2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
38 kmem_zone_t
*xfs_log_ticket_zone
;
40 /* Local miscellaneous function prototypes */
44 struct xlog_ticket
*ticket
,
45 struct xlog_in_core
**iclog
,
46 xfs_lsn_t
*commitlsnp
);
51 struct xfs_buftarg
*log_target
,
52 xfs_daddr_t blk_offset
,
61 struct xlog_in_core
*iclog
);
66 /* local state machine functions */
67 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
69 xlog_state_do_callback(
72 struct xlog_in_core
*iclog
);
74 xlog_state_get_iclog_space(
77 struct xlog_in_core
**iclog
,
78 struct xlog_ticket
*ticket
,
82 xlog_state_release_iclog(
84 struct xlog_in_core
*iclog
);
86 xlog_state_switch_iclogs(
88 struct xlog_in_core
*iclog
,
93 struct xlog_in_core
*iclog
);
100 xlog_regrant_reserve_log_space(
102 struct xlog_ticket
*ticket
);
104 xlog_ungrant_log_space(
106 struct xlog_ticket
*ticket
);
110 xlog_verify_dest_ptr(
114 xlog_verify_grant_tail(
119 struct xlog_in_core
*iclog
,
123 xlog_verify_tail_lsn(
125 struct xlog_in_core
*iclog
,
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
139 xlog_grant_sub_space(
144 int64_t head_val
= atomic64_read(head
);
150 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
154 space
+= log
->l_logsize
;
159 new = xlog_assign_grant_head_val(cycle
, space
);
160 head_val
= atomic64_cmpxchg(head
, old
, new);
161 } while (head_val
!= old
);
165 xlog_grant_add_space(
170 int64_t head_val
= atomic64_read(head
);
177 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
179 tmp
= log
->l_logsize
- space
;
188 new = xlog_assign_grant_head_val(cycle
, space
);
189 head_val
= atomic64_cmpxchg(head
, old
, new);
190 } while (head_val
!= old
);
194 xlog_grant_head_init(
195 struct xlog_grant_head
*head
)
197 xlog_assign_grant_head(&head
->grant
, 1, 0);
198 INIT_LIST_HEAD(&head
->waiters
);
199 spin_lock_init(&head
->lock
);
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head
*head
)
206 struct xlog_ticket
*tic
;
208 spin_lock(&head
->lock
);
209 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
210 wake_up_process(tic
->t_task
);
211 spin_unlock(&head
->lock
);
215 xlog_ticket_reservation(
217 struct xlog_grant_head
*head
,
218 struct xlog_ticket
*tic
)
220 if (head
== &log
->l_write_head
) {
221 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
222 return tic
->t_unit_res
;
224 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
225 return tic
->t_unit_res
* tic
->t_cnt
;
227 return tic
->t_unit_res
;
232 xlog_grant_head_wake(
234 struct xlog_grant_head
*head
,
237 struct xlog_ticket
*tic
;
240 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
241 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
242 if (*free_bytes
< need_bytes
)
245 *free_bytes
-= need_bytes
;
246 trace_xfs_log_grant_wake_up(log
, tic
);
247 wake_up_process(tic
->t_task
);
254 xlog_grant_head_wait(
256 struct xlog_grant_head
*head
,
257 struct xlog_ticket
*tic
,
258 int need_bytes
) __releases(&head
->lock
)
259 __acquires(&head
->lock
)
261 list_add_tail(&tic
->t_queue
, &head
->waiters
);
264 if (XLOG_FORCED_SHUTDOWN(log
))
266 xlog_grant_push_ail(log
, need_bytes
);
268 __set_current_state(TASK_UNINTERRUPTIBLE
);
269 spin_unlock(&head
->lock
);
271 XFS_STATS_INC(log
->l_mp
, xs_sleep_logspace
);
273 trace_xfs_log_grant_sleep(log
, tic
);
275 trace_xfs_log_grant_wake(log
, tic
);
277 spin_lock(&head
->lock
);
278 if (XLOG_FORCED_SHUTDOWN(log
))
280 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
282 list_del_init(&tic
->t_queue
);
285 list_del_init(&tic
->t_queue
);
290 * Atomically get the log space required for a log ticket.
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
307 xlog_grant_head_check(
309 struct xlog_grant_head
*head
,
310 struct xlog_ticket
*tic
,
316 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
324 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
325 free_bytes
= xlog_space_left(log
, &head
->grant
);
326 if (!list_empty_careful(&head
->waiters
)) {
327 spin_lock(&head
->lock
);
328 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
329 free_bytes
< *need_bytes
) {
330 error
= xlog_grant_head_wait(log
, head
, tic
,
333 spin_unlock(&head
->lock
);
334 } else if (free_bytes
< *need_bytes
) {
335 spin_lock(&head
->lock
);
336 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
337 spin_unlock(&head
->lock
);
344 xlog_tic_reset_res(xlog_ticket_t
*tic
)
347 tic
->t_res_arr_sum
= 0;
348 tic
->t_res_num_ophdrs
= 0;
352 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
354 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
355 /* add to overflow and start again */
356 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
358 tic
->t_res_arr_sum
= 0;
361 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
362 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
363 tic
->t_res_arr_sum
+= len
;
368 * Replenish the byte reservation required by moving the grant write head.
372 struct xfs_mount
*mp
,
373 struct xlog_ticket
*tic
)
375 struct xlog
*log
= mp
->m_log
;
379 if (XLOG_FORCED_SHUTDOWN(log
))
382 XFS_STATS_INC(mp
, xs_try_logspace
);
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
392 xlog_grant_push_ail(log
, tic
->t_unit_res
);
394 tic
->t_curr_res
= tic
->t_unit_res
;
395 xlog_tic_reset_res(tic
);
400 trace_xfs_log_regrant(log
, tic
);
402 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
407 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
408 trace_xfs_log_regrant_exit(log
, tic
);
409 xlog_verify_grant_tail(log
);
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
419 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
424 * Reserve log space and return a ticket corresponding the reservation.
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
433 struct xfs_mount
*mp
,
436 struct xlog_ticket
**ticp
,
440 struct xlog
*log
= mp
->m_log
;
441 struct xlog_ticket
*tic
;
445 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
447 if (XLOG_FORCED_SHUTDOWN(log
))
450 XFS_STATS_INC(mp
, xs_try_logspace
);
452 ASSERT(*ticp
== NULL
);
453 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
,
454 KM_SLEEP
| KM_MAYFAIL
);
460 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
463 trace_xfs_log_reserve(log
, tic
);
465 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
470 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
471 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
472 trace_xfs_log_reserve_exit(log
, tic
);
473 xlog_verify_grant_tail(log
);
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
483 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
511 struct xfs_mount
*mp
,
512 struct xlog_ticket
*ticket
,
513 struct xlog_in_core
**iclog
,
516 struct xlog
*log
= mp
->m_log
;
519 if (XLOG_FORCED_SHUTDOWN(log
) ||
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
524 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
525 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
526 lsn
= (xfs_lsn_t
) -1;
532 trace_xfs_log_done_nonperm(log
, ticket
);
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
538 xlog_ungrant_log_space(log
, ticket
);
540 trace_xfs_log_done_perm(log
, ticket
);
542 xlog_regrant_reserve_log_space(log
, ticket
);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
547 ticket
->t_flags
|= XLOG_TIC_INITED
;
550 xfs_log_ticket_put(ticket
);
555 * Attaches a new iclog I/O completion callback routine during
556 * transaction commit. If the log is in error state, a non-zero
557 * return code is handed back and the caller is responsible for
558 * executing the callback at an appropriate time.
562 struct xfs_mount
*mp
,
563 struct xlog_in_core
*iclog
,
564 xfs_log_callback_t
*cb
)
568 spin_lock(&iclog
->ic_callback_lock
);
569 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
571 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
572 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
574 *(iclog
->ic_callback_tail
) = cb
;
575 iclog
->ic_callback_tail
= &(cb
->cb_next
);
577 spin_unlock(&iclog
->ic_callback_lock
);
582 xfs_log_release_iclog(
583 struct xfs_mount
*mp
,
584 struct xlog_in_core
*iclog
)
586 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
587 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
595 * Mount a log filesystem
597 * mp - ubiquitous xfs mount point structure
598 * log_target - buftarg of on-disk log device
599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
600 * num_bblocks - Number of BBSIZE blocks in on-disk log
602 * Return error or zero.
607 xfs_buftarg_t
*log_target
,
608 xfs_daddr_t blk_offset
,
614 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
615 xfs_notice(mp
, "Mounting V%d Filesystem",
616 XFS_SB_VERSION_NUM(&mp
->m_sb
));
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620 XFS_SB_VERSION_NUM(&mp
->m_sb
));
621 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
624 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
625 if (IS_ERR(mp
->m_log
)) {
626 error
= PTR_ERR(mp
->m_log
);
631 * Validate the given log space and drop a critical message via syslog
632 * if the log size is too small that would lead to some unexpected
633 * situations in transaction log space reservation stage.
635 * Note: we can't just reject the mount if the validation fails. This
636 * would mean that people would have to downgrade their kernel just to
637 * remedy the situation as there is no way to grow the log (short of
638 * black magic surgery with xfs_db).
640 * We can, however, reject mounts for CRC format filesystems, as the
641 * mkfs binary being used to make the filesystem should never create a
642 * filesystem with a log that is too small.
644 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
646 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
648 "Log size %d blocks too small, minimum size is %d blocks",
649 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
651 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
653 "Log size %d blocks too large, maximum size is %lld blocks",
654 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
656 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
658 "log size %lld bytes too large, maximum size is %lld bytes",
659 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
664 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
665 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
669 xfs_crit(mp
, "Log size out of supported range.");
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
675 * Initialize the AIL now we have a log.
677 error
= xfs_trans_ail_init(mp
);
679 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
682 mp
->m_log
->l_ailp
= mp
->m_ail
;
685 * skip log recovery on a norecovery mount. pretend it all
688 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
689 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
692 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
694 error
= xlog_recover(mp
->m_log
);
697 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
699 xfs_warn(mp
, "log mount/recovery failed: error %d",
701 xlog_recover_cancel(mp
->m_log
);
702 goto out_destroy_ail
;
706 error
= xfs_sysfs_init(&mp
->m_log
->l_kobj
, &xfs_log_ktype
, &mp
->m_kobj
,
709 goto out_destroy_ail
;
711 /* Normal transactions can now occur */
712 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
715 * Now the log has been fully initialised and we know were our
716 * space grant counters are, we can initialise the permanent ticket
717 * needed for delayed logging to work.
719 xlog_cil_init_post_recovery(mp
->m_log
);
724 xfs_trans_ail_destroy(mp
);
726 xlog_dealloc_log(mp
->m_log
);
732 * Finish the recovery of the file system. This is separate from the
733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
737 * If we finish recovery successfully, start the background log work. If we are
738 * not doing recovery, then we have a RO filesystem and we don't need to start
742 xfs_log_mount_finish(
743 struct xfs_mount
*mp
)
747 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
) {
748 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
752 error
= xlog_recover_finish(mp
->m_log
);
754 xfs_log_work_queue(mp
);
760 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
764 xfs_log_mount_cancel(
765 struct xfs_mount
*mp
)
769 error
= xlog_recover_cancel(mp
->m_log
);
776 * Final log writes as part of unmount.
778 * Mark the filesystem clean as unmount happens. Note that during relocation
779 * this routine needs to be executed as part of source-bag while the
780 * deallocation must not be done until source-end.
784 * Unmount record used to have a string "Unmount filesystem--" in the
785 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
786 * We just write the magic number now since that particular field isn't
787 * currently architecture converted and "Unmount" is a bit foo.
