2 * fs/kernfs/dir.c - kernfs directory implementation
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 * This file is released under the GPLv2.
11 #include <linux/sched.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
19 #include "kernfs-internal.h"
21 DEFINE_MUTEX(kernfs_mutex
);
22 static DEFINE_SPINLOCK(kernfs_rename_lock
); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf
[PATH_MAX
]; /* protected by rename_lock */
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 static bool kernfs_active(struct kernfs_node
*kn
)
29 lockdep_assert_held(&kernfs_mutex
);
30 return atomic_read(&kn
->active
) >= 0;
33 static bool kernfs_lockdep(struct kernfs_node
*kn
)
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn
->flags
& KERNFS_LOCKDEP
;
42 static int kernfs_name_locked(struct kernfs_node
*kn
, char *buf
, size_t buflen
)
45 return strlcpy(buf
, "(null)", buflen
);
47 return strlcpy(buf
, kn
->parent
? kn
->name
: "/", buflen
);
50 /* kernfs_node_depth - compute depth from @from to @to */
51 static size_t kernfs_depth(struct kernfs_node
*from
, struct kernfs_node
*to
)
55 while (to
->parent
&& to
!= from
) {
62 static struct kernfs_node
*kernfs_common_ancestor(struct kernfs_node
*a
,
63 struct kernfs_node
*b
)
66 struct kernfs_root
*ra
= kernfs_root(a
), *rb
= kernfs_root(b
);
71 da
= kernfs_depth(ra
->kn
, a
);
72 db
= kernfs_depth(rb
->kn
, b
);
83 /* worst case b and a will be the same at root */
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
103 * kn_to: /n1/n2/n3/n4/n5
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
116 * [3] when @kn_to is NULL result will be "(null)"
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
122 static int kernfs_path_from_node_locked(struct kernfs_node
*kn_to
,
123 struct kernfs_node
*kn_from
,
124 char *buf
, size_t buflen
)
126 struct kernfs_node
*kn
, *common
;
127 const char parent_str
[] = "/..";
128 size_t depth_from
, depth_to
, len
= 0;
132 return strlcpy(buf
, "(null)", buflen
);
135 kn_from
= kernfs_root(kn_to
)->kn
;
137 if (kn_from
== kn_to
)
138 return strlcpy(buf
, "/", buflen
);
140 common
= kernfs_common_ancestor(kn_from
, kn_to
);
141 if (WARN_ON(!common
))
144 depth_to
= kernfs_depth(common
, kn_to
);
145 depth_from
= kernfs_depth(common
, kn_from
);
150 for (i
= 0; i
< depth_from
; i
++)
151 len
+= strlcpy(buf
+ len
, parent_str
,
152 len
< buflen
? buflen
- len
: 0);
154 /* Calculate how many bytes we need for the rest */
155 for (i
= depth_to
- 1; i
>= 0; i
--) {
156 for (kn
= kn_to
, j
= 0; j
< i
; j
++)
158 len
+= strlcpy(buf
+ len
, "/",
159 len
< buflen
? buflen
- len
: 0);
160 len
+= strlcpy(buf
+ len
, kn
->name
,
161 len
< buflen
? buflen
- len
: 0);
168 * kernfs_name - obtain the name of a given node
169 * @kn: kernfs_node of interest
170 * @buf: buffer to copy @kn's name into
171 * @buflen: size of @buf
173 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
174 * similar to strlcpy(). It returns the length of @kn's name and if @buf
175 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
177 * Fills buffer with "(null)" if @kn is NULL.
179 * This function can be called from any context.
181 int kernfs_name(struct kernfs_node
*kn
, char *buf
, size_t buflen
)
186 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
187 ret
= kernfs_name_locked(kn
, buf
, buflen
);
188 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
193 * kernfs_path_from_node - build path of node @to relative to @from.
194 * @from: parent kernfs_node relative to which we need to build the path
195 * @to: kernfs_node of interest
196 * @buf: buffer to copy @to's path into
197 * @buflen: size of @buf
199 * Builds @to's path relative to @from in @buf. @from and @to must
200 * be on the same kernfs-root. If @from is not parent of @to, then a relative
201 * path (which includes '..'s) as needed to reach from @from to @to is
204 * Returns the length of the full path. If the full length is equal to or
205 * greater than @buflen, @buf contains the truncated path with the trailing
206 * '\0'. On error, -errno is returned.
208 int kernfs_path_from_node(struct kernfs_node
*to
, struct kernfs_node
*from
,
209 char *buf
, size_t buflen
)
214 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
215 ret
= kernfs_path_from_node_locked(to
, from
, buf
, buflen
);
216 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
219 EXPORT_SYMBOL_GPL(kernfs_path_from_node
);
222 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
223 * @kn: kernfs_node of interest
225 * This function can be called from any context.
227 void pr_cont_kernfs_name(struct kernfs_node
*kn
)
231 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
233 kernfs_name_locked(kn
, kernfs_pr_cont_buf
, sizeof(kernfs_pr_cont_buf
));
234 pr_cont("%s", kernfs_pr_cont_buf
);
236 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
240 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
241 * @kn: kernfs_node of interest
243 * This function can be called from any context.
