Merge tag 'chrome-platform-for-linus-4.13' of git://git.kernel.org/pub/scm/linux...
[linux/fpc-iii.git] / include / net / sock.h
blob8c85791fc196c90d0ca52f8a6fadc65cf2faa479
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
77 * This structure really needs to be cleaned up.
78 * Most of it is for TCP, and not used by any of
79 * the other protocols.
82 /* Define this to get the SOCK_DBG debugging facility. */
83 #define SOCK_DEBUGGING
84 #ifdef SOCK_DEBUGGING
85 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
86 printk(KERN_DEBUG msg); } while (0)
87 #else
88 /* Validate arguments and do nothing */
89 static inline __printf(2, 3)
90 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
93 #endif
95 /* This is the per-socket lock. The spinlock provides a synchronization
96 * between user contexts and software interrupt processing, whereas the
97 * mini-semaphore synchronizes multiple users amongst themselves.
99 typedef struct {
100 spinlock_t slock;
101 int owned;
102 wait_queue_head_t wq;
104 * We express the mutex-alike socket_lock semantics
105 * to the lock validator by explicitly managing
106 * the slock as a lock variant (in addition to
107 * the slock itself):
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 struct lockdep_map dep_map;
111 #endif
112 } socket_lock_t;
114 struct sock;
115 struct proto;
116 struct net;
118 typedef __u32 __bitwise __portpair;
119 typedef __u64 __bitwise __addrpair;
122 * struct sock_common - minimal network layer representation of sockets
123 * @skc_daddr: Foreign IPv4 addr
124 * @skc_rcv_saddr: Bound local IPv4 addr
125 * @skc_hash: hash value used with various protocol lookup tables
126 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
127 * @skc_dport: placeholder for inet_dport/tw_dport
128 * @skc_num: placeholder for inet_num/tw_num
129 * @skc_family: network address family
130 * @skc_state: Connection state
131 * @skc_reuse: %SO_REUSEADDR setting
132 * @skc_reuseport: %SO_REUSEPORT setting
133 * @skc_bound_dev_if: bound device index if != 0
134 * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 * @skc_prot: protocol handlers inside a network family
137 * @skc_net: reference to the network namespace of this socket
138 * @skc_node: main hash linkage for various protocol lookup tables
139 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
140 * @skc_tx_queue_mapping: tx queue number for this connection
141 * @skc_flags: place holder for sk_flags
142 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
143 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
144 * @skc_incoming_cpu: record/match cpu processing incoming packets
145 * @skc_refcnt: reference count
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
150 struct sock_common {
151 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
152 * address on 64bit arches : cf INET_MATCH()
154 union {
155 __addrpair skc_addrpair;
156 struct {
157 __be32 skc_daddr;
158 __be32 skc_rcv_saddr;
161 union {
162 unsigned int skc_hash;
163 __u16 skc_u16hashes[2];
165 /* skc_dport && skc_num must be grouped as well */
166 union {
167 __portpair skc_portpair;
168 struct {
169 __be16 skc_dport;
170 __u16 skc_num;
174 unsigned short skc_family;
175 volatile unsigned char skc_state;
176 unsigned char skc_reuse:4;
177 unsigned char skc_reuseport:1;
178 unsigned char skc_ipv6only:1;
179 unsigned char skc_net_refcnt:1;
180 int skc_bound_dev_if;
181 union {
182 struct hlist_node skc_bind_node;
183 struct hlist_node skc_portaddr_node;
185 struct proto *skc_prot;
186 possible_net_t skc_net;
188 #if IS_ENABLED(CONFIG_IPV6)
189 struct in6_addr skc_v6_daddr;
190 struct in6_addr skc_v6_rcv_saddr;
191 #endif
193 atomic64_t skc_cookie;
195 /* following fields are padding to force
196 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
197 * assuming IPV6 is enabled. We use this padding differently
198 * for different kind of 'sockets'
200 union {
201 unsigned long skc_flags;
202 struct sock *skc_listener; /* request_sock */
203 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
206 * fields between dontcopy_begin/dontcopy_end
207 * are not copied in sock_copy()
209 /* private: */
210 int skc_dontcopy_begin[0];
211 /* public: */
212 union {
213 struct hlist_node skc_node;
214 struct hlist_nulls_node skc_nulls_node;
216 int skc_tx_queue_mapping;
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
231 /* public: */
235 * struct sock - network layer representation of sockets
236 * @__sk_common: shared layout with inet_timewait_sock
237 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
238 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
239 * @sk_lock: synchronizer
240 * @sk_kern_sock: True if sock is using kernel lock classes
241 * @sk_rcvbuf: size of receive buffer in bytes
242 * @sk_wq: sock wait queue and async head
243 * @sk_rx_dst: receive input route used by early demux
244 * @sk_dst_cache: destination cache
245 * @sk_dst_pending_confirm: need to confirm neighbour
246 * @sk_policy: flow policy
247 * @sk_receive_queue: incoming packets
248 * @sk_wmem_alloc: transmit queue bytes committed
249 * @sk_write_queue: Packet sending queue
250 * @sk_omem_alloc: "o" is "option" or "other"
251 * @sk_wmem_queued: persistent queue size
252 * @sk_forward_alloc: space allocated forward
253 * @sk_napi_id: id of the last napi context to receive data for sk
254 * @sk_ll_usec: usecs to busypoll when there is no data
255 * @sk_allocation: allocation mode
256 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
257 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
258 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
259 * @sk_sndbuf: size of send buffer in bytes
260 * @sk_padding: unused element for alignment
261 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
262 * @sk_no_check_rx: allow zero checksum in RX packets
263 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
264 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
265 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
266 * @sk_gso_max_size: Maximum GSO segment size to build
267 * @sk_gso_max_segs: Maximum number of GSO segments
268 * @sk_lingertime: %SO_LINGER l_linger setting
269 * @sk_backlog: always used with the per-socket spinlock held
270 * @sk_callback_lock: used with the callbacks in the end of this struct
271 * @sk_error_queue: rarely used
272 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
273 * IPV6_ADDRFORM for instance)
274 * @sk_err: last error
275 * @sk_err_soft: errors that don't cause failure but are the cause of a
276 * persistent failure not just 'timed out'
277 * @sk_drops: raw/udp drops counter
278 * @sk_ack_backlog: current listen backlog
279 * @sk_max_ack_backlog: listen backlog set in listen()
280 * @sk_priority: %SO_PRIORITY setting
281 * @sk_type: socket type (%SOCK_STREAM, etc)
282 * @sk_protocol: which protocol this socket belongs in this network family
283 * @sk_peer_pid: &struct pid for this socket's peer
284 * @sk_peer_cred: %SO_PEERCRED setting
285 * @sk_rcvlowat: %SO_RCVLOWAT setting