788 * As far as I know, there weren't any dependencies on the old behaviour.
792 xfs_log_unmount_write(xfs_mount_t
*mp
)
794 struct xlog
*log
= mp
->m_log
;
795 xlog_in_core_t
*iclog
;
797 xlog_in_core_t
*first_iclog
;
799 xlog_ticket_t
*tic
= NULL
;
804 * Don't write out unmount record on read-only mounts.
805 * Or, if we are doing a forced umount (typically because of IO errors).
807 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
810 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
811 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
814 first_iclog
= iclog
= log
->l_iclog
;
816 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
817 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
818 ASSERT(iclog
->ic_offset
== 0);
820 iclog
= iclog
->ic_next
;
821 } while (iclog
!= first_iclog
);
823 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
824 error
= xfs_log_reserve(mp
, 600, 1, &tic
, XFS_LOG
, 0);
826 /* the data section must be 32 bit size aligned */
830 uint32_t pad2
; /* may as well make it 64 bits */
832 .magic
= XLOG_UNMOUNT_TYPE
,
834 struct xfs_log_iovec reg
= {
836 .i_len
= sizeof(magic
),
837 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
839 struct xfs_log_vec vec
= {
844 /* remove inited flag, and account for space used */
846 tic
->t_curr_res
-= sizeof(magic
);
847 error
= xlog_write(log
, &vec
, tic
, &lsn
,
848 NULL
, XLOG_UNMOUNT_TRANS
);
850 * At this point, we're umounting anyway,
851 * so there's no point in transitioning log state
852 * to IOERROR. Just continue...
857 xfs_alert(mp
, "%s: unmount record failed", __func__
);
860 spin_lock(&log
->l_icloglock
);
861 iclog
= log
->l_iclog
;
862 atomic_inc(&iclog
->ic_refcnt
);
863 xlog_state_want_sync(log
, iclog
);
864 spin_unlock(&log
->l_icloglock
);
865 error
= xlog_state_release_iclog(log
, iclog
);
867 spin_lock(&log
->l_icloglock
);
868 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
869 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
870 if (!XLOG_FORCED_SHUTDOWN(log
)) {
871 xlog_wait(&iclog
->ic_force_wait
,
874 spin_unlock(&log
->l_icloglock
);
877 spin_unlock(&log
->l_icloglock
);
880 trace_xfs_log_umount_write(log
, tic
);
881 xlog_ungrant_log_space(log
, tic
);
882 xfs_log_ticket_put(tic
);
886 * We're already in forced_shutdown mode, couldn't
887 * even attempt to write out the unmount transaction.
889 * Go through the motions of sync'ing and releasing
890 * the iclog, even though no I/O will actually happen,
891 * we need to wait for other log I/Os that may already
892 * be in progress. Do this as a separate section of
893 * code so we'll know if we ever get stuck here that
894 * we're in this odd situation of trying to unmount
895 * a file system that went into forced_shutdown as
896 * the result of an unmount..
898 spin_lock(&log
->l_icloglock
);
899 iclog
= log
->l_iclog
;
900 atomic_inc(&iclog
->ic_refcnt
);
902 xlog_state_want_sync(log
, iclog
);
903 spin_unlock(&log
->l_icloglock
);
904 error
= xlog_state_release_iclog(log
, iclog
);
906 spin_lock(&log
->l_icloglock
);
908 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
909 || iclog
->ic_state
== XLOG_STATE_DIRTY
910 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
912 xlog_wait(&iclog
->ic_force_wait
,
915 spin_unlock(&log
->l_icloglock
);
920 } /* xfs_log_unmount_write */
923 * Empty the log for unmount/freeze.
925 * To do this, we first need to shut down the background log work so it is not
926 * trying to cover the log as we clean up. We then need to unpin all objects in
927 * the log so we can then flush them out. Once they have completed their IO and
928 * run the callbacks removing themselves from the AIL, we can write the unmount
933 struct xfs_mount
*mp
)
935 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
936 xfs_log_force(mp
, XFS_LOG_SYNC
);
939 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
940 * will push it, xfs_wait_buftarg() will not wait for it. Further,
941 * xfs_buf_iowait() cannot be used because it was pushed with the
942 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
943 * the IO to complete.
945 xfs_ail_push_all_sync(mp
->m_ail
);
946 xfs_wait_buftarg(mp
->m_ddev_targp
);
947 xfs_buf_lock(mp
->m_sb_bp
);
948 xfs_buf_unlock(mp
->m_sb_bp
);
950 xfs_log_unmount_write(mp
);
954 * Shut down and release the AIL and Log.
956 * During unmount, we need to ensure we flush all the dirty metadata objects
957 * from the AIL so that the log is empty before we write the unmount record to
958 * the log. Once this is done, we can tear down the AIL and the log.
962 struct xfs_mount
*mp
)
966 xfs_trans_ail_destroy(mp
);
968 xfs_sysfs_del(&mp
->m_log
->l_kobj
);
970 xlog_dealloc_log(mp
->m_log
);
975 struct xfs_mount
*mp
,
976 struct xfs_log_item
*item
,
978 const struct xfs_item_ops
*ops
)
980 item
->li_mountp
= mp
;
981 item
->li_ailp
= mp
->m_ail
;
982 item
->li_type
= type
;
986 INIT_LIST_HEAD(&item
->li_ail
);
987 INIT_LIST_HEAD(&item
->li_cil
);
991 * Wake up processes waiting for log space after we have moved the log tail.
995 struct xfs_mount
*mp
)
997 struct xlog
*log
= mp
->m_log
;
1000 if (XLOG_FORCED_SHUTDOWN(log
))
1003 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
1004 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1006 spin_lock(&log
->l_write_head
.lock
);
1007 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
1008 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
1009 spin_unlock(&log
->l_write_head
.lock
);
1012 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
1013 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1015 spin_lock(&log
->l_reserve_head
.lock
);
1016 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1017 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
1018 spin_unlock(&log
->l_reserve_head
.lock
);
1023 * Determine if we have a transaction that has gone to disk that needs to be
1024 * covered. To begin the transition to the idle state firstly the log needs to
1025 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1026 * we start attempting to cover the log.
1028 * Only if we are then in a state where covering is needed, the caller is
1029 * informed that dummy transactions are required to move the log into the idle
1032 * If there are any items in the AIl or CIL, then we do not want to attempt to
1033 * cover the log as we may be in a situation where there isn't log space
1034 * available to run a dummy transaction and this can lead to deadlocks when the
1035 * tail of the log is pinned by an item that is modified in the CIL. Hence
1036 * there's no point in running a dummy transaction at this point because we
1037 * can't start trying to idle the log until both the CIL and AIL are empty.
1040 xfs_log_need_covered(xfs_mount_t
*mp
)
1042 struct xlog
*log
= mp
->m_log
;
1045 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
1048 if (!xlog_cil_empty(log
))
1051 spin_lock(&log
->l_icloglock
);
1052 switch (log
->l_covered_state
) {
1053 case XLOG_STATE_COVER_DONE
:
1054 case XLOG_STATE_COVER_DONE2
:
1055 case XLOG_STATE_COVER_IDLE
:
1057 case XLOG_STATE_COVER_NEED
:
1058 case XLOG_STATE_COVER_NEED2
:
1059 if (xfs_ail_min_lsn(log
->l_ailp
))
1061 if (!xlog_iclogs_empty(log
))
1065 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1066 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1068 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1074 spin_unlock(&log
->l_icloglock
);
1079 * We may be holding the log iclog lock upon entering this routine.
1082 xlog_assign_tail_lsn_locked(
1083 struct xfs_mount
*mp
)
1085 struct xlog
*log
= mp
->m_log
;
1086 struct xfs_log_item
*lip
;
1089 assert_spin_locked(&mp
->m_ail
->xa_lock
);
1092 * To make sure we always have a valid LSN for the log tail we keep
1093 * track of the last LSN which was committed in log->l_last_sync_lsn,
1094 * and use that when the AIL was empty.
1096 lip
= xfs_ail_min(mp
->m_ail
);
1098 tail_lsn
= lip
->li_lsn
;
1100 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1101 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1102 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1107 xlog_assign_tail_lsn(
1108 struct xfs_mount
*mp
)
1112 spin_lock(&mp
->m_ail
->xa_lock
);
1113 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1114 spin_unlock(&mp
->m_ail
->xa_lock
);
1120 * Return the space in the log between the tail and the head. The head
1121 * is passed in the cycle/bytes formal parms. In the special case where
1122 * the reserve head has wrapped passed the tail, this calculation is no
1123 * longer valid. In this case, just return 0 which means there is no space
1124 * in the log. This works for all places where this function is called
1125 * with the reserve head. Of course, if the write head were to ever
1126 * wrap the tail, we should blow up. Rather than catch this case here,
1127 * we depend on other ASSERTions in other parts of the code. XXXmiken
1129 * This code also handles the case where the reservation head is behind
1130 * the tail. The details of this case are described below, but the end
1131 * result is that we return the size of the log as the amount of space left.
1144 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1145 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1146 tail_bytes
= BBTOB(tail_bytes
);
1147 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1148 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1149 else if (tail_cycle
+ 1 < head_cycle
)
1151 else if (tail_cycle
< head_cycle
) {
1152 ASSERT(tail_cycle
== (head_cycle
- 1));
1153 free_bytes
= tail_bytes
- head_bytes
;
1156 * The reservation head is behind the tail.
1157 * In this case we just want to return the size of the
1158 * log as the amount of space left.
1160 xfs_alert(log
->l_mp
, "xlog_space_left: head behind tail");
1161 xfs_alert(log
->l_mp
,
1162 " tail_cycle = %d, tail_bytes = %d",
1163 tail_cycle
, tail_bytes
);
1164 xfs_alert(log
->l_mp
,
1165 " GH cycle = %d, GH bytes = %d",
1166 head_cycle
, head_bytes
);
1168 free_bytes
= log
->l_logsize
;
1175 * Log function which is called when an io completes.
1177 * The log manager needs its own routine, in order to control what
1178 * happens with the buffer after the write completes.
1181 xlog_iodone(xfs_buf_t
*bp
)
1183 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1184 struct xlog
*l
= iclog
->ic_log
;
1188 * Race to shutdown the filesystem if we see an error or the iclog is in
1189 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1190 * CRC errors into log recovery.
1192 if (XFS_TEST_ERROR(bp
->b_error
, l
->l_mp
, XFS_ERRTAG_IODONE_IOERR
) ||
1193 iclog
->ic_state
& XLOG_STATE_IOABORT
) {
1194 if (iclog
->ic_state
& XLOG_STATE_IOABORT
)
1195 iclog
->ic_state
&= ~XLOG_STATE_IOABORT
;
1197 xfs_buf_ioerror_alert(bp
, __func__
);
1199 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1201 * This flag will be propagated to the trans-committed
1202 * callback routines to let them know that the log-commit
1205 aborted
= XFS_LI_ABORTED
;
1206 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1207 aborted
= XFS_LI_ABORTED
;
1210 /* log I/O is always issued ASYNC */
1211 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1212 xlog_state_done_syncing(iclog
, aborted
);
1215 * drop the buffer lock now that we are done. Nothing references
1216 * the buffer after this, so an unmount waiting on this lock can now
1217 * tear it down safely. As such, it is unsafe to reference the buffer
1218 * (bp) after the unlock as we could race with it being freed.
1224 * Return size of each in-core log record buffer.
1226 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1228 * If the filesystem blocksize is too large, we may need to choose a
1229 * larger size since the directory code currently logs entire blocks.
1233 xlog_get_iclog_buffer_size(
1234 struct xfs_mount
*mp
,
1240 if (mp
->m_logbufs
<= 0)
1241 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1243 log
->l_iclog_bufs
= mp
->m_logbufs
;
1246 * Buffer size passed in from mount system call.