245 void pr_cont_kernfs_path(struct kernfs_node
*kn
)
250 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
252 sz
= kernfs_path_from_node_locked(kn
, NULL
, kernfs_pr_cont_buf
,
253 sizeof(kernfs_pr_cont_buf
));
259 if (sz
>= sizeof(kernfs_pr_cont_buf
)) {
260 pr_cont("(name too long)");
264 pr_cont("%s", kernfs_pr_cont_buf
);
267 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
271 * kernfs_get_parent - determine the parent node and pin it
272 * @kn: kernfs_node of interest
274 * Determines @kn's parent, pins and returns it. This function can be
275 * called from any context.
277 struct kernfs_node
*kernfs_get_parent(struct kernfs_node
*kn
)
279 struct kernfs_node
*parent
;
282 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
285 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
292 * @name: Null terminated string to hash
293 * @ns: Namespace tag to hash
295 * Returns 31 bit hash of ns + name (so it fits in an off_t )
297 static unsigned int kernfs_name_hash(const char *name
, const void *ns
)
299 unsigned long hash
= init_name_hash(ns
);
300 unsigned int len
= strlen(name
);
302 hash
= partial_name_hash(*name
++, hash
);
303 hash
= end_name_hash(hash
);
305 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
313 static int kernfs_name_compare(unsigned int hash
, const char *name
,
314 const void *ns
, const struct kernfs_node
*kn
)
324 return strcmp(name
, kn
->name
);
327 static int kernfs_sd_compare(const struct kernfs_node
*left
,
328 const struct kernfs_node
*right
)
330 return kernfs_name_compare(left
->hash
, left
->name
, left
->ns
, right
);
334 * kernfs_link_sibling - link kernfs_node into sibling rbtree
335 * @kn: kernfs_node of interest
337 * Link @kn into its sibling rbtree which starts from
338 * @kn->parent->dir.children.
341 * mutex_lock(kernfs_mutex)
344 * 0 on susccess -EEXIST on failure.
346 static int kernfs_link_sibling(struct kernfs_node
*kn
)
348 struct rb_node
**node
= &kn
->parent
->dir
.children
.rb_node
;
349 struct rb_node
*parent
= NULL
;
352 struct kernfs_node
*pos
;
355 pos
= rb_to_kn(*node
);
357 result
= kernfs_sd_compare(kn
, pos
);
359 node
= &pos
->rb
.rb_left
;
361 node
= &pos
->rb
.rb_right
;
366 /* add new node and rebalance the tree */
367 rb_link_node(&kn
->rb
, parent
, node
);
368 rb_insert_color(&kn
->rb
, &kn
->parent
->dir
.children
);
370 /* successfully added, account subdir number */
371 if (kernfs_type(kn
) == KERNFS_DIR
)
372 kn
->parent
->dir
.subdirs
++;
378 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
379 * @kn: kernfs_node of interest
381 * Try to unlink @kn from its sibling rbtree which starts from
382 * kn->parent->dir.children. Returns %true if @kn was actually
383 * removed, %false if @kn wasn't on the rbtree.
386 * mutex_lock(kernfs_mutex)
388 static bool kernfs_unlink_sibling(struct kernfs_node
*kn
)
390 if (RB_EMPTY_NODE(&kn
->rb
))
393 if (kernfs_type(kn
) == KERNFS_DIR
)
394 kn
->parent
->dir
.subdirs
--;
396 rb_erase(&kn
->rb
, &kn
->parent
->dir
.children
);
397 RB_CLEAR_NODE(&kn
->rb
);
402 * kernfs_get_active - get an active reference to kernfs_node
403 * @kn: kernfs_node to get an active reference to
405 * Get an active reference of @kn. This function is noop if @kn
409 * Pointer to @kn on success, NULL on failure.
411 struct kernfs_node
*kernfs_get_active(struct kernfs_node
*kn
)
416 if (!atomic_inc_unless_negative(&kn
->active
))
419 if (kernfs_lockdep(kn
))
420 rwsem_acquire_read(&kn
->dep_map
, 0, 1, _RET_IP_
);
425 * kernfs_put_active - put an active reference to kernfs_node
426 * @kn: kernfs_node to put an active reference to
428 * Put an active reference to @kn. This function is noop if @kn
431 void kernfs_put_active(struct kernfs_node
*kn
)
433 struct kernfs_root
*root
= kernfs_root(kn
);
439 if (kernfs_lockdep(kn
))
440 rwsem_release(&kn
->dep_map
, 1, _RET_IP_
);
441 v
= atomic_dec_return(&kn
->active
);
442 if (likely(v
!= KN_DEACTIVATED_BIAS
))
445 wake_up_all(&root
->deactivate_waitq
);
449 * kernfs_drain - drain kernfs_node
450 * @kn: kernfs_node to drain
452 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
453 * removers may invoke this function concurrently on @kn and all will
454 * return after draining is complete.
456 static void kernfs_drain(struct kernfs_node
*kn
)
457 __releases(&kernfs_mutex
) __acquires(&kernfs_mutex
)
459 struct kernfs_root
*root
= kernfs_root(kn
);
461 lockdep_assert_held(&kernfs_mutex
);
462 WARN_ON_ONCE(kernfs_active(kn
));
464 mutex_unlock(&kernfs_mutex
);
466 if (kernfs_lockdep(kn
)) {
467 rwsem_acquire(&kn
->dep_map
, 0, 0, _RET_IP_
);
468 if (atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
)
469 lock_contended(&kn
->dep_map
, _RET_IP_
);
472 /* but everyone should wait for draining */
473 wait_event(root
->deactivate_waitq
,
474 atomic_read(&kn
->active
) == KN_DEACTIVATED_BIAS
);
476 if (kernfs_lockdep(kn
)) {
477 lock_acquired(&kn
->dep_map
, _RET_IP_
);
478 rwsem_release(&kn
->dep_map
, 1, _RET_IP_
);
481 kernfs_drain_open_files(kn
);
483 mutex_lock(&kernfs_mutex
);
487 * kernfs_get - get a reference count on a kernfs_node
488 * @kn: the target kernfs_node
490 void kernfs_get(struct kernfs_node
*kn
)
493 WARN_ON(!atomic_read(&kn
->count
));
494 atomic_inc(&kn
->count
);
497 EXPORT_SYMBOL_GPL(kernfs_get
);
500 * kernfs_put - put a reference count on a kernfs_node
501 * @kn: the target kernfs_node
503 * Put a reference count of @kn and destroy it if it reached zero.
