_match_dir_item_name(fs_info
, path
, parent_ref
->name
,
3485 parent_ref
->name_len
);
3491 * di_key.objectid has the number of the inode that has a dentry in the
3492 * parent directory with the same name that sctx->cur_ino is being
3493 * renamed to. We need to check if that inode is in the send root as
3494 * well and if it is currently marked as an inode with a pending rename,
3495 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3496 * that it happens after that other inode is renamed.
3498 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &di_key
);
3499 if (di_key
.type
!= BTRFS_INODE_ITEM_KEY
) {
3504 ret
= get_inode_info(sctx
->parent_root
, di_key
.objectid
, NULL
,
3505 &left_gen
, NULL
, NULL
, NULL
, NULL
);
3508 ret
= get_inode_info(sctx
->send_root
, di_key
.objectid
, NULL
,
3509 &right_gen
, NULL
, NULL
, NULL
, NULL
);
3516 /* Different inode, no need to delay the rename of sctx->cur_ino */
3517 if (right_gen
!= left_gen
) {
3522 wdm
= get_waiting_dir_move(sctx
, di_key
.objectid
);
3523 if (wdm
&& !wdm
->orphanized
) {
3524 ret
= add_pending_dir_move(sctx
,
3526 sctx
->cur_inode_gen
,
3529 &sctx
->deleted_refs
,
3535 btrfs_free_path(path
);
3540 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3541 * Return 1 if true, 0 if false and < 0 on error.
3543 static int is_ancestor(struct btrfs_root
*root
,
3547 struct fs_path
*fs_path
)
3550 bool free_path
= false;
3554 fs_path
= fs_path_alloc();
3560 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3564 fs_path_reset(fs_path
);
3565 ret
= get_first_ref(root
, ino
, &parent
, &parent_gen
, fs_path
);
3567 if (ret
== -ENOENT
&& ino
== ino2
)
3571 if (parent
== ino1
) {
3572 ret
= parent_gen
== ino1_gen
? 1 : 0;
3579 fs_path_free(fs_path
);
3583 static int wait_for_parent_move(struct send_ctx
*sctx
,
3584 struct recorded_ref
*parent_ref
,
3585 const bool is_orphan
)
3588 u64 ino
= parent_ref
->dir
;
3589 u64 ino_gen
= parent_ref
->dir_gen
;
3590 u64 parent_ino_before
, parent_ino_after
;
3591 struct fs_path
*path_before
= NULL
;
3592 struct fs_path
*path_after
= NULL
;
3595 path_after
= fs_path_alloc();
3596 path_before
= fs_path_alloc();
3597 if (!path_after
|| !path_before
) {
3603 * Our current directory inode may not yet be renamed/moved because some
3604 * ancestor (immediate or not) has to be renamed/moved first. So find if
3605 * such ancestor exists and make sure our own rename/move happens after
3606 * that ancestor is processed to avoid path build infinite loops (done
3607 * at get_cur_path()).
3609 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3610 u64 parent_ino_after_gen
;
3612 if (is_waiting_for_move(sctx
, ino
)) {
3614 * If the current inode is an ancestor of ino in the
3615 * parent root, we need to delay the rename of the
3616 * current inode, otherwise don't delayed the rename
3617 * because we can end up with a circular dependency
3618 * of renames, resulting in some directories never
3619 * getting the respective rename operations issued in
3620 * the send stream or getting into infinite path build
3623 ret
= is_ancestor(sctx
->parent_root
,
3624 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3630 fs_path_reset(path_before
);
3631 fs_path_reset(path_after
);
3633 ret
= get_first_ref(sctx
->send_root
, ino
, &parent_ino_after
,
3634 &parent_ino_after_gen
, path_after
);
3637 ret
= get_first_ref(sctx
->parent_root
, ino
, &parent_ino_before
,
3639 if (ret
< 0 && ret
!= -ENOENT
) {
3641 } else if (ret
== -ENOENT
) {
3646 len1
= fs_path_len(path_before
);
3647 len2
= fs_path_len(path_after
);
3648 if (ino
> sctx
->cur_ino
&&
3649 (parent_ino_before
!= parent_ino_after
|| len1
!= len2
||
3650 memcmp(path_before
->start
, path_after
->start
, len1
))) {
3653 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
,
3654 &parent_ino_gen
, NULL
, NULL
, NULL
,
3658 if (ino_gen
== parent_ino_gen
) {
3663 ino
= parent_ino_after
;
3664 ino_gen
= parent_ino_after_gen
;
3668 fs_path_free(path_before
);
3669 fs_path_free(path_after
);
3672 ret
= add_pending_dir_move(sctx
,
3674 sctx
->cur_inode_gen
,
3677 &sctx
->deleted_refs
,
3687 * This does all the move/link/unlink/rmdir magic.
3689 static int process_recorded_refs(struct send_ctx
*sctx
, int *pending_move
)
3691 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
3693 struct recorded_ref
*cur
;
3694 struct recorded_ref
*cur2
;
3695 struct list_head check_dirs
;
3696 struct fs_path
*valid_path
= NULL
;
3699 int did_overwrite
= 0;
3701 u64 last_dir_ino_rm
= 0;
3702 bool can_rename
= true;
3703 bool orphanized_ancestor
= false;
3705 btrfs_debug(fs_info
, "process_recorded_refs %llu", sctx
->cur_ino
);
3708 * This should never happen as the root dir always has the same ref
3709 * which is always '..'
3711 BUG_ON(sctx
->cur_ino
<= BTRFS_FIRST_FREE_OBJECTID
);
3712 INIT_LIST_HEAD(&check_dirs
);
3714 valid_path
= fs_path_alloc();
3721 * First, check if the first ref of the current inode was overwritten
3722 * before. If yes, we know that the current inode was already orphanized
3723 * and thus use the orphan name. If not, we can use get_cur_path to
3724 * get the path of the first ref as it would like while receiving at
3725 * this point in time.
3726 * New inodes are always orphan at the beginning, so force to use the
3727 * orphan name in this case.
3728 * The first ref is stored in valid_path and will be updated if it
3729 * gets moved around.
3731 if (!sctx
->cur_inode_new
) {
3732 ret
= did_overwrite_first_ref(sctx
, sctx
->cur_ino
,
3733 sctx
->cur_inode_gen
);
3739 if (sctx
->cur_inode_new
|| did_overwrite
) {
3740 ret
= gen_unique_name(sctx
, sctx
->cur_ino
,
3741 sctx
->cur_inode_gen
, valid_path
);
3746 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3752 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
3754 * We may have refs where the parent directory does not exist
3755 * yet. This happens if the parent directories inum is higher
3756 * the the current inum. To handle this case, we create the
3757 * parent directory out of order. But we need to check if this
3758 * did already happen before due to other refs in the same dir.
3760 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3763 if (ret
== inode_state_will_create
) {
3766 * First check if any of the current inodes refs did
3767 * already create the dir.
3769 list_for_each_entry(cur2
, &sctx
->new_refs
, list
) {
3772 if (cur2
->dir
== cur
->dir
) {
3779 * If that did not happen, check if a previous inode
3780 * did already create the dir.
3783 ret
= did_create_dir(sctx
, cur
->dir
);
3787 ret
= send_create_inode(sctx
, cur
->dir
);
3794 * Check if this new ref would overwrite the first ref of
3795 * another unprocessed inode. If yes, orphanize the
3796 * overwritten inode. If we find an overwritten ref that is
3797 * not the first ref, simply unlink it.
3799 ret
= will_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3800 cur
->name
, cur
->name_len
,
3801 &ow_inode
, &ow_gen
);
3805 ret
= is_first_ref(sctx
->parent_root
,
3806 ow_inode
, cur
->dir
, cur
->name
,
3811 struct name_cache_entry
*nce
;
3812 struct waiting_dir_move
*wdm
;
3814 ret
= orphanize_inode(sctx
, ow_inode
, ow_gen
,
3820 * If ow_inode has its rename operation delayed
3821 * make sure that its orphanized name is used in
3822 * the source path when performing its rename
3825 if (is_waiting_for_move(sctx
, ow_inode
)) {
3826 wdm
= get_waiting_dir_move(sctx
,
3829 wdm
->orphanized
= true;
3833 * Make sure we clear our orphanized inode's
3834 * name from the name cache. This is because the
3835 * inode ow_inode might be an ancestor of some
3836 * other inode that will be orphanized as well
3837 * later and has an inode number greater than
3838 * sctx->send_progress. We need to prevent
3839 * future name lookups from using the old name
3840 * and get instead the orphan name.
3842 nce
= name_cache_search(sctx
, ow_inode
, ow_gen
);
3844 name_cache_delete(sctx
, nce
);
3849 * ow_inode might currently be an ancestor of
3850 * cur_ino, therefore compute valid_path (the
3851 * current path of cur_ino) again because it
3852 * might contain the pre-orphanization name of
3853 * ow_inode, which is no longer valid.
3855 ret
= is_ancestor(sctx
->parent_root
,
3857 sctx
->cur_ino
, NULL
);
3859 orphanized_ancestor
= true;
3860 fs_path_reset(valid_path
);
3861 ret
= get_cur_path(sctx
, sctx
->cur_ino
,
3862 sctx
->cur_inode_gen
,
3868 ret
= send_unlink(sctx
, cur
->full_path
);
3874 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
) {
3875 ret
= wait_for_dest_dir_move(sctx
, cur
, is_orphan
);
3884 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
&&
3886 ret
= wait_for_parent_move(sctx
, cur
, is_orphan
);
3896 * link/move the ref to the new place. If we have an orphan
3897 * inode, move it and update valid_path. If not, link or move
3898 * it depending on the inode mode.