286 * @sk_rcvtimeo: %SO_RCVTIMEO setting
287 * @sk_sndtimeo: %SO_SNDTIMEO setting
288 * @sk_txhash: computed flow hash for use on transmit
289 * @sk_filter: socket filtering instructions
290 * @sk_timer: sock cleanup timer
291 * @sk_stamp: time stamp of last packet received
292 * @sk_tsflags: SO_TIMESTAMPING socket options
293 * @sk_tskey: counter to disambiguate concurrent tstamp requests
294 * @sk_socket: Identd and reporting IO signals
295 * @sk_user_data: RPC layer private data
296 * @sk_frag: cached page frag
297 * @sk_peek_off: current peek_offset value
298 * @sk_send_head: front of stuff to transmit
299 * @sk_security: used by security modules
300 * @sk_mark: generic packet mark
301 * @sk_cgrp_data: cgroup data for this cgroup
302 * @sk_memcg: this socket's memory cgroup association
303 * @sk_write_pending: a write to stream socket waits to start
304 * @sk_state_change: callback to indicate change in the state of the sock
305 * @sk_data_ready: callback to indicate there is data to be processed
306 * @sk_write_space: callback to indicate there is bf sending space available
307 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
308 * @sk_backlog_rcv: callback to process the backlog
309 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
310 * @sk_reuseport_cb: reuseport group container
311 * @sk_rcu: used during RCU grace period
313 struct sock {
315 * Now struct inet_timewait_sock also uses sock_common, so please just
316 * don't add nothing before this first member (__sk_common) --acme
318 struct sock_common __sk_common;
319 #define sk_node __sk_common.skc_node
320 #define sk_nulls_node __sk_common.skc_nulls_node
321 #define sk_refcnt __sk_common.skc_refcnt
322 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
324 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
325 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
326 #define sk_hash __sk_common.skc_hash
327 #define sk_portpair __sk_common.skc_portpair
328 #define sk_num __sk_common.skc_num
329 #define sk_dport __sk_common.skc_dport
330 #define sk_addrpair __sk_common.skc_addrpair
331 #define sk_daddr __sk_common.skc_daddr
332 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
333 #define sk_family __sk_common.skc_family
334 #define sk_state __sk_common.skc_state
335 #define sk_reuse __sk_common.skc_reuse
336 #define sk_reuseport __sk_common.skc_reuseport
337 #define sk_ipv6only __sk_common.skc_ipv6only
338 #define sk_net_refcnt __sk_common.skc_net_refcnt
339 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
340 #define sk_bind_node __sk_common.skc_bind_node
341 #define sk_prot __sk_common.skc_prot
342 #define sk_net __sk_common.skc_net
343 #define sk_v6_daddr __sk_common.skc_v6_daddr
344 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
345 #define sk_cookie __sk_common.skc_cookie
346 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
347 #define sk_flags __sk_common.skc_flags
348 #define sk_rxhash __sk_common.skc_rxhash
350 socket_lock_t sk_lock;
351 atomic_t sk_drops;
352 int sk_rcvlowat;
353 struct sk_buff_head sk_error_queue;
354 struct sk_buff_head sk_receive_queue;
356 * The backlog queue is special, it is always used with
357 * the per-socket spinlock held and requires low latency
358 * access. Therefore we special case it's implementation.
359 * Note : rmem_alloc is in this structure to fill a hole
360 * on 64bit arches, not because its logically part of
361 * backlog.
363 struct {
364 atomic_t rmem_alloc;
365 int len;
366 struct sk_buff *head;
367 struct sk_buff *tail;
368 } sk_backlog;
369 #define sk_rmem_alloc sk_backlog.rmem_alloc
371 int sk_forward_alloc;
372 #ifdef CONFIG_NET_RX_BUSY_POLL
373 unsigned int sk_ll_usec;
374 /* ===== mostly read cache line ===== */
375 unsigned int sk_napi_id;
376 #endif
377 int sk_rcvbuf;
379 struct sk_filter __rcu *sk_filter;
380 union {
381 struct socket_wq __rcu *sk_wq;
382 struct socket_wq *sk_wq_raw;
384 #ifdef CONFIG_XFRM
385 struct xfrm_policy __rcu *sk_policy[2];
386 #endif
387 struct dst_entry *sk_rx_dst;
388 struct dst_entry __rcu *sk_dst_cache;
389 atomic_t sk_omem_alloc;
390 int sk_sndbuf;
392 /* ===== cache line for TX ===== */
393 int sk_wmem_queued;
394 refcount_t sk_wmem_alloc;
395 unsigned long sk_tsq_flags;
396 struct sk_buff *sk_send_head;
397 struct sk_buff_head sk_write_queue;
398 __s32 sk_peek_off;
399 int sk_write_pending;
400 __u32 sk_dst_pending_confirm;
401 u32 sk_pacing_status; /* see enum sk_pacing */
402 long sk_sndtimeo;
403 struct timer_list sk_timer;
404 __u32 sk_priority;
405 __u32 sk_mark;
406 u32 sk_pacing_rate; /* bytes per second */
407 u32 sk_max_pacing_rate;
408 struct page_frag sk_frag;
409 netdev_features_t sk_route_caps;
410 netdev_features_t sk_route_nocaps;
411 int sk_gso_type;
412 unsigned int sk_gso_max_size;
413 gfp_t sk_allocation;
414 __u32 sk_txhash;
417 * Because of non atomicity rules, all
418 * changes are protected by socket lock.
420 unsigned int __sk_flags_offset[0];
421 #ifdef __BIG_ENDIAN_BITFIELD
422 #define SK_FL_PROTO_SHIFT 16
423 #define SK_FL_PROTO_MASK 0x00ff0000
425 #define SK_FL_TYPE_SHIFT 0
426 #define SK_FL_TYPE_MASK 0x0000ffff
427 #else
428 #define SK_FL_PROTO_SHIFT 8
429 #define SK_FL_PROTO_MASK 0x0000ff00
431 #define SK_FL_TYPE_SHIFT 16
432 #define SK_FL_TYPE_MASK 0xffff0000
433 #endif
435 kmemcheck_bitfield_begin(flags);
436 unsigned int sk_padding : 1,
437 sk_kern_sock : 1,
438 sk_no_check_tx : 1,
439 sk_no_check_rx : 1,
440 sk_userlocks : 4,
441 sk_protocol : 8,
442 sk_type : 16;
443 #define SK_PROTOCOL_MAX U8_MAX
444 kmemcheck_bitfield_end(flags);
446 u16 sk_gso_max_segs;
447 unsigned long sk_lingertime;
448 struct proto *sk_prot_creator;
449 rwlock_t sk_callback_lock;
450 int sk_err,
451 sk_err_soft;
452 u32 sk_ack_backlog;
453 u32 sk_max_ack_backlog;
454 kuid_t sk_uid;
455 struct pid *sk_peer_pid;
456 const struct cred *sk_peer_cred;
457 long sk_rcvtimeo;
458 ktime_t sk_stamp;
459 u16 sk_tsflags;
460 u8 sk_shutdown;
461 u32 sk_tskey;
462 struct socket *sk_socket;
463 void *sk_user_data;
464 #ifdef CONFIG_SECURITY
465 void *sk_security;
466 #endif
467 struct sock_cgroup_data sk_cgrp_data;
468 struct mem_cgroup *sk_memcg;
469 void (*sk_state_change)(struct sock *sk);
470 void (*sk_data_ready)(struct sock *sk);
471 void (*sk_write_space)(struct sock *sk);
472 void (*sk_error_report)(struct sock *sk);
473 int (*sk_backlog_rcv)(struct sock *sk,
474 struct sk_buff *skb);
475 void (*sk_destruct)(struct sock *sk);
476 struct sock_reuseport __rcu *sk_reuseport_cb;
477 struct rcu_head sk_rcu;
480 enum sk_pacing {
481 SK_PACING_NONE = 0,
482 SK_PACING_NEEDED = 1,
483 SK_PACING_FQ = 2,
486 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
488 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
489 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
492 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
493 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
494 * on a socket means that the socket will reuse everybody else's port
495 * without looking at the other's sk_reuse value.