1248 if (mp
->m_logbsize
> 0) {
1249 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1250 log
->l_iclog_size_log
= 0;
1252 log
->l_iclog_size_log
++;
1256 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1257 /* # headers = size / 32k
1258 * one header holds cycles from 32k of data
1261 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1262 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1264 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1265 log
->l_iclog_heads
= xhdrs
;
1267 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1268 log
->l_iclog_hsize
= BBSIZE
;
1269 log
->l_iclog_heads
= 1;
1274 /* All machines use 32kB buffers by default. */
1275 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1276 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1278 /* the default log size is 16k or 32k which is one header sector */
1279 log
->l_iclog_hsize
= BBSIZE
;
1280 log
->l_iclog_heads
= 1;
1283 /* are we being asked to make the sizes selected above visible? */
1284 if (mp
->m_logbufs
== 0)
1285 mp
->m_logbufs
= log
->l_iclog_bufs
;
1286 if (mp
->m_logbsize
== 0)
1287 mp
->m_logbsize
= log
->l_iclog_size
;
1288 } /* xlog_get_iclog_buffer_size */
1293 struct xfs_mount
*mp
)
1295 queue_delayed_work(mp
->m_sync_workqueue
, &mp
->m_log
->l_work
,
1296 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1300 * Every sync period we need to unpin all items in the AIL and push them to
1301 * disk. If there is nothing dirty, then we might need to cover the log to
1302 * indicate that the filesystem is idle.
1306 struct work_struct
*work
)
1308 struct xlog
*log
= container_of(to_delayed_work(work
),
1309 struct xlog
, l_work
);
1310 struct xfs_mount
*mp
= log
->l_mp
;
1312 /* dgc: errors ignored - not fatal and nowhere to report them */
1313 if (xfs_log_need_covered(mp
)) {
1315 * Dump a transaction into the log that contains no real change.
1316 * This is needed to stamp the current tail LSN into the log
1317 * during the covering operation.
1319 * We cannot use an inode here for this - that will push dirty
1320 * state back up into the VFS and then periodic inode flushing
1321 * will prevent log covering from making progress. Hence we
1322 * synchronously log the superblock instead to ensure the
1323 * superblock is immediately unpinned and can be written back.
1325 xfs_sync_sb(mp
, true);
1327 xfs_log_force(mp
, 0);
1329 /* start pushing all the metadata that is currently dirty */
1330 xfs_ail_push_all(mp
->m_ail
);
1332 /* queue us up again */
1333 xfs_log_work_queue(mp
);
1337 * This routine initializes some of the log structure for a given mount point.
1338 * Its primary purpose is to fill in enough, so recovery can occur. However,
1339 * some other stuff may be filled in too.
1341 STATIC
struct xlog
*
1343 struct xfs_mount
*mp
,
1344 struct xfs_buftarg
*log_target
,
1345 xfs_daddr_t blk_offset
,
1349 xlog_rec_header_t
*head
;
1350 xlog_in_core_t
**iclogp
;
1351 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1354 int error
= -ENOMEM
;
1357 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1359 xfs_warn(mp
, "Log allocation failed: No memory!");
1364 log
->l_targ
= log_target
;
1365 log
->l_logsize
= BBTOB(num_bblks
);
1366 log
->l_logBBstart
= blk_offset
;
1367 log
->l_logBBsize
= num_bblks
;
1368 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1369 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1370 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1372 log
->l_prev_block
= -1;
1373 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1374 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1375 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1376 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1378 xlog_grant_head_init(&log
->l_reserve_head
);
1379 xlog_grant_head_init(&log
->l_write_head
);
1381 error
= -EFSCORRUPTED
;
1382 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1383 log2_size
= mp
->m_sb
.sb_logsectlog
;
1384 if (log2_size
< BBSHIFT
) {
1385 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1386 log2_size
, BBSHIFT
);
1390 log2_size
-= BBSHIFT
;
1391 if (log2_size
> mp
->m_sectbb_log
) {
1392 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1393 log2_size
, mp
->m_sectbb_log
);
1397 /* for larger sector sizes, must have v2 or external log */
1398 if (log2_size
&& log
->l_logBBstart
> 0 &&
1399 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1401 "log sector size (0x%x) invalid for configuration.",
1406 log
->l_sectBBsize
= 1 << log2_size
;
1408 xlog_get_iclog_buffer_size(mp
, log
);
1411 * Use a NULL block for the extra log buffer used during splits so that
1412 * it will trigger errors if we ever try to do IO on it without first
1413 * having set it up properly.
1416 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, XFS_BUF_DADDR_NULL
,
1417 BTOBB(log
->l_iclog_size
), XBF_NO_IOACCT
);
1422 * The iclogbuf buffer locks are held over IO but we are not going to do
1423 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1424 * when appropriately.
1426 ASSERT(xfs_buf_islocked(bp
));
1429 /* use high priority wq for log I/O completion */
1430 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1431 bp
->b_iodone
= xlog_iodone
;
1434 spin_lock_init(&log
->l_icloglock
);
1435 init_waitqueue_head(&log
->l_flush_wait
);
1437 iclogp
= &log
->l_iclog
;
1439 * The amount of memory to allocate for the iclog structure is
1440 * rather funky due to the way the structure is defined. It is
1441 * done this way so that we can use different sizes for machines
1442 * with different amounts of memory. See the definition of
1443 * xlog_in_core_t in xfs_log_priv.h for details.
1445 ASSERT(log
->l_iclog_size
>= 4096);
1446 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1447 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1449 goto out_free_iclog
;
1452 iclog
->ic_prev
= prev_iclog
;
1455 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1456 BTOBB(log
->l_iclog_size
),
1459 goto out_free_iclog
;
1461 ASSERT(xfs_buf_islocked(bp
));
1464 /* use high priority wq for log I/O completion */
1465 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1466 bp
->b_iodone
= xlog_iodone
;
1468 iclog
->ic_data
= bp
->b_addr
;
1470 log
->l_iclog_bak
[i
] = &iclog
->ic_header
;
1472 head
= &iclog
->ic_header
;
1473 memset(head
, 0, sizeof(xlog_rec_header_t
));
1474 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1475 head
->h_version
= cpu_to_be32(
1476 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1477 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1479 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1480 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1482 iclog
->ic_size
= BBTOB(bp
->b_length
) - log
->l_iclog_hsize
;
1483 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1484 iclog
->ic_log
= log
;
1485 atomic_set(&iclog
->ic_refcnt
, 0);
1486 spin_lock_init(&iclog
->ic_callback_lock
);
1487 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1488 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1490 init_waitqueue_head(&iclog
->ic_force_wait
);
1491 init_waitqueue_head(&iclog
->ic_write_wait
);
1493 iclogp
= &iclog
->ic_next
;
1495 *iclogp
= log
->l_iclog
; /* complete ring */
1496 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1498 error
= xlog_cil_init(log
);
1500 goto out_free_iclog
;
1504 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1505 prev_iclog
= iclog
->ic_next
;
1507 xfs_buf_free(iclog
->ic_bp
);
1510 spinlock_destroy(&log
->l_icloglock
);
1511 xfs_buf_free(log
->l_xbuf
);
1515 return ERR_PTR(error
);
1516 } /* xlog_alloc_log */
1520 * Write out the commit record of a transaction associated with the given
1521 * ticket. Return the lsn of the commit record.
1526 struct xlog_ticket
*ticket
,
1527 struct xlog_in_core
**iclog
,
1528 xfs_lsn_t
*commitlsnp
)
1530 struct xfs_mount
*mp
= log
->l_mp
;
1532 struct xfs_log_iovec reg
= {
1535 .i_type
= XLOG_REG_TYPE_COMMIT
,
1537 struct xfs_log_vec vec
= {
1542 ASSERT_ALWAYS(iclog
);
1543 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1546 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1551 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1552 * log space. This code pushes on the lsn which would supposedly free up
1553 * the 25% which we want to leave free. We may need to adopt a policy which
1554 * pushes on an lsn which is further along in the log once we reach the high
1555 * water mark. In this manner, we would be creating a low water mark.
1558 xlog_grant_push_ail(
1562 xfs_lsn_t threshold_lsn
= 0;
1563 xfs_lsn_t last_sync_lsn
;
1566 int threshold_block
;
1567 int threshold_cycle
;
1570 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1572 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1573 free_blocks
= BTOBBT(free_bytes
);
1576 * Set the threshold for the minimum number of free blocks in the
1577 * log to the maximum of what the caller needs, one quarter of the
1578 * log, and 256 blocks.
1580 free_threshold
= BTOBB(need_bytes
);
1581 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1582 free_threshold
= MAX(free_threshold
, 256);
1583 if (free_blocks
>= free_threshold
)
1586 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1588 threshold_block
+= free_threshold
;
1589 if (threshold_block
>= log
->l_logBBsize
) {
1590 threshold_block
-= log
->l_logBBsize
;
1591 threshold_cycle
+= 1;
1593 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1596 * Don't pass in an lsn greater than the lsn of the last
1597 * log record known to be on disk. Use a snapshot of the last sync lsn
1598 * so that it doesn't change between the compare and the set.
1600 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1601 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1602 threshold_lsn
= last_sync_lsn
;
1605 * Get the transaction layer to kick the dirty buffers out to
1606 * disk asynchronously. No point in trying to do this if
1607 * the filesystem is shutting down.
1609 if (!XLOG_FORCED_SHUTDOWN(log
))
1610 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1614 * Stamp cycle number in every block
1619 struct xlog_in_core
*iclog
,
1623 int size
= iclog
->ic_offset
+ roundoff
;
1627 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1629 dp
= iclog
->ic_datap
;
1630 for (i
= 0; i
< BTOBB(size
); i
++) {
1631 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1633 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1634 *(__be32
*)dp
= cycle_lsn
;
1638 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1639 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1641 for ( ; i
< BTOBB(size
); i
++) {
1642 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1643 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1644 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1645 *(__be32
*)dp
= cycle_lsn
;
1649 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1650 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1655 * Calculate the checksum for a log buffer.
1657 * This is a little more complicated than it should be because the various
1658 * headers and the actual data are non-contiguous.
1663 struct xlog_rec_header
*rhead
,
1669 /* first generate the crc for the record header ... */
1670 crc
= xfs_start_cksum_update((char *)rhead
,
1671 sizeof(struct xlog_rec_header
),
1672 offsetof(struct xlog_rec_header
, h_crc
));
1674 /* ... then for additional cycle data for v2 logs ... */
1675 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1676 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1680 xheads
= size
/ XLOG_HEADER_CYCLE_SIZE
;
1681 if (size
% XLOG_HEADER_CYCLE_SIZE
)
1684 for (i
= 1; i
< xheads
; i
++) {
1685 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1686 sizeof(struct xlog_rec_ext_header
));
1690 /* ... and finally for the payload */
1691 crc
= crc32c(crc
, dp
, size
);
1693 return xfs_end_cksum(crc
);
1697 * The bdstrat callback function for log bufs. This gives us a central
1698 * place to trap bufs in case we get hit by a log I/O error and need to
1699 * shutdown. Actually, in practice, even when we didn't get a log error,
1700 * we transition the iclogs to IOERROR state *after* flushing all existing
1701 * iclogs to disk. This is because we don't want anymore new transactions to be
1702 * started or completed afterwards.
1704 * We lock the iclogbufs here so that we can serialise against IO completion
1705 * during unmount. We might be processing a shutdown triggered during unmount,
1706 * and that can occur asynchronously to the unmount thread, and hence we need to
1707 * ensure that completes before tearing down the iclogbufs. Hence we need to
1708 * hold the buffer lock across the log IO to acheive that.