505 void kernfs_put(struct kernfs_node
*kn
)
507 struct kernfs_node
*parent
;
508 struct kernfs_root
*root
;
510 if (!kn
|| !atomic_dec_and_test(&kn
->count
))
512 root
= kernfs_root(kn
);
515 * Moving/renaming is always done while holding reference.
516 * kn->parent won't change beneath us.
520 WARN_ONCE(atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
,
521 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
522 parent
? parent
->name
: "", kn
->name
, atomic_read(&kn
->active
));
524 if (kernfs_type(kn
) == KERNFS_LINK
)
525 kernfs_put(kn
->symlink
.target_kn
);
527 kfree_const(kn
->name
);
530 if (kn
->iattr
->ia_secdata
)
531 security_release_secctx(kn
->iattr
->ia_secdata
,
532 kn
->iattr
->ia_secdata_len
);
533 simple_xattrs_free(&kn
->iattr
->xattrs
);
536 ida_simple_remove(&root
->ino_ida
, kn
->ino
);
537 kmem_cache_free(kernfs_node_cache
, kn
);
541 if (atomic_dec_and_test(&kn
->count
))
544 /* just released the root kn, free @root too */
545 ida_destroy(&root
->ino_ida
);
549 EXPORT_SYMBOL_GPL(kernfs_put
);
551 static int kernfs_dop_revalidate(struct dentry
*dentry
, unsigned int flags
)
553 struct kernfs_node
*kn
;
555 if (flags
& LOOKUP_RCU
)
558 /* Always perform fresh lookup for negatives */
559 if (d_really_is_negative(dentry
))
560 goto out_bad_unlocked
;
562 kn
= dentry
->d_fsdata
;
563 mutex_lock(&kernfs_mutex
);
565 /* The kernfs node has been deactivated */
566 if (!kernfs_active(kn
))
569 /* The kernfs node has been moved? */
570 if (dentry
->d_parent
->d_fsdata
!= kn
->parent
)
573 /* The kernfs node has been renamed */
574 if (strcmp(dentry
->d_name
.name
, kn
->name
) != 0)
577 /* The kernfs node has been moved to a different namespace */
578 if (kn
->parent
&& kernfs_ns_enabled(kn
->parent
) &&
579 kernfs_info(dentry
->d_sb
)->ns
!= kn
->ns
)
582 mutex_unlock(&kernfs_mutex
);
585 mutex_unlock(&kernfs_mutex
);
590 static void kernfs_dop_release(struct dentry
*dentry
)
592 kernfs_put(dentry
->d_fsdata
);
595 const struct dentry_operations kernfs_dops
= {
596 .d_revalidate
= kernfs_dop_revalidate
,
597 .d_release
= kernfs_dop_release
,
601 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
602 * @dentry: the dentry in question
604 * Return the kernfs_node associated with @dentry. If @dentry is not a
605 * kernfs one, %NULL is returned.
607 * While the returned kernfs_node will stay accessible as long as @dentry
608 * is accessible, the returned node can be in any state and the caller is
609 * fully responsible for determining what's accessible.
611 struct kernfs_node
*kernfs_node_from_dentry(struct dentry
*dentry
)
613 if (dentry
->d_sb
->s_op
== &kernfs_sops
)
614 return dentry
->d_fsdata
;
618 static struct kernfs_node
*__kernfs_new_node(struct kernfs_root
*root
,
619 const char *name
, umode_t mode
,
622 struct kernfs_node
*kn
;
625 name
= kstrdup_const(name
, GFP_KERNEL
);
629 kn
= kmem_cache_zalloc(kernfs_node_cache
, GFP_KERNEL
);
633 ret
= ida_simple_get(&root
->ino_ida
, 1, 0, GFP_KERNEL
);
638 atomic_set(&kn
->count
, 1);
639 atomic_set(&kn
->active
, KN_DEACTIVATED_BIAS
);
640 RB_CLEAR_NODE(&kn
->rb
);
649 kmem_cache_free(kernfs_node_cache
, kn
);
655 struct kernfs_node
*kernfs_new_node(struct kernfs_node
*parent
,
656 const char *name
, umode_t mode
,
659 struct kernfs_node
*kn
;
661 kn
= __kernfs_new_node(kernfs_root(parent
), name
, mode
, flags
);
670 * kernfs_add_one - add kernfs_node to parent without warning
671 * @kn: kernfs_node to be added
673 * The caller must already have initialized @kn->parent. This
674 * function increments nlink of the parent's inode if @kn is a
675 * directory and link into the children list of the parent.