498 #define SK_NO_REUSE 0
499 #define SK_CAN_REUSE 1
500 #define SK_FORCE_REUSE 2
502 int sk_set_peek_off(struct sock *sk, int val);
504 static inline int sk_peek_offset(struct sock *sk, int flags)
506 if (unlikely(flags & MSG_PEEK)) {
507 s32 off = READ_ONCE(sk->sk_peek_off);
508 if (off >= 0)
509 return off;
512 return 0;
515 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
517 s32 off = READ_ONCE(sk->sk_peek_off);
519 if (unlikely(off >= 0)) {
520 off = max_t(s32, off - val, 0);
521 WRITE_ONCE(sk->sk_peek_off, off);
525 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
527 sk_peek_offset_bwd(sk, -val);
531 * Hashed lists helper routines
533 static inline struct sock *sk_entry(const struct hlist_node *node)
535 return hlist_entry(node, struct sock, sk_node);
538 static inline struct sock *__sk_head(const struct hlist_head *head)
540 return hlist_entry(head->first, struct sock, sk_node);
543 static inline struct sock *sk_head(const struct hlist_head *head)
545 return hlist_empty(head) ? NULL : __sk_head(head);
548 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
550 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
553 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
555 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
558 static inline struct sock *sk_next(const struct sock *sk)
560 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
563 static inline struct sock *sk_nulls_next(const struct sock *sk)
565 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
566 hlist_nulls_entry(sk->sk_nulls_node.next,
567 struct sock, sk_nulls_node) :
568 NULL;
571 static inline bool sk_unhashed(const struct sock *sk)
573 return hlist_unhashed(&sk->sk_node);
576 static inline bool sk_hashed(const struct sock *sk)
578 return !sk_unhashed(sk);
581 static inline void sk_node_init(struct hlist_node *node)
583 node->pprev = NULL;
586 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
588 node->pprev = NULL;
591 static inline void __sk_del_node(struct sock *sk)
593 __hlist_del(&sk->sk_node);
596 /* NB: equivalent to hlist_del_init_rcu */
597 static inline bool __sk_del_node_init(struct sock *sk)
599 if (sk_hashed(sk)) {
600 __sk_del_node(sk);
601 sk_node_init(&sk->sk_node);
602 return true;
604 return false;
607 /* Grab socket reference count. This operation is valid only
608 when sk is ALREADY grabbed f.e. it is found in hash table
609 or a list and the lookup is made under lock preventing hash table
610 modifications.
613 static __always_inline void sock_hold(struct sock *sk)
615 refcount_inc(&sk->sk_refcnt);
618 /* Ungrab socket in the context, which assumes that socket refcnt
619 cannot hit zero, f.e. it is true in context of any socketcall.
621 static __always_inline void __sock_put(struct sock *sk)
623 refcount_dec(&sk->sk_refcnt);
626 static inline bool sk_del_node_init(struct sock *sk)
628 bool rc = __sk_del_node_init(sk);
630 if (rc) {
631 /* paranoid for a while -acme */
632 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
633 __sock_put(sk);
635 return rc;
637 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
639 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
641 if (sk_hashed(sk)) {
642 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
643 return true;
645 return false;
648 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
650 bool rc = __sk_nulls_del_node_init_rcu(sk);
652 if (rc) {
653 /* paranoid for a while -acme */
654 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
655 __sock_put(sk);
657 return rc;
660 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
662 hlist_add_head(&sk->sk_node, list);
665 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
667 sock_hold(sk);
668 __sk_add_node(sk, list);
671 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
673 sock_hold(sk);
674 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
675 sk->sk_family == AF_INET6)
676 hlist_add_tail_rcu(&sk->sk_node, list);
677 else
678 hlist_add_head_rcu(&sk->sk_node, list);
681 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
683 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
684 sk->sk_family == AF_INET6)
685 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
686 else
687 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
690 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
692 sock_hold(sk);
693 __sk_nulls_add_node_rcu(sk, list);
696 static inline void __sk_del_bind_node(struct sock *sk)
698 __hlist_del(&sk->sk_bind_node);
701 static inline void sk_add_bind_node(struct sock *sk,
702 struct hlist_head *list)
704 hlist_add_head(&sk->sk_bind_node, list);
707 #define sk_for_each(__sk, list) \
708 hlist_for_each_entry(__sk, list, sk_node)
709 #define sk_for_each_rcu(__sk, list) \
710 hlist_for_each_entry_rcu(__sk, list, sk_node)
711 #define sk_nulls_for_each(__sk, node, list) \
712 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
713 #define sk_nulls_for_each_rcu(__sk, node, list) \
714 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
715 #define sk_for_each_from(__sk) \
716 hlist_for_each_entry_from(__sk, sk_node)
717 #define sk_nulls_for_each_from(__sk, node) \
718 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
719 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
720 #define sk_for_each_safe(__sk, tmp, list) \
721 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
722 #define sk_for_each_bound(__sk, list) \
723 hlist_for_each_entry(__sk, list, sk_bind_node)
726 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
727 * @tpos: the type * to use as a loop cursor.
728 * @pos: the &struct hlist_node to use as a loop cursor.
729 * @head: the head for your list.
730 * @offset: offset of hlist_node within the struct.
733 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
734 for (pos = rcu_dereference((head)->first); \
735 pos != NULL && \
736 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
737 pos = rcu_dereference(pos->next))
739 static inline struct user_namespace *sk_user_ns(struct sock *sk)
741 /* Careful only use this in a context where these parameters
742 * can not change and must all be valid, such as recvmsg from
743 * userspace.
745 return sk->sk_socket->file->f_cred->user_ns;
748 /* Sock flags */
749 enum sock_flags {
750 SOCK_DEAD,
751 SOCK_DONE,
752 SOCK_URGINLINE,
753 SOCK_KEEPOPEN,
754 SOCK_LINGER,
755 SOCK_DESTROY,
756 SOCK_BROADCAST,
757 SOCK_TIMESTAMP,
758 SOCK_ZAPPED,
759 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
760 SOCK_DBG, /* %SO_DEBUG setting */
761 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
762 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
763 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
764 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
765 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
766 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
767 SOCK_FASYNC, /* fasync() active */
768 SOCK_RXQ_OVFL,
769 SOCK_ZEROCOPY, /* buffers from userspace */
770 SOCK_WIFI_STATUS, /* push wifi status to userspace */
771 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
772 * Will use last 4 bytes of packet sent from
773 * user-space instead.
775 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
776 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
777 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
780 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
782 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
784 nsk->sk_flags = osk->sk_flags;
787 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
789 __set_bit(flag, &sk->sk_flags);
792 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
794 __clear_bit(flag, &sk->sk_flags);
797 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
799 return test_bit(flag, &sk->sk_flags);
802 #ifdef CONFIG_NET
803 extern struct static_key memalloc_socks;
804 static inline int sk_memalloc_socks(void)
806 return static_key_false(&memalloc_socks);
808 #else
810 static inline int sk_memalloc_socks(void)
812 return 0;
815 #endif
817 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
819 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
822 static inline void sk_acceptq_removed(struct sock *sk)
824 sk->sk_ack_backlog--;
827 static inline void sk_acceptq_added(struct sock *sk)
829 sk->sk_ack_backlog++;
832 static inline bool sk_acceptq_is_full(const struct sock *sk)
834 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
838 * Compute minimal free write space needed to queue new packets.
840 static inline int sk_stream_min_wspace(const struct sock *sk)
842 return sk->sk_wmem_queued >> 1;
845 static inline int sk_stream_wspace(const struct sock *sk)
847 return sk->sk_sndbuf - sk->sk_wmem_queued;
850 void sk_stream_write_space(struct sock *sk);
852 /* OOB backlog add */
853 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
855 /* dont let skb dst not refcounted, we are going to leave rcu lock */
856 skb_dst_force_safe(skb);
858 if (!sk->sk_backlog.tail)
859 sk->sk_backlog.head = skb;
860 else
861 sk->sk_backlog.tail->next = skb;
863 sk->sk_backlog.tail = skb;
864 skb->next = NULL;
868 * Take into account size of receive queue and backlog queue
869 * Do not take into account this skb truesize,
870 * to allow even a single big packet to come.