1714 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1717 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1718 xfs_buf_ioerror(bp
, -EIO
);
1722 * It would seem logical to return EIO here, but we rely on
1723 * the log state machine to propagate I/O errors instead of
1724 * doing it here. Similarly, IO completion will unlock the
1725 * buffer, so we don't do it here.
1735 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1736 * fashion. Previously, we should have moved the current iclog
1737 * ptr in the log to point to the next available iclog. This allows further
1738 * write to continue while this code syncs out an iclog ready to go.
1739 * Before an in-core log can be written out, the data section must be scanned
1740 * to save away the 1st word of each BBSIZE block into the header. We replace
1741 * it with the current cycle count. Each BBSIZE block is tagged with the
1742 * cycle count because there in an implicit assumption that drives will
1743 * guarantee that entire 512 byte blocks get written at once. In other words,
1744 * we can't have part of a 512 byte block written and part not written. By
1745 * tagging each block, we will know which blocks are valid when recovering
1746 * after an unclean shutdown.
1748 * This routine is single threaded on the iclog. No other thread can be in
1749 * this routine with the same iclog. Changing contents of iclog can there-
1750 * fore be done without grabbing the state machine lock. Updating the global
1751 * log will require grabbing the lock though.
1753 * The entire log manager uses a logical block numbering scheme. Only
1754 * log_sync (and then only bwrite()) know about the fact that the log may
1755 * not start with block zero on a given device. The log block start offset
1756 * is added immediately before calling bwrite().
1762 struct xlog_in_core
*iclog
)
1766 uint count
; /* byte count of bwrite */
1767 uint count_init
; /* initial count before roundup */
1768 int roundoff
; /* roundoff to BB or stripe */
1769 int split
= 0; /* split write into two regions */
1771 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1774 XFS_STATS_INC(log
->l_mp
, xs_log_writes
);
1775 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1777 /* Add for LR header */
1778 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1780 /* Round out the log write size */
1781 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1782 /* we have a v2 stripe unit to use */
1783 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1785 count
= BBTOB(BTOBB(count_init
));
1787 roundoff
= count
- count_init
;
1788 ASSERT(roundoff
>= 0);
1789 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1790 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1792 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1793 roundoff
< BBTOB(1)));
1795 /* move grant heads by roundoff in sync */
1796 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1797 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1799 /* put cycle number in every block */
1800 xlog_pack_data(log
, iclog
, roundoff
);
1802 /* real byte length */
1803 size
= iclog
->ic_offset
;
1806 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1809 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1811 XFS_STATS_ADD(log
->l_mp
, xs_log_blocks
, BTOBB(count
));
1813 /* Do we need to split this write into 2 parts? */
1814 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1817 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1818 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1819 iclog
->ic_bwritecnt
= 2;
1822 * Bump the cycle numbers at the start of each block in the
1823 * part of the iclog that ends up in the buffer that gets
1824 * written to the start of the log.
1826 * Watch out for the header magic number case, though.
1828 dptr
= (char *)&iclog
->ic_header
+ count
;
1829 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1830 uint32_t cycle
= be32_to_cpu(*(__be32
*)dptr
);
1831 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1833 *(__be32
*)dptr
= cpu_to_be32(cycle
);
1838 iclog
->ic_bwritecnt
= 1;
1841 /* calculcate the checksum */
1842 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1843 iclog
->ic_datap
, size
);
1845 * Intentionally corrupt the log record CRC based on the error injection
1846 * frequency, if defined. This facilitates testing log recovery in the
1847 * event of torn writes. Hence, set the IOABORT state to abort the log
1848 * write on I/O completion and shutdown the fs. The subsequent mount
1849 * detects the bad CRC and attempts to recover.
1851 if (XFS_TEST_ERROR(false, log
->l_mp
, XFS_ERRTAG_LOG_BAD_CRC
)) {
1852 iclog
->ic_header
.h_crc
&= cpu_to_le32(0xAAAAAAAA);
1853 iclog
->ic_state
|= XLOG_STATE_IOABORT
;
1855 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1856 be64_to_cpu(iclog
->ic_header
.h_lsn
));
1859 bp
->b_io_length
= BTOBB(count
);
1860 bp
->b_fspriv
= iclog
;
1861 bp
->b_flags
&= ~XBF_FLUSH
;
1862 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
| XBF_FUA
);
1865 * Flush the data device before flushing the log to make sure all meta
1866 * data written back from the AIL actually made it to disk before
1867 * stamping the new log tail LSN into the log buffer. For an external
1868 * log we need to issue the flush explicitly, and unfortunately
1869 * synchronously here; for an internal log we can simply use the block
1870 * layer state machine for preflushes.
1872 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1873 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1875 bp
->b_flags
|= XBF_FLUSH
;
1877 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1878 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1880 xlog_verify_iclog(log
, iclog
, count
, true);
1882 /* account for log which doesn't start at block #0 */
1883 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1886 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1889 error
= xlog_bdstrat(bp
);
1891 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1895 bp
= iclog
->ic_log
->l_xbuf
;
1896 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1897 xfs_buf_associate_memory(bp
,
1898 (char *)&iclog
->ic_header
+ count
, split
);
1899 bp
->b_fspriv
= iclog
;
1900 bp
->b_flags
&= ~XBF_FLUSH
;
1901 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
| XBF_FUA
);
1903 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1904 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1906 /* account for internal log which doesn't start at block #0 */
1907 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1908 error
= xlog_bdstrat(bp
);
1910 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1918 * Deallocate a log structure
1924 xlog_in_core_t
*iclog
, *next_iclog
;
1927 xlog_cil_destroy(log
);
1930 * Cycle all the iclogbuf locks to make sure all log IO completion
1931 * is done before we tear down these buffers.
1933 iclog
= log
->l_iclog
;
1934 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1935 xfs_buf_lock(iclog
->ic_bp
);
1936 xfs_buf_unlock(iclog
->ic_bp
);
1937 iclog
= iclog
->ic_next
;
1941 * Always need to ensure that the extra buffer does not point to memory
1942 * owned by another log buffer before we free it. Also, cycle the lock
1943 * first to ensure we've completed IO on it.
1945 xfs_buf_lock(log
->l_xbuf
);
1946 xfs_buf_unlock(log
->l_xbuf
);
1947 xfs_buf_set_empty(log
->l_xbuf
, BTOBB(log
->l_iclog_size
));
1948 xfs_buf_free(log
->l_xbuf
);
1950 iclog
= log
->l_iclog
;
1951 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1952 xfs_buf_free(iclog
->ic_bp
);
1953 next_iclog
= iclog
->ic_next
;
1957 spinlock_destroy(&log
->l_icloglock
);
1959 log
->l_mp
->m_log
= NULL
;
1961 } /* xlog_dealloc_log */
1964 * Update counters atomically now that memcpy is done.
1968 xlog_state_finish_copy(
1970 struct xlog_in_core
*iclog
,
1974 spin_lock(&log
->l_icloglock
);
1976 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
1977 iclog
->ic_offset
+= copy_bytes
;
1979 spin_unlock(&log
->l_icloglock
);
1980 } /* xlog_state_finish_copy */
1986 * print out info relating to regions written which consume
1991 struct xfs_mount
*mp
,
1992 struct xlog_ticket
*ticket
)
1995 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
1997 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1998 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
1999 static char *res_type_str
[XLOG_REG_TYPE_MAX
+ 1] = {
2000 REG_TYPE_STR(BFORMAT
, "bformat"),
2001 REG_TYPE_STR(BCHUNK
, "bchunk"),
2002 REG_TYPE_STR(EFI_FORMAT
, "efi_format"),
2003 REG_TYPE_STR(EFD_FORMAT
, "efd_format"),
2004 REG_TYPE_STR(IFORMAT
, "iformat"),
2005 REG_TYPE_STR(ICORE
, "icore"),
2006 REG_TYPE_STR(IEXT
, "iext"),
2007 REG_TYPE_STR(IBROOT
, "ibroot"),
2008 REG_TYPE_STR(ILOCAL
, "ilocal"),
2009 REG_TYPE_STR(IATTR_EXT
, "iattr_ext"),
2010 REG_TYPE_STR(IATTR_BROOT
, "iattr_broot"),
2011 REG_TYPE_STR(IATTR_LOCAL
, "iattr_local"),
2012 REG_TYPE_STR(QFORMAT
, "qformat"),
2013 REG_TYPE_STR(DQUOT
, "dquot"),
2014 REG_TYPE_STR(QUOTAOFF
, "quotaoff"),
2015 REG_TYPE_STR(LRHEADER
, "LR header"),
2016 REG_TYPE_STR(UNMOUNT
, "unmount"),
2017 REG_TYPE_STR(COMMIT
, "commit"),
2018 REG_TYPE_STR(TRANSHDR
, "trans header"),
2019 REG_TYPE_STR(ICREATE
, "inode create")
2023 xfs_warn(mp
, "ticket reservation summary:");
2024 xfs_warn(mp
, " unit res = %d bytes",
2025 ticket
->t_unit_res
);
2026 xfs_warn(mp
, " current res = %d bytes",
2027 ticket
->t_curr_res
);
2028 xfs_warn(mp
, " total reg = %u bytes (o/flow = %u bytes)",
2029 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
);
2030 xfs_warn(mp
, " ophdrs = %u (ophdr space = %u bytes)",
2031 ticket
->t_res_num_ophdrs
, ophdr_spc
);
2032 xfs_warn(mp
, " ophdr + reg = %u bytes",
2033 ticket
->t_res_arr_sum
+ ticket
->t_res_o_flow
+ ophdr_spc
);
2034 xfs_warn(mp
, " num regions = %u",
2037 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
2038 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
2039 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
2040 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
2041 "bad-rtype" : res_type_str
[r_type
]),
2042 ticket
->t_res_arr
[i
].r_len
);
2047 * Print a summary of the transaction.
2051 struct xfs_trans
*tp
)
2053 struct xfs_mount
*mp
= tp
->t_mountp
;
2054 struct xfs_log_item_desc
*lidp
;
2056 /* dump core transaction and ticket info */
2057 xfs_warn(mp
, "transaction summary:");
2058 xfs_warn(mp
, " flags = 0x%x", tp
->t_flags
);
2060 xlog_print_tic_res(mp
, tp
->t_ticket
);
2062 /* dump each log item */
2063 list_for_each_entry(lidp
, &tp
->t_items
, lid_trans
) {
2064 struct xfs_log_item
*lip
= lidp
->lid_item
;
2065 struct xfs_log_vec
*lv
= lip
->li_lv
;
2066 struct xfs_log_iovec
*vec
;
2069 xfs_warn(mp
, "log item: ");
2070 xfs_warn(mp
, " type = 0x%x", lip
->li_type
);
2071 xfs_warn(mp
, " flags = 0x%x", lip
->li_flags
);
2074 xfs_warn(mp
, " niovecs = %d", lv
->lv_niovecs
);
2075 xfs_warn(mp
, " size = %d", lv
->lv_size
);
2076 xfs_warn(mp
, " bytes = %d", lv
->lv_bytes
);
2077 xfs_warn(mp
, " buf len = %d", lv
->lv_buf_len
);
2079 /* dump each iovec for the log item */
2080 vec
= lv
->lv_iovecp
;
2081 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2082 int dumplen
= min(vec
->i_len
, 32);
2084 xfs_warn(mp
, " iovec[%d]", i
);
2085 xfs_warn(mp
, " type = 0x%x", vec
->i_type
);
2086 xfs_warn(mp
, " len = %d", vec
->i_len
);
2087 xfs_warn(mp
, " first %d bytes of iovec[%d]:", dumplen
, i
);
2088 xfs_hex_dump(vec
->i_addr
, dumplen
);
2096 * Calculate the potential space needed by the log vector. Each region gets
2097 * its own xlog_op_header_t and may need to be double word aligned.