3900 if (is_orphan
&& can_rename
) {
3901 ret
= send_rename(sctx
, valid_path
, cur
->full_path
);
3905 ret
= fs_path_copy(valid_path
, cur
->full_path
);
3908 } else if (can_rename
) {
3909 if (S_ISDIR(sctx
->cur_inode_mode
)) {
3911 * Dirs can't be linked, so move it. For moved
3912 * dirs, we always have one new and one deleted
3913 * ref. The deleted ref is ignored later.
3915 ret
= send_rename(sctx
, valid_path
,
3918 ret
= fs_path_copy(valid_path
,
3923 ret
= send_link(sctx
, cur
->full_path
,
3929 ret
= dup_ref(cur
, &check_dirs
);
3934 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->cur_inode_deleted
) {
3936 * Check if we can already rmdir the directory. If not,
3937 * orphanize it. For every dir item inside that gets deleted
3938 * later, we do this check again and rmdir it then if possible.
3939 * See the use of check_dirs for more details.
3941 ret
= can_rmdir(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3946 ret
= send_rmdir(sctx
, valid_path
);
3949 } else if (!is_orphan
) {
3950 ret
= orphanize_inode(sctx
, sctx
->cur_ino
,
3951 sctx
->cur_inode_gen
, valid_path
);
3957 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
3958 ret
= dup_ref(cur
, &check_dirs
);
3962 } else if (S_ISDIR(sctx
->cur_inode_mode
) &&
3963 !list_empty(&sctx
->deleted_refs
)) {
3965 * We have a moved dir. Add the old parent to check_dirs
3967 cur
= list_entry(sctx
->deleted_refs
.next
, struct recorded_ref
,
3969 ret
= dup_ref(cur
, &check_dirs
);
3972 } else if (!S_ISDIR(sctx
->cur_inode_mode
)) {
3974 * We have a non dir inode. Go through all deleted refs and
3975 * unlink them if they were not already overwritten by other
3978 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
3979 ret
= did_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3980 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3981 cur
->name
, cur
->name_len
);
3986 * If we orphanized any ancestor before, we need
3987 * to recompute the full path for deleted names,
3988 * since any such path was computed before we
3989 * processed any references and orphanized any
3992 if (orphanized_ancestor
) {
3993 struct fs_path
*new_path
;
3996 * Our reference's name member points to
3997 * its full_path member string, so we
3998 * use here a new path.
4000 new_path
= fs_path_alloc();
4005 ret
= get_cur_path(sctx
, cur
->dir
,
4009 fs_path_free(new_path
);
4012 ret
= fs_path_add(new_path
,
4016 fs_path_free(new_path
);
4019 fs_path_free(cur
->full_path
);
4020 set_ref_path(cur
, new_path
);
4022 ret
= send_unlink(sctx
, cur
->full_path
);
4026 ret
= dup_ref(cur
, &check_dirs
);
4031 * If the inode is still orphan, unlink the orphan. This may
4032 * happen when a previous inode did overwrite the first ref
4033 * of this inode and no new refs were added for the current
4034 * inode. Unlinking does not mean that the inode is deleted in
4035 * all cases. There may still be links to this inode in other
4039 ret
= send_unlink(sctx
, valid_path
);
4046 * We did collect all parent dirs where cur_inode was once located. We
4047 * now go through all these dirs and check if they are pending for
4048 * deletion and if it's finally possible to perform the rmdir now.
4049 * We also update the inode stats of the parent dirs here.
4051 list_for_each_entry(cur
, &check_dirs
, list
) {
4053 * In case we had refs into dirs that were not processed yet,
4054 * we don't need to do the utime and rmdir logic for these dirs.
4055 * The dir will be processed later.
4057 if (cur
->dir
> sctx
->cur_ino
)
4060 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
4064 if (ret
== inode_state_did_create
||
4065 ret
== inode_state_no_change
) {
4066 /* TODO delayed utimes */
4067 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
4070 } else if (ret
== inode_state_did_delete
&&
4071 cur
->dir
!= last_dir_ino_rm
) {
4072 ret
= can_rmdir(sctx
, cur
->dir
, cur
->dir_gen
,
4077 ret
= get_cur_path(sctx
, cur
->dir
,
4078 cur
->dir_gen
, valid_path
);
4081 ret
= send_rmdir(sctx
, valid_path
);
4084 last_dir_ino_rm
= cur
->dir
;
4092 __free_recorded_refs(&check_dirs
);
4093 free_recorded_refs(sctx
);
4094 fs_path_free(valid_path
);
4098 static int record_ref(struct btrfs_root
*root
, int num
, u64 dir
, int index
,
4099 struct fs_path
*name
, void *ctx
, struct list_head
*refs
)
4102 struct send_ctx
*sctx
= ctx
;
4106 p
= fs_path_alloc();
4110 ret
= get_inode_info(root
, dir
, NULL
, &gen
, NULL
, NULL
,
4115 ret
= get_cur_path(sctx
, dir
, gen
, p
);
4118 ret
= fs_path_add_path(p
, name
);
4122 ret
= __record_ref(refs
, dir
, gen
, p
);
4130 static int __record_new_ref(int num
, u64 dir
, int index
,
4131 struct fs_path
*name
,
4134 struct send_ctx
*sctx
= ctx
;
4135 return record_ref(sctx
->send_root
, num
, dir
, index
, name
,
4136 ctx
, &sctx
->new_refs
);
4140 static int __record_deleted_ref(int num
, u64 dir
, int index
,
4141 struct fs_path
*name
,
4144 struct send_ctx
*sctx
= ctx
;
4145 return record_ref(sctx
->parent_root
, num
, dir
, index
, name
,
4146 ctx
, &sctx
->deleted_refs
);
4149 static int record_new_ref(struct send_ctx
*sctx
)
4153 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4154 sctx
->cmp_key
, 0, __record_new_ref
, sctx
);
4163 static int record_deleted_ref(struct send_ctx
*sctx
)
4167 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4168 sctx
->cmp_key
, 0, __record_deleted_ref
, sctx
);
4177 struct find_ref_ctx
{
4180 struct btrfs_root
*root
;
4181 struct fs_path
*name
;
4185 static int __find_iref(int num
, u64 dir
, int index
,
4186 struct fs_path
*name
,
4189 struct find_ref_ctx
*ctx
= ctx_
;
4193 if (dir
== ctx
->dir
&& fs_path_len(name
) == fs_path_len(ctx
->name
) &&
4194 strncmp(name
->start
, ctx
->name
->start
, fs_path_len(name
)) == 0) {
4196 * To avoid doing extra lookups we'll only do this if everything
4199 ret
= get_inode_info(ctx
->root
, dir
, NULL
, &dir_gen
, NULL
,
4203 if (dir_gen
!= ctx
->dir_gen
)
4205 ctx
->found_idx
= num
;
4211 static int find_iref(struct btrfs_root
*root
,
4212 struct btrfs_path
*path
,
4213 struct btrfs_key
*key
,
4214 u64 dir
, u64 dir_gen
, struct fs_path
*name
)
4217 struct find_ref_ctx ctx
;
4221 ctx
.dir_gen
= dir_gen
;
4225 ret
= iterate_inode_ref(root
, path
, key
, 0, __find_iref
, &ctx
);
4229 if (ctx
.found_idx
== -1)
4232 return ctx
.found_idx
;
4235 static int __record_changed_new_ref(int num
, u64 dir
, int index
,
4236 struct fs_path
*name
,
4241 struct send_ctx
*sctx
= ctx
;
4243 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &dir_gen
, NULL
,
4248 ret
= find_iref(sctx
->parent_root
, sctx
->right_path
,
4249 sctx
->cmp_key
, dir
, dir_gen
, name
);
4251 ret
= __record_new_ref(num
, dir
, index
, name
, sctx
);
4258 static int __record_changed_deleted_ref(int num
, u64 dir
, int index
,
4259 struct fs_path
*name
,
4264 struct send_ctx
*sctx
= ctx
;
4266 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &dir_gen
, NULL
,
4271 ret
= find_iref(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4272 dir
, dir_gen
, name
);
4274 ret
= __record_deleted_ref(num
, dir
, index
, name
, sctx
);
4281 static int record_changed_ref(struct send_ctx
*sctx
)
4285 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4286 sctx
->cmp_key
, 0, __record_changed_new_ref
, sctx
);
4289 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4290 sctx
->cmp_key
, 0, __record_changed_deleted_ref
, sctx
);
4300 * Record and process all refs at once. Needed when an inode changes the
4301 * generation number, which means that it was deleted and recreated.
4303 static int process_all_refs(struct send_ctx
*sctx
,
4304 enum btrfs_compare_tree_result cmd
)
4307 struct btrfs_root
*root
;
4308 struct btrfs_path
*path
;
4309 struct btrfs_key key
;
4310 struct btrfs_key found_key
;
4311 struct extent_buffer
*eb
;
4313 iterate_inode_ref_t cb
;
4314 int pending_move
= 0;
4316 path
= alloc_path_for_send();
4320 if (cmd
== BTRFS_COMPARE_TREE_NEW
) {
4321 root
= sctx
->send_root
;
4322 cb
= __record_new_ref
;
4323 } else if (cmd
== BTRFS_COMPARE_TREE_DELETED
) {
4324 root
= sctx
->parent_root
;
4325 cb
= __record_deleted_ref
;
4327 btrfs_err(sctx
->send_root
->fs_info
,
4328 "Wrong command %d in process_all_refs", cmd
);
4333 key
.objectid
= sctx
->cmp_key
->objectid
;
4334 key
.type
= BTRFS_INODE_REF_KEY
;
4336 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4341 eb
= path
->nodes
[0];
4342 slot
= path
->slots
[0];
4343 if (slot
>= btrfs_header_nritems(eb
)) {
4344 ret
= btrfs_next_leaf(root
, path
);
4352 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4354 if (found_key
.objectid
!= key
.objectid
||
4355 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
4356 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
))
4359 ret
= iterate_inode_ref(root
, path
, &found_key
, 0, cb
, sctx
);
4365 btrfs_release_path(path
);
4368 * We don't actually care about pending_move as we are simply
4369 * re-creating this inode and will be rename'ing it into place once we
4370 * rename the parent directory.