872 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
874 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
876 return qsize > limit;
879 /* The per-socket spinlock must be held here. */
880 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
881 unsigned int limit)
883 if (sk_rcvqueues_full(sk, limit))
884 return -ENOBUFS;
887 * If the skb was allocated from pfmemalloc reserves, only
888 * allow SOCK_MEMALLOC sockets to use it as this socket is
889 * helping free memory
891 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
892 return -ENOMEM;
894 __sk_add_backlog(sk, skb);
895 sk->sk_backlog.len += skb->truesize;
896 return 0;
899 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
901 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
903 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
904 return __sk_backlog_rcv(sk, skb);
906 return sk->sk_backlog_rcv(sk, skb);
909 static inline void sk_incoming_cpu_update(struct sock *sk)
911 int cpu = raw_smp_processor_id();
913 if (unlikely(sk->sk_incoming_cpu != cpu))
914 sk->sk_incoming_cpu = cpu;
917 static inline void sock_rps_record_flow_hash(__u32 hash)
919 #ifdef CONFIG_RPS
920 struct rps_sock_flow_table *sock_flow_table;
922 rcu_read_lock();
923 sock_flow_table = rcu_dereference(rps_sock_flow_table);
924 rps_record_sock_flow(sock_flow_table, hash);
925 rcu_read_unlock();
926 #endif
929 static inline void sock_rps_record_flow(const struct sock *sk)
931 #ifdef CONFIG_RPS
932 if (static_key_false(&rfs_needed)) {
933 /* Reading sk->sk_rxhash might incur an expensive cache line
934 * miss.
936 * TCP_ESTABLISHED does cover almost all states where RFS
937 * might be useful, and is cheaper [1] than testing :
938 * IPv4: inet_sk(sk)->inet_daddr
939 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
940 * OR an additional socket flag
941 * [1] : sk_state and sk_prot are in the same cache line.
943 if (sk->sk_state == TCP_ESTABLISHED)
944 sock_rps_record_flow_hash(sk->sk_rxhash);
946 #endif
949 static inline void sock_rps_save_rxhash(struct sock *sk,
950 const struct sk_buff *skb)
952 #ifdef CONFIG_RPS
953 if (unlikely(sk->sk_rxhash != skb->hash))
954 sk->sk_rxhash = skb->hash;
955 #endif
958 static inline void sock_rps_reset_rxhash(struct sock *sk)
960 #ifdef CONFIG_RPS
961 sk->sk_rxhash = 0;
962 #endif
965 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
966 ({ int __rc; \
967 release_sock(__sk); \
968 __rc = __condition; \
969 if (!__rc) { \
970 *(__timeo) = wait_woken(__wait, \
971 TASK_INTERRUPTIBLE, \
972 *(__timeo)); \
974 sched_annotate_sleep(); \
975 lock_sock(__sk); \
976 __rc = __condition; \
977 __rc; \
980 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
981 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
982 void sk_stream_wait_close(struct sock *sk, long timeo_p);
983 int sk_stream_error(struct sock *sk, int flags, int err);
984 void sk_stream_kill_queues(struct sock *sk);
985 void sk_set_memalloc(struct sock *sk);
986 void sk_clear_memalloc(struct sock *sk);
988 void __sk_flush_backlog(struct sock *sk);
990 static inline bool sk_flush_backlog(struct sock *sk)
992 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
993 __sk_flush_backlog(sk);
994 return true;
996 return false;
999 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1001 struct request_sock_ops;
1002 struct timewait_sock_ops;
1003 struct inet_hashinfo;
1004 struct raw_hashinfo;
1005 struct smc_hashinfo;
1006 struct module;
1009 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1010 * un-modified. Special care is taken when initializing object to zero.
1012 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1014 if (offsetof(struct sock, sk_node.next) != 0)
1015 memset(sk, 0, offsetof(struct sock, sk_node.next));
1016 memset(&sk->sk_node.pprev, 0,
1017 size - offsetof(struct sock, sk_node.pprev));
1020 /* Networking protocol blocks we attach to sockets.
1021 * socket layer -> transport layer interface
1023 struct proto {
1024 void (*close)(struct sock *sk,
1025 long timeout);
1026 int (*connect)(struct sock *sk,
1027 struct sockaddr *uaddr,
1028 int addr_len);
1029 int (*disconnect)(struct sock *sk, int flags);
1031 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1032 bool kern);
1034 int (*ioctl)(struct sock *sk, int cmd,
1035 unsigned long arg);
1036 int (*init)(struct sock *sk);
1037 void (*destroy)(struct sock *sk);
1038 void (*shutdown)(struct sock *sk, int how);
1039 int (*setsockopt)(struct sock *sk, int level,
1040 int optname, char __user *optval,
1041 unsigned int optlen);
1042 int (*getsockopt)(struct sock *sk, int level,
1043 int optname, char __user *optval,
1044 int __user *option);
1045 void (*keepalive)(struct sock *sk, int valbool);
1046 #ifdef CONFIG_COMPAT
1047 int (*compat_setsockopt)(struct sock *sk,
1048 int level,
1049 int optname, char __user *optval,
1050 unsigned int optlen);
1051 int (*compat_getsockopt)(struct sock *sk,
1052 int level,
1053 int optname, char __user *optval,
1054 int __user *option);
1055 int (*compat_ioctl)(struct sock *sk,
1056 unsigned int cmd, unsigned long arg);
1057 #endif
1058 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1059 size_t len);
1060 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1061 size_t len, int noblock, int flags,
1062 int *addr_len);
1063 int (*sendpage)(struct sock *sk, struct page *page,
1064 int offset, size_t size, int flags);
1065 int (*bind)(struct sock *sk,
1066 struct sockaddr *uaddr, int addr_len);
1068 int (*backlog_rcv) (struct sock *sk,
1069 struct sk_buff *skb);
1071 void (*release_cb)(struct sock *sk);
1073 /* Keeping track of sk's, looking them up, and port selection methods. */
1074 int (*hash)(struct sock *sk);
1075 void (*unhash)(struct sock *sk);
1076 void (*rehash)(struct sock *sk);
1077 int (*get_port)(struct sock *sk, unsigned short snum);
1079 /* Keeping track of sockets in use */
1080 #ifdef CONFIG_PROC_FS
1081 unsigned int inuse_idx;
1082 #endif
1084 bool (*stream_memory_free)(const struct sock *sk);
1085 /* Memory pressure */
1086 void (*enter_memory_pressure)(struct sock *sk);
1087 void (*leave_memory_pressure)(struct sock *sk);
1088 atomic_long_t *memory_allocated; /* Current allocated memory. */
1089 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1091 * Pressure flag: try to collapse.
1092 * Technical note: it is used by multiple contexts non atomically.
1093 * All the __sk_mem_schedule() is of this nature: accounting
1094 * is strict, actions are advisory and have some latency.