678 * 0 on success, -EEXIST if entry with the given name already
681 int kernfs_add_one(struct kernfs_node
*kn
)
683 struct kernfs_node
*parent
= kn
->parent
;
684 struct kernfs_iattrs
*ps_iattr
;
688 mutex_lock(&kernfs_mutex
);
691 has_ns
= kernfs_ns_enabled(parent
);
692 if (WARN(has_ns
!= (bool)kn
->ns
, KERN_WARNING
"kernfs: ns %s in '%s' for '%s'\n",
693 has_ns
? "required" : "invalid", parent
->name
, kn
->name
))
696 if (kernfs_type(parent
) != KERNFS_DIR
)
700 if (parent
->flags
& KERNFS_EMPTY_DIR
)
703 if ((parent
->flags
& KERNFS_ACTIVATED
) && !kernfs_active(parent
))
706 kn
->hash
= kernfs_name_hash(kn
->name
, kn
->ns
);
708 ret
= kernfs_link_sibling(kn
);
712 /* Update timestamps on the parent */
713 ps_iattr
= parent
->iattr
;
715 struct iattr
*ps_iattrs
= &ps_iattr
->ia_iattr
;
716 ktime_get_real_ts(&ps_iattrs
->ia_ctime
);
717 ps_iattrs
->ia_mtime
= ps_iattrs
->ia_ctime
;
720 mutex_unlock(&kernfs_mutex
);
723 * Activate the new node unless CREATE_DEACTIVATED is requested.
724 * If not activated here, the kernfs user is responsible for
725 * activating the node with kernfs_activate(). A node which hasn't
726 * been activated is not visible to userland and its removal won't
727 * trigger deactivation.
729 if (!(kernfs_root(kn
)->flags
& KERNFS_ROOT_CREATE_DEACTIVATED
))
734 mutex_unlock(&kernfs_mutex
);
739 * kernfs_find_ns - find kernfs_node with the given name
740 * @parent: kernfs_node to search under
741 * @name: name to look for
742 * @ns: the namespace tag to use
744 * Look for kernfs_node with name @name under @parent. Returns pointer to
745 * the found kernfs_node on success, %NULL on failure.
747 static struct kernfs_node
*kernfs_find_ns(struct kernfs_node
*parent
,
748 const unsigned char *name
,
751 struct rb_node
*node
= parent
->dir
.children
.rb_node
;
752 bool has_ns
= kernfs_ns_enabled(parent
);
755 lockdep_assert_held(&kernfs_mutex
);
757 if (has_ns
!= (bool)ns
) {
758 WARN(1, KERN_WARNING
"kernfs: ns %s in '%s' for '%s'\n",
759 has_ns
? "required" : "invalid", parent
->name
, name
);
763 hash
= kernfs_name_hash(name
, ns
);
765 struct kernfs_node
*kn
;
769 result
= kernfs_name_compare(hash
, name
, ns
, kn
);
771 node
= node
->rb_left
;
773 node
= node
->rb_right
;
780 static struct kernfs_node
*kernfs_walk_ns(struct kernfs_node
*parent
,
781 const unsigned char *path
,
787 lockdep_assert_held(&kernfs_mutex
);
789 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
790 spin_lock_irq(&kernfs_rename_lock
);
792 len
= strlcpy(kernfs_pr_cont_buf
, path
, sizeof(kernfs_pr_cont_buf
));
794 if (len
>= sizeof(kernfs_pr_cont_buf
)) {
795 spin_unlock_irq(&kernfs_rename_lock
);
799 p
= kernfs_pr_cont_buf
;
801 while ((name
= strsep(&p
, "/")) && parent
) {
804 parent
= kernfs_find_ns(parent
, name
, ns
);
807 spin_unlock_irq(&kernfs_rename_lock
);
813 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
814 * @parent: kernfs_node to search under
815 * @name: name to look for
816 * @ns: the namespace tag to use
818 * Look for kernfs_node with name @name under @parent and get a reference
819 * if found. This function may sleep and returns pointer to the found
820 * kernfs_node on success, %NULL on failure.
822 struct kernfs_node
*kernfs_find_and_get_ns(struct kernfs_node
*parent
,
823 const char *name
, const void *ns
)
825 struct kernfs_node
*kn
;
827 mutex_lock(&kernfs_mutex
);
828 kn
= kernfs_find_ns(parent
, name
, ns
);
830 mutex_unlock(&kernfs_mutex
);
834 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns
);
837 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
838 * @parent: kernfs_node to search under
839 * @path: path to look for
840 * @ns: the namespace tag to use
842 * Look for kernfs_node with path @path under @parent and get a reference
843 * if found. This function may sleep and returns pointer to the found
844 * kernfs_node on success, %NULL on failure.
846 struct kernfs_node
*kernfs_walk_and_get_ns(struct kernfs_node
*parent
,
847 const char *path
, const void *ns
)
849 struct kernfs_node
*kn
;
851 mutex_lock(&kernfs_mutex
);
852 kn
= kernfs_walk_ns(parent
, path
, ns
);
854 mutex_unlock(&kernfs_mutex
);
860 * kernfs_create_root - create a new kernfs hierarchy
861 * @scops: optional syscall operations for the hierarchy
862 * @flags: KERNFS_ROOT_* flags
863 * @priv: opaque data associated with the new directory
865 * Returns the root of the new hierarchy on success, ERR_PTR() value on
868 struct kernfs_root
*kernfs_create_root(struct kernfs_syscall_ops
*scops
,
869 unsigned int flags
, void *priv
)
871 struct kernfs_root
*root
;
872 struct kernfs_node
*kn
;
874 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
876 return ERR_PTR(-ENOMEM
);
878 ida_init(&root
->ino_ida
);
879 INIT_LIST_HEAD(&root
->supers
);
881 kn
= __kernfs_new_node(root
, "", S_IFDIR
| S_IRUGO
| S_IXUGO
,
884 ida_destroy(&root
->ino_ida
);
886 return ERR_PTR(-ENOMEM
);
892 root
->syscall_ops
= scops
;
895 init_waitqueue_head(&root
->deactivate_waitq
);
897 if (!(root
->flags
& KERNFS_ROOT_CREATE_DEACTIVATED
))
904 * kernfs_destroy_root - destroy a kernfs hierarchy
905 * @root: root of the hierarchy to destroy
907 * Destroy the hierarchy anchored at @root by removing all existing
908 * directories and destroying @root.
