4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
20 #include <linux/blkdev.h>
21 #include <linux/kprobes.h>
22 #include <linux/mmu_context.h>
23 #include <linux/module.h>
24 #include <linux/nmi.h>
25 #include <linux/prefetch.h>
26 #include <linux/profile.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
30 #include <asm/switch_to.h>
32 #ifdef CONFIG_PARAVIRT
33 #include <asm/paravirt.h>
37 #include "../workqueue_internal.h"
38 #include "../smpboot.h"
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/sched.h>
43 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
46 * Debugging: various feature bits
49 #define SCHED_FEAT(name, enabled) \
50 (1UL << __SCHED_FEAT_##name) * enabled |
52 const_debug
unsigned int sysctl_sched_features
=
59 * Number of tasks to iterate in a single balance run.
60 * Limited because this is done with IRQs disabled.
62 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
65 * period over which we average the RT time consumption, measured
70 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
73 * period over which we measure -rt task CPU usage in us.
76 unsigned int sysctl_sched_rt_period
= 1000000;
78 __read_mostly
int scheduler_running
;
81 * part of the period that we allow rt tasks to run in us.
84 int sysctl_sched_rt_runtime
= 950000;
86 /* CPUs with isolated domains */
87 cpumask_var_t cpu_isolated_map
;
90 * __task_rq_lock - lock the rq @p resides on.
92 struct rq
*__task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
97 lockdep_assert_held(&p
->pi_lock
);
101 raw_spin_lock(&rq
->lock
);
102 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
106 raw_spin_unlock(&rq
->lock
);
108 while (unlikely(task_on_rq_migrating(p
)))
114 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
116 struct rq
*task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
117 __acquires(p
->pi_lock
)
123 raw_spin_lock_irqsave(&p
->pi_lock
, rf
->flags
);
125 raw_spin_lock(&rq
->lock
);
127 * move_queued_task() task_rq_lock()
130 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
131 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
132 * [S] ->cpu = new_cpu [L] task_rq()
136 * If we observe the old cpu in task_rq_lock, the acquire of
137 * the old rq->lock will fully serialize against the stores.
139 * If we observe the new CPU in task_rq_lock, the acquire will
140 * pair with the WMB to ensure we must then also see migrating.
142 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
146 raw_spin_unlock(&rq
->lock
);
147 raw_spin_unlock_irqrestore(&p
->pi_lock
, rf
->flags
);
149 while (unlikely(task_on_rq_migrating(p
)))
155 * RQ-clock updating methods:
158 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
161 * In theory, the compile should just see 0 here, and optimize out the call
162 * to sched_rt_avg_update. But I don't trust it...
164 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
165 s64 steal
= 0, irq_delta
= 0;
167 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
168 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
171 * Since irq_time is only updated on {soft,}irq_exit, we might run into
172 * this case when a previous update_rq_clock() happened inside a
175 * When this happens, we stop ->clock_task and only update the
176 * prev_irq_time stamp to account for the part that fit, so that a next
177 * update will consume the rest. This ensures ->clock_task is
180 * It does however cause some slight miss-attribution of {soft,}irq
181 * time, a more accurate solution would be to update the irq_time using
182 * the current rq->clock timestamp, except that would require using
185 if (irq_delta
> delta
)
188 rq
->prev_irq_time
+= irq_delta
;
191 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
192 if (static_key_false((¶virt_steal_rq_enabled
))) {
193 steal
= paravirt_steal_clock(cpu_of(rq
));
194 steal
-= rq
->prev_steal_time_rq
;
196 if (unlikely(steal
> delta
))
199 rq
->prev_steal_time_rq
+= steal
;
204 rq
->clock_task
+= delta
;
206 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
207 if ((irq_delta
+ steal
) && sched_feat(NONTASK_CAPACITY
))
208 sched_rt_avg_update(rq
, irq_delta
+ steal
);
212 void update_rq_clock(struct rq
*rq
)
216 lockdep_assert_held(&rq
->lock
);
218 if (rq
->clock_update_flags
& RQCF_ACT_SKIP
)
221 #ifdef CONFIG_SCHED_DEBUG
222 if (sched_feat(WARN_DOUBLE_CLOCK
))
223 SCHED_WARN_ON(rq
->clock_update_flags
& RQCF_UPDATED
);
224 rq
->clock_update_flags
|= RQCF_UPDATED
;
227 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
231 update_rq_clock_task(rq
, delta
);
235 #ifdef CONFIG_SCHED_HRTICK
237 * Use HR-timers to deliver accurate preemption points.
240 static void hrtick_clear(struct rq
*rq
)
242 if (hrtimer_active(&rq
->hrtick_timer
))
243 hrtimer_cancel(&rq
->hrtick_timer
);
247 * High-resolution timer tick.
248 * Runs from hardirq context with interrupts disabled.
250 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
252 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
255 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
259 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
262 return HRTIMER_NORESTART
;
267 static void __hrtick_restart(struct rq
*rq
)
269 struct hrtimer
*timer
= &rq
->hrtick_timer
;
271 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
275 * called from hardirq (IPI) context
277 static void __hrtick_start(void *arg
)
283 __hrtick_restart(rq
);
284 rq
->hrtick_csd_pending
= 0;
289 * Called to set the hrtick timer state.
291 * called with rq->lock held and irqs disabled
293 void hrtick_start(struct rq
*rq
, u64 delay
)
295 struct hrtimer
*timer
= &rq
->hrtick_timer
;
300 * Don't schedule slices shorter than 10000ns, that just
301 * doesn't make sense and can cause timer DoS.
303 delta
= max_t(s64
, delay
, 10000LL);
304 time
= ktime_add_ns(timer
->base
->get_time(), delta
);
306 hrtimer_set_expires(timer
, time
);
308 if (rq
== this_rq()) {
309 __hrtick_restart(rq
);
310 } else if (!rq
->hrtick_csd_pending
) {
311 smp_call_function_single_async(cpu_of(rq
), &rq
->hrtick_csd
);
312 rq
->hrtick_csd_pending
= 1;
318 * Called to set the hrtick timer state.