1096 unsigned long *memory_pressure;
1097 long *sysctl_mem;
1098 int *sysctl_wmem;
1099 int *sysctl_rmem;
1100 int max_header;
1101 bool no_autobind;
1103 struct kmem_cache *slab;
1104 unsigned int obj_size;
1105 int slab_flags;
1107 struct percpu_counter *orphan_count;
1109 struct request_sock_ops *rsk_prot;
1110 struct timewait_sock_ops *twsk_prot;
1112 union {
1113 struct inet_hashinfo *hashinfo;
1114 struct udp_table *udp_table;
1115 struct raw_hashinfo *raw_hash;
1116 struct smc_hashinfo *smc_hash;
1117 } h;
1119 struct module *owner;
1121 char name[32];
1123 struct list_head node;
1124 #ifdef SOCK_REFCNT_DEBUG
1125 atomic_t socks;
1126 #endif
1127 int (*diag_destroy)(struct sock *sk, int err);
1130 int proto_register(struct proto *prot, int alloc_slab);
1131 void proto_unregister(struct proto *prot);
1133 #ifdef SOCK_REFCNT_DEBUG
1134 static inline void sk_refcnt_debug_inc(struct sock *sk)
1136 atomic_inc(&sk->sk_prot->socks);
1139 static inline void sk_refcnt_debug_dec(struct sock *sk)
1141 atomic_dec(&sk->sk_prot->socks);
1142 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1143 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1146 static inline void sk_refcnt_debug_release(const struct sock *sk)
1148 if (refcount_read(&sk->sk_refcnt) != 1)
1149 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1150 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1152 #else /* SOCK_REFCNT_DEBUG */
1153 #define sk_refcnt_debug_inc(sk) do { } while (0)
1154 #define sk_refcnt_debug_dec(sk) do { } while (0)
1155 #define sk_refcnt_debug_release(sk) do { } while (0)
1156 #endif /* SOCK_REFCNT_DEBUG */
1158 static inline bool sk_stream_memory_free(const struct sock *sk)
1160 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1161 return false;
1163 return sk->sk_prot->stream_memory_free ?
1164 sk->sk_prot->stream_memory_free(sk) : true;
1167 static inline bool sk_stream_is_writeable(const struct sock *sk)
1169 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1170 sk_stream_memory_free(sk);
1173 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1174 struct cgroup *ancestor)
1176 #ifdef CONFIG_SOCK_CGROUP_DATA
1177 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1178 ancestor);
1179 #else
1180 return -ENOTSUPP;
1181 #endif
1184 static inline bool sk_has_memory_pressure(const struct sock *sk)
1186 return sk->sk_prot->memory_pressure != NULL;
1189 static inline bool sk_under_memory_pressure(const struct sock *sk)
1191 if (!sk->sk_prot->memory_pressure)
1192 return false;
1194 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1195 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1196 return true;
1198 return !!*sk->sk_prot->memory_pressure;
1201 static inline long
1202 sk_memory_allocated(const struct sock *sk)
1204 return atomic_long_read(sk->sk_prot->memory_allocated);
1207 static inline long
1208 sk_memory_allocated_add(struct sock *sk, int amt)
1210 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1213 static inline void
1214 sk_memory_allocated_sub(struct sock *sk, int amt)
1216 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1219 static inline void sk_sockets_allocated_dec(struct sock *sk)
1221 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1224 static inline void sk_sockets_allocated_inc(struct sock *sk)
1226 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1229 static inline int
1230 sk_sockets_allocated_read_positive(struct sock *sk)
1232 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1235 static inline int
1236 proto_sockets_allocated_sum_positive(struct proto *prot)
1238 return percpu_counter_sum_positive(prot->sockets_allocated);
1241 static inline long
1242 proto_memory_allocated(struct proto *prot)
1244 return atomic_long_read(prot->memory_allocated);
1247 static inline bool
1248 proto_memory_pressure(struct proto *prot)
1250 if (!prot->memory_pressure)
1251 return false;
1252 return !!*prot->memory_pressure;
1256 #ifdef CONFIG_PROC_FS
1257 /* Called with local bh disabled */
1258 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1259 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1260 #else
1261 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1262 int inc)
1265 #endif
1268 /* With per-bucket locks this operation is not-atomic, so that
1269 * this version is not worse.
1271 static inline int __sk_prot_rehash(struct sock *sk)
1273 sk->sk_prot->unhash(sk);
1274 return sk->sk_prot->hash(sk);
1277 /* About 10 seconds */
1278 #define SOCK_DESTROY_TIME (10*HZ)
1280 /* Sockets 0-1023 can't be bound to unless you are superuser */
1281 #define PROT_SOCK 1024
1283 #define SHUTDOWN_MASK 3
1284 #define RCV_SHUTDOWN 1
1285 #define SEND_SHUTDOWN 2
1287 #define SOCK_SNDBUF_LOCK 1
1288 #define SOCK_RCVBUF_LOCK 2
1289 #define SOCK_BINDADDR_LOCK 4
1290 #define SOCK_BINDPORT_LOCK 8
1292 struct socket_alloc {
1293 struct socket socket;
1294 struct inode vfs_inode;
1297 static inline struct socket *SOCKET_I(struct inode *inode)
1299 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1302 static inline struct inode *SOCK_INODE(struct socket *socket)
1304 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1308 * Functions for memory accounting
1310 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1311 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1312 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1313 void __sk_mem_reclaim(struct sock *sk, int amount);
1315 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1316 * do not necessarily have 16x time more memory than 4KB ones.
1318 #define SK_MEM_QUANTUM 4096
1319 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1320 #define SK_MEM_SEND 0
1321 #define SK_MEM_RECV 1
1323 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1324 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1326 long val = sk->sk_prot->sysctl_mem[index];
1328 #if PAGE_SIZE > SK_MEM_QUANTUM
1329 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1330 #elif PAGE_SIZE < SK_MEM_QUANTUM
1331 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1332 #endif
1333 return val;
1336 static inline int sk_mem_pages(int amt)
1338 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1341 static inline bool sk_has_account(struct sock *sk)
1343 /* return true if protocol supports memory accounting */
1344 return !!sk->sk_prot->memory_allocated;
1347 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1349 if (!sk_has_account(sk))
1350 return true;
1351 return size <= sk->sk_forward_alloc ||
1352 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1355 static inline bool
1356 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1358 if (!sk_has_account(sk))
1359 return true;
1360 return size<= sk->sk_forward_alloc ||
1361 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1362 skb_pfmemalloc(skb);
1365 static inline void sk_mem_reclaim(struct sock *sk)
1367 if (!sk_has_account(sk))
1368 return;
1369 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1370 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1373 static inline void sk_mem_reclaim_partial(struct sock *sk)
1375 if (!sk_has_account(sk))
1376 return;
1377 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1378 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1381 static inline void sk_mem_charge(struct sock *sk, int size)
1383 if (!sk_has_account(sk))
1384 return;
1385 sk->sk_forward_alloc -= size;
1388 static inline void sk_mem_uncharge(struct sock *sk, int size)
1390 if (!sk_has_account(sk))
1391 return;
1392 sk->sk_forward_alloc += size;
1394 /* Avoid a possible overflow.
1395 * TCP send queues can make this happen, if sk_mem_reclaim()
1396 * is not called and more than 2 GBytes are released at once.
1398 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1399 * no need to hold that much forward allocation anyway.
1401 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1402 __sk_mem_reclaim(sk, 1 << 20);
1405 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1407 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1408 sk->sk_wmem_queued -= skb->truesize;
1409 sk_mem_uncharge(sk, skb->truesize);
1410 __kfree_skb(skb);
1413 static inline void sock_release_ownership(struct sock *sk)
1415 if (sk->sk_lock.owned) {
1416 sk->sk_lock.owned = 0;
1418 /* The sk_lock has mutex_unlock() semantics: */
1419 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1424 * Macro so as to not evaluate some arguments when
1425 * lockdep is not enabled.
1427 * Mark both the sk_lock and the sk_lock.slock as a
1428 * per-address-family lock class.