910 void kernfs_destroy_root(struct kernfs_root
*root
)
912 kernfs_remove(root
->kn
); /* will also free @root */
916 * kernfs_create_dir_ns - create a directory
917 * @parent: parent in which to create a new directory
918 * @name: name of the new directory
919 * @mode: mode of the new directory
920 * @priv: opaque data associated with the new directory
921 * @ns: optional namespace tag of the directory
923 * Returns the created node on success, ERR_PTR() value on failure.
925 struct kernfs_node
*kernfs_create_dir_ns(struct kernfs_node
*parent
,
926 const char *name
, umode_t mode
,
927 void *priv
, const void *ns
)
929 struct kernfs_node
*kn
;
933 kn
= kernfs_new_node(parent
, name
, mode
| S_IFDIR
, KERNFS_DIR
);
935 return ERR_PTR(-ENOMEM
);
937 kn
->dir
.root
= parent
->dir
.root
;
942 rc
= kernfs_add_one(kn
);
951 * kernfs_create_empty_dir - create an always empty directory
952 * @parent: parent in which to create a new directory
953 * @name: name of the new directory
955 * Returns the created node on success, ERR_PTR() value on failure.
957 struct kernfs_node
*kernfs_create_empty_dir(struct kernfs_node
*parent
,
960 struct kernfs_node
*kn
;
964 kn
= kernfs_new_node(parent
, name
, S_IRUGO
|S_IXUGO
|S_IFDIR
, KERNFS_DIR
);
966 return ERR_PTR(-ENOMEM
);
968 kn
->flags
|= KERNFS_EMPTY_DIR
;
969 kn
->dir
.root
= parent
->dir
.root
;
974 rc
= kernfs_add_one(kn
);
982 static struct dentry
*kernfs_iop_lookup(struct inode
*dir
,
983 struct dentry
*dentry
,
987 struct kernfs_node
*parent
= dentry
->d_parent
->d_fsdata
;
988 struct kernfs_node
*kn
;
990 const void *ns
= NULL
;
992 mutex_lock(&kernfs_mutex
);
994 if (kernfs_ns_enabled(parent
))
995 ns
= kernfs_info(dir
->i_sb
)->ns
;
997 kn
= kernfs_find_ns(parent
, dentry
->d_name
.name
, ns
);
1000 if (!kn
|| !kernfs_active(kn
)) {
1005 dentry
->d_fsdata
= kn
;
1007 /* attach dentry and inode */
1008 inode
= kernfs_get_inode(dir
->i_sb
, kn
);
1010 ret
= ERR_PTR(-ENOMEM
);
1014 /* instantiate and hash dentry */
1015 ret
= d_splice_alias(inode
, dentry
);
1017 mutex_unlock(&kernfs_mutex
);
1021 static int kernfs_iop_mkdir(struct inode
*dir
, struct dentry
*dentry
,
1024 struct kernfs_node
*parent
= dir
->i_private
;
1025 struct kernfs_syscall_ops
*scops
= kernfs_root(parent
)->syscall_ops
;
1028 if (!scops
|| !scops
->mkdir
)
1031 if (!kernfs_get_active(parent
))
1034 ret
= scops
->mkdir(parent
, dentry
->d_name
.name
, mode
);
1036 kernfs_put_active(parent
);
1040 static int kernfs_iop_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1042 struct kernfs_node
*kn
= dentry
->d_fsdata
;
1043 struct kernfs_syscall_ops
*scops
= kernfs_root(kn
)->syscall_ops
;
1046 if (!scops
|| !scops
->rmdir
)
1049 if (!kernfs_get_active(kn
))
1052 ret
= scops
->rmdir(kn
);
1054 kernfs_put_active(kn
);
1058 static int kernfs_iop_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1059 struct inode
*new_dir
, struct dentry
*new_dentry
,
1062 struct kernfs_node
*kn
= old_dentry
->d_fsdata
;
1063 struct kernfs_node
*new_parent
= new_dir
->i_private
;
1064 struct kernfs_syscall_ops
*scops
= kernfs_root(kn
)->syscall_ops
;
1070 if (!scops
|| !scops
->rename
)
1073 if (!kernfs_get_active(kn
))
1076 if (!kernfs_get_active(new_parent
)) {
1077 kernfs_put_active(kn
);
1081 ret
= scops
->rename(kn
, new_parent
, new_dentry
->d_name
.name
);
1083 kernfs_put_active(new_parent
);
1084 kernfs_put_active(kn
);
1088 const struct inode_operations kernfs_dir_iops
= {
1089 .lookup
= kernfs_iop_lookup
,
1090 .permission
= kernfs_iop_permission
,
1091 .setattr
= kernfs_iop_setattr
,
1092 .getattr
= kernfs_iop_getattr
,
1093 .listxattr
= kernfs_iop_listxattr
,
1095 .mkdir
= kernfs_iop_mkdir
,
1096 .rmdir
= kernfs_iop_rmdir
,
1097 .rename
= kernfs_iop_rename
,
1100 static struct kernfs_node
*kernfs_leftmost_descendant(struct kernfs_node
*pos
)
1102 struct kernfs_node
*last
;
1105 struct rb_node
*rbn
;
1109 if (kernfs_type(pos
) != KERNFS_DIR
)
1112 rbn
= rb_first(&pos
->dir
.children
);
1116 pos
= rb_to_kn(rbn
);
1123 * kernfs_next_descendant_post - find the next descendant for post-order walk
1124 * @pos: the current position (%NULL to initiate traversal)
1125 * @root: kernfs_node whose descendants to walk