320 * called with rq->lock held and irqs disabled
322 void hrtick_start(struct rq
*rq
, u64 delay
)
325 * Don't schedule slices shorter than 10000ns, that just
326 * doesn't make sense. Rely on vruntime for fairness.
328 delay
= max_t(u64
, delay
, 10000LL);
329 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
),
330 HRTIMER_MODE_REL_PINNED
);
332 #endif /* CONFIG_SMP */
334 static void init_rq_hrtick(struct rq
*rq
)
337 rq
->hrtick_csd_pending
= 0;
339 rq
->hrtick_csd
.flags
= 0;
340 rq
->hrtick_csd
.func
= __hrtick_start
;
341 rq
->hrtick_csd
.info
= rq
;
344 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
345 rq
->hrtick_timer
.function
= hrtick
;
347 #else /* CONFIG_SCHED_HRTICK */
348 static inline void hrtick_clear(struct rq
*rq
)
352 static inline void init_rq_hrtick(struct rq
*rq
)
355 #endif /* CONFIG_SCHED_HRTICK */
358 * cmpxchg based fetch_or, macro so it works for different integer types
360 #define fetch_or(ptr, mask) \
362 typeof(ptr) _ptr = (ptr); \
363 typeof(mask) _mask = (mask); \
364 typeof(*_ptr) _old, _val = *_ptr; \
367 _old = cmpxchg(_ptr, _val, _val | _mask); \
375 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
378 * this avoids any races wrt polling state changes and thereby avoids
381 static bool set_nr_and_not_polling(struct task_struct
*p
)
383 struct thread_info
*ti
= task_thread_info(p
);
384 return !(fetch_or(&ti
->flags
, _TIF_NEED_RESCHED
) & _TIF_POLLING_NRFLAG
);
388 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390 * If this returns true, then the idle task promises to call
391 * sched_ttwu_pending() and reschedule soon.
393 static bool set_nr_if_polling(struct task_struct
*p
)
395 struct thread_info
*ti
= task_thread_info(p
);
396 typeof(ti
->flags
) old
, val
= READ_ONCE(ti
->flags
);
399 if (!(val
& _TIF_POLLING_NRFLAG
))
401 if (val
& _TIF_NEED_RESCHED
)
403 old
= cmpxchg(&ti
->flags
, val
, val
| _TIF_NEED_RESCHED
);
412 static bool set_nr_and_not_polling(struct task_struct
*p
)
414 set_tsk_need_resched(p
);
419 static bool set_nr_if_polling(struct task_struct
*p
)
426 void wake_q_add(struct wake_q_head
*head
, struct task_struct
*task
)
428 struct wake_q_node
*node
= &task
->wake_q
;
431 * Atomically grab the task, if ->wake_q is !nil already it means
432 * its already queued (either by us or someone else) and will get the
433 * wakeup due to that.
435 * This cmpxchg() implies a full barrier, which pairs with the write
436 * barrier implied by the wakeup in wake_up_q().
438 if (cmpxchg(&node
->next
, NULL
, WAKE_Q_TAIL
))
441 get_task_struct(task
);
444 * The head is context local, there can be no concurrency.
447 head
->lastp
= &node
->next
;
450 void wake_up_q(struct wake_q_head
*head
)
452 struct wake_q_node
*node
= head
->first
;
454 while (node
!= WAKE_Q_TAIL
) {
455 struct task_struct
*task
;
457 task
= container_of(node
, struct task_struct
, wake_q
);
459 /* Task can safely be re-inserted now: */
461 task
->wake_q
.next
= NULL
;
464 * wake_up_process() implies a wmb() to pair with the queueing
465 * in wake_q_add() so as not to miss wakeups.
467 wake_up_process(task
);
468 put_task_struct(task
);
473 * resched_curr - mark rq's current task 'to be rescheduled now'.
475 * On UP this means the setting of the need_resched flag, on SMP it
476 * might also involve a cross-CPU call to trigger the scheduler on
479 void resched_curr(struct rq
*rq
)
481 struct task_struct
*curr
= rq
->curr
;
484 lockdep_assert_held(&rq
->lock
);
486 if (test_tsk_need_resched(curr
))
491 if (cpu
== smp_processor_id()) {
492 set_tsk_need_resched(curr
);
493 set_preempt_need_resched();
497 if (set_nr_and_not_polling(curr
))
498 smp_send_reschedule(cpu
);
500 trace_sched_wake_idle_without_ipi(cpu
);
503 void resched_cpu(int cpu
)
505 struct rq
*rq
= cpu_rq(cpu
);
508 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
511 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
515 #ifdef CONFIG_NO_HZ_COMMON
517 * In the semi idle case, use the nearest busy CPU for migrating timers
518 * from an idle CPU. This is good for power-savings.
520 * We don't do similar optimization for completely idle system, as
521 * selecting an idle CPU will add more delays to the timers than intended
522 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
524 int get_nohz_timer_target(void)
526 int i
, cpu
= smp_processor_id();
527 struct sched_domain
*sd
;
529 if (!idle_cpu(cpu
) && is_housekeeping_cpu(cpu
))
533 for_each_domain(cpu
, sd
) {
534 for_each_cpu(i
, sched_domain_span(sd
)) {
538 if (!idle_cpu(i
) && is_housekeeping_cpu(i
)) {
545 if (!is_housekeeping_cpu(cpu
))
546 cpu
= housekeeping_any_cpu();
553 * When add_timer_on() enqueues a timer into the timer wheel of an
554 * idle CPU then this timer might expire before the next timer event
555 * which is scheduled to wake up that CPU. In case of a completely
556 * idle system the next event might even be infinite time into the
557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558 * leaves the inner idle loop so the newly added timer is taken into
559 * account when the CPU goes back to idle and evaluates the timer
560 * wheel for the next timer event.
562 static void wake_up_idle_cpu(int cpu
)
564 struct rq
*rq
= cpu_rq(cpu
);
566 if (cpu
== smp_processor_id())
569 if (set_nr_and_not_polling(rq
->idle
))
570 smp_send_reschedule(cpu
);
572 trace_sched_wake_idle_without_ipi(cpu
);
575 static bool wake_up_full_nohz_cpu(int cpu
)
578 * We just need the target to call irq_exit() and re-evaluate
579 * the next tick. The nohz full kick at least implies that.