1430 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1431 do { \
1432 sk->sk_lock.owned = 0; \
1433 init_waitqueue_head(&sk->sk_lock.wq); \
1434 spin_lock_init(&(sk)->sk_lock.slock); \
1435 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1436 sizeof((sk)->sk_lock)); \
1437 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1438 (skey), (sname)); \
1439 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1440 } while (0)
1442 #ifdef CONFIG_LOCKDEP
1443 static inline bool lockdep_sock_is_held(const struct sock *csk)
1445 struct sock *sk = (struct sock *)csk;
1447 return lockdep_is_held(&sk->sk_lock) ||
1448 lockdep_is_held(&sk->sk_lock.slock);
1450 #endif
1452 void lock_sock_nested(struct sock *sk, int subclass);
1454 static inline void lock_sock(struct sock *sk)
1456 lock_sock_nested(sk, 0);
1459 void release_sock(struct sock *sk);
1461 /* BH context may only use the following locking interface. */
1462 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1463 #define bh_lock_sock_nested(__sk) \
1464 spin_lock_nested(&((__sk)->sk_lock.slock), \
1465 SINGLE_DEPTH_NESTING)
1466 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1468 bool lock_sock_fast(struct sock *sk);
1470 * unlock_sock_fast - complement of lock_sock_fast
1471 * @sk: socket
1472 * @slow: slow mode
1474 * fast unlock socket for user context.
1475 * If slow mode is on, we call regular release_sock()
1477 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1479 if (slow)
1480 release_sock(sk);
1481 else
1482 spin_unlock_bh(&sk->sk_lock.slock);
1485 /* Used by processes to "lock" a socket state, so that
1486 * interrupts and bottom half handlers won't change it
1487 * from under us. It essentially blocks any incoming
1488 * packets, so that we won't get any new data or any
1489 * packets that change the state of the socket.
1491 * While locked, BH processing will add new packets to
1492 * the backlog queue. This queue is processed by the
1493 * owner of the socket lock right before it is released.
1495 * Since ~2.3.5 it is also exclusive sleep lock serializing
1496 * accesses from user process context.
1499 static inline void sock_owned_by_me(const struct sock *sk)
1501 #ifdef CONFIG_LOCKDEP
1502 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1503 #endif
1506 static inline bool sock_owned_by_user(const struct sock *sk)
1508 sock_owned_by_me(sk);
1509 return sk->sk_lock.owned;
1512 /* no reclassification while locks are held */
1513 static inline bool sock_allow_reclassification(const struct sock *csk)
1515 struct sock *sk = (struct sock *)csk;
1517 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1520 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1521 struct proto *prot, int kern);
1522 void sk_free(struct sock *sk);
1523 void sk_destruct(struct sock *sk);
1524 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1525 void sk_free_unlock_clone(struct sock *sk);
1527 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1528 gfp_t priority);
1529 void __sock_wfree(struct sk_buff *skb);
1530 void sock_wfree(struct sk_buff *skb);
1531 void skb_orphan_partial(struct sk_buff *skb);
1532 void sock_rfree(struct sk_buff *skb);
1533 void sock_efree(struct sk_buff *skb);
1534 #ifdef CONFIG_INET
1535 void sock_edemux(struct sk_buff *skb);
1536 #else
1537 #define sock_edemux sock_efree
1538 #endif
1540 int sock_setsockopt(struct socket *sock, int level, int op,
1541 char __user *optval, unsigned int optlen);
1543 int sock_getsockopt(struct socket *sock, int level, int op,
1544 char __user *optval, int __user *optlen);
1545 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1546 int noblock, int *errcode);
1547 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1548 unsigned long data_len, int noblock,
1549 int *errcode, int max_page_order);
1550 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1551 void sock_kfree_s(struct sock *sk, void *mem, int size);
1552 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1553 void sk_send_sigurg(struct sock *sk);
1555 struct sockcm_cookie {
1556 u32 mark;
1557 u16 tsflags;
1560 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1561 struct sockcm_cookie *sockc);
1562 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1563 struct sockcm_cookie *sockc);
1566 * Functions to fill in entries in struct proto_ops when a protocol
1567 * does not implement a particular function.
1569 int sock_no_bind(struct socket *, struct sockaddr *, int);
1570 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1571 int sock_no_socketpair(struct socket *, struct socket *);
1572 int sock_no_accept(struct socket *, struct socket *, int, bool);
1573 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1574 unsigned int sock_no_poll(struct file *, struct socket *,
1575 struct poll_table_struct *);
1576 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1577 int sock_no_listen(struct socket *, int);
1578 int sock_no_shutdown(struct socket *, int);
1579 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1580 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1581 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1582 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1583 int sock_no_mmap(struct file *file, struct socket *sock,
1584 struct vm_area_struct *vma);
1585 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1586 size_t size, int flags);
1589 * Functions to fill in entries in struct proto_ops when a protocol
1590 * uses the inet style.
1592 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1593 char __user *optval, int __user *optlen);
1594 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1595 int flags);
1596 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1597 char __user *optval, unsigned int optlen);
1598 int compat_sock_common_getsockopt(struct socket *sock, int level,
1599 int optname, char __user *optval, int __user *optlen);
1600 int compat_sock_common_setsockopt(struct socket *sock, int level,
1601 int optname, char __user *optval, unsigned int optlen);
1603 void sk_common_release(struct sock *sk);
1606 * Default socket callbacks and setup code
1609 /* Initialise core socket variables */
1610 void sock_init_data(struct socket *sock, struct sock *sk);
1613 * Socket reference counting postulates.
1615 * * Each user of socket SHOULD hold a reference count.
1616 * * Each access point to socket (an hash table bucket, reference from a list,
1617 * running timer, skb in flight MUST hold a reference count.
1618 * * When reference count hits 0, it means it will never increase back.
1619 * * When reference count hits 0, it means that no references from
1620 * outside exist to this socket and current process on current CPU
1621 * is last user and may/should destroy this socket.
1622 * * sk_free is called from any context: process, BH, IRQ. When
1623 * it is called, socket has no references from outside -> sk_free
1624 * may release descendant resources allocated by the socket, but
1625 * to the time when it is called, socket is NOT referenced by any
1626 * hash tables, lists etc.
1627 * * Packets, delivered from outside (from network or from another process)
1628 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1629 * when they sit in queue. Otherwise, packets will leak to hole, when
1630 * socket is looked up by one cpu and unhasing is made by another CPU.
1631 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1632 * (leak to backlog). Packet socket does all the processing inside
1633 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1634 * use separate SMP lock, so that they are prone too.
1637 /* Ungrab socket and destroy it, if it was the last reference. */
1638 static inline void sock_put(struct sock *sk)
1640 if (refcount_dec_and_test(&sk->sk_refcnt))
1641 sk_free(sk);
1643 /* Generic version of sock_put(), dealing with all sockets
1644 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1646 void sock_gen_put(struct sock *sk);
1648 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1649 unsigned int trim_cap, bool refcounted);
1650 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1651 const int nested)
1653 return __sk_receive_skb(sk, skb, nested, 1, true);
1656 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1658 sk->sk_tx_queue_mapping = tx_queue;
1661 static inline void sk_tx_queue_clear(struct sock *sk)
1663 sk->sk_tx_queue_mapping = -1;
1666 static inline int sk_tx_queue_get(const struct sock *sk)
1668 return sk ? sk->sk_tx_queue_mapping : -1;
1671 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1673 sk_tx_queue_clear(sk);
1674 sk->sk_socket = sock;
1677 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1679 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1680 return &rcu_dereference_raw(sk->sk_wq)->wait;
1682 /* Detach socket from process context.
1683 * Announce socket dead, detach it from wait queue and inode.
1684 * Note that parent inode held reference count on this struct sock,
1685 * we do not release it in this function, because protocol
1686 * probably wants some additional cleanups or even continuing
1687 * to work with this socket (TCP).