1127 * Find the next descendant to visit for post-order traversal of @root's
1128 * descendants. @root is included in the iteration and the last node to be
1131 static struct kernfs_node
*kernfs_next_descendant_post(struct kernfs_node
*pos
,
1132 struct kernfs_node
*root
)
1134 struct rb_node
*rbn
;
1136 lockdep_assert_held(&kernfs_mutex
);
1138 /* if first iteration, visit leftmost descendant which may be root */
1140 return kernfs_leftmost_descendant(root
);
1142 /* if we visited @root, we're done */
1146 /* if there's an unvisited sibling, visit its leftmost descendant */
1147 rbn
= rb_next(&pos
->rb
);
1149 return kernfs_leftmost_descendant(rb_to_kn(rbn
));
1151 /* no sibling left, visit parent */
1156 * kernfs_activate - activate a node which started deactivated
1157 * @kn: kernfs_node whose subtree is to be activated
1159 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1160 * needs to be explicitly activated. A node which hasn't been activated
1161 * isn't visible to userland and deactivation is skipped during its
1162 * removal. This is useful to construct atomic init sequences where
1163 * creation of multiple nodes should either succeed or fail atomically.
1165 * The caller is responsible for ensuring that this function is not called
1166 * after kernfs_remove*() is invoked on @kn.
1168 void kernfs_activate(struct kernfs_node
*kn
)
1170 struct kernfs_node
*pos
;
1172 mutex_lock(&kernfs_mutex
);
1175 while ((pos
= kernfs_next_descendant_post(pos
, kn
))) {
1176 if (!pos
|| (pos
->flags
& KERNFS_ACTIVATED
))
1179 WARN_ON_ONCE(pos
->parent
&& RB_EMPTY_NODE(&pos
->rb
));
1180 WARN_ON_ONCE(atomic_read(&pos
->active
) != KN_DEACTIVATED_BIAS
);
1182 atomic_sub(KN_DEACTIVATED_BIAS
, &pos
->active
);
1183 pos
->flags
|= KERNFS_ACTIVATED
;
1186 mutex_unlock(&kernfs_mutex
);
1189 static void __kernfs_remove(struct kernfs_node
*kn
)
1191 struct kernfs_node
*pos
;
1193 lockdep_assert_held(&kernfs_mutex
);
1196 * Short-circuit if non-root @kn has already finished removal.
1197 * This is for kernfs_remove_self() which plays with active ref
1200 if (!kn
|| (kn
->parent
&& RB_EMPTY_NODE(&kn
->rb
)))
1203 pr_debug("kernfs %s: removing\n", kn
->name
);
1205 /* prevent any new usage under @kn by deactivating all nodes */
1207 while ((pos
= kernfs_next_descendant_post(pos
, kn
)))
1208 if (kernfs_active(pos
))
1209 atomic_add(KN_DEACTIVATED_BIAS
, &pos
->active
);
1211 /* deactivate and unlink the subtree node-by-node */
1213 pos
= kernfs_leftmost_descendant(kn
);
1216 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1217 * base ref could have been put by someone else by the time
1218 * the function returns. Make sure it doesn't go away
1224 * Drain iff @kn was activated. This avoids draining and
1225 * its lockdep annotations for nodes which have never been
1226 * activated and allows embedding kernfs_remove() in create
1227 * error paths without worrying about draining.
1229 if (kn
->flags
& KERNFS_ACTIVATED
)
1232 WARN_ON_ONCE(atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
);
1235 * kernfs_unlink_sibling() succeeds once per node. Use it
1236 * to decide who's responsible for cleanups.
1238 if (!pos
->parent
|| kernfs_unlink_sibling(pos
)) {
1239 struct kernfs_iattrs
*ps_iattr
=
1240 pos
->parent
? pos
->parent
->iattr
: NULL
;
1242 /* update timestamps on the parent */
1244 ktime_get_real_ts(&ps_iattr
->ia_iattr
.ia_ctime
);
1245 ps_iattr
->ia_iattr
.ia_mtime
=
1246 ps_iattr
->ia_iattr
.ia_ctime
;
1253 } while (pos
!= kn
);
1257 * kernfs_remove - remove a kernfs_node recursively
1258 * @kn: the kernfs_node to remove
1260 * Remove @kn along with all its subdirectories and files.
1262 void kernfs_remove(struct kernfs_node
*kn
)
1264 mutex_lock(&kernfs_mutex
);
1265 __kernfs_remove(kn
);
1266 mutex_unlock(&kernfs_mutex
);
1270 * kernfs_break_active_protection - break out of active protection
1271 * @kn: the self kernfs_node
1273 * The caller must be running off of a kernfs operation which is invoked
1274 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1275 * this function must also be matched with an invocation of
1276 * kernfs_unbreak_active_protection().