580 * If needed we can still optimize that later with an
583 if (cpu_is_offline(cpu
))
584 return true; /* Don't try to wake offline CPUs. */
585 if (tick_nohz_full_cpu(cpu
)) {
586 if (cpu
!= smp_processor_id() ||
587 tick_nohz_tick_stopped())
588 tick_nohz_full_kick_cpu(cpu
);
596 * Wake up the specified CPU. If the CPU is going offline, it is the
597 * caller's responsibility to deal with the lost wakeup, for example,
598 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 void wake_up_nohz_cpu(int cpu
)
602 if (!wake_up_full_nohz_cpu(cpu
))
603 wake_up_idle_cpu(cpu
);
606 static inline bool got_nohz_idle_kick(void)
608 int cpu
= smp_processor_id();
610 if (!test_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
)))
613 if (idle_cpu(cpu
) && !need_resched())
617 * We can't run Idle Load Balance on this CPU for this time so we
618 * cancel it and clear NOHZ_BALANCE_KICK
620 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
));
624 #else /* CONFIG_NO_HZ_COMMON */
626 static inline bool got_nohz_idle_kick(void)
631 #endif /* CONFIG_NO_HZ_COMMON */
633 #ifdef CONFIG_NO_HZ_FULL
634 bool sched_can_stop_tick(struct rq
*rq
)
638 /* Deadline tasks, even if single, need the tick */
639 if (rq
->dl
.dl_nr_running
)
643 * If there are more than one RR tasks, we need the tick to effect the
644 * actual RR behaviour.
646 if (rq
->rt
.rr_nr_running
) {
647 if (rq
->rt
.rr_nr_running
== 1)
654 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
655 * forced preemption between FIFO tasks.
657 fifo_nr_running
= rq
->rt
.rt_nr_running
- rq
->rt
.rr_nr_running
;
662 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
663 * if there's more than one we need the tick for involuntary
666 if (rq
->nr_running
> 1)
671 #endif /* CONFIG_NO_HZ_FULL */
673 void sched_avg_update(struct rq
*rq
)
675 s64 period
= sched_avg_period();
677 while ((s64
)(rq_clock(rq
) - rq
->age_stamp
) > period
) {
679 * Inline assembly required to prevent the compiler
680 * optimising this loop into a divmod call.
681 * See __iter_div_u64_rem() for another example of this.
683 asm("" : "+rm" (rq
->age_stamp
));
684 rq
->age_stamp
+= period
;
689 #endif /* CONFIG_SMP */
691 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
692 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
694 * Iterate task_group tree rooted at *from, calling @down when first entering a
695 * node and @up when leaving it for the final time.
697 * Caller must hold rcu_lock or sufficient equivalent.
699 int walk_tg_tree_from(struct task_group
*from
,
700 tg_visitor down
, tg_visitor up
, void *data
)
702 struct task_group
*parent
, *child
;
708 ret
= (*down
)(parent
, data
);
711 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
718 ret
= (*up
)(parent
, data
);
719 if (ret
|| parent
== from
)
723 parent
= parent
->parent
;
730 int tg_nop(struct task_group
*tg
, void *data
)
736 static void set_load_weight(struct task_struct
*p
)
738 int prio
= p
->static_prio
- MAX_RT_PRIO
;
739 struct load_weight
*load
= &p
->se
.load
;
742 * SCHED_IDLE tasks get minimal weight:
744 if (idle_policy(p
->policy
)) {
745 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
746 load
->inv_weight
= WMULT_IDLEPRIO
;
750 load
->weight
= scale_load(sched_prio_to_weight
[prio
]);
751 load
->inv_weight
= sched_prio_to_wmult
[prio
];
754 static inline void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
756 if (!(flags
& ENQUEUE_NOCLOCK
))
759 if (!(flags
& ENQUEUE_RESTORE
))
760 sched_info_queued(rq
, p
);
762 p
->sched_class
->enqueue_task(rq
, p
, flags
);
765 static inline void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
767 if (!(flags
& DEQUEUE_NOCLOCK
))
770 if (!(flags
& DEQUEUE_SAVE
))
771 sched_info_dequeued(rq
, p
);
773 p
->sched_class
->dequeue_task(rq
, p
, flags
);
776 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
778 if (task_contributes_to_load(p
))
779 rq
->nr_uninterruptible
--;
781 enqueue_task(rq
, p
, flags
);
784 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
786 if (task_contributes_to_load(p
))
787 rq
->nr_uninterruptible
++;
789 dequeue_task(rq
, p
, flags
);
793 * __normal_prio - return the priority that is based on the static prio
795 static inline int __normal_prio(struct task_struct
*p
)
797 return p
->static_prio
;
801 * Calculate the expected normal priority: i.e. priority
802 * without taking RT-inheritance into account. Might be
803 * boosted by interactivity modifiers. Changes upon fork,
804 * setprio syscalls, and whenever the interactivity
805 * estimator recalculates.
807 static inline int normal_prio(struct task_struct
*p
)
811 if (task_has_dl_policy(p
))
812 prio
= MAX_DL_PRIO
-1;
813 else if (task_has_rt_policy(p
))
814 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
816 prio
= __normal_prio(p
);
821 * Calculate the current priority, i.e. the priority
822 * taken into account by the scheduler. This value might
823 * be boosted by RT tasks, or might be boosted by
824 * interactivity modifiers. Will be RT if the task got
825 * RT-boosted. If not then it returns p->normal_prio.
827 static int effective_prio(struct task_struct
*p
)
829 p
->normal_prio
= normal_prio(p
);
831 * If we are RT tasks or we were boosted to RT priority,
832 * keep the priority unchanged. Otherwise, update priority
833 * to the normal priority:
835 if (!rt_prio(p
->prio
))
836 return p
->normal_prio
;
841 * task_curr - is this task currently executing on a CPU?
842 * @p: the task in question.
844 * Return: 1 if the task is currently executing. 0 otherwise.