2100 xlog_write_calc_vec_length(
2101 struct xlog_ticket
*ticket
,
2102 struct xfs_log_vec
*log_vector
)
2104 struct xfs_log_vec
*lv
;
2109 /* acct for start rec of xact */
2110 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2113 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2114 /* we don't write ordered log vectors */
2115 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2118 headers
+= lv
->lv_niovecs
;
2120 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2121 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2124 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2128 ticket
->t_res_num_ophdrs
+= headers
;
2129 len
+= headers
* sizeof(struct xlog_op_header
);
2135 * If first write for transaction, insert start record We can't be trying to
2136 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2139 xlog_write_start_rec(
2140 struct xlog_op_header
*ophdr
,
2141 struct xlog_ticket
*ticket
)
2143 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2146 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2147 ophdr
->oh_clientid
= ticket
->t_clientid
;
2149 ophdr
->oh_flags
= XLOG_START_TRANS
;
2152 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2154 return sizeof(struct xlog_op_header
);
2157 static xlog_op_header_t
*
2158 xlog_write_setup_ophdr(
2160 struct xlog_op_header
*ophdr
,
2161 struct xlog_ticket
*ticket
,
2164 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2165 ophdr
->oh_clientid
= ticket
->t_clientid
;
2168 /* are we copying a commit or unmount record? */
2169 ophdr
->oh_flags
= flags
;
2172 * We've seen logs corrupted with bad transaction client ids. This
2173 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2174 * and shut down the filesystem.
2176 switch (ophdr
->oh_clientid
) {
2177 case XFS_TRANSACTION
:
2183 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2184 ophdr
->oh_clientid
, ticket
);
2192 * Set up the parameters of the region copy into the log. This has
2193 * to handle region write split across multiple log buffers - this
2194 * state is kept external to this function so that this code can
2195 * be written in an obvious, self documenting manner.
2198 xlog_write_setup_copy(
2199 struct xlog_ticket
*ticket
,
2200 struct xlog_op_header
*ophdr
,
2201 int space_available
,
2205 int *last_was_partial_copy
,
2206 int *bytes_consumed
)
2210 still_to_copy
= space_required
- *bytes_consumed
;
2211 *copy_off
= *bytes_consumed
;
2213 if (still_to_copy
<= space_available
) {
2214 /* write of region completes here */
2215 *copy_len
= still_to_copy
;
2216 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2217 if (*last_was_partial_copy
)
2218 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2219 *last_was_partial_copy
= 0;
2220 *bytes_consumed
= 0;
2224 /* partial write of region, needs extra log op header reservation */
2225 *copy_len
= space_available
;
2226 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2227 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2228 if (*last_was_partial_copy
)
2229 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2230 *bytes_consumed
+= *copy_len
;
2231 (*last_was_partial_copy
)++;
2233 /* account for new log op header */
2234 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2235 ticket
->t_res_num_ophdrs
++;
2237 return sizeof(struct xlog_op_header
);
2241 xlog_write_copy_finish(
2243 struct xlog_in_core
*iclog
,
2248 int *partial_copy_len
,
2250 struct xlog_in_core
**commit_iclog
)
2252 if (*partial_copy
) {
2254 * This iclog has already been marked WANT_SYNC by
2255 * xlog_state_get_iclog_space.
2257 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2260 return xlog_state_release_iclog(log
, iclog
);
2264 *partial_copy_len
= 0;
2266 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2267 /* no more space in this iclog - push it. */
2268 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2272 spin_lock(&log
->l_icloglock
);
2273 xlog_state_want_sync(log
, iclog
);
2274 spin_unlock(&log
->l_icloglock
);
2277 return xlog_state_release_iclog(log
, iclog
);
2278 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2279 *commit_iclog
= iclog
;
2286 * Write some region out to in-core log
2288 * This will be called when writing externally provided regions or when
2289 * writing out a commit record for a given transaction.
2291 * General algorithm:
2292 * 1. Find total length of this write. This may include adding to the
2293 * lengths passed in.
2294 * 2. Check whether we violate the tickets reservation.
2295 * 3. While writing to this iclog
2296 * A. Reserve as much space in this iclog as can get
2297 * B. If this is first write, save away start lsn
2298 * C. While writing this region:
2299 * 1. If first write of transaction, write start record
2300 * 2. Write log operation header (header per region)
2301 * 3. Find out if we can fit entire region into this iclog
2302 * 4. Potentially, verify destination memcpy ptr
2303 * 5. Memcpy (partial) region
2304 * 6. If partial copy, release iclog; otherwise, continue
2305 * copying more regions into current iclog
2306 * 4. Mark want sync bit (in simulation mode)
2307 * 5. Release iclog for potential flush to on-disk log.
2310 * 1. Panic if reservation is overrun. This should never happen since
2311 * reservation amounts are generated internal to the filesystem.
2313 * 1. Tickets are single threaded data structures.
2314 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2315 * syncing routine. When a single log_write region needs to span
2316 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2317 * on all log operation writes which don't contain the end of the
2318 * region. The XLOG_END_TRANS bit is used for the in-core log
2319 * operation which contains the end of the continued log_write region.
2320 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2321 * we don't really know exactly how much space will be used. As a result,
2322 * we don't update ic_offset until the end when we know exactly how many
2323 * bytes have been written out.
2328 struct xfs_log_vec
*log_vector
,
2329 struct xlog_ticket
*ticket
,
2330 xfs_lsn_t
*start_lsn
,
2331 struct xlog_in_core
**commit_iclog
,
2334 struct xlog_in_core
*iclog
= NULL
;
2335 struct xfs_log_iovec
*vecp
;
2336 struct xfs_log_vec
*lv
;
2339 int partial_copy
= 0;
2340 int partial_copy_len
= 0;
2348 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2351 * Region headers and bytes are already accounted for.
2352 * We only need to take into account start records and
2353 * split regions in this function.
2355 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2356 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2359 * Commit record headers need to be accounted for. These
2360 * come in as separate writes so are easy to detect.
2362 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2363 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2365 if (ticket
->t_curr_res
< 0) {
2366 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
2367 "ctx ticket reservation ran out. Need to up reservation");
2368 xlog_print_tic_res(log
->l_mp
, ticket
);
2369 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
2374 vecp
= lv
->lv_iovecp
;
2375 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2379 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2380 &contwr
, &log_offset
);
2384 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2385 ptr
= iclog
->ic_datap
+ log_offset
;
2387 /* start_lsn is the first lsn written to. That's all we need. */
2389 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2392 * This loop writes out as many regions as can fit in the amount
2393 * of space which was allocated by xlog_state_get_iclog_space().
2395 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2396 struct xfs_log_iovec
*reg
;
2397 struct xlog_op_header
*ophdr
;
2401 bool ordered
= false;
2403 /* ordered log vectors have no regions to write */
2404 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2405 ASSERT(lv
->lv_niovecs
== 0);
2411 ASSERT(reg
->i_len
% sizeof(int32_t) == 0);
2412 ASSERT((unsigned long)ptr
% sizeof(int32_t) == 0);
2414 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2415 if (start_rec_copy
) {
2417 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2421 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2425 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2426 sizeof(struct xlog_op_header
));
2428 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2429 iclog
->ic_size
-log_offset
,
2431 ©_off
, ©_len
,
2434 xlog_verify_dest_ptr(log
, ptr
);
2439 * Unmount records just log an opheader, so can have
2440 * empty payloads with no data region to copy. Hence we
2441 * only copy the payload if the vector says it has data
2444 ASSERT(copy_len
>= 0);
2446 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2447 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2450 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2452 data_cnt
+= contwr
? copy_len
: 0;
2454 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2455 &record_cnt
, &data_cnt
,
2464 * if we had a partial copy, we need to get more iclog
2465 * space but we don't want to increment the region
2466 * index because there is still more is this region to
2469 * If we completed writing this region, and we flushed
2470 * the iclog (indicated by resetting of the record
2471 * count), then we also need to get more log space. If
2472 * this was the last record, though, we are done and
2478 if (++index
== lv
->lv_niovecs
) {
2483 vecp
= lv
->lv_iovecp
;
2485 if (record_cnt
== 0 && ordered
== false) {
2495 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2497 return xlog_state_release_iclog(log
, iclog
);
2499 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2500 *commit_iclog
= iclog
;
2505 /*****************************************************************************
2507 * State Machine functions
2509 *****************************************************************************
2512 /* Clean iclogs starting from the head. This ordering must be
2513 * maintained, so an iclog doesn't become ACTIVE beyond one that
2514 * is SYNCING. This is also required to maintain the notion that we use
2515 * a ordered wait queue to hold off would be writers to the log when every
2516 * iclog is trying to sync to disk.
2518 * State Change: DIRTY -> ACTIVE
2521 xlog_state_clean_log(
2524 xlog_in_core_t
*iclog
;
2527 iclog
= log
->l_iclog
;
2529 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2530 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2531 iclog
->ic_offset
= 0;
2532 ASSERT(iclog
->ic_callback
== NULL
);
2534 * If the number of ops in this iclog indicate it just
2535 * contains the dummy transaction, we can
2536 * change state into IDLE (the second time around).
2537 * Otherwise we should change the state into
2539 * We don't need to cover the dummy.
2542 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2547 * We have two dirty iclogs so start over
2548 * This could also be num of ops indicates
2549 * this is not the dummy going out.
2553 iclog
->ic_header
.h_num_logops
= 0;
2554 memset(iclog
->ic_header
.h_cycle_data
, 0,
2555 sizeof(iclog
->ic_header
.h_cycle_data
));
2556 iclog
->ic_header
.h_lsn
= 0;
2557 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2560 break; /* stop cleaning */
2561 iclog
= iclog
->ic_next
;
2562 } while (iclog
!= log
->l_iclog
);
2564 /* log is locked when we are called */
2566 * Change state for the dummy log recording.
2567 * We usually go to NEED. But we go to NEED2 if the changed indicates
2568 * we are done writing the dummy record.
2569 * If we are done with the second dummy recored (DONE2), then
2573 switch (log
->l_covered_state
) {
2574 case XLOG_STATE_COVER_IDLE
:
2575 case XLOG_STATE_COVER_NEED
:
2576 case XLOG_STATE_COVER_NEED2
:
2577 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2580 case XLOG_STATE_COVER_DONE
:
2582 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2584 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2587 case XLOG_STATE_COVER_DONE2
:
2589 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2591 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2598 } /* xlog_state_clean_log */
2601 xlog_get_lowest_lsn(
2604 xlog_in_core_t
*lsn_log
;
2605 xfs_lsn_t lowest_lsn
, lsn
;
2607 lsn_log
= log
->l_iclog
;
2610 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2611 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2612 if ((lsn
&& !lowest_lsn
) ||
2613 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2617 lsn_log
= lsn_log
->ic_next
;
2618 } while (lsn_log
!= log
->l_iclog
);
2624 xlog_state_do_callback(
2627 struct xlog_in_core
*ciclog
)
2629 xlog_in_core_t
*iclog
;
2630 xlog_in_core_t
*first_iclog
; /* used to know when we've
2631 * processed all iclogs once */
2632 xfs_log_callback_t
*cb
, *cb_next
;
2634 xfs_lsn_t lowest_lsn
;
2635 int ioerrors
; /* counter: iclogs with errors */
2636 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2637 int funcdidcallbacks
; /* flag: function did callbacks */
2638 int repeats
; /* for issuing console warnings if
2639 * looping too many times */
2642 spin_lock(&log
->l_icloglock
);
2643 first_iclog
= iclog
= log
->l_iclog
;
2645 funcdidcallbacks
= 0;
2650 * Scan all iclogs starting with the one pointed to by the
2651 * log. Reset this starting point each time the log is
2652 * unlocked (during callbacks).