1278 * This function releases the active reference of @kn the caller is
1279 * holding. Once this function is called, @kn may be removed at any point
1280 * and the caller is solely responsible for ensuring that the objects it
1281 * dereferences are accessible.
1283 void kernfs_break_active_protection(struct kernfs_node
*kn
)
1286 * Take out ourself out of the active ref dependency chain. If
1287 * we're called without an active ref, lockdep will complain.
1289 kernfs_put_active(kn
);
1293 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1294 * @kn: the self kernfs_node
1296 * If kernfs_break_active_protection() was called, this function must be
1297 * invoked before finishing the kernfs operation. Note that while this
1298 * function restores the active reference, it doesn't and can't actually
1299 * restore the active protection - @kn may already or be in the process of
1300 * being removed. Once kernfs_break_active_protection() is invoked, that
1301 * protection is irreversibly gone for the kernfs operation instance.
1303 * While this function may be called at any point after
1304 * kernfs_break_active_protection() is invoked, its most useful location
1305 * would be right before the enclosing kernfs operation returns.
1307 void kernfs_unbreak_active_protection(struct kernfs_node
*kn
)
1310 * @kn->active could be in any state; however, the increment we do
1311 * here will be undone as soon as the enclosing kernfs operation
1312 * finishes and this temporary bump can't break anything. If @kn
1313 * is alive, nothing changes. If @kn is being deactivated, the
1314 * soon-to-follow put will either finish deactivation or restore
1315 * deactivated state. If @kn is already removed, the temporary
1316 * bump is guaranteed to be gone before @kn is released.
1318 atomic_inc(&kn
->active
);
1319 if (kernfs_lockdep(kn
))
1320 rwsem_acquire(&kn
->dep_map
, 0, 1, _RET_IP_
);
1324 * kernfs_remove_self - remove a kernfs_node from its own method
1325 * @kn: the self kernfs_node to remove
1327 * The caller must be running off of a kernfs operation which is invoked
1328 * with an active reference - e.g. one of kernfs_ops. This can be used to
1329 * implement a file operation which deletes itself.
1331 * For example, the "delete" file for a sysfs device directory can be
1332 * implemented by invoking kernfs_remove_self() on the "delete" file
1333 * itself. This function breaks the circular dependency of trying to
1334 * deactivate self while holding an active ref itself. It isn't necessary
1335 * to modify the usual removal path to use kernfs_remove_self(). The
1336 * "delete" implementation can simply invoke kernfs_remove_self() on self
1337 * before proceeding with the usual removal path. kernfs will ignore later
1338 * kernfs_remove() on self.
1340 * kernfs_remove_self() can be called multiple times concurrently on the
1341 * same kernfs_node. Only the first one actually performs removal and
1342 * returns %true. All others will wait until the kernfs operation which
1343 * won self-removal finishes and return %false. Note that the losers wait
1344 * for the completion of not only the winning kernfs_remove_self() but also
1345 * the whole kernfs_ops which won the arbitration. This can be used to
1346 * guarantee, for example, all concurrent writes to a "delete" file to
1347 * finish only after the whole operation is complete.
1349 bool kernfs_remove_self(struct kernfs_node
*kn
)
1353 mutex_lock(&kernfs_mutex
);
1354 kernfs_break_active_protection(kn
);
1357 * SUICIDAL is used to arbitrate among competing invocations. Only
1358 * the first one will actually perform removal. When the removal
1359 * is complete, SUICIDED is set and the active ref is restored
1360 * while holding kernfs_mutex. The ones which lost arbitration
1361 * waits for SUICDED && drained which can happen only after the
1362 * enclosing kernfs operation which executed the winning instance
1363 * of kernfs_remove_self() finished.
1365 if (!(kn
->flags
& KERNFS_SUICIDAL
)) {
1366 kn
->flags
|= KERNFS_SUICIDAL
;
1367 __kernfs_remove(kn
);
1368 kn
->flags
|= KERNFS_SUICIDED
;
1371 wait_queue_head_t
*waitq
= &kernfs_root(kn
)->deactivate_waitq
;
1375 prepare_to_wait(waitq
, &wait
, TASK_UNINTERRUPTIBLE
);
1377 if ((kn
->flags
& KERNFS_SUICIDED
) &&
1378 atomic_read(&kn
->active
) == KN_DEACTIVATED_BIAS
)
1381 mutex_unlock(&kernfs_mutex
);
1383 mutex_lock(&kernfs_mutex
);
1385 finish_wait(waitq
, &wait
);
1386 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn
->rb
));
1391 * This must be done while holding kernfs_mutex; otherwise, waiting
1392 * for SUICIDED && deactivated could finish prematurely.