846 inline int task_curr(const struct task_struct
*p
)
848 return cpu_curr(task_cpu(p
)) == p
;
852 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
853 * use the balance_callback list if you want balancing.
855 * this means any call to check_class_changed() must be followed by a call to
856 * balance_callback().
858 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
859 const struct sched_class
*prev_class
,
862 if (prev_class
!= p
->sched_class
) {
863 if (prev_class
->switched_from
)
864 prev_class
->switched_from(rq
, p
);
866 p
->sched_class
->switched_to(rq
, p
);
867 } else if (oldprio
!= p
->prio
|| dl_task(p
))
868 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
871 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
873 const struct sched_class
*class;
875 if (p
->sched_class
== rq
->curr
->sched_class
) {
876 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
878 for_each_class(class) {
879 if (class == rq
->curr
->sched_class
)
881 if (class == p
->sched_class
) {
889 * A queue event has occurred, and we're going to schedule. In
890 * this case, we can save a useless back to back clock update.
892 if (task_on_rq_queued(rq
->curr
) && test_tsk_need_resched(rq
->curr
))
893 rq_clock_skip_update(rq
, true);
898 * This is how migration works:
900 * 1) we invoke migration_cpu_stop() on the target CPU using
902 * 2) stopper starts to run (implicitly forcing the migrated thread
904 * 3) it checks whether the migrated task is still in the wrong runqueue.
905 * 4) if it's in the wrong runqueue then the migration thread removes
906 * it and puts it into the right queue.
907 * 5) stopper completes and stop_one_cpu() returns and the migration
912 * move_queued_task - move a queued task to new rq.
914 * Returns (locked) new rq. Old rq's lock is released.
916 static struct rq
*move_queued_task(struct rq
*rq
, struct rq_flags
*rf
,
917 struct task_struct
*p
, int new_cpu
)
919 lockdep_assert_held(&rq
->lock
);
921 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
922 dequeue_task(rq
, p
, DEQUEUE_NOCLOCK
);
923 set_task_cpu(p
, new_cpu
);
926 rq
= cpu_rq(new_cpu
);
929 BUG_ON(task_cpu(p
) != new_cpu
);
930 enqueue_task(rq
, p
, 0);
931 p
->on_rq
= TASK_ON_RQ_QUEUED
;
932 check_preempt_curr(rq
, p
, 0);
937 struct migration_arg
{
938 struct task_struct
*task
;
943 * Move (not current) task off this CPU, onto the destination CPU. We're doing
944 * this because either it can't run here any more (set_cpus_allowed()
945 * away from this CPU, or CPU going down), or because we're
946 * attempting to rebalance this task on exec (sched_exec).
948 * So we race with normal scheduler movements, but that's OK, as long
949 * as the task is no longer on this CPU.
951 static struct rq
*__migrate_task(struct rq
*rq
, struct rq_flags
*rf
,
952 struct task_struct
*p
, int dest_cpu
)
954 if (unlikely(!cpu_active(dest_cpu
)))
957 /* Affinity changed (again). */
958 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
962 rq
= move_queued_task(rq
, rf
, p
, dest_cpu
);
968 * migration_cpu_stop - this will be executed by a highprio stopper thread
969 * and performs thread migration by bumping thread off CPU then
970 * 'pushing' onto another runqueue.
972 static int migration_cpu_stop(void *data
)
974 struct migration_arg
*arg
= data
;
975 struct task_struct
*p
= arg
->task
;
976 struct rq
*rq
= this_rq();
980 * The original target CPU might have gone down and we might
981 * be on another CPU but it doesn't matter.
985 * We need to explicitly wake pending tasks before running
986 * __migrate_task() such that we will not miss enforcing cpus_allowed
987 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
989 sched_ttwu_pending();
991 raw_spin_lock(&p
->pi_lock
);
994 * If task_rq(p) != rq, it cannot be migrated here, because we're
995 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
996 * we're holding p->pi_lock.
998 if (task_rq(p
) == rq
) {
999 if (task_on_rq_queued(p
))
1000 rq
= __migrate_task(rq
, &rf
, p
, arg
->dest_cpu
);
1002 p
->wake_cpu
= arg
->dest_cpu
;
1005 raw_spin_unlock(&p
->pi_lock
);
1012 * sched_class::set_cpus_allowed must do the below, but is not required to
1013 * actually call this function.
1015 void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
)
1017 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1018 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
1021 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
1023 struct rq
*rq
= task_rq(p
);
1024 bool queued
, running
;
1026 lockdep_assert_held(&p
->pi_lock
);
1028 queued
= task_on_rq_queued(p
);
1029 running
= task_current(rq
, p
);
1033 * Because __kthread_bind() calls this on blocked tasks without
1036 lockdep_assert_held(&rq
->lock
);
1037 dequeue_task(rq
, p
, DEQUEUE_SAVE
| DEQUEUE_NOCLOCK
);
1040 put_prev_task(rq
, p
);
1042 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
1045 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
1047 set_curr_task(rq
, p
);
1051 * Change a given task's CPU affinity. Migrate the thread to a
1052 * proper CPU and schedule it away if the CPU it's executing on
1053 * is removed from the allowed bitmask.
1055 * NOTE: the caller must have a valid reference to the task, the
1056 * task must not exit() & deallocate itself prematurely. The
1057 * call is not atomic; no spinlocks may be held.
1059 static int __set_cpus_allowed_ptr(struct task_struct
*p
,
1060 const struct cpumask
*new_mask
, bool check
)
1062 const struct cpumask
*cpu_valid_mask
= cpu_active_mask
;
1063 unsigned int dest_cpu
;
1068 rq
= task_rq_lock(p
, &rf
);
1069 update_rq_clock(rq
);
1071 if (p
->flags
& PF_KTHREAD
) {
1073 * Kernel threads are allowed on online && !active CPUs
1075 cpu_valid_mask
= cpu_online_mask
;
1079 * Must re-check here, to close a race against __kthread_bind(),
1080 * sched_setaffinity() is not guaranteed to observe the flag.