4372 ret
= process_recorded_refs(sctx
, &pending_move
);
4374 btrfs_free_path(path
);
4378 static int send_set_xattr(struct send_ctx
*sctx
,
4379 struct fs_path
*path
,
4380 const char *name
, int name_len
,
4381 const char *data
, int data_len
)
4385 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SET_XATTR
);
4389 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4390 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4391 TLV_PUT(sctx
, BTRFS_SEND_A_XATTR_DATA
, data
, data_len
);
4393 ret
= send_cmd(sctx
);
4400 static int send_remove_xattr(struct send_ctx
*sctx
,
4401 struct fs_path
*path
,
4402 const char *name
, int name_len
)
4406 ret
= begin_cmd(sctx
, BTRFS_SEND_C_REMOVE_XATTR
);
4410 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4411 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4413 ret
= send_cmd(sctx
);
4420 static int __process_new_xattr(int num
, struct btrfs_key
*di_key
,
4421 const char *name
, int name_len
,
4422 const char *data
, int data_len
,
4426 struct send_ctx
*sctx
= ctx
;
4428 struct posix_acl_xattr_header dummy_acl
;
4430 p
= fs_path_alloc();
4435 * This hack is needed because empty acls are stored as zero byte
4436 * data in xattrs. Problem with that is, that receiving these zero byte
4437 * acls will fail later. To fix this, we send a dummy acl list that
4438 * only contains the version number and no entries.
4440 if (!strncmp(name
, XATTR_NAME_POSIX_ACL_ACCESS
, name_len
) ||
4441 !strncmp(name
, XATTR_NAME_POSIX_ACL_DEFAULT
, name_len
)) {
4442 if (data_len
== 0) {
4443 dummy_acl
.a_version
=
4444 cpu_to_le32(POSIX_ACL_XATTR_VERSION
);
4445 data
= (char *)&dummy_acl
;
4446 data_len
= sizeof(dummy_acl
);
4450 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4454 ret
= send_set_xattr(sctx
, p
, name
, name_len
, data
, data_len
);
4461 static int __process_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4462 const char *name
, int name_len
,
4463 const char *data
, int data_len
,
4467 struct send_ctx
*sctx
= ctx
;
4470 p
= fs_path_alloc();
4474 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4478 ret
= send_remove_xattr(sctx
, p
, name
, name_len
);
4485 static int process_new_xattr(struct send_ctx
*sctx
)
4489 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4490 sctx
->cmp_key
, __process_new_xattr
, sctx
);
4495 static int process_deleted_xattr(struct send_ctx
*sctx
)
4497 return iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4498 sctx
->cmp_key
, __process_deleted_xattr
, sctx
);
4501 struct find_xattr_ctx
{
4509 static int __find_xattr(int num
, struct btrfs_key
*di_key
,
4510 const char *name
, int name_len
,
4511 const char *data
, int data_len
,
4512 u8 type
, void *vctx
)
4514 struct find_xattr_ctx
*ctx
= vctx
;
4516 if (name_len
== ctx
->name_len
&&
4517 strncmp(name
, ctx
->name
, name_len
) == 0) {
4518 ctx
->found_idx
= num
;
4519 ctx
->found_data_len
= data_len
;
4520 ctx
->found_data
= kmemdup(data
, data_len
, GFP_KERNEL
);
4521 if (!ctx
->found_data
)
4528 static int find_xattr(struct btrfs_root
*root
,
4529 struct btrfs_path
*path
,
4530 struct btrfs_key
*key
,
4531 const char *name
, int name_len
,
4532 char **data
, int *data_len
)
4535 struct find_xattr_ctx ctx
;
4538 ctx
.name_len
= name_len
;
4540 ctx
.found_data
= NULL
;
4541 ctx
.found_data_len
= 0;
4543 ret
= iterate_dir_item(root
, path
, key
, __find_xattr
, &ctx
);
4547 if (ctx
.found_idx
== -1)
4550 *data
= ctx
.found_data
;
4551 *data_len
= ctx
.found_data_len
;
4553 kfree(ctx
.found_data
);
4555 return ctx
.found_idx
;
4559 static int __process_changed_new_xattr(int num
, struct btrfs_key
*di_key
,
4560 const char *name
, int name_len
,
4561 const char *data
, int data_len
,
4565 struct send_ctx
*sctx
= ctx
;
4566 char *found_data
= NULL
;
4567 int found_data_len
= 0;
4569 ret
= find_xattr(sctx
->parent_root
, sctx
->right_path
,
4570 sctx
->cmp_key
, name
, name_len
, &found_data
,
4572 if (ret
== -ENOENT
) {
4573 ret
= __process_new_xattr(num
, di_key
, name
, name_len
, data
,
4574 data_len
, type
, ctx
);
4575 } else if (ret
>= 0) {
4576 if (data_len
!= found_data_len
||
4577 memcmp(data
, found_data
, data_len
)) {
4578 ret
= __process_new_xattr(num
, di_key
, name
, name_len
,
4579 data
, data_len
, type
, ctx
);
4589 static int __process_changed_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4590 const char *name
, int name_len
,
4591 const char *data
, int data_len
,
4595 struct send_ctx
*sctx
= ctx
;
4597 ret
= find_xattr(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4598 name
, name_len
, NULL
, NULL
);
4600 ret
= __process_deleted_xattr(num
, di_key
, name
, name_len
, data
,
4601 data_len
, type
, ctx
);
4608 static int process_changed_xattr(struct send_ctx
*sctx
)
4612 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4613 sctx
->cmp_key
, __process_changed_new_xattr
, sctx
);
4616 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4617 sctx
->cmp_key
, __process_changed_deleted_xattr
, sctx
);
4623 static int process_all_new_xattrs(struct send_ctx
*sctx
)
4626 struct btrfs_root
*root
;
4627 struct btrfs_path
*path
;
4628 struct btrfs_key key
;
4629 struct btrfs_key found_key
;
4630 struct extent_buffer
*eb
;
4633 path
= alloc_path_for_send();
4637 root
= sctx
->send_root
;
4639 key
.objectid
= sctx
->cmp_key
->objectid
;
4640 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4642 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4647 eb
= path
->nodes
[0];
4648 slot
= path
->slots
[0];
4649 if (slot
>= btrfs_header_nritems(eb
)) {
4650 ret
= btrfs_next_leaf(root
, path
);
4653 } else if (ret
> 0) {
4660 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4661 if (found_key
.objectid
!= key
.objectid
||
4662 found_key
.type
!= key
.type
) {
4667 ret
= iterate_dir_item(root
, path
, &found_key
,
4668 __process_new_xattr
, sctx
);
4676 btrfs_free_path(path
);
4680 static ssize_t
fill_read_buf(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4682 struct btrfs_root
*root
= sctx
->send_root
;
4683 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4684 struct inode
*inode
;
4687 struct btrfs_key key
;
4688 pgoff_t index
= offset
>> PAGE_SHIFT
;
4690 unsigned pg_offset
= offset
& ~PAGE_MASK
;
4693 key
.objectid
= sctx
->cur_ino
;
4694 key
.type
= BTRFS_INODE_ITEM_KEY
;
4697 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
4699 return PTR_ERR(inode
);
4701 if (offset
+ len
> i_size_read(inode
)) {
4702 if (offset
> i_size_read(inode
))
4705 len
= offset
- i_size_read(inode
);
4710 last_index
= (offset
+ len
- 1) >> PAGE_SHIFT
;
4712 /* initial readahead */
4713 memset(&sctx
->ra
, 0, sizeof(struct file_ra_state
));
4714 file_ra_state_init(&sctx
->ra
, inode
->i_mapping
);
4715 btrfs_force_ra(inode
->i_mapping
, &sctx
->ra
, NULL
, index
,
4716 last_index
- index
+ 1);
4718 while (index
<= last_index
) {
4719 unsigned cur_len
= min_t(unsigned, len
,
4720 PAGE_SIZE
- pg_offset
);
4721 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_KERNEL
);
4727 if (!PageUptodate(page
)) {
4728 btrfs_readpage(NULL
, page
);
4730 if (!PageUptodate(page
)) {
4739 memcpy(sctx
->read_buf
+ ret
, addr
+ pg_offset
, cur_len
);
4754 * Read some bytes from the current inode/file and send a write command to
4757 static int send_write(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4759 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
4762 ssize_t num_read
= 0;
4764 p
= fs_path_alloc();
4768 btrfs_debug(fs_info
, "send_write offset=%llu, len=%d", offset
, len
);
4770 num_read
= fill_read_buf(sctx
, offset
, len
);
4771 if (num_read
<= 0) {
4777 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4781 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4785 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4786 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4787 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, num_read
);
4789 ret
= send_cmd(sctx
);
4800 * Send a clone command to user space.