1394 kernfs_unbreak_active_protection(kn
);
1396 mutex_unlock(&kernfs_mutex
);
1401 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1402 * @parent: parent of the target
1403 * @name: name of the kernfs_node to remove
1404 * @ns: namespace tag of the kernfs_node to remove
1406 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1407 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1409 int kernfs_remove_by_name_ns(struct kernfs_node
*parent
, const char *name
,
1412 struct kernfs_node
*kn
;
1415 WARN(1, KERN_WARNING
"kernfs: can not remove '%s', no directory\n",
1420 mutex_lock(&kernfs_mutex
);
1422 kn
= kernfs_find_ns(parent
, name
, ns
);
1424 __kernfs_remove(kn
);
1426 mutex_unlock(&kernfs_mutex
);
1435 * kernfs_rename_ns - move and rename a kernfs_node
1437 * @new_parent: new parent to put @sd under
1438 * @new_name: new name
1439 * @new_ns: new namespace tag
1441 int kernfs_rename_ns(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
1442 const char *new_name
, const void *new_ns
)
1444 struct kernfs_node
*old_parent
;
1445 const char *old_name
= NULL
;
1448 /* can't move or rename root */
1452 mutex_lock(&kernfs_mutex
);
1455 if (!kernfs_active(kn
) || !kernfs_active(new_parent
) ||
1456 (new_parent
->flags
& KERNFS_EMPTY_DIR
))
1460 if ((kn
->parent
== new_parent
) && (kn
->ns
== new_ns
) &&
1461 (strcmp(kn
->name
, new_name
) == 0))
1462 goto out
; /* nothing to rename */
1465 if (kernfs_find_ns(new_parent
, new_name
, new_ns
))
1468 /* rename kernfs_node */
1469 if (strcmp(kn
->name
, new_name
) != 0) {
1471 new_name
= kstrdup_const(new_name
, GFP_KERNEL
);
1479 * Move to the appropriate place in the appropriate directories rbtree.
1481 kernfs_unlink_sibling(kn
);
1482 kernfs_get(new_parent
);
1484 /* rename_lock protects ->parent and ->name accessors */
1485 spin_lock_irq(&kernfs_rename_lock
);
1487 old_parent
= kn
->parent
;
1488 kn
->parent
= new_parent
;
1492 old_name
= kn
->name
;
1493 kn
->name
= new_name
;
1496 spin_unlock_irq(&kernfs_rename_lock
);
1498 kn
->hash
= kernfs_name_hash(kn
->name
, kn
->ns
);
1499 kernfs_link_sibling(kn
);
1501 kernfs_put(old_parent
);
1502 kfree_const(old_name
);
1506 mutex_unlock(&kernfs_mutex
);
1510 /* Relationship between s_mode and the DT_xxx types */
1511 static inline unsigned char dt_type(struct kernfs_node
*kn
)
1513 return (kn
->mode
>> 12) & 15;
1516 static int kernfs_dir_fop_release(struct inode
*inode
, struct file
*filp
)
1518 kernfs_put(filp
->private_data
);
1522 static struct kernfs_node
*kernfs_dir_pos(const void *ns
,
1523 struct kernfs_node
*parent
, loff_t hash
, struct kernfs_node
*pos
)
1526 int valid
= kernfs_active(pos
) &&
1527 pos
->parent
== parent
&& hash
== pos
->hash
;
1532 if (!pos
&& (hash
> 1) && (hash
< INT_MAX
)) {
1533 struct rb_node
*node
= parent
->dir
.children
.rb_node
;
1535 pos
= rb_to_kn(node
);
1537 if (hash
< pos
->hash
)
1538 node
= node
->rb_left
;
1539 else if (hash
> pos
->hash
)
1540 node
= node
->rb_right
;
1545 /* Skip over entries which are dying/dead or in the wrong namespace */
1546 while (pos
&& (!kernfs_active(pos
) || pos
->ns
!= ns
)) {
1547 struct rb_node
*node
= rb_next(&pos
->rb
);
1551 pos
= rb_to_kn(node
);
1556 static struct kernfs_node
*kernfs_dir_next_pos(const void *ns
,
1557 struct kernfs_node
*parent
, ino_t ino
, struct kernfs_node
*pos
)
1559 pos
= kernfs_dir_pos(ns
, parent
, ino
, pos
);
1562 struct rb_node
*node
= rb_next(&pos
->rb
);
1566 pos
= rb_to_kn(node
);
1567 } while (pos
&& (!kernfs_active(pos
) || pos
->ns
!= ns
));
1572 static int kernfs_fop_readdir(struct file
*file
, struct dir_context
*ctx
)
1574 struct dentry
*dentry
= file
->f_path
.dentry
;
1575 struct kernfs_node
*parent
= dentry
->d_fsdata
;
1576 struct kernfs_node
*pos
= file
->private_data
;
1577 const void *ns
= NULL
;
1579 if (!dir_emit_dots(file
, ctx
))
1581 mutex_lock(&kernfs_mutex
);
1583 if (kernfs_ns_enabled(parent
))
1584 ns
= kernfs_info(dentry
->d_sb
)->ns
;
1586 for (pos
= kernfs_dir_pos(ns
, parent
, ctx
->pos
, pos
);
1588 pos
= kernfs_dir_next_pos(ns
, parent
, ctx
->pos
, pos
)) {
1589 const char *name
= pos
->name
;
1590 unsigned int type
= dt_type(pos
);
1591 int len
= strlen(name
);
1592 ino_t ino
= pos
->ino
;
1594 ctx
->pos
= pos
->hash
;
1595 file
->private_data
= pos
;
1598 mutex_unlock(&kernfs_mutex
);
1599 if (!dir_emit(ctx
, name
, len
, ino
, type
))
1601 mutex_lock(&kernfs_mutex
);
1603 mutex_unlock(&kernfs_mutex
);
1604 file
->private_data
= NULL
;
1609 const struct file_operations kernfs_dir_fops
= {
1610 .read
= generic_read_dir
,
1611 .iterate_shared
= kernfs_fop_readdir
,
1612 .release
= kernfs_dir_fop_release
,
1613 .llseek
= generic_file_llseek
,