2654 * Keep looping through iclogs until one full pass is made
2655 * without running any callbacks.
2657 first_iclog
= log
->l_iclog
;
2658 iclog
= log
->l_iclog
;
2659 loopdidcallbacks
= 0;
2664 /* skip all iclogs in the ACTIVE & DIRTY states */
2665 if (iclog
->ic_state
&
2666 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2667 iclog
= iclog
->ic_next
;
2672 * Between marking a filesystem SHUTDOWN and stopping
2673 * the log, we do flush all iclogs to disk (if there
2674 * wasn't a log I/O error). So, we do want things to
2675 * go smoothly in case of just a SHUTDOWN w/o a
2678 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2680 * Can only perform callbacks in order. Since
2681 * this iclog is not in the DONE_SYNC/
2682 * DO_CALLBACK state, we skip the rest and
2683 * just try to clean up. If we set our iclog
2684 * to DO_CALLBACK, we will not process it when
2685 * we retry since a previous iclog is in the
2686 * CALLBACK and the state cannot change since
2687 * we are holding the l_icloglock.
2689 if (!(iclog
->ic_state
&
2690 (XLOG_STATE_DONE_SYNC
|
2691 XLOG_STATE_DO_CALLBACK
))) {
2692 if (ciclog
&& (ciclog
->ic_state
==
2693 XLOG_STATE_DONE_SYNC
)) {
2694 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2699 * We now have an iclog that is in either the
2700 * DO_CALLBACK or DONE_SYNC states. The other
2701 * states (WANT_SYNC, SYNCING, or CALLBACK were
2702 * caught by the above if and are going to
2703 * clean (i.e. we aren't doing their callbacks)
2708 * We will do one more check here to see if we
2709 * have chased our tail around.
2712 lowest_lsn
= xlog_get_lowest_lsn(log
);
2714 XFS_LSN_CMP(lowest_lsn
,
2715 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2716 iclog
= iclog
->ic_next
;
2717 continue; /* Leave this iclog for
2721 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2725 * Completion of a iclog IO does not imply that
2726 * a transaction has completed, as transactions
2727 * can be large enough to span many iclogs. We
2728 * cannot change the tail of the log half way
2729 * through a transaction as this may be the only
2730 * transaction in the log and moving th etail to
2731 * point to the middle of it will prevent
2732 * recovery from finding the start of the
2733 * transaction. Hence we should only update the
2734 * last_sync_lsn if this iclog contains
2735 * transaction completion callbacks on it.
2737 * We have to do this before we drop the
2738 * icloglock to ensure we are the only one that
2741 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2742 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2743 if (iclog
->ic_callback
)
2744 atomic64_set(&log
->l_last_sync_lsn
,
2745 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2750 spin_unlock(&log
->l_icloglock
);
2753 * Keep processing entries in the callback list until
2754 * we come around and it is empty. We need to
2755 * atomically see that the list is empty and change the
2756 * state to DIRTY so that we don't miss any more
2757 * callbacks being added.
2759 spin_lock(&iclog
->ic_callback_lock
);
2760 cb
= iclog
->ic_callback
;
2762 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2763 iclog
->ic_callback
= NULL
;
2764 spin_unlock(&iclog
->ic_callback_lock
);
2766 /* perform callbacks in the order given */
2767 for (; cb
; cb
= cb_next
) {
2768 cb_next
= cb
->cb_next
;
2769 cb
->cb_func(cb
->cb_arg
, aborted
);
2771 spin_lock(&iclog
->ic_callback_lock
);
2772 cb
= iclog
->ic_callback
;
2778 spin_lock(&log
->l_icloglock
);
2779 ASSERT(iclog
->ic_callback
== NULL
);
2780 spin_unlock(&iclog
->ic_callback_lock
);
2781 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2782 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2785 * Transition from DIRTY to ACTIVE if applicable.
2786 * NOP if STATE_IOERROR.
2788 xlog_state_clean_log(log
);
2790 /* wake up threads waiting in xfs_log_force() */
2791 wake_up_all(&iclog
->ic_force_wait
);
2793 iclog
= iclog
->ic_next
;
2794 } while (first_iclog
!= iclog
);
2796 if (repeats
> 5000) {
2797 flushcnt
+= repeats
;
2800 "%s: possible infinite loop (%d iterations)",
2801 __func__
, flushcnt
);
2803 } while (!ioerrors
&& loopdidcallbacks
);
2807 * Make one last gasp attempt to see if iclogs are being left in limbo.
2808 * If the above loop finds an iclog earlier than the current iclog and
2809 * in one of the syncing states, the current iclog is put into
2810 * DO_CALLBACK and the callbacks are deferred to the completion of the
2811 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2812 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2815 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2816 * for ic_state == SYNCING.
2818 if (funcdidcallbacks
) {
2819 first_iclog
= iclog
= log
->l_iclog
;
2821 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2823 * Terminate the loop if iclogs are found in states
2824 * which will cause other threads to clean up iclogs.
2826 * SYNCING - i/o completion will go through logs
2827 * DONE_SYNC - interrupt thread should be waiting for
2829 * IOERROR - give up hope all ye who enter here
2831 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2832 iclog
->ic_state
& XLOG_STATE_SYNCING
||
2833 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2834 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2836 iclog
= iclog
->ic_next
;
2837 } while (first_iclog
!= iclog
);
2841 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2843 spin_unlock(&log
->l_icloglock
);
2846 wake_up_all(&log
->l_flush_wait
);
2851 * Finish transitioning this iclog to the dirty state.
2853 * Make sure that we completely execute this routine only when this is
2854 * the last call to the iclog. There is a good chance that iclog flushes,
2855 * when we reach the end of the physical log, get turned into 2 separate
2856 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2857 * routine. By using the reference count bwritecnt, we guarantee that only
2858 * the second completion goes through.
2860 * Callbacks could take time, so they are done outside the scope of the
2861 * global state machine log lock.
2864 xlog_state_done_syncing(
2865 xlog_in_core_t
*iclog
,
2868 struct xlog
*log
= iclog
->ic_log
;
2870 spin_lock(&log
->l_icloglock
);
2872 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2873 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2874 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2875 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2879 * If we got an error, either on the first buffer, or in the case of
2880 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2881 * and none should ever be attempted to be written to disk
2884 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2885 if (--iclog
->ic_bwritecnt
== 1) {
2886 spin_unlock(&log
->l_icloglock
);
2889 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2893 * Someone could be sleeping prior to writing out the next
2894 * iclog buffer, we wake them all, one will get to do the
2895 * I/O, the others get to wait for the result.
2897 wake_up_all(&iclog
->ic_write_wait
);
2898 spin_unlock(&log
->l_icloglock
);
2899 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2900 } /* xlog_state_done_syncing */
2904 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2905 * sleep. We wait on the flush queue on the head iclog as that should be
2906 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2907 * we will wait here and all new writes will sleep until a sync completes.
2909 * The in-core logs are used in a circular fashion. They are not used
2910 * out-of-order even when an iclog past the head is free.
2913 * * log_offset where xlog_write() can start writing into the in-core
2915 * * in-core log pointer to which xlog_write() should write.
2916 * * boolean indicating this is a continued write to an in-core log.
2917 * If this is the last write, then the in-core log's offset field
2918 * needs to be incremented, depending on the amount of data which
2922 xlog_state_get_iclog_space(
2925 struct xlog_in_core
**iclogp
,
2926 struct xlog_ticket
*ticket
,
2927 int *continued_write
,
2931 xlog_rec_header_t
*head
;
2932 xlog_in_core_t
*iclog
;
2936 spin_lock(&log
->l_icloglock
);
2937 if (XLOG_FORCED_SHUTDOWN(log
)) {
2938 spin_unlock(&log
->l_icloglock
);
2942 iclog
= log
->l_iclog
;
2943 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2944 XFS_STATS_INC(log
->l_mp
, xs_log_noiclogs
);
2946 /* Wait for log writes to have flushed */
2947 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2951 head
= &iclog
->ic_header
;
2953 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2954 log_offset
= iclog
->ic_offset
;
2956 /* On the 1st write to an iclog, figure out lsn. This works
2957 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2958 * committing to. If the offset is set, that's how many blocks
2961 if (log_offset
== 0) {
2962 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
2963 xlog_tic_add_region(ticket
,
2965 XLOG_REG_TYPE_LRHEADER
);
2966 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
2967 head
->h_lsn
= cpu_to_be64(
2968 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
2969 ASSERT(log
->l_curr_block
>= 0);
2972 /* If there is enough room to write everything, then do it. Otherwise,
2973 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2974 * bit is on, so this will get flushed out. Don't update ic_offset
2975 * until you know exactly how many bytes get copied. Therefore, wait
2976 * until later to update ic_offset.
2978 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2979 * can fit into remaining data section.
2981 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
2982 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2985 * If I'm the only one writing to this iclog, sync it to disk.
2986 * We need to do an atomic compare and decrement here to avoid
2987 * racing with concurrent atomic_dec_and_lock() calls in
2988 * xlog_state_release_iclog() when there is more than one
2989 * reference to the iclog.
2991 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
2992 /* we are the only one */
2993 spin_unlock(&log
->l_icloglock
);
2994 error
= xlog_state_release_iclog(log
, iclog
);
2998 spin_unlock(&log
->l_icloglock
);
3003 /* Do we have enough room to write the full amount in the remainder
3004 * of this iclog? Or must we continue a write on the next iclog and
3005 * mark this iclog as completely taken? In the case where we switch
3006 * iclogs (to mark it taken), this particular iclog will release/sync
3007 * to disk in xlog_write().
3009 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
3010 *continued_write
= 0;
3011 iclog
->ic_offset
+= len
;
3013 *continued_write
= 1;
3014 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3018 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
3019 spin_unlock(&log
->l_icloglock
);
3021 *logoffsetp
= log_offset
;
3023 } /* xlog_state_get_iclog_space */
3025 /* The first cnt-1 times through here we don't need to
3026 * move the grant write head because the permanent
3027 * reservation has reserved cnt times the unit amount.
3028 * Release part of current permanent unit reservation and
3029 * reset current reservation to be one units worth. Also
3030 * move grant reservation head forward.
3033 xlog_regrant_reserve_log_space(
3035 struct xlog_ticket
*ticket
)
3037 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
3039 if (ticket
->t_cnt
> 0)
3042 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
3043 ticket
->t_curr_res
);
3044 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
3045 ticket
->t_curr_res
);
3046 ticket
->t_curr_res
= ticket
->t_unit_res
;
3047 xlog_tic_reset_res(ticket
);
3049 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
3051 /* just return if we still have some of the pre-reserved space */
3052 if (ticket
->t_cnt
> 0)
3055 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
3056 ticket
->t_unit_res
);
3058 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
3060 ticket
->t_curr_res
= ticket
->t_unit_res
;
3061 xlog_tic_reset_res(ticket
);
3062 } /* xlog_regrant_reserve_log_space */
3066 * Give back the space left from a reservation.
3068 * All the information we need to make a correct determination of space left
3069 * is present. For non-permanent reservations, things are quite easy. The
3070 * count should have been decremented to zero. We only need to deal with the
3071 * space remaining in the current reservation part of the ticket. If the
3072 * ticket contains a permanent reservation, there may be left over space which
3073 * needs to be released. A count of N means that N-1 refills of the current
3074 * reservation can be done before we need to ask for more space. The first
3075 * one goes to fill up the first current reservation. Once we run out of
3076 * space, the count will stay at zero and the only space remaining will be
3077 * in the current reservation field.