4802 static int send_clone(struct send_ctx
*sctx
,
4803 u64 offset
, u32 len
,
4804 struct clone_root
*clone_root
)
4810 btrfs_debug(sctx
->send_root
->fs_info
,
4811 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4812 offset
, len
, clone_root
->root
->objectid
, clone_root
->ino
,
4813 clone_root
->offset
);
4815 p
= fs_path_alloc();
4819 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CLONE
);
4823 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4827 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4828 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_LEN
, len
);
4829 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4831 if (clone_root
->root
== sctx
->send_root
) {
4832 ret
= get_inode_info(sctx
->send_root
, clone_root
->ino
, NULL
,
4833 &gen
, NULL
, NULL
, NULL
, NULL
);
4836 ret
= get_cur_path(sctx
, clone_root
->ino
, gen
, p
);
4838 ret
= get_inode_path(clone_root
->root
, clone_root
->ino
, p
);
4844 * If the parent we're using has a received_uuid set then use that as
4845 * our clone source as that is what we will look for when doing a
4848 * This covers the case that we create a snapshot off of a received
4849 * subvolume and then use that as the parent and try to receive on a
4852 if (!btrfs_is_empty_uuid(clone_root
->root
->root_item
.received_uuid
))
4853 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4854 clone_root
->root
->root_item
.received_uuid
);
4856 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4857 clone_root
->root
->root_item
.uuid
);
4858 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
4859 le64_to_cpu(clone_root
->root
->root_item
.ctransid
));
4860 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_CLONE_PATH
, p
);
4861 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_OFFSET
,
4862 clone_root
->offset
);
4864 ret
= send_cmd(sctx
);
4873 * Send an update extent command to user space.
4875 static int send_update_extent(struct send_ctx
*sctx
,
4876 u64 offset
, u32 len
)
4881 p
= fs_path_alloc();
4885 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UPDATE_EXTENT
);
4889 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4893 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4894 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4895 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, len
);
4897 ret
= send_cmd(sctx
);
4905 static int send_hole(struct send_ctx
*sctx
, u64 end
)
4907 struct fs_path
*p
= NULL
;
4908 u64 offset
= sctx
->cur_inode_last_extent
;
4912 p
= fs_path_alloc();
4915 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4917 goto tlv_put_failure
;
4918 memset(sctx
->read_buf
, 0, BTRFS_SEND_READ_SIZE
);
4919 while (offset
< end
) {
4920 len
= min_t(u64
, end
- offset
, BTRFS_SEND_READ_SIZE
);
4922 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4925 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4926 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4927 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, len
);
4928 ret
= send_cmd(sctx
);
4938 static int send_extent_data(struct send_ctx
*sctx
,
4944 if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
)
4945 return send_update_extent(sctx
, offset
, len
);
4947 while (sent
< len
) {
4948 u64 size
= len
- sent
;
4951 if (size
> BTRFS_SEND_READ_SIZE
)
4952 size
= BTRFS_SEND_READ_SIZE
;
4953 ret
= send_write(sctx
, offset
+ sent
, size
);
4963 static int clone_range(struct send_ctx
*sctx
,
4964 struct clone_root
*clone_root
,
4965 const u64 disk_byte
,
4970 struct btrfs_path
*path
;
4971 struct btrfs_key key
;
4974 path
= alloc_path_for_send();
4979 * We can't send a clone operation for the entire range if we find
4980 * extent items in the respective range in the source file that
4981 * refer to different extents or if we find holes.
4982 * So check for that and do a mix of clone and regular write/copy
4983 * operations if needed.
4987 * mkfs.btrfs -f /dev/sda
4988 * mount /dev/sda /mnt
4989 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4990 * cp --reflink=always /mnt/foo /mnt/bar
4991 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4992 * btrfs subvolume snapshot -r /mnt /mnt/snap
4994 * If when we send the snapshot and we are processing file bar (which
4995 * has a higher inode number than foo) we blindly send a clone operation
4996 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4997 * a file bar that matches the content of file foo - iow, doesn't match
4998 * the content from bar in the original filesystem.
5000 key
.objectid
= clone_root
->ino
;
5001 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5002 key
.offset
= clone_root
->offset
;
5003 ret
= btrfs_search_slot(NULL
, clone_root
->root
, &key
, path
, 0, 0);
5006 if (ret
> 0 && path
->slots
[0] > 0) {
5007 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0] - 1);
5008 if (key
.objectid
== clone_root
->ino
&&
5009 key
.type
== BTRFS_EXTENT_DATA_KEY
)
5014 struct extent_buffer
*leaf
= path
->nodes
[0];
5015 int slot
= path
->slots
[0];
5016 struct btrfs_file_extent_item
*ei
;
5021 if (slot
>= btrfs_header_nritems(leaf
)) {
5022 ret
= btrfs_next_leaf(clone_root
->root
, path
);
5030 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5033 * We might have an implicit trailing hole (NO_HOLES feature
5034 * enabled). We deal with it after leaving this loop.
5036 if (key
.objectid
!= clone_root
->ino
||
5037 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5040 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5041 type
= btrfs_file_extent_type(leaf
, ei
);
5042 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5043 ext_len
= btrfs_file_extent_inline_len(leaf
, slot
, ei
);
5044 ext_len
= PAGE_ALIGN(ext_len
);
5046 ext_len
= btrfs_file_extent_num_bytes(leaf
, ei
);
5049 if (key
.offset
+ ext_len
<= clone_root
->offset
)
5052 if (key
.offset
> clone_root
->offset
) {
5053 /* Implicit hole, NO_HOLES feature enabled. */
5054 u64 hole_len
= key
.offset
- clone_root
->offset
;
5058 ret
= send_extent_data(sctx
, offset
, hole_len
);
5066 clone_root
->offset
+= hole_len
;
5067 data_offset
+= hole_len
;
5070 if (key
.offset
>= clone_root
->offset
+ len
)
5073 clone_len
= min_t(u64
, ext_len
, len
);
5075 if (btrfs_file_extent_disk_bytenr(leaf
, ei
) == disk_byte
&&
5076 btrfs_file_extent_offset(leaf
, ei
) == data_offset
)
5077 ret
= send_clone(sctx
, offset
, clone_len
, clone_root
);
5079 ret
= send_extent_data(sctx
, offset
, clone_len
);
5087 offset
+= clone_len
;
5088 clone_root
->offset
+= clone_len
;
5089 data_offset
+= clone_len
;
5095 ret
= send_extent_data(sctx
, offset
, len
);
5099 btrfs_free_path(path
);
5103 static int send_write_or_clone(struct send_ctx
*sctx
,
5104 struct btrfs_path
*path
,
5105 struct btrfs_key
*key
,
5106 struct clone_root
*clone_root
)
5109 struct btrfs_file_extent_item
*ei
;
5110 u64 offset
= key
->offset
;
5113 u64 bs
= sctx
->send_root
->fs_info
->sb
->s_blocksize
;
5115 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5116 struct btrfs_file_extent_item
);
5117 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5118 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5119 len
= btrfs_file_extent_inline_len(path
->nodes
[0],
5120 path
->slots
[0], ei
);
5122 * it is possible the inline item won't cover the whole page,
5123 * but there may be items after this page. Make
5124 * sure to send the whole thing
5126 len
= PAGE_ALIGN(len
);
5128 len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
5131 if (offset
+ len
> sctx
->cur_inode_size
)
5132 len
= sctx
->cur_inode_size
- offset
;
5138 if (clone_root
&& IS_ALIGNED(offset
+ len
, bs
)) {
5142 disk_byte
= btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
);
5143 data_offset
= btrfs_file_extent_offset(path
->nodes
[0], ei
);
5144 ret
= clone_range(sctx
, clone_root
, disk_byte
, data_offset
,
5147 ret
= send_extent_data(sctx
, offset
, len
);
5153 static int is_extent_unchanged(struct send_ctx
*sctx
,
5154 struct btrfs_path
*left_path
,
5155 struct btrfs_key
*ekey
)
5158 struct btrfs_key key
;
5159 struct btrfs_path
*path
= NULL
;
5160 struct extent_buffer
*eb
;
5162 struct btrfs_key found_key
;
5163 struct btrfs_file_extent_item
*ei
;
5168 u64 left_offset_fixed
;
5176 path
= alloc_path_for_send();
5180 eb
= left_path
->nodes
[0];
5181 slot
= left_path
->slots
[0];
5182 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5183 left_type
= btrfs_file_extent_type(eb
, ei
);
5185 if (left_type
!= BTRFS_FILE_EXTENT_REG
) {
5189 left_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5190 left_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5191 left_offset
= btrfs_file_extent_offset(eb
, ei
);
5192 left_gen
= btrfs_file_extent_generation(eb
, ei
);
5195 * Following comments will refer to these graphics. L is the left
5196 * extents which we are checking at the moment. 1-8 are the right
5197 * extents that we iterate.
5200 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5203 * |--1--|-2b-|...(same as above)
5205 * Alternative situation. Happens on files where extents got split.
5207 * |-----------7-----------|-6-|
5209 * Alternative situation. Happens on files which got larger.
5212 * Nothing follows after 8.
5215 key
.objectid
= ekey
->objectid
;
5216 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5217 key
.offset
= ekey
->offset
;
5218 ret
= btrfs_search_slot_for_read(sctx
->parent_root
, &key
, path
, 0, 0);
5227 * Handle special case where the right side has no extents at all.
5229 eb
= path
->nodes
[0];
5230 slot
= path
->slots
[0];
5231 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5232 if (found_key
.objectid
!= key
.objectid
||
5233 found_key
.type
!= key
.type
) {
5234 /* If we're a hole then just pretend nothing changed */
5235 ret
= (left_disknr
) ? 0 : 1;
5240 * We're now on 2a, 2b or 7.
5243 while (key
.offset
< ekey
->offset
+ left_len
) {
5244 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5245 right_type
= btrfs_file_extent_type(eb
, ei
);
5246 if (right_type
!= BTRFS_FILE_EXTENT_REG
&&
5247 right_type
!= BTRFS_FILE_EXTENT_INLINE
) {
5252 right_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5253 if (right_type
== BTRFS_FILE_EXTENT_INLINE
) {
5254 right_len
= btrfs_file_extent_inline_len(eb
, slot
, ei
);
5255 right_len
= PAGE_ALIGN(right_len
);
5257 right_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5259 right_offset
= btrfs_file_extent_offset(eb
, ei
);
5260 right_gen
= btrfs_file_extent_generation(eb
, ei
);
5263 * Are we at extent 8? If yes, we know the extent is changed.