1082 if (check
&& (p
->flags
& PF_NO_SETAFFINITY
)) {
1087 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
1090 if (!cpumask_intersects(new_mask
, cpu_valid_mask
)) {
1095 do_set_cpus_allowed(p
, new_mask
);
1097 if (p
->flags
& PF_KTHREAD
) {
1099 * For kernel threads that do indeed end up on online &&
1100 * !active we want to ensure they are strict per-CPU threads.
1102 WARN_ON(cpumask_intersects(new_mask
, cpu_online_mask
) &&
1103 !cpumask_intersects(new_mask
, cpu_active_mask
) &&
1104 p
->nr_cpus_allowed
!= 1);
1107 /* Can the task run on the task's current CPU? If so, we're done */
1108 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
1111 dest_cpu
= cpumask_any_and(cpu_valid_mask
, new_mask
);
1112 if (task_running(rq
, p
) || p
->state
== TASK_WAKING
) {
1113 struct migration_arg arg
= { p
, dest_cpu
};
1114 /* Need help from migration thread: drop lock and wait. */
1115 task_rq_unlock(rq
, p
, &rf
);
1116 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
1117 tlb_migrate_finish(p
->mm
);
1119 } else if (task_on_rq_queued(p
)) {
1121 * OK, since we're going to drop the lock immediately
1122 * afterwards anyway.
1124 rq
= move_queued_task(rq
, &rf
, p
, dest_cpu
);
1127 task_rq_unlock(rq
, p
, &rf
);
1132 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
1134 return __set_cpus_allowed_ptr(p
, new_mask
, false);
1136 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
1138 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1140 #ifdef CONFIG_SCHED_DEBUG
1142 * We should never call set_task_cpu() on a blocked task,
1143 * ttwu() will sort out the placement.
1145 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1149 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1150 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1151 * time relying on p->on_rq.
1153 WARN_ON_ONCE(p
->state
== TASK_RUNNING
&&
1154 p
->sched_class
== &fair_sched_class
&&
1155 (p
->on_rq
&& !task_on_rq_migrating(p
)));
1157 #ifdef CONFIG_LOCKDEP
1159 * The caller should hold either p->pi_lock or rq->lock, when changing
1160 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1162 * sched_move_task() holds both and thus holding either pins the cgroup,
1165 * Furthermore, all task_rq users should acquire both locks, see
1168 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1169 lockdep_is_held(&task_rq(p
)->lock
)));
1173 trace_sched_migrate_task(p
, new_cpu
);
1175 if (task_cpu(p
) != new_cpu
) {
1176 if (p
->sched_class
->migrate_task_rq
)
1177 p
->sched_class
->migrate_task_rq(p
);
1178 p
->se
.nr_migrations
++;
1179 perf_event_task_migrate(p
);
1182 __set_task_cpu(p
, new_cpu
);
1185 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
1187 if (task_on_rq_queued(p
)) {
1188 struct rq
*src_rq
, *dst_rq
;
1189 struct rq_flags srf
, drf
;
1191 src_rq
= task_rq(p
);
1192 dst_rq
= cpu_rq(cpu
);
1194 rq_pin_lock(src_rq
, &srf
);
1195 rq_pin_lock(dst_rq
, &drf
);
1197 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
1198 deactivate_task(src_rq
, p
, 0);
1199 set_task_cpu(p
, cpu
);
1200 activate_task(dst_rq
, p
, 0);
1201 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1202 check_preempt_curr(dst_rq
, p
, 0);
1204 rq_unpin_lock(dst_rq
, &drf
);
1205 rq_unpin_lock(src_rq
, &srf
);
1209 * Task isn't running anymore; make it appear like we migrated
1210 * it before it went to sleep. This means on wakeup we make the
1211 * previous CPU our target instead of where it really is.
1217 struct migration_swap_arg
{
1218 struct task_struct
*src_task
, *dst_task
;
1219 int src_cpu
, dst_cpu
;
1222 static int migrate_swap_stop(void *data
)
1224 struct migration_swap_arg
*arg
= data
;
1225 struct rq
*src_rq
, *dst_rq
;
1228 if (!cpu_active(arg
->src_cpu
) || !cpu_active(arg
->dst_cpu
))
1231 src_rq
= cpu_rq(arg
->src_cpu
);
1232 dst_rq
= cpu_rq(arg
->dst_cpu
);
1234 double_raw_lock(&arg
->src_task
->pi_lock
,
1235 &arg
->dst_task
->pi_lock
);
1236 double_rq_lock(src_rq
, dst_rq
);
1238 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
1241 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
1244 if (!cpumask_test_cpu(arg
->dst_cpu
, &arg
->src_task
->cpus_allowed
))
1247 if (!cpumask_test_cpu(arg
->src_cpu
, &arg
->dst_task
->cpus_allowed
))
1250 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
1251 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
1256 double_rq_unlock(src_rq
, dst_rq
);
1257 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
1258 raw_spin_unlock(&arg
->src_task
->pi_lock
);
1264 * Cross migrate two tasks
1266 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
)
1268 struct migration_swap_arg arg
;
1271 arg
= (struct migration_swap_arg
){
1273 .src_cpu
= task_cpu(cur
),
1275 .dst_cpu
= task_cpu(p
),
1278 if (arg
.src_cpu
== arg
.dst_cpu
)
1282 * These three tests are all lockless; this is OK since all of them
1283 * will be re-checked with proper locks held further down the line.
1285 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
1288 if (!cpumask_test_cpu(arg
.dst_cpu
, &arg
.src_task
->cpus_allowed
))
1291 if (!cpumask_test_cpu(arg
.src_cpu
, &arg
.dst_task
->cpus_allowed
))
1294 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
1295 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
1302 * wait_task_inactive - wait for a thread to unschedule.
1304 * If @match_state is nonzero, it's the @p->state value just checked and
1305 * not expected to change. If it changes, i.e. @p might have woken up,
1306 * then return zero. When we succeed in waiting for @p to be off its CPU,
1307 * we return a positive number (its total switch count). If a second call
1308 * a short while later returns the same number, the caller can be sure that
1309 * @p has remained unscheduled the whole time.