1689 static inline void sock_orphan(struct sock *sk)
1691 write_lock_bh(&sk->sk_callback_lock);
1692 sock_set_flag(sk, SOCK_DEAD);
1693 sk_set_socket(sk, NULL);
1694 sk->sk_wq = NULL;
1695 write_unlock_bh(&sk->sk_callback_lock);
1698 static inline void sock_graft(struct sock *sk, struct socket *parent)
1700 WARN_ON(parent->sk);
1701 write_lock_bh(&sk->sk_callback_lock);
1702 sk->sk_wq = parent->wq;
1703 parent->sk = sk;
1704 sk_set_socket(sk, parent);
1705 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1706 security_sock_graft(sk, parent);
1707 write_unlock_bh(&sk->sk_callback_lock);
1710 kuid_t sock_i_uid(struct sock *sk);
1711 unsigned long sock_i_ino(struct sock *sk);
1713 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1715 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1718 static inline u32 net_tx_rndhash(void)
1720 u32 v = prandom_u32();
1722 return v ?: 1;
1725 static inline void sk_set_txhash(struct sock *sk)
1727 sk->sk_txhash = net_tx_rndhash();
1730 static inline void sk_rethink_txhash(struct sock *sk)
1732 if (sk->sk_txhash)
1733 sk_set_txhash(sk);
1736 static inline struct dst_entry *
1737 __sk_dst_get(struct sock *sk)
1739 return rcu_dereference_check(sk->sk_dst_cache,
1740 lockdep_sock_is_held(sk));
1743 static inline struct dst_entry *
1744 sk_dst_get(struct sock *sk)
1746 struct dst_entry *dst;
1748 rcu_read_lock();
1749 dst = rcu_dereference(sk->sk_dst_cache);
1750 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1751 dst = NULL;
1752 rcu_read_unlock();
1753 return dst;
1756 static inline void dst_negative_advice(struct sock *sk)
1758 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1760 sk_rethink_txhash(sk);
1762 if (dst && dst->ops->negative_advice) {
1763 ndst = dst->ops->negative_advice(dst);
1765 if (ndst != dst) {
1766 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1767 sk_tx_queue_clear(sk);
1768 sk->sk_dst_pending_confirm = 0;
1773 static inline void
1774 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1776 struct dst_entry *old_dst;
1778 sk_tx_queue_clear(sk);
1779 sk->sk_dst_pending_confirm = 0;
1780 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1781 lockdep_sock_is_held(sk));
1782 rcu_assign_pointer(sk->sk_dst_cache, dst);
1783 dst_release(old_dst);
1786 static inline void
1787 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1789 struct dst_entry *old_dst;
1791 sk_tx_queue_clear(sk);
1792 sk->sk_dst_pending_confirm = 0;
1793 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1794 dst_release(old_dst);
1797 static inline void
1798 __sk_dst_reset(struct sock *sk)
1800 __sk_dst_set(sk, NULL);
1803 static inline void
1804 sk_dst_reset(struct sock *sk)
1806 sk_dst_set(sk, NULL);
1809 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1811 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1813 static inline void sk_dst_confirm(struct sock *sk)
1815 if (!sk->sk_dst_pending_confirm)
1816 sk->sk_dst_pending_confirm = 1;
1819 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1821 if (skb_get_dst_pending_confirm(skb)) {
1822 struct sock *sk = skb->sk;
1823 unsigned long now = jiffies;
1825 /* avoid dirtying neighbour */
1826 if (n->confirmed != now)
1827 n->confirmed = now;
1828 if (sk && sk->sk_dst_pending_confirm)
1829 sk->sk_dst_pending_confirm = 0;
1833 bool sk_mc_loop(struct sock *sk);
1835 static inline bool sk_can_gso(const struct sock *sk)
1837 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1840 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1842 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1844 sk->sk_route_nocaps |= flags;
1845 sk->sk_route_caps &= ~flags;
1848 static inline bool sk_check_csum_caps(struct sock *sk)
1850 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1851 (sk->sk_family == PF_INET &&
1852 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1853 (sk->sk_family == PF_INET6 &&
1854 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1857 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1858 struct iov_iter *from, char *to,
1859 int copy, int offset)
1861 if (skb->ip_summed == CHECKSUM_NONE) {
1862 __wsum csum = 0;
1863 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1864 return -EFAULT;
1865 skb->csum = csum_block_add(skb->csum, csum, offset);
1866 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1867 if (!copy_from_iter_full_nocache(to, copy, from))
1868 return -EFAULT;
1869 } else if (!copy_from_iter_full(to, copy, from))
1870 return -EFAULT;
1872 return 0;
1875 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1876 struct iov_iter *from, int copy)
1878 int err, offset = skb->len;
1880 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1881 copy, offset);
1882 if (err)
1883 __skb_trim(skb, offset);
1885 return err;
1888 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1889 struct sk_buff *skb,
1890 struct page *page,
1891 int off, int copy)
1893 int err;
1895 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1896 copy, skb->len);
1897 if (err)
1898 return err;
1900 skb->len += copy;
1901 skb->data_len += copy;
1902 skb->truesize += copy;
1903 sk->sk_wmem_queued += copy;
1904 sk_mem_charge(sk, copy);
1905 return 0;
1909 * sk_wmem_alloc_get - returns write allocations
1910 * @sk: socket
1912 * Returns sk_wmem_alloc minus initial offset of one
1914 static inline int sk_wmem_alloc_get(const struct sock *sk)
1916 return refcount_read(&sk->sk_wmem_alloc) - 1;
1920 * sk_rmem_alloc_get - returns read allocations
1921 * @sk: socket
1923 * Returns sk_rmem_alloc
1925 static inline int sk_rmem_alloc_get(const struct sock *sk)
1927 return atomic_read(&sk->sk_rmem_alloc);
1931 * sk_has_allocations - check if allocations are outstanding
1932 * @sk: socket
1934 * Returns true if socket has write or read allocations
1936 static inline bool sk_has_allocations(const struct sock *sk)
1938 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1942 * skwq_has_sleeper - check if there are any waiting processes
1943 * @wq: struct socket_wq
1945 * Returns true if socket_wq has waiting processes
1947 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1948 * barrier call. They were added due to the race found within the tcp code.
1950 * Consider following tcp code paths::
1952 * CPU1 CPU2
1953 * sys_select receive packet
1954 * ... ...
1955 * __add_wait_queue update tp->rcv_nxt
1956 * ... ...
1957 * tp->rcv_nxt check sock_def_readable
1958 * ... {
1959 * schedule rcu_read_lock();
1960 * wq = rcu_dereference(sk->sk_wq);
1961 * if (wq && waitqueue_active(&wq->wait))
1962 * wake_up_interruptible(&wq->wait)
1963 * ...
1966 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1967 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1968 * could then endup calling schedule and sleep forever if there are no more
1969 * data on the socket.
1972 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1974 return wq && wq_has_sleeper(&wq->wait);
1978 * sock_poll_wait - place memory barrier behind the poll_wait call.
1979 * @filp: file
1980 * @wait_address: socket wait queue
1981 * @p: poll_table
1983 * See the comments in the wq_has_sleeper function.
1985 static inline void sock_poll_wait(struct file *filp,
1986 wait_queue_head_t *wait_address, poll_table *p)
1988 if (!poll_does_not_wait(p) && wait_address) {
1989 poll_wait(filp, wait_address, p);
1990 /* We need to be sure we are in sync with the
1991 * socket flags modification.
1993 * This memory barrier is paired in the wq_has_sleeper.