5264 * This may only happen on the first iteration.
5266 if (found_key
.offset
+ right_len
<= ekey
->offset
) {
5267 /* If we're a hole just pretend nothing changed */
5268 ret
= (left_disknr
) ? 0 : 1;
5273 * We just wanted to see if when we have an inline extent, what
5274 * follows it is a regular extent (wanted to check the above
5275 * condition for inline extents too). This should normally not
5276 * happen but it's possible for example when we have an inline
5277 * compressed extent representing data with a size matching
5278 * the page size (currently the same as sector size).
5280 if (right_type
== BTRFS_FILE_EXTENT_INLINE
) {
5285 left_offset_fixed
= left_offset
;
5286 if (key
.offset
< ekey
->offset
) {
5287 /* Fix the right offset for 2a and 7. */
5288 right_offset
+= ekey
->offset
- key
.offset
;
5290 /* Fix the left offset for all behind 2a and 2b */
5291 left_offset_fixed
+= key
.offset
- ekey
->offset
;
5295 * Check if we have the same extent.
5297 if (left_disknr
!= right_disknr
||
5298 left_offset_fixed
!= right_offset
||
5299 left_gen
!= right_gen
) {
5305 * Go to the next extent.
5307 ret
= btrfs_next_item(sctx
->parent_root
, path
);
5311 eb
= path
->nodes
[0];
5312 slot
= path
->slots
[0];
5313 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5315 if (ret
|| found_key
.objectid
!= key
.objectid
||
5316 found_key
.type
!= key
.type
) {
5317 key
.offset
+= right_len
;
5320 if (found_key
.offset
!= key
.offset
+ right_len
) {
5328 * We're now behind the left extent (treat as unchanged) or at the end
5329 * of the right side (treat as changed).
5331 if (key
.offset
>= ekey
->offset
+ left_len
)
5338 btrfs_free_path(path
);
5342 static int get_last_extent(struct send_ctx
*sctx
, u64 offset
)
5344 struct btrfs_path
*path
;
5345 struct btrfs_root
*root
= sctx
->send_root
;
5346 struct btrfs_file_extent_item
*fi
;
5347 struct btrfs_key key
;
5352 path
= alloc_path_for_send();
5356 sctx
->cur_inode_last_extent
= 0;
5358 key
.objectid
= sctx
->cur_ino
;
5359 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5360 key
.offset
= offset
;
5361 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 0, 1);
5365 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
5366 if (key
.objectid
!= sctx
->cur_ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5369 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5370 struct btrfs_file_extent_item
);
5371 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
5372 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5373 u64 size
= btrfs_file_extent_inline_len(path
->nodes
[0],
5374 path
->slots
[0], fi
);
5375 extent_end
= ALIGN(key
.offset
+ size
,
5376 sctx
->send_root
->fs_info
->sectorsize
);
5378 extent_end
= key
.offset
+
5379 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
5381 sctx
->cur_inode_last_extent
= extent_end
;
5383 btrfs_free_path(path
);
5387 static int range_is_hole_in_parent(struct send_ctx
*sctx
,
5391 struct btrfs_path
*path
;
5392 struct btrfs_key key
;
5393 struct btrfs_root
*root
= sctx
->parent_root
;
5394 u64 search_start
= start
;
5397 path
= alloc_path_for_send();
5401 key
.objectid
= sctx
->cur_ino
;
5402 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5403 key
.offset
= search_start
;
5404 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5407 if (ret
> 0 && path
->slots
[0] > 0)
5410 while (search_start
< end
) {
5411 struct extent_buffer
*leaf
= path
->nodes
[0];
5412 int slot
= path
->slots
[0];
5413 struct btrfs_file_extent_item
*fi
;
5416 if (slot
>= btrfs_header_nritems(leaf
)) {
5417 ret
= btrfs_next_leaf(root
, path
);
5425 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5426 if (key
.objectid
< sctx
->cur_ino
||
5427 key
.type
< BTRFS_EXTENT_DATA_KEY
)
5429 if (key
.objectid
> sctx
->cur_ino
||
5430 key
.type
> BTRFS_EXTENT_DATA_KEY
||
5434 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5435 if (btrfs_file_extent_type(leaf
, fi
) ==
5436 BTRFS_FILE_EXTENT_INLINE
) {
5437 u64 size
= btrfs_file_extent_inline_len(leaf
, slot
, fi
);
5439 extent_end
= ALIGN(key
.offset
+ size
,
5440 root
->fs_info
->sectorsize
);
5442 extent_end
= key
.offset
+
5443 btrfs_file_extent_num_bytes(leaf
, fi
);
5445 if (extent_end
<= start
)
5447 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0) {
5448 search_start
= extent_end
;
5458 btrfs_free_path(path
);
5462 static int maybe_send_hole(struct send_ctx
*sctx
, struct btrfs_path
*path
,
5463 struct btrfs_key
*key
)
5465 struct btrfs_file_extent_item
*fi
;
5470 if (sctx
->cur_ino
!= key
->objectid
|| !need_send_hole(sctx
))
5473 if (sctx
->cur_inode_last_extent
== (u64
)-1) {
5474 ret
= get_last_extent(sctx
, key
->offset
- 1);
5479 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5480 struct btrfs_file_extent_item
);
5481 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
5482 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5483 u64 size
= btrfs_file_extent_inline_len(path
->nodes
[0],
5484 path
->slots
[0], fi
);
5485 extent_end
= ALIGN(key
->offset
+ size
,
5486 sctx
->send_root
->fs_info
->sectorsize
);
5488 extent_end
= key
->offset
+
5489 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
5492 if (path
->slots
[0] == 0 &&
5493 sctx
->cur_inode_last_extent
< key
->offset
) {
5495 * We might have skipped entire leafs that contained only
5496 * file extent items for our current inode. These leafs have
5497 * a generation number smaller (older) than the one in the
5498 * current leaf and the leaf our last extent came from, and
5499 * are located between these 2 leafs.
5501 ret
= get_last_extent(sctx
, key
->offset
- 1);
5506 if (sctx
->cur_inode_last_extent
< key
->offset
) {
5507 ret
= range_is_hole_in_parent(sctx
,
5508 sctx
->cur_inode_last_extent
,
5513 ret
= send_hole(sctx
, key
->offset
);
5517 sctx
->cur_inode_last_extent
= extent_end
;
5521 static int process_extent(struct send_ctx
*sctx
,
5522 struct btrfs_path
*path
,
5523 struct btrfs_key
*key
)
5525 struct clone_root
*found_clone
= NULL
;
5528 if (S_ISLNK(sctx
->cur_inode_mode
))
5531 if (sctx
->parent_root
&& !sctx
->cur_inode_new
) {
5532 ret
= is_extent_unchanged(sctx
, path
, key
);
5540 struct btrfs_file_extent_item
*ei
;
5543 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5544 struct btrfs_file_extent_item
);
5545 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5546 if (type
== BTRFS_FILE_EXTENT_PREALLOC
||
5547 type
== BTRFS_FILE_EXTENT_REG
) {
5549 * The send spec does not have a prealloc command yet,
5550 * so just leave a hole for prealloc'ed extents until
5551 * we have enough commands queued up to justify rev'ing
5554 if (type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5559 /* Have a hole, just skip it. */
5560 if (btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
) == 0) {
5567 ret
= find_extent_clone(sctx
, path
, key
->objectid
, key
->offset
,
5568 sctx
->cur_inode_size
, &found_clone
);
5569 if (ret
!= -ENOENT
&& ret
< 0)
5572 ret
= send_write_or_clone(sctx
, path
, key
, found_clone
);
5576 ret
= maybe_send_hole(sctx
, path
, key
);
5581 static int process_all_extents(struct send_ctx
*sctx
)
5584 struct btrfs_root
*root
;
5585 struct btrfs_path
*path
;
5586 struct btrfs_key key
;
5587 struct btrfs_key found_key
;
5588 struct extent_buffer
*eb
;
5591 root
= sctx
->send_root
;
5592 path
= alloc_path_for_send();
5596 key
.objectid
= sctx
->cmp_key
->objectid
;
5597 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5599 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5604 eb
= path
->nodes
[0];
5605 slot
= path
->slots
[0];
5607 if (slot
>= btrfs_header_nritems(eb
)) {
5608 ret
= btrfs_next_leaf(root
, path
);
5611 } else if (ret
> 0) {
5618 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5620 if (found_key
.objectid
!= key
.objectid
||
5621 found_key
.type
!= key
.type
) {
5626 ret
= process_extent(sctx
, path
, &found_key
);
5634 btrfs_free_path(path
);
5638 static int process_recorded_refs_if_needed(struct send_ctx
*sctx
, int at_end
,
5640 int *refs_processed
)
5644 if (sctx
->cur_ino
== 0)
5646 if (!at_end
&& sctx
->cur_ino
== sctx
->cmp_key
->objectid
&&
5647 sctx
->cmp_key
->type
<= BTRFS_INODE_EXTREF_KEY
)
5649 if (list_empty(&sctx
->new_refs
) && list_empty(&sctx
->deleted_refs
))
5652 ret
= process_recorded_refs(sctx
, pending_move
);
5656 *refs_processed
= 1;
5661 static int finish_inode_if_needed(struct send_ctx
*sctx
, int at_end
)
5672 int pending_move
= 0;
5673 int refs_processed
= 0;
5675 ret
= process_recorded_refs_if_needed(sctx
, at_end
, &pending_move
,
5681 * We have processed the refs and thus need to advance send_progress.