1311 * The caller must ensure that the task *will* unschedule sometime soon,
1312 * else this function might spin for a *long* time. This function can't
1313 * be called with interrupts off, or it may introduce deadlock with
1314 * smp_call_function() if an IPI is sent by the same process we are
1315 * waiting to become inactive.
1317 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1319 int running
, queued
;
1326 * We do the initial early heuristics without holding
1327 * any task-queue locks at all. We'll only try to get
1328 * the runqueue lock when things look like they will
1334 * If the task is actively running on another CPU
1335 * still, just relax and busy-wait without holding
1338 * NOTE! Since we don't hold any locks, it's not
1339 * even sure that "rq" stays as the right runqueue!
1340 * But we don't care, since "task_running()" will
1341 * return false if the runqueue has changed and p
1342 * is actually now running somewhere else!
1344 while (task_running(rq
, p
)) {
1345 if (match_state
&& unlikely(p
->state
!= match_state
))
1351 * Ok, time to look more closely! We need the rq
1352 * lock now, to be *sure*. If we're wrong, we'll
1353 * just go back and repeat.
1355 rq
= task_rq_lock(p
, &rf
);
1356 trace_sched_wait_task(p
);
1357 running
= task_running(rq
, p
);
1358 queued
= task_on_rq_queued(p
);
1360 if (!match_state
|| p
->state
== match_state
)
1361 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1362 task_rq_unlock(rq
, p
, &rf
);
1365 * If it changed from the expected state, bail out now.
1367 if (unlikely(!ncsw
))
1371 * Was it really running after all now that we
1372 * checked with the proper locks actually held?
1374 * Oops. Go back and try again..
1376 if (unlikely(running
)) {
1382 * It's not enough that it's not actively running,
1383 * it must be off the runqueue _entirely_, and not
1386 * So if it was still runnable (but just not actively
1387 * running right now), it's preempted, and we should
1388 * yield - it could be a while.
1390 if (unlikely(queued
)) {
1391 ktime_t to
= NSEC_PER_SEC
/ HZ
;
1393 set_current_state(TASK_UNINTERRUPTIBLE
);
1394 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1399 * Ahh, all good. It wasn't running, and it wasn't
1400 * runnable, which means that it will never become
1401 * running in the future either. We're all done!
1410 * kick_process - kick a running thread to enter/exit the kernel
1411 * @p: the to-be-kicked thread
1413 * Cause a process which is running on another CPU to enter
1414 * kernel-mode, without any delay. (to get signals handled.)
1416 * NOTE: this function doesn't have to take the runqueue lock,
1417 * because all it wants to ensure is that the remote task enters
1418 * the kernel. If the IPI races and the task has been migrated
1419 * to another CPU then no harm is done and the purpose has been
1422 void kick_process(struct task_struct
*p
)
1428 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1429 smp_send_reschedule(cpu
);
1432 EXPORT_SYMBOL_GPL(kick_process
);
1435 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1437 * A few notes on cpu_active vs cpu_online:
1439 * - cpu_active must be a subset of cpu_online
1441 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1442 * see __set_cpus_allowed_ptr(). At this point the newly online
1443 * CPU isn't yet part of the sched domains, and balancing will not
1446 * - on CPU-down we clear cpu_active() to mask the sched domains and
1447 * avoid the load balancer to place new tasks on the to be removed
1448 * CPU. Existing tasks will remain running there and will be taken
1451 * This means that fallback selection must not select !active CPUs.
1452 * And can assume that any active CPU must be online. Conversely
1453 * select_task_rq() below may allow selection of !active CPUs in order
1454 * to satisfy the above rules.
1456 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1458 int nid
= cpu_to_node(cpu
);
1459 const struct cpumask
*nodemask
= NULL
;
1460 enum { cpuset
, possible
, fail
} state
= cpuset
;
1464 * If the node that the CPU is on has been offlined, cpu_to_node()
1465 * will return -1. There is no CPU on the node, and we should
1466 * select the CPU on the other node.
1469 nodemask
= cpumask_of_node(nid
);
1471 /* Look for allowed, online CPU in same node. */
1472 for_each_cpu(dest_cpu
, nodemask
) {
1473 if (!cpu_active(dest_cpu
))
1475 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
1481 /* Any allowed, online CPU? */
1482 for_each_cpu(dest_cpu
, &p
->cpus_allowed
) {
1483 if (!(p
->flags
& PF_KTHREAD
) && !cpu_active(dest_cpu
))
1485 if (!cpu_online(dest_cpu
))
1490 /* No more Mr. Nice Guy. */
1493 if (IS_ENABLED(CONFIG_CPUSETS
)) {
1494 cpuset_cpus_allowed_fallback(p
);
1500 do_set_cpus_allowed(p
, cpu_possible_mask
);
1511 if (state
!= cpuset
) {
1513 * Don't tell them about moving exiting tasks or
1514 * kernel threads (both mm NULL), since they never
1517 if (p
->mm
&& printk_ratelimit()) {
1518 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1519 task_pid_nr(p
), p
->comm
, cpu
);
1527 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1530 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
1532 lockdep_assert_held(&p
->pi_lock
);
1534 if (p
->nr_cpus_allowed
> 1)
1535 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
1537 cpu
= cpumask_any(&p
->cpus_allowed
);
1540 * In order not to call set_task_cpu() on a blocking task we need
1541 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1544 * Since this is common to all placement strategies, this lives here.
1546 * [ this allows ->select_task() to simply return task_cpu(p) and
1547 * not worry about this generic constraint ]
1549 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
1551 cpu
= select_fallback_rq(task_cpu(p
), p
);
1556 static void update_avg(u64
*avg
, u64 sample
)
1558 s64 diff
= sample
- *avg
;
1562 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
1564 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1565 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
1569 * Make it appear like a SCHED_FIFO task, its something
1570 * userspace knows about and won't get confused about.
1572 * Also, it will make PI more or less work without too
1573 * much confusion -- but then, stop work should not
1574 * rely on PI working anyway.
1576 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
1578 stop
->sched_class
= &stop_sched_class
;
1581 cpu_rq(cpu
)->stop
= stop
;
1585 * Reset it back to a normal scheduling class so that
1586 * it can die in pieces.