3080 xlog_ungrant_log_space(
3082 struct xlog_ticket
*ticket
)
3086 if (ticket
->t_cnt
> 0)
3089 trace_xfs_log_ungrant_enter(log
, ticket
);
3090 trace_xfs_log_ungrant_sub(log
, ticket
);
3093 * If this is a permanent reservation ticket, we may be able to free
3094 * up more space based on the remaining count.
3096 bytes
= ticket
->t_curr_res
;
3097 if (ticket
->t_cnt
> 0) {
3098 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
3099 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
3102 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
3103 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
3105 trace_xfs_log_ungrant_exit(log
, ticket
);
3107 xfs_log_space_wake(log
->l_mp
);
3111 * Flush iclog to disk if this is the last reference to the given iclog and
3112 * the WANT_SYNC bit is set.
3114 * When this function is entered, the iclog is not necessarily in the
3115 * WANT_SYNC state. It may be sitting around waiting to get filled.
3120 xlog_state_release_iclog(
3122 struct xlog_in_core
*iclog
)
3124 int sync
= 0; /* do we sync? */
3126 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3129 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
3130 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
3133 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3134 spin_unlock(&log
->l_icloglock
);
3137 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3138 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
3140 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
3141 /* update tail before writing to iclog */
3142 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
3144 iclog
->ic_state
= XLOG_STATE_SYNCING
;
3145 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
3146 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
3147 /* cycle incremented when incrementing curr_block */
3149 spin_unlock(&log
->l_icloglock
);
3152 * We let the log lock go, so it's possible that we hit a log I/O
3153 * error or some other SHUTDOWN condition that marks the iclog
3154 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3155 * this iclog has consistent data, so we ignore IOERROR
3156 * flags after this point.
3159 return xlog_sync(log
, iclog
);
3161 } /* xlog_state_release_iclog */
3165 * This routine will mark the current iclog in the ring as WANT_SYNC
3166 * and move the current iclog pointer to the next iclog in the ring.
3167 * When this routine is called from xlog_state_get_iclog_space(), the
3168 * exact size of the iclog has not yet been determined. All we know is
3169 * that every data block. We have run out of space in this log record.
3172 xlog_state_switch_iclogs(
3174 struct xlog_in_core
*iclog
,
3177 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3179 eventual_size
= iclog
->ic_offset
;
3180 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3181 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3182 log
->l_prev_block
= log
->l_curr_block
;
3183 log
->l_prev_cycle
= log
->l_curr_cycle
;
3185 /* roll log?: ic_offset changed later */
3186 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3188 /* Round up to next log-sunit */
3189 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3190 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3191 uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3192 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3195 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3197 * Rewind the current block before the cycle is bumped to make
3198 * sure that the combined LSN never transiently moves forward
3199 * when the log wraps to the next cycle. This is to support the
3200 * unlocked sample of these fields from xlog_valid_lsn(). Most
3201 * other cases should acquire l_icloglock.
3203 log
->l_curr_block
-= log
->l_logBBsize
;
3204 ASSERT(log
->l_curr_block
>= 0);
3206 log
->l_curr_cycle
++;
3207 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3208 log
->l_curr_cycle
++;
3210 ASSERT(iclog
== log
->l_iclog
);
3211 log
->l_iclog
= iclog
->ic_next
;
3212 } /* xlog_state_switch_iclogs */
3215 * Write out all data in the in-core log as of this exact moment in time.
3217 * Data may be written to the in-core log during this call. However,
3218 * we don't guarantee this data will be written out. A change from past
3219 * implementation means this routine will *not* write out zero length LRs.
3221 * Basically, we try and perform an intelligent scan of the in-core logs.
3222 * If we determine there is no flushable data, we just return. There is no
3223 * flushable data if:
3225 * 1. the current iclog is active and has no data; the previous iclog
3226 * is in the active or dirty state.
3227 * 2. the current iclog is drity, and the previous iclog is in the
3228 * active or dirty state.
3232 * 1. the current iclog is not in the active nor dirty state.
3233 * 2. the current iclog dirty, and the previous iclog is not in the
3234 * active nor dirty state.
3235 * 3. the current iclog is active, and there is another thread writing
3236 * to this particular iclog.
3237 * 4. a) the current iclog is active and has no other writers
3238 * b) when we return from flushing out this iclog, it is still
3239 * not in the active nor dirty state.
3243 struct xfs_mount
*mp
,
3247 struct xlog
*log
= mp
->m_log
;
3248 struct xlog_in_core
*iclog
;
3251 XFS_STATS_INC(mp
, xs_log_force
);
3253 xlog_cil_force(log
);
3255 spin_lock(&log
->l_icloglock
);
3257 iclog
= log
->l_iclog
;
3258 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3259 spin_unlock(&log
->l_icloglock
);
3263 /* If the head iclog is not active nor dirty, we just attach
3264 * ourselves to the head and go to sleep.
3266 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3267 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3269 * If the head is dirty or (active and empty), then
3270 * we need to look at the previous iclog. If the previous
3271 * iclog is active or dirty we are done. There is nothing
3272 * to sync out. Otherwise, we attach ourselves to the
3273 * previous iclog and go to sleep.
3275 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3276 (atomic_read(&iclog
->ic_refcnt
) == 0
3277 && iclog
->ic_offset
== 0)) {
3278 iclog
= iclog
->ic_prev
;
3279 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3280 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3285 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3286 /* We are the only one with access to this
3287 * iclog. Flush it out now. There should
3288 * be a roundoff of zero to show that someone
3289 * has already taken care of the roundoff from
3290 * the previous sync.
3292 atomic_inc(&iclog
->ic_refcnt
);
3293 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3294 xlog_state_switch_iclogs(log
, iclog
, 0);
3295 spin_unlock(&log
->l_icloglock
);
3297 if (xlog_state_release_iclog(log
, iclog
))
3302 spin_lock(&log
->l_icloglock
);
3303 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
3304 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
3309 /* Someone else is writing to this iclog.
3310 * Use its call to flush out the data. However,
3311 * the other thread may not force out this LR,
3312 * so we mark it WANT_SYNC.
3314 xlog_state_switch_iclogs(log
, iclog
, 0);
3320 /* By the time we come around again, the iclog could've been filled
3321 * which would give it another lsn. If we have a new lsn, just
3322 * return because the relevant data has been flushed.
3325 if (flags
& XFS_LOG_SYNC
) {
3327 * We must check if we're shutting down here, before
3328 * we wait, while we're holding the l_icloglock.
3329 * Then we check again after waking up, in case our
3330 * sleep was disturbed by a bad news.
3332 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3333 spin_unlock(&log
->l_icloglock
);
3336 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3337 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3339 * No need to grab the log lock here since we're
3340 * only deciding whether or not to return EIO
3341 * and the memory read should be atomic.
3343 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3350 spin_unlock(&log
->l_icloglock
);
3356 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3357 * about errors or whether the log was flushed or not. This is the normal
3358 * interface to use when trying to unpin items or move the log forward.
3365 trace_xfs_log_force(mp
, 0, _RET_IP_
);
3366 _xfs_log_force(mp
, flags
, NULL
);
3370 * Force the in-core log to disk for a specific LSN.
3372 * Find in-core log with lsn.
3373 * If it is in the DIRTY state, just return.
3374 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3375 * state and go to sleep or return.
3376 * If it is in any other state, go to sleep or return.
3378 * Synchronous forces are implemented with a signal variable. All callers
3379 * to force a given lsn to disk will wait on a the sv attached to the
3380 * specific in-core log. When given in-core log finally completes its
3381 * write to disk, that thread will wake up all threads waiting on the
3386 struct xfs_mount
*mp
,
3391 struct xlog
*log
= mp
->m_log
;
3392 struct xlog_in_core
*iclog
;
3393 int already_slept
= 0;
3397 XFS_STATS_INC(mp
, xs_log_force
);
3399 lsn
= xlog_cil_force_lsn(log
, lsn
);
3400 if (lsn
== NULLCOMMITLSN
)
3404 spin_lock(&log
->l_icloglock
);
3405 iclog
= log
->l_iclog
;
3406 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3407 spin_unlock(&log
->l_icloglock
);
3412 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3413 iclog
= iclog
->ic_next
;
3417 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3418 spin_unlock(&log
->l_icloglock
);
3422 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3424 * We sleep here if we haven't already slept (e.g.
3425 * this is the first time we've looked at the correct
3426 * iclog buf) and the buffer before us is going to
3427 * be sync'ed. The reason for this is that if we
3428 * are doing sync transactions here, by waiting for
3429 * the previous I/O to complete, we can allow a few
3430 * more transactions into this iclog before we close
3433 * Otherwise, we mark the buffer WANT_SYNC, and bump
3434 * up the refcnt so we can release the log (which
3435 * drops the ref count). The state switch keeps new
3436 * transaction commits from using this buffer. When
3437 * the current commits finish writing into the buffer,
3438 * the refcount will drop to zero and the buffer will
3441 if (!already_slept
&&
3442 (iclog
->ic_prev
->ic_state
&
3443 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3444 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3446 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3448 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3455 atomic_inc(&iclog
->ic_refcnt
);
3456 xlog_state_switch_iclogs(log
, iclog
, 0);
3457 spin_unlock(&log
->l_icloglock
);
3458 if (xlog_state_release_iclog(log
, iclog
))
3462 spin_lock(&log
->l_icloglock
);
3465 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3467 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3469 * Don't wait on completion if we know that we've
3470 * gotten a log write error.
3472 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3473 spin_unlock(&log
->l_icloglock
);
3476 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3477 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3479 * No need to grab the log lock here since we're
3480 * only deciding whether or not to return EIO
3481 * and the memory read should be atomic.
3483 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3488 } else { /* just return */
3489 spin_unlock(&log
->l_icloglock
);
3493 } while (iclog
!= log
->l_iclog
);
3495 spin_unlock(&log
->l_icloglock
);
3500 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3501 * about errors or whether the log was flushed or not. This is the normal
3502 * interface to use when trying to unpin items or move the log forward.
3510 trace_xfs_log_force(mp
, lsn
, _RET_IP_
);
3511 _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3515 * Called when we want to mark the current iclog as being ready to sync to
3519 xlog_state_want_sync(
3521 struct xlog_in_core
*iclog
)
3523 assert_spin_locked(&log
->l_icloglock
);
3525 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3526 xlog_state_switch_iclogs(log
, iclog
, 0);
3528 ASSERT(iclog
->ic_state
&
3529 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3534 /*****************************************************************************
3538 *****************************************************************************
3542 * Free a used ticket when its refcount falls to zero.
3546 xlog_ticket_t
*ticket
)
3548 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3549 if (atomic_dec_and_test(&ticket
->t_ref
))
3550 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3555 xlog_ticket_t
*ticket
)
3557 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3558 atomic_inc(&ticket
->t_ref
);
3563 * Figure out the total log space unit (in bytes) that would be
3564 * required for a log ticket.
3567 xfs_log_calc_unit_res(
3568 struct xfs_mount
*mp
,
3571 struct xlog
*log
= mp
->m_log
;
3576 * Permanent reservations have up to 'cnt'-1 active log operations
3577 * in the log. A unit in this case is the amount of space for one
3578 * of these log operations. Normal reservations have a cnt of 1
3579 * and their unit amount is the total amount of space required.
3581 * The following lines of code account for non-transaction data
3582 * which occupy space in the on-disk log.
3584 * Normal form of a transaction is:
3585 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3586 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3588 * We need to account for all the leadup data and trailer data
3589 * around the transaction data.
3590 * And then we need to account for the worst case in terms of using
3592 * The worst case will happen if:
3593 * - the placement of the transaction happens to be such that the
3594 * roundoff is at its maximum
3595 * - the transaction data is synced before the commit record is synced
3596 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3597 * Therefore the commit record is in its own Log Record.