5682 * Now, calls to get_cur_xxx will take the updated refs of the current
5683 * inode into account.
5685 * On the other hand, if our current inode is a directory and couldn't
5686 * be moved/renamed because its parent was renamed/moved too and it has
5687 * a higher inode number, we can only move/rename our current inode
5688 * after we moved/renamed its parent. Therefore in this case operate on
5689 * the old path (pre move/rename) of our current inode, and the
5690 * move/rename will be performed later.
5692 if (refs_processed
&& !pending_move
)
5693 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5695 if (sctx
->cur_ino
== 0 || sctx
->cur_inode_deleted
)
5697 if (!at_end
&& sctx
->cmp_key
->objectid
== sctx
->cur_ino
)
5700 ret
= get_inode_info(sctx
->send_root
, sctx
->cur_ino
, NULL
, NULL
,
5701 &left_mode
, &left_uid
, &left_gid
, NULL
);
5705 if (!sctx
->parent_root
|| sctx
->cur_inode_new
) {
5707 if (!S_ISLNK(sctx
->cur_inode_mode
))
5710 ret
= get_inode_info(sctx
->parent_root
, sctx
->cur_ino
,
5711 NULL
, NULL
, &right_mode
, &right_uid
,
5716 if (left_uid
!= right_uid
|| left_gid
!= right_gid
)
5718 if (!S_ISLNK(sctx
->cur_inode_mode
) && left_mode
!= right_mode
)
5722 if (S_ISREG(sctx
->cur_inode_mode
)) {
5723 if (need_send_hole(sctx
)) {
5724 if (sctx
->cur_inode_last_extent
== (u64
)-1 ||
5725 sctx
->cur_inode_last_extent
<
5726 sctx
->cur_inode_size
) {
5727 ret
= get_last_extent(sctx
, (u64
)-1);
5731 if (sctx
->cur_inode_last_extent
<
5732 sctx
->cur_inode_size
) {
5733 ret
= send_hole(sctx
, sctx
->cur_inode_size
);
5738 ret
= send_truncate(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5739 sctx
->cur_inode_size
);
5745 ret
= send_chown(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5746 left_uid
, left_gid
);
5751 ret
= send_chmod(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5758 * If other directory inodes depended on our current directory
5759 * inode's move/rename, now do their move/rename operations.
5761 if (!is_waiting_for_move(sctx
, sctx
->cur_ino
)) {
5762 ret
= apply_children_dir_moves(sctx
);
5766 * Need to send that every time, no matter if it actually
5767 * changed between the two trees as we have done changes to
5768 * the inode before. If our inode is a directory and it's
5769 * waiting to be moved/renamed, we will send its utimes when
5770 * it's moved/renamed, therefore we don't need to do it here.
5772 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5773 ret
= send_utimes(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
);
5782 static int changed_inode(struct send_ctx
*sctx
,
5783 enum btrfs_compare_tree_result result
)
5786 struct btrfs_key
*key
= sctx
->cmp_key
;
5787 struct btrfs_inode_item
*left_ii
= NULL
;
5788 struct btrfs_inode_item
*right_ii
= NULL
;
5792 sctx
->cur_ino
= key
->objectid
;
5793 sctx
->cur_inode_new_gen
= 0;
5794 sctx
->cur_inode_last_extent
= (u64
)-1;
5797 * Set send_progress to current inode. This will tell all get_cur_xxx
5798 * functions that the current inode's refs are not updated yet. Later,
5799 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5801 sctx
->send_progress
= sctx
->cur_ino
;
5803 if (result
== BTRFS_COMPARE_TREE_NEW
||
5804 result
== BTRFS_COMPARE_TREE_CHANGED
) {
5805 left_ii
= btrfs_item_ptr(sctx
->left_path
->nodes
[0],
5806 sctx
->left_path
->slots
[0],
5807 struct btrfs_inode_item
);
5808 left_gen
= btrfs_inode_generation(sctx
->left_path
->nodes
[0],
5811 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
5812 sctx
->right_path
->slots
[0],
5813 struct btrfs_inode_item
);
5814 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
5817 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5818 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
5819 sctx
->right_path
->slots
[0],
5820 struct btrfs_inode_item
);
5822 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
5826 * The cur_ino = root dir case is special here. We can't treat
5827 * the inode as deleted+reused because it would generate a
5828 * stream that tries to delete/mkdir the root dir.
5830 if (left_gen
!= right_gen
&&
5831 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
5832 sctx
->cur_inode_new_gen
= 1;
5835 if (result
== BTRFS_COMPARE_TREE_NEW
) {
5836 sctx
->cur_inode_gen
= left_gen
;
5837 sctx
->cur_inode_new
= 1;
5838 sctx
->cur_inode_deleted
= 0;
5839 sctx
->cur_inode_size
= btrfs_inode_size(
5840 sctx
->left_path
->nodes
[0], left_ii
);
5841 sctx
->cur_inode_mode
= btrfs_inode_mode(
5842 sctx
->left_path
->nodes
[0], left_ii
);
5843 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
5844 sctx
->left_path
->nodes
[0], left_ii
);
5845 if (sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
5846 ret
= send_create_inode_if_needed(sctx
);
5847 } else if (result
== BTRFS_COMPARE_TREE_DELETED
) {
5848 sctx
->cur_inode_gen
= right_gen
;
5849 sctx
->cur_inode_new
= 0;
5850 sctx
->cur_inode_deleted
= 1;
5851 sctx
->cur_inode_size
= btrfs_inode_size(
5852 sctx
->right_path
->nodes
[0], right_ii
);
5853 sctx
->cur_inode_mode
= btrfs_inode_mode(
5854 sctx
->right_path
->nodes
[0], right_ii
);
5855 } else if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5857 * We need to do some special handling in case the inode was
5858 * reported as changed with a changed generation number. This
5859 * means that the original inode was deleted and new inode
5860 * reused the same inum. So we have to treat the old inode as
5861 * deleted and the new one as new.
5863 if (sctx
->cur_inode_new_gen
) {
5865 * First, process the inode as if it was deleted.
5867 sctx
->cur_inode_gen
= right_gen
;
5868 sctx
->cur_inode_new
= 0;
5869 sctx
->cur_inode_deleted
= 1;
5870 sctx
->cur_inode_size
= btrfs_inode_size(
5871 sctx
->right_path
->nodes
[0], right_ii
);
5872 sctx
->cur_inode_mode
= btrfs_inode_mode(
5873 sctx
->right_path
->nodes
[0], right_ii
);
5874 ret
= process_all_refs(sctx
,
5875 BTRFS_COMPARE_TREE_DELETED
);
5880 * Now process the inode as if it was new.
5882 sctx
->cur_inode_gen
= left_gen
;
5883 sctx
->cur_inode_new
= 1;
5884 sctx
->cur_inode_deleted
= 0;
5885 sctx
->cur_inode_size
= btrfs_inode_size(
5886 sctx
->left_path
->nodes
[0], left_ii
);
5887 sctx
->cur_inode_mode
= btrfs_inode_mode(
5888 sctx
->left_path
->nodes
[0], left_ii
);
5889 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
5890 sctx
->left_path
->nodes
[0], left_ii
);
5891 ret
= send_create_inode_if_needed(sctx
);
5895 ret
= process_all_refs(sctx
, BTRFS_COMPARE_TREE_NEW
);
5899 * Advance send_progress now as we did not get into
5900 * process_recorded_refs_if_needed in the new_gen case.
5902 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5905 * Now process all extents and xattrs of the inode as if
5906 * they were all new.
5908 ret
= process_all_extents(sctx
);
5911 ret
= process_all_new_xattrs(sctx
);
5915 sctx
->cur_inode_gen
= left_gen
;
5916 sctx
->cur_inode_new
= 0;
5917 sctx
->cur_inode_new_gen
= 0;
5918 sctx
->cur_inode_deleted
= 0;
5919 sctx
->cur_inode_size
= btrfs_inode_size(
5920 sctx
->left_path
->nodes
[0], left_ii
);
5921 sctx
->cur_inode_mode
= btrfs_inode_mode(
5922 sctx
->left_path
->nodes
[0], left_ii
);
5931 * We have to process new refs before deleted refs, but compare_trees gives us
5932 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5933 * first and later process them in process_recorded_refs.
5934 * For the cur_inode_new_gen case, we skip recording completely because
5935 * changed_inode did already initiate processing of refs. The reason for this is
5936 * that in this case, compare_tree actually compares the refs of 2 different
5937 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5938 * refs of the right tree as deleted and all refs of the left tree as new.