1588 old_stop
->sched_class
= &rt_sched_class
;
1594 static inline int __set_cpus_allowed_ptr(struct task_struct
*p
,
1595 const struct cpumask
*new_mask
, bool check
)
1597 return set_cpus_allowed_ptr(p
, new_mask
);
1600 #endif /* CONFIG_SMP */
1603 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1607 if (!schedstat_enabled())
1613 if (cpu
== rq
->cpu
) {
1614 schedstat_inc(rq
->ttwu_local
);
1615 schedstat_inc(p
->se
.statistics
.nr_wakeups_local
);
1617 struct sched_domain
*sd
;
1619 schedstat_inc(p
->se
.statistics
.nr_wakeups_remote
);
1621 for_each_domain(rq
->cpu
, sd
) {
1622 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1623 schedstat_inc(sd
->ttwu_wake_remote
);
1630 if (wake_flags
& WF_MIGRATED
)
1631 schedstat_inc(p
->se
.statistics
.nr_wakeups_migrate
);
1632 #endif /* CONFIG_SMP */
1634 schedstat_inc(rq
->ttwu_count
);
1635 schedstat_inc(p
->se
.statistics
.nr_wakeups
);
1637 if (wake_flags
& WF_SYNC
)
1638 schedstat_inc(p
->se
.statistics
.nr_wakeups_sync
);
1641 static inline void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1643 activate_task(rq
, p
, en_flags
);
1644 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1646 /* If a worker is waking up, notify the workqueue: */
1647 if (p
->flags
& PF_WQ_WORKER
)
1648 wq_worker_waking_up(p
, cpu_of(rq
));
1652 * Mark the task runnable and perform wakeup-preemption.
1654 static void ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
,
1655 struct rq_flags
*rf
)
1657 check_preempt_curr(rq
, p
, wake_flags
);
1658 p
->state
= TASK_RUNNING
;
1659 trace_sched_wakeup(p
);
1662 if (p
->sched_class
->task_woken
) {
1664 * Our task @p is fully woken up and running; so its safe to
1665 * drop the rq->lock, hereafter rq is only used for statistics.
1667 rq_unpin_lock(rq
, rf
);
1668 p
->sched_class
->task_woken(rq
, p
);
1669 rq_repin_lock(rq
, rf
);
1672 if (rq
->idle_stamp
) {
1673 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
1674 u64 max
= 2*rq
->max_idle_balance_cost
;
1676 update_avg(&rq
->avg_idle
, delta
);
1678 if (rq
->avg_idle
> max
)
1687 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
,
1688 struct rq_flags
*rf
)
1690 int en_flags
= ENQUEUE_WAKEUP
| ENQUEUE_NOCLOCK
;
1692 lockdep_assert_held(&rq
->lock
);
1695 if (p
->sched_contributes_to_load
)
1696 rq
->nr_uninterruptible
--;
1698 if (wake_flags
& WF_MIGRATED
)
1699 en_flags
|= ENQUEUE_MIGRATED
;
1702 ttwu_activate(rq
, p
, en_flags
);
1703 ttwu_do_wakeup(rq
, p
, wake_flags
, rf
);
1707 * Called in case the task @p isn't fully descheduled from its runqueue,
1708 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1709 * since all we need to do is flip p->state to TASK_RUNNING, since
1710 * the task is still ->on_rq.
1712 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1718 rq
= __task_rq_lock(p
, &rf
);
1719 if (task_on_rq_queued(p
)) {
1720 /* check_preempt_curr() may use rq clock */
1721 update_rq_clock(rq
);
1722 ttwu_do_wakeup(rq
, p
, wake_flags
, &rf
);
1725 __task_rq_unlock(rq
, &rf
);
1731 void sched_ttwu_pending(void)
1733 struct rq
*rq
= this_rq();
1734 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1735 struct task_struct
*p
, *t
;
1741 rq_lock_irqsave(rq
, &rf
);
1742 update_rq_clock(rq
);
1744 llist_for_each_entry_safe(p
, t
, llist
, wake_entry
)
1745 ttwu_do_activate(rq
, p
, p
->sched_remote_wakeup
? WF_MIGRATED
: 0, &rf
);
1747 rq_unlock_irqrestore(rq
, &rf
);
1750 void scheduler_ipi(void)
1753 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1754 * TIF_NEED_RESCHED remotely (for the first time) will also send
1757 preempt_fold_need_resched();
1759 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
1763 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1764 * traditionally all their work was done from the interrupt return
1765 * path. Now that we actually do some work, we need to make sure
1768 * Some archs already do call them, luckily irq_enter/exit nest
1771 * Arguably we should visit all archs and update all handlers,
1772 * however a fair share of IPIs are still resched only so this would
1773 * somewhat pessimize the simple resched case.
1776 sched_ttwu_pending();
1779 * Check if someone kicked us for doing the nohz idle load balance.
1781 if (unlikely(got_nohz_idle_kick())) {
1782 this_rq()->idle_balance
= 1;
1783 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1788 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
, int wake_flags
)
1790 struct rq
*rq
= cpu_rq(cpu
);
1792 p
->sched_remote_wakeup
= !!(wake_flags
& WF_MIGRATED
);
1794 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
)) {
1795 if (!set_nr_if_polling(rq
->idle
))
1796 smp_send_reschedule(cpu
);
1798 trace_sched_wake_idle_without_ipi(cpu
);
1802 void wake_up_if_idle(int cpu
)
1804 struct rq
*rq
= cpu_rq(cpu
);
1809 if (!is_idle_task(rcu_dereference(rq
->curr
)))
1812 if (set_nr_if_polling(rq
->idle
)) {
1813 trace_sched_wake_idle_without_ipi(cpu
);
1815 rq_lock_irqsave(rq
, &rf
);
1816 if (is_idle_task(rq
->curr
))
1817 smp_send_reschedule(cpu
);
1818 /* Else CPU is not idle, do nothing here: */
1819 rq_unlock_irqrestore(rq
, &rf
);
1826 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1828 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1830 #endif /* CONFIG_SMP */
1832 static void ttwu_queue(struct task_struct
*p
, int cpu
, int wake_flags
)
1834 struct rq
*rq
= cpu_rq(cpu
);
1837 #if defined(CONFIG_SMP)
1838 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1839 sched_clock_cpu(cpu
); /* Sync clocks across CPUs */
1840 ttwu_queue_remote(p
, cpu
, wake_flags
);
1846 update_rq_clock(rq
);
1847 ttwu_do_activate(rq
, p
, wake_flags
, &rf
);
1852 * Notes on Program-Order guarantees on SMP systems.