3598 * This can happen as the commit record is called with its
3599 * own region to xlog_write().
3600 * This then means that in the worst case, roundoff can happen for
3601 * the commit-rec as well.
3602 * The commit-rec is smaller than padding in this scenario and so it is
3603 * not added separately.
3606 /* for trans header */
3607 unit_bytes
+= sizeof(xlog_op_header_t
);
3608 unit_bytes
+= sizeof(xfs_trans_header_t
);
3611 unit_bytes
+= sizeof(xlog_op_header_t
);
3614 * for LR headers - the space for data in an iclog is the size minus
3615 * the space used for the headers. If we use the iclog size, then we
3616 * undercalculate the number of headers required.
3618 * Furthermore - the addition of op headers for split-recs might
3619 * increase the space required enough to require more log and op
3620 * headers, so take that into account too.
3622 * IMPORTANT: This reservation makes the assumption that if this
3623 * transaction is the first in an iclog and hence has the LR headers
3624 * accounted to it, then the remaining space in the iclog is
3625 * exclusively for this transaction. i.e. if the transaction is larger
3626 * than the iclog, it will be the only thing in that iclog.
3627 * Fundamentally, this means we must pass the entire log vector to
3628 * xlog_write to guarantee this.
3630 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3631 num_headers
= howmany(unit_bytes
, iclog_space
);
3633 /* for split-recs - ophdrs added when data split over LRs */
3634 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3636 /* add extra header reservations if we overrun */
3637 while (!num_headers
||
3638 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3639 unit_bytes
+= sizeof(xlog_op_header_t
);
3642 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3644 /* for commit-rec LR header - note: padding will subsume the ophdr */
3645 unit_bytes
+= log
->l_iclog_hsize
;
3647 /* for roundoff padding for transaction data and one for commit record */
3648 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3649 /* log su roundoff */
3650 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3653 unit_bytes
+= 2 * BBSIZE
;
3660 * Allocate and initialise a new log ticket.
3662 struct xlog_ticket
*
3669 xfs_km_flags_t alloc_flags
)
3671 struct xlog_ticket
*tic
;
3674 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3678 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3680 atomic_set(&tic
->t_ref
, 1);
3681 tic
->t_task
= current
;
3682 INIT_LIST_HEAD(&tic
->t_queue
);
3683 tic
->t_unit_res
= unit_res
;
3684 tic
->t_curr_res
= unit_res
;
3687 tic
->t_tid
= prandom_u32();
3688 tic
->t_clientid
= client
;
3689 tic
->t_flags
= XLOG_TIC_INITED
;
3691 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3693 xlog_tic_reset_res(tic
);
3699 /******************************************************************************
3701 * Log debug routines
3703 ******************************************************************************
3707 * Make sure that the destination ptr is within the valid data region of
3708 * one of the iclogs. This uses backup pointers stored in a different
3709 * part of the log in case we trash the log structure.
3712 xlog_verify_dest_ptr(
3719 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3720 if (ptr
>= log
->l_iclog_bak
[i
] &&
3721 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3726 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3730 * Check to make sure the grant write head didn't just over lap the tail. If
3731 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3732 * the cycles differ by exactly one and check the byte count.
3734 * This check is run unlocked, so can give false positives. Rather than assert
3735 * on failures, use a warn-once flag and a panic tag to allow the admin to
3736 * determine if they want to panic the machine when such an error occurs. For
3737 * debug kernels this will have the same effect as using an assert but, unlinke
3738 * an assert, it can be turned off at runtime.
3741 xlog_verify_grant_tail(
3744 int tail_cycle
, tail_blocks
;
3747 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3748 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3749 if (tail_cycle
!= cycle
) {
3750 if (cycle
- 1 != tail_cycle
&&
3751 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3752 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3753 "%s: cycle - 1 != tail_cycle", __func__
);
3754 log
->l_flags
|= XLOG_TAIL_WARN
;
3757 if (space
> BBTOB(tail_blocks
) &&
3758 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3759 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3760 "%s: space > BBTOB(tail_blocks)", __func__
);
3761 log
->l_flags
|= XLOG_TAIL_WARN
;
3766 /* check if it will fit */
3768 xlog_verify_tail_lsn(
3770 struct xlog_in_core
*iclog
,
3775 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3777 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3778 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3779 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3781 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3783 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3784 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3786 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3787 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3788 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3790 } /* xlog_verify_tail_lsn */
3793 * Perform a number of checks on the iclog before writing to disk.
3795 * 1. Make sure the iclogs are still circular
3796 * 2. Make sure we have a good magic number
3797 * 3. Make sure we don't have magic numbers in the data
3798 * 4. Check fields of each log operation header for:
3799 * A. Valid client identifier
3800 * B. tid ptr value falls in valid ptr space (user space code)
3801 * C. Length in log record header is correct according to the
3802 * individual operation headers within record.
3803 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3804 * log, check the preceding blocks of the physical log to make sure all
3805 * the cycle numbers agree with the current cycle number.
3810 struct xlog_in_core
*iclog
,
3814 xlog_op_header_t
*ophead
;
3815 xlog_in_core_t
*icptr
;
3816 xlog_in_core_2_t
*xhdr
;
3817 void *base_ptr
, *ptr
, *p
;
3818 ptrdiff_t field_offset
;
3820 int len
, i
, j
, k
, op_len
;
3823 /* check validity of iclog pointers */
3824 spin_lock(&log
->l_icloglock
);
3825 icptr
= log
->l_iclog
;
3826 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3829 if (icptr
!= log
->l_iclog
)
3830 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3831 spin_unlock(&log
->l_icloglock
);
3833 /* check log magic numbers */
3834 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3835 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3837 base_ptr
= ptr
= &iclog
->ic_header
;
3838 p
= &iclog
->ic_header
;
3839 for (ptr
+= BBSIZE
; ptr
< base_ptr
+ count
; ptr
+= BBSIZE
) {
3840 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3841 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3846 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3847 base_ptr
= ptr
= iclog
->ic_datap
;
3849 xhdr
= iclog
->ic_data
;
3850 for (i
= 0; i
< len
; i
++) {
3853 /* clientid is only 1 byte */
3854 p
= &ophead
->oh_clientid
;
3855 field_offset
= p
- base_ptr
;
3856 if (!syncing
|| (field_offset
& 0x1ff)) {
3857 clientid
= ophead
->oh_clientid
;
3859 idx
= BTOBBT((char *)&ophead
->oh_clientid
- iclog
->ic_datap
);
3860 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3861 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3862 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3863 clientid
= xlog_get_client_id(
3864 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3866 clientid
= xlog_get_client_id(
3867 iclog
->ic_header
.h_cycle_data
[idx
]);
3870 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3872 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3873 __func__
, clientid
, ophead
,
3874 (unsigned long)field_offset
);
3877 p
= &ophead
->oh_len
;
3878 field_offset
= p
- base_ptr
;
3879 if (!syncing
|| (field_offset
& 0x1ff)) {
3880 op_len
= be32_to_cpu(ophead
->oh_len
);
3882 idx
= BTOBBT((uintptr_t)&ophead
->oh_len
-
3883 (uintptr_t)iclog
->ic_datap
);
3884 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3885 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3886 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3887 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3889 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3892 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3894 } /* xlog_verify_iclog */
3898 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3904 xlog_in_core_t
*iclog
, *ic
;
3906 iclog
= log
->l_iclog
;
3907 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3909 * Mark all the incore logs IOERROR.
3910 * From now on, no log flushes will result.
3914 ic
->ic_state
= XLOG_STATE_IOERROR
;
3916 } while (ic
!= iclog
);
3920 * Return non-zero, if state transition has already happened.
3926 * This is called from xfs_force_shutdown, when we're forcibly
3927 * shutting down the filesystem, typically because of an IO error.
3928 * Our main objectives here are to make sure that:
3929 * a. if !logerror, flush the logs to disk. Anything modified
3930 * after this is ignored.
3931 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3932 * parties to find out, 'atomically'.
3933 * c. those who're sleeping on log reservations, pinned objects and
3934 * other resources get woken up, and be told the bad news.
3935 * d. nothing new gets queued up after (b) and (c) are done.
3937 * Note: for the !logerror case we need to flush the regions held in memory out
3938 * to disk first. This needs to be done before the log is marked as shutdown,
3939 * otherwise the iclog writes will fail.
3942 xfs_log_force_umount(
3943 struct xfs_mount
*mp
,
3952 * If this happens during log recovery, don't worry about
3953 * locking; the log isn't open for business yet.
3956 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3957 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3959 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3964 * Somebody could've already done the hard work for us.
3965 * No need to get locks for this.
3967 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3968 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3973 * Flush all the completed transactions to disk before marking the log
3974 * being shut down. We need to do it in this order to ensure that
3975 * completed operations are safely on disk before we shut down, and that
3976 * we don't have to issue any buffer IO after the shutdown flags are set
3977 * to guarantee this.
3980 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
3983 * mark the filesystem and the as in a shutdown state and wake
3984 * everybody up to tell them the bad news.
3986 spin_lock(&log
->l_icloglock
);
3987 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3989 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3992 * Mark the log and the iclogs with IO error flags to prevent any
3993 * further log IO from being issued or completed.
3995 log
->l_flags
|= XLOG_IO_ERROR
;
3996 retval
= xlog_state_ioerror(log
);
3997 spin_unlock(&log
->l_icloglock
);
4000 * We don't want anybody waiting for log reservations after this. That
4001 * means we have to wake up everybody queued up on reserveq as well as
4002 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4003 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4004 * action is protected by the grant locks.
4006 xlog_grant_head_wake_all(&log
->l_reserve_head
);
4007 xlog_grant_head_wake_all(&log
->l_write_head
);
4010 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4011 * as if the log writes were completed. The abort handling in the log
4012 * item committed callback functions will do this again under lock to
4015 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
4016 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
4018 #ifdef XFSERRORDEBUG
4020 xlog_in_core_t
*iclog
;
4022 spin_lock(&log
->l_icloglock
);
4023 iclog
= log
->l_iclog
;
4025 ASSERT(iclog
->ic_callback
== 0);
4026 iclog
= iclog
->ic_next
;
4027 } while (iclog
!= log
->l_iclog
);
4028 spin_unlock(&log
->l_icloglock
);
4031 /* return non-zero if log IOERROR transition had already happened */
4039 xlog_in_core_t
*iclog
;
4041 iclog
= log
->l_iclog
;
4043 /* endianness does not matter here, zero is zero in
4046 if (iclog
->ic_header
.h_num_logops
)
4048 iclog
= iclog
->ic_next
;
4049 } while (iclog
!= log
->l_iclog
);
4054 * Verify that an LSN stamped into a piece of metadata is valid. This is
4055 * intended for use in read verifiers on v5 superblocks.
4059 struct xfs_mount
*mp
,
4062 struct xlog
*log
= mp
->m_log
;
4066 * norecovery mode skips mount-time log processing and unconditionally
4067 * resets the in-core LSN. We can't validate in this mode, but
4068 * modifications are not allowed anyways so just return true.
4070 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
)
4074 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4075 * handled by recovery and thus safe to ignore here.
4077 if (lsn
== NULLCOMMITLSN
)
4080 valid
= xlog_valid_lsn(mp
->m_log
, lsn
);
4082 /* warn the user about what's gone wrong before verifier failure */
4084 spin_lock(&log
->l_icloglock
);
4086 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4087 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4088 CYCLE_LSN(lsn
), BLOCK_LSN(lsn
),
4089 log
->l_curr_cycle
, log
->l_curr_block
);
4090 spin_unlock(&log
->l_icloglock
);