5940 static int changed_ref(struct send_ctx
*sctx
,
5941 enum btrfs_compare_tree_result result
)
5945 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
5946 inconsistent_snapshot_error(sctx
, result
, "reference");
5950 if (!sctx
->cur_inode_new_gen
&&
5951 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
5952 if (result
== BTRFS_COMPARE_TREE_NEW
)
5953 ret
= record_new_ref(sctx
);
5954 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
5955 ret
= record_deleted_ref(sctx
);
5956 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
5957 ret
= record_changed_ref(sctx
);
5964 * Process new/deleted/changed xattrs. We skip processing in the
5965 * cur_inode_new_gen case because changed_inode did already initiate processing
5966 * of xattrs. The reason is the same as in changed_ref
5968 static int changed_xattr(struct send_ctx
*sctx
,
5969 enum btrfs_compare_tree_result result
)
5973 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
5974 inconsistent_snapshot_error(sctx
, result
, "xattr");
5978 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
5979 if (result
== BTRFS_COMPARE_TREE_NEW
)
5980 ret
= process_new_xattr(sctx
);
5981 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
5982 ret
= process_deleted_xattr(sctx
);
5983 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
5984 ret
= process_changed_xattr(sctx
);
5991 * Process new/deleted/changed extents. We skip processing in the
5992 * cur_inode_new_gen case because changed_inode did already initiate processing
5993 * of extents. The reason is the same as in changed_ref
5995 static int changed_extent(struct send_ctx
*sctx
,
5996 enum btrfs_compare_tree_result result
)
6000 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
6002 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
6003 struct extent_buffer
*leaf_l
;
6004 struct extent_buffer
*leaf_r
;
6005 struct btrfs_file_extent_item
*ei_l
;
6006 struct btrfs_file_extent_item
*ei_r
;
6008 leaf_l
= sctx
->left_path
->nodes
[0];
6009 leaf_r
= sctx
->right_path
->nodes
[0];
6010 ei_l
= btrfs_item_ptr(leaf_l
,
6011 sctx
->left_path
->slots
[0],
6012 struct btrfs_file_extent_item
);
6013 ei_r
= btrfs_item_ptr(leaf_r
,
6014 sctx
->right_path
->slots
[0],
6015 struct btrfs_file_extent_item
);
6018 * We may have found an extent item that has changed
6019 * only its disk_bytenr field and the corresponding
6020 * inode item was not updated. This case happens due to
6021 * very specific timings during relocation when a leaf
6022 * that contains file extent items is COWed while
6023 * relocation is ongoing and its in the stage where it
6024 * updates data pointers. So when this happens we can
6025 * safely ignore it since we know it's the same extent,
6026 * but just at different logical and physical locations
6027 * (when an extent is fully replaced with a new one, we
6028 * know the generation number must have changed too,
6029 * since snapshot creation implies committing the current
6030 * transaction, and the inode item must have been updated
6032 * This replacement of the disk_bytenr happens at
6033 * relocation.c:replace_file_extents() through
6034 * relocation.c:btrfs_reloc_cow_block().
6036 if (btrfs_file_extent_generation(leaf_l
, ei_l
) ==
6037 btrfs_file_extent_generation(leaf_r
, ei_r
) &&
6038 btrfs_file_extent_ram_bytes(leaf_l
, ei_l
) ==
6039 btrfs_file_extent_ram_bytes(leaf_r
, ei_r
) &&
6040 btrfs_file_extent_compression(leaf_l
, ei_l
) ==
6041 btrfs_file_extent_compression(leaf_r
, ei_r
) &&
6042 btrfs_file_extent_encryption(leaf_l
, ei_l
) ==
6043 btrfs_file_extent_encryption(leaf_r
, ei_r
) &&
6044 btrfs_file_extent_other_encoding(leaf_l
, ei_l
) ==
6045 btrfs_file_extent_other_encoding(leaf_r
, ei_r
) &&
6046 btrfs_file_extent_type(leaf_l
, ei_l
) ==
6047 btrfs_file_extent_type(leaf_r
, ei_r
) &&
6048 btrfs_file_extent_disk_bytenr(leaf_l
, ei_l
) !=
6049 btrfs_file_extent_disk_bytenr(leaf_r
, ei_r
) &&
6050 btrfs_file_extent_disk_num_bytes(leaf_l
, ei_l
) ==
6051 btrfs_file_extent_disk_num_bytes(leaf_r
, ei_r
) &&
6052 btrfs_file_extent_offset(leaf_l
, ei_l
) ==
6053 btrfs_file_extent_offset(leaf_r
, ei_r
) &&
6054 btrfs_file_extent_num_bytes(leaf_l
, ei_l
) ==
6055 btrfs_file_extent_num_bytes(leaf_r
, ei_r
))
6059 inconsistent_snapshot_error(sctx
, result
, "extent");
6063 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
6064 if (result
!= BTRFS_COMPARE_TREE_DELETED
)
6065 ret
= process_extent(sctx
, sctx
->left_path
,
6072 static int dir_changed(struct send_ctx
*sctx
, u64 dir
)
6074 u64 orig_gen
, new_gen
;
6077 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &new_gen
, NULL
, NULL
,
6082 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &orig_gen
, NULL
,
6087 return (orig_gen
!= new_gen
) ? 1 : 0;
6090 static int compare_refs(struct send_ctx
*sctx
, struct btrfs_path
*path
,
6091 struct btrfs_key
*key
)
6093 struct btrfs_inode_extref
*extref
;
6094 struct extent_buffer
*leaf
;
6095 u64 dirid
= 0, last_dirid
= 0;
6102 /* Easy case, just check this one dirid */
6103 if (key
->type
== BTRFS_INODE_REF_KEY
) {
6104 dirid
= key
->offset
;
6106 ret
= dir_changed(sctx
, dirid
);
6110 leaf
= path
->nodes
[0];
6111 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
6112 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
6113 while (cur_offset
< item_size
) {
6114 extref
= (struct btrfs_inode_extref
*)(ptr
+
6116 dirid
= btrfs_inode_extref_parent(leaf
, extref
);
6117 ref_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
6118 cur_offset
+= ref_name_len
+ sizeof(*extref
);
6119 if (dirid
== last_dirid
)
6121 ret
= dir_changed(sctx
, dirid
);
6131 * Updates compare related fields in sctx and simply forwards to the actual
6132 * changed_xxx functions.
6134 static int changed_cb(struct btrfs_root
*left_root
,
6135 struct btrfs_root
*right_root
,
6136 struct btrfs_path
*left_path
,
6137 struct btrfs_path
*right_path
,
6138 struct btrfs_key
*key
,
6139 enum btrfs_compare_tree_result result
,
6143 struct send_ctx
*sctx
= ctx
;
6145 if (result
== BTRFS_COMPARE_TREE_SAME
) {
6146 if (key
->type
== BTRFS_INODE_REF_KEY
||
6147 key
->type
== BTRFS_INODE_EXTREF_KEY
) {
6148 ret
= compare_refs(sctx
, left_path
, key
);
6153 } else if (key
->type
== BTRFS_EXTENT_DATA_KEY
) {
6154 return maybe_send_hole(sctx
, left_path
, key
);
6158 result
= BTRFS_COMPARE_TREE_CHANGED
;
6162 sctx
->left_path
= left_path
;
6163 sctx
->right_path
= right_path
;
6164 sctx
->cmp_key
= key
;
6166 ret
= finish_inode_if_needed(sctx
, 0);
6170 /* Ignore non-FS objects */
6171 if (key
->objectid
== BTRFS_FREE_INO_OBJECTID
||
6172 key
->objectid
== BTRFS_FREE_SPACE_OBJECTID
)
6175 if (key
->type
== BTRFS_INODE_ITEM_KEY
)
6176 ret
= changed_inode(sctx
, result
);
6177 else if (key
->type
== BTRFS_INODE_REF_KEY
||
6178 key
->type
== BTRFS_INODE_EXTREF_KEY
)
6179 ret
= changed_ref(sctx
, result
);
6180 else if (key
->type
== BTRFS_XATTR_ITEM_KEY
)
6181 ret
= changed_xattr(sctx
, result
);
6182 else if (key
->type
== BTRFS_EXTENT_DATA_KEY
)
6183 ret
= changed_extent(sctx
, result
);
6189 static int full_send_tree(struct send_ctx
*sctx
)
6192 struct btrfs_root
*send_root
= sctx
->send_root
;
6193 struct btrfs_key key
;
6194 struct btrfs_key found_key
;
6195 struct btrfs_path
*path
;
6196 struct extent_buffer
*eb
;
6199 path
= alloc_path_for_send();
6203 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
6204 key
.type
= BTRFS_INODE_ITEM_KEY
;
6207 ret
= btrfs_search_slot_for_read(send_root
, &key
, path
, 1, 0);
6214 eb
= path
->nodes
[0];
6215 slot
= path
->slots
[0];
6216 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6218 ret
= changed_cb(send_root
, NULL
, path
, NULL
,
6219 &found_key
, BTRFS_COMPARE_TREE_NEW
, sctx
);
6223 key
.objectid
= found_key
.objectid
;
6224 key
.type
= found_key
.type
;
6225 key
.offset
= found_key
.offset
+ 1;
6227 ret
= btrfs_next_item(send_root
, path
);
6237 ret
= finish_inode_if_needed(sctx
, 1);
6240 btrfs_free_path(path
);
6244 static int send_subvol(struct send_ctx
*sctx
)
6248 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_STREAM_HEADER
)) {
6249 ret
= send_header(sctx
);
6254 ret
= send_subvol_begin(sctx
);
6258 if (sctx
->parent_root
) {
6259 ret
= btrfs_compare_trees(sctx
->send_root
, sctx
->parent_root
,
6263 ret
= finish_inode_if_needed(sctx
, 1);
6267 ret
= full_send_tree(sctx
);
6273 free_recorded_refs(sctx
);
6278 * If orphan cleanup did remove any orphans from a root, it means the tree
6279 * was modified and therefore the commit root is not the same as the current
6280 * root anymore. This is a problem, because send uses the commit root and
6281 * therefore can see inode items that don't exist in the current root anymore,
6282 * and for example make calls to btrfs_iget, which will do tree lookups based
6283 * on the current root and not on the commit root. Those lookups will fail,
6284 * returning a -ESTALE error, and making send fail with that error. So make
6285 * sure a send does not see any orphans we have just removed, and that it will
6286 * see the same inodes regardless of whether a transaction commit happened
6287 * before it started (meaning that the commit root will be the same as the
6288 * current root) or not.