1995 smp_mb();
1999 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2001 if (sk->sk_txhash) {
2002 skb->l4_hash = 1;
2003 skb->hash = sk->sk_txhash;
2007 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2010 * Queue a received datagram if it will fit. Stream and sequenced
2011 * protocols can't normally use this as they need to fit buffers in
2012 * and play with them.
2014 * Inlined as it's very short and called for pretty much every
2015 * packet ever received.
2017 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2019 skb_orphan(skb);
2020 skb->sk = sk;
2021 skb->destructor = sock_rfree;
2022 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2023 sk_mem_charge(sk, skb->truesize);
2026 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2027 unsigned long expires);
2029 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2031 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2032 struct sk_buff *skb, unsigned int flags,
2033 void (*destructor)(struct sock *sk,
2034 struct sk_buff *skb));
2035 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2036 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2038 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2039 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2042 * Recover an error report and clear atomically
2045 static inline int sock_error(struct sock *sk)
2047 int err;
2048 if (likely(!sk->sk_err))
2049 return 0;
2050 err = xchg(&sk->sk_err, 0);
2051 return -err;
2054 static inline unsigned long sock_wspace(struct sock *sk)
2056 int amt = 0;
2058 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2059 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2060 if (amt < 0)
2061 amt = 0;
2063 return amt;
2066 /* Note:
2067 * We use sk->sk_wq_raw, from contexts knowing this
2068 * pointer is not NULL and cannot disappear/change.
2070 static inline void sk_set_bit(int nr, struct sock *sk)
2072 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2073 !sock_flag(sk, SOCK_FASYNC))
2074 return;
2076 set_bit(nr, &sk->sk_wq_raw->flags);
2079 static inline void sk_clear_bit(int nr, struct sock *sk)
2081 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2082 !sock_flag(sk, SOCK_FASYNC))
2083 return;
2085 clear_bit(nr, &sk->sk_wq_raw->flags);
2088 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2090 if (sock_flag(sk, SOCK_FASYNC)) {
2091 rcu_read_lock();
2092 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2093 rcu_read_unlock();
2097 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2098 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2099 * Note: for send buffers, TCP works better if we can build two skbs at
2100 * minimum.
2102 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2104 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2105 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2107 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2109 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2110 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2111 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2115 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2116 bool force_schedule);
2119 * sk_page_frag - return an appropriate page_frag
2120 * @sk: socket
2122 * If socket allocation mode allows current thread to sleep, it means its
2123 * safe to use the per task page_frag instead of the per socket one.
2125 static inline struct page_frag *sk_page_frag(struct sock *sk)
2127 if (gfpflags_allow_blocking(sk->sk_allocation))
2128 return &current->task_frag;
2130 return &sk->sk_frag;
2133 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2136 * Default write policy as shown to user space via poll/select/SIGIO
2138 static inline bool sock_writeable(const struct sock *sk)
2140 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2143 static inline gfp_t gfp_any(void)
2145 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2148 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2150 return noblock ? 0 : sk->sk_rcvtimeo;
2153 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2155 return noblock ? 0 : sk->sk_sndtimeo;
2158 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2160 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2163 /* Alas, with timeout socket operations are not restartable.
2164 * Compare this to poll().
2166 static inline int sock_intr_errno(long timeo)
2168 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2171 struct sock_skb_cb {
2172 u32 dropcount;
2175 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2176 * using skb->cb[] would keep using it directly and utilize its
2177 * alignement guarantee.
2179 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2180 sizeof(struct sock_skb_cb)))
2182 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2183 SOCK_SKB_CB_OFFSET))
2185 #define sock_skb_cb_check_size(size) \
2186 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2188 static inline void
2189 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2191 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2192 atomic_read(&sk->sk_drops) : 0;
2195 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2197 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2199 atomic_add(segs, &sk->sk_drops);
2202 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2203 struct sk_buff *skb);
2204 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2205 struct sk_buff *skb);
2207 static inline void
2208 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2210 ktime_t kt = skb->tstamp;
2211 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2214 * generate control messages if
2215 * - receive time stamping in software requested
2216 * - software time stamp available and wanted
2217 * - hardware time stamps available and wanted
2219 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2220 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2221 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2222 (hwtstamps->hwtstamp &&
2223 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2224 __sock_recv_timestamp(msg, sk, skb);
2225 else
2226 sk->sk_stamp = kt;
2228 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2229 __sock_recv_wifi_status(msg, sk, skb);
2232 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2233 struct sk_buff *skb);
2235 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2236 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2237 struct sk_buff *skb)
2239 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2240 (1UL << SOCK_RCVTSTAMP))
2241 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2242 SOF_TIMESTAMPING_RAW_HARDWARE)
2244 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2245 __sock_recv_ts_and_drops(msg, sk, skb);
2246 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2247 sk->sk_stamp = skb->tstamp;
2248 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2249 sk->sk_stamp = 0;
2252 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2255 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2256 * @sk: socket sending this packet
2257 * @tsflags: timestamping flags to use
2258 * @tx_flags: completed with instructions for time stamping
2260 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2262 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2263 __u8 *tx_flags)
2265 if (unlikely(tsflags))
2266 __sock_tx_timestamp(tsflags, tx_flags);
2267 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2268 *tx_flags |= SKBTX_WIFI_STATUS;
2272 * sk_eat_skb - Release a skb if it is no longer needed
2273 * @sk: socket to eat this skb from
2274 * @skb: socket buffer to eat
2276 * This routine must be called with interrupts disabled or with the socket
2277 * locked so that the sk_buff queue operation is ok.
2279 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2281 __skb_unlink(skb, &sk->sk_receive_queue);
2282 __kfree_skb(skb);
2285 static inline
2286 struct net *sock_net(const struct sock *sk)
2288 return read_pnet(&sk->sk_net);
2291 static inline
2292 void sock_net_set(struct sock *sk, struct net *net)
2294 write_pnet(&sk->sk_net, net);
2297 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2299 if (skb->sk) {
2300 struct sock *sk = skb->sk;
2302 skb->destructor = NULL;
2303 skb->sk = NULL;
2304 return sk;
2306 return NULL;
2309 /* This helper checks if a socket is a full socket,
2310 * ie _not_ a timewait or request socket.
2312 static inline bool sk_fullsock(const struct sock *sk)
2314 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2317 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2318 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2320 static inline bool sk_listener(const struct sock *sk)
2322 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2326 * sk_state_load - read sk->sk_state for lockless contexts
2327 * @sk: socket pointer
2329 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2330 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2332 static inline int sk_state_load(const struct sock *sk)
2334 return smp_load_acquire(&sk->sk_state);
2338 * sk_state_store - update sk->sk_state
2339 * @sk: socket pointer
2340 * @newstate: new state
2342 * Paired with sk_state_load(). Should be used in contexts where
2343 * state change might impact lockless readers.
2345 static inline void sk_state_store(struct sock *sk, int newstate)
2347 smp_store_release(&sk->sk_state, newstate);
2350 void sock_enable_timestamp(struct sock *sk, int flag);
2351 int sock_get_timestamp(struct sock *, struct timeval __user *);
2352 int sock_get_timestampns(struct sock *, struct timespec __user *);
2353 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2354 int type);
2356 bool sk_ns_capable(const struct sock *sk,
2357 struct user_namespace *user_ns, int cap);
2358 bool sk_capable(const struct sock *sk, int cap);
2359 bool sk_net_capable(const struct sock *sk, int cap);
2361 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2363 extern __u32 sysctl_wmem_max;
2364 extern __u32 sysctl_rmem_max;
2366 extern int sysctl_tstamp_allow_data;
2367 extern int sysctl_optmem_max;
2369 extern __u32 sysctl_wmem_default;
2370 extern __u32 sysctl_rmem_default;
2372 #endif /* _SOCK_H */