6290 static int ensure_commit_roots_uptodate(struct send_ctx
*sctx
)
6293 struct btrfs_trans_handle
*trans
= NULL
;
6296 if (sctx
->parent_root
&&
6297 sctx
->parent_root
->node
!= sctx
->parent_root
->commit_root
)
6300 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
6301 if (sctx
->clone_roots
[i
].root
->node
!=
6302 sctx
->clone_roots
[i
].root
->commit_root
)
6306 return btrfs_end_transaction(trans
);
6311 /* Use any root, all fs roots will get their commit roots updated. */
6313 trans
= btrfs_join_transaction(sctx
->send_root
);
6315 return PTR_ERR(trans
);
6319 return btrfs_commit_transaction(trans
);
6322 static void btrfs_root_dec_send_in_progress(struct btrfs_root
* root
)
6324 spin_lock(&root
->root_item_lock
);
6325 root
->send_in_progress
--;
6327 * Not much left to do, we don't know why it's unbalanced and
6328 * can't blindly reset it to 0.
6330 if (root
->send_in_progress
< 0)
6331 btrfs_err(root
->fs_info
,
6332 "send_in_progres unbalanced %d root %llu",
6333 root
->send_in_progress
, root
->root_key
.objectid
);
6334 spin_unlock(&root
->root_item_lock
);
6337 long btrfs_ioctl_send(struct file
*mnt_file
, void __user
*arg_
)
6340 struct btrfs_root
*send_root
= BTRFS_I(file_inode(mnt_file
))->root
;
6341 struct btrfs_fs_info
*fs_info
= send_root
->fs_info
;
6342 struct btrfs_root
*clone_root
;
6343 struct btrfs_ioctl_send_args
*arg
= NULL
;
6344 struct btrfs_key key
;
6345 struct send_ctx
*sctx
= NULL
;
6347 u64
*clone_sources_tmp
= NULL
;
6348 int clone_sources_to_rollback
= 0;
6349 unsigned alloc_size
;
6350 int sort_clone_roots
= 0;
6353 if (!capable(CAP_SYS_ADMIN
))
6357 * The subvolume must remain read-only during send, protect against
6358 * making it RW. This also protects against deletion.
6360 spin_lock(&send_root
->root_item_lock
);
6361 send_root
->send_in_progress
++;
6362 spin_unlock(&send_root
->root_item_lock
);
6365 * This is done when we lookup the root, it should already be complete
6366 * by the time we get here.
6368 WARN_ON(send_root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
);
6371 * Userspace tools do the checks and warn the user if it's
6374 if (!btrfs_root_readonly(send_root
)) {
6379 arg
= memdup_user(arg_
, sizeof(*arg
));
6387 * Check that we don't overflow at later allocations, we request
6388 * clone_sources_count + 1 items, and compare to unsigned long inside
6391 if (arg
->clone_sources_count
>
6392 ULONG_MAX
/ sizeof(struct clone_root
) - 1) {
6397 if (!access_ok(VERIFY_READ
, arg
->clone_sources
,
6398 sizeof(*arg
->clone_sources
) *
6399 arg
->clone_sources_count
)) {
6404 if (arg
->flags
& ~BTRFS_SEND_FLAG_MASK
) {
6409 sctx
= kzalloc(sizeof(struct send_ctx
), GFP_KERNEL
);
6415 INIT_LIST_HEAD(&sctx
->new_refs
);
6416 INIT_LIST_HEAD(&sctx
->deleted_refs
);
6417 INIT_RADIX_TREE(&sctx
->name_cache
, GFP_KERNEL
);
6418 INIT_LIST_HEAD(&sctx
->name_cache_list
);
6420 sctx
->flags
= arg
->flags
;
6422 sctx
->send_filp
= fget(arg
->send_fd
);
6423 if (!sctx
->send_filp
) {
6428 sctx
->send_root
= send_root
;
6430 * Unlikely but possible, if the subvolume is marked for deletion but
6431 * is slow to remove the directory entry, send can still be started
6433 if (btrfs_root_dead(sctx
->send_root
)) {
6438 sctx
->clone_roots_cnt
= arg
->clone_sources_count
;
6440 sctx
->send_max_size
= BTRFS_SEND_BUF_SIZE
;
6441 sctx
->send_buf
= kvmalloc(sctx
->send_max_size
, GFP_KERNEL
);
6442 if (!sctx
->send_buf
) {
6447 sctx
->read_buf
= kvmalloc(BTRFS_SEND_READ_SIZE
, GFP_KERNEL
);
6448 if (!sctx
->read_buf
) {
6453 sctx
->pending_dir_moves
= RB_ROOT
;
6454 sctx
->waiting_dir_moves
= RB_ROOT
;
6455 sctx
->orphan_dirs
= RB_ROOT
;
6457 alloc_size
= sizeof(struct clone_root
) * (arg
->clone_sources_count
+ 1);
6459 sctx
->clone_roots
= kzalloc(alloc_size
, GFP_KERNEL
);
6460 if (!sctx
->clone_roots
) {
6465 alloc_size
= arg
->clone_sources_count
* sizeof(*arg
->clone_sources
);
6467 if (arg
->clone_sources_count
) {
6468 clone_sources_tmp
= kvmalloc(alloc_size
, GFP_KERNEL
);
6469 if (!clone_sources_tmp
) {
6474 ret
= copy_from_user(clone_sources_tmp
, arg
->clone_sources
,
6481 for (i
= 0; i
< arg
->clone_sources_count
; i
++) {
6482 key
.objectid
= clone_sources_tmp
[i
];
6483 key
.type
= BTRFS_ROOT_ITEM_KEY
;
6484 key
.offset
= (u64
)-1;
6486 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
6488 clone_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
6489 if (IS_ERR(clone_root
)) {
6490 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6491 ret
= PTR_ERR(clone_root
);
6494 spin_lock(&clone_root
->root_item_lock
);
6495 if (!btrfs_root_readonly(clone_root
) ||
6496 btrfs_root_dead(clone_root
)) {
6497 spin_unlock(&clone_root
->root_item_lock
);
6498 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6502 clone_root
->send_in_progress
++;
6503 spin_unlock(&clone_root
->root_item_lock
);
6504 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6506 sctx
->clone_roots
[i
].root
= clone_root
;
6507 clone_sources_to_rollback
= i
+ 1;
6509 kvfree(clone_sources_tmp
);
6510 clone_sources_tmp
= NULL
;
6513 if (arg
->parent_root
) {
6514 key
.objectid
= arg
->parent_root
;
6515 key
.type
= BTRFS_ROOT_ITEM_KEY
;
6516 key
.offset
= (u64
)-1;
6518 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
6520 sctx
->parent_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
6521 if (IS_ERR(sctx
->parent_root
)) {
6522 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6523 ret
= PTR_ERR(sctx
->parent_root
);
6527 spin_lock(&sctx
->parent_root
->root_item_lock
);
6528 sctx
->parent_root
->send_in_progress
++;
6529 if (!btrfs_root_readonly(sctx
->parent_root
) ||
6530 btrfs_root_dead(sctx
->parent_root
)) {
6531 spin_unlock(&sctx
->parent_root
->root_item_lock
);
6532 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6536 spin_unlock(&sctx
->parent_root
->root_item_lock
);
6538 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6542 * Clones from send_root are allowed, but only if the clone source
6543 * is behind the current send position. This is checked while searching
6544 * for possible clone sources.
6546 sctx
->clone_roots
[sctx
->clone_roots_cnt
++].root
= sctx
->send_root
;
6548 /* We do a bsearch later */
6549 sort(sctx
->clone_roots
, sctx
->clone_roots_cnt
,
6550 sizeof(*sctx
->clone_roots
), __clone_root_cmp_sort
,
6552 sort_clone_roots
= 1;
6554 ret
= ensure_commit_roots_uptodate(sctx
);
6558 current
->journal_info
= BTRFS_SEND_TRANS_STUB
;
6559 ret
= send_subvol(sctx
);
6560 current
->journal_info
= NULL
;
6564 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_END_CMD
)) {
6565 ret
= begin_cmd(sctx
, BTRFS_SEND_C_END
);
6568 ret
= send_cmd(sctx
);
6574 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
));
6575 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
)) {
6577 struct pending_dir_move
*pm
;
6579 n
= rb_first(&sctx
->pending_dir_moves
);
6580 pm
= rb_entry(n
, struct pending_dir_move
, node
);
6581 while (!list_empty(&pm
->list
)) {
6582 struct pending_dir_move
*pm2
;
6584 pm2
= list_first_entry(&pm
->list
,
6585 struct pending_dir_move
, list
);
6586 free_pending_move(sctx
, pm2
);
6588 free_pending_move(sctx
, pm
);
6591 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
));
6592 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
)) {
6594 struct waiting_dir_move
*dm
;
6596 n
= rb_first(&sctx
->waiting_dir_moves
);
6597 dm
= rb_entry(n
, struct waiting_dir_move
, node
);
6598 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
6602 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
));
6603 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
)) {
6605 struct orphan_dir_info
*odi
;
6607 n
= rb_first(&sctx
->orphan_dirs
);
6608 odi
= rb_entry(n
, struct orphan_dir_info
, node
);
6609 free_orphan_dir_info(sctx
, odi
);
6612 if (sort_clone_roots
) {
6613 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
6614 btrfs_root_dec_send_in_progress(
6615 sctx
->clone_roots
[i
].root
);
6617 for (i
= 0; sctx
&& i
< clone_sources_to_rollback
; i
++)
6618 btrfs_root_dec_send_in_progress(
6619 sctx
->clone_roots
[i
].root
);
6621 btrfs_root_dec_send_in_progress(send_root
);
6623 if (sctx
&& !IS_ERR_OR_NULL(sctx
->parent_root
))
6624 btrfs_root_dec_send_in_progress(sctx
->parent_root
);
6627 kvfree(clone_sources_tmp
);
6630 if (sctx
->send_filp
)
6631 fput(sctx
->send_filp
);
6633 kvfree(sctx
->clone_roots
);
6634 kvfree(sctx
->send_buf
);
6635 kvfree(sctx
->read_buf
);
6637 name_cache_free(sctx
);