1856 * The basic program-order guarantee on SMP systems is that when a task [t]
1857 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1858 * execution on its new CPU [c1].
1860 * For migration (of runnable tasks) this is provided by the following means:
1862 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1863 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1864 * rq(c1)->lock (if not at the same time, then in that order).
1865 * C) LOCK of the rq(c1)->lock scheduling in task
1867 * Transitivity guarantees that B happens after A and C after B.
1868 * Note: we only require RCpc transitivity.
1869 * Note: the CPU doing B need not be c0 or c1
1878 * UNLOCK rq(0)->lock
1880 * LOCK rq(0)->lock // orders against CPU0
1882 * UNLOCK rq(0)->lock
1886 * UNLOCK rq(1)->lock
1888 * LOCK rq(1)->lock // orders against CPU2
1891 * UNLOCK rq(1)->lock
1894 * BLOCKING -- aka. SLEEP + WAKEUP
1896 * For blocking we (obviously) need to provide the same guarantee as for
1897 * migration. However the means are completely different as there is no lock
1898 * chain to provide order. Instead we do:
1900 * 1) smp_store_release(X->on_cpu, 0)
1901 * 2) smp_cond_load_acquire(!X->on_cpu)
1905 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1907 * LOCK rq(0)->lock LOCK X->pi_lock
1910 * smp_store_release(X->on_cpu, 0);
1912 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1918 * X->state = RUNNING
1919 * UNLOCK rq(2)->lock
1921 * LOCK rq(2)->lock // orders against CPU1
1924 * UNLOCK rq(2)->lock
1927 * UNLOCK rq(0)->lock
1930 * However; for wakeups there is a second guarantee we must provide, namely we
1931 * must observe the state that lead to our wakeup. That is, not only must our
1932 * task observe its own prior state, it must also observe the stores prior to
1935 * This means that any means of doing remote wakeups must order the CPU doing
1936 * the wakeup against the CPU the task is going to end up running on. This,
1937 * however, is already required for the regular Program-Order guarantee above,
1938 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1943 * try_to_wake_up - wake up a thread
1944 * @p: the thread to be awakened
1945 * @state: the mask of task states that can be woken
1946 * @wake_flags: wake modifier flags (WF_*)
1948 * If (@state & @p->state) @p->state = TASK_RUNNING.
1950 * If the task was not queued/runnable, also place it back on a runqueue.
1952 * Atomic against schedule() which would dequeue a task, also see
1953 * set_current_state().
1955 * Return: %true if @p->state changes (an actual wakeup was done),
1959 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1961 unsigned long flags
;
1962 int cpu
, success
= 0;
1965 * If we are going to wake up a thread waiting for CONDITION we
1966 * need to ensure that CONDITION=1 done by the caller can not be
1967 * reordered with p->state check below. This pairs with mb() in
1968 * set_current_state() the waiting thread does.
1970 smp_mb__before_spinlock();
1971 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1972 if (!(p
->state
& state
))
1975 trace_sched_waking(p
);
1977 /* We're going to change ->state: */
1982 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1983 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1984 * in smp_cond_load_acquire() below.
1986 * sched_ttwu_pending() try_to_wake_up()
1987 * [S] p->on_rq = 1; [L] P->state
1988 * UNLOCK rq->lock -----.
1992 * LOCK rq->lock -----'
1996 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1998 * Pairs with the UNLOCK+LOCK on rq->lock from the
1999 * last wakeup of our task and the schedule that got our task
2003 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2008 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2009 * possible to, falsely, observe p->on_cpu == 0.
2011 * One must be running (->on_cpu == 1) in order to remove oneself
2012 * from the runqueue.
2014 * [S] ->on_cpu = 1; [L] ->on_rq
2018 * [S] ->on_rq = 0; [L] ->on_cpu
2020 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2021 * from the consecutive calls to schedule(); the first switching to our
2022 * task, the second putting it to sleep.
2027 * If the owning (remote) CPU is still in the middle of schedule() with
2028 * this task as prev, wait until its done referencing the task.
2030 * Pairs with the smp_store_release() in finish_lock_switch().
2032 * This ensures that tasks getting woken will be fully ordered against
2033 * their previous state and preserve Program Order.
2035 smp_cond_load_acquire(&p
->on_cpu
, !VAL
);
2037 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2038 p
->state
= TASK_WAKING
;
2041 delayacct_blkio_end();
2042 atomic_dec(&task_rq(p
)->nr_iowait
);
2045 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
2046 if (task_cpu(p
) != cpu
) {
2047 wake_flags
|= WF_MIGRATED
;
2048 set_task_cpu(p
, cpu
);
2051 #else /* CONFIG_SMP */
2054 delayacct_blkio_end();
2055 atomic_dec(&task_rq(p
)->nr_iowait
);
2058 #endif /* CONFIG_SMP */
2060 ttwu_queue(p
, cpu
, wake_flags
);
2062 ttwu_stat(p
, cpu
, wake_flags
);
2064 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2070 * try_to_wake_up_local - try to wake up a local task with rq lock held
2071 * @p: the thread to be awakened
2072 * @cookie: context's cookie for pinning
2074 * Put @p on the run-queue if it's not already there. The caller must
2075 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2078 static void try_to_wake_up_local(struct task_struct
*p
, struct rq_flags
*rf
)
2080 struct rq
*rq
= task_rq(p
);
2082 if (WARN_ON_ONCE(rq
!= this_rq()) ||
2083 WARN_ON_ONCE(p
== current
))
2086 lockdep_assert_held(&rq
->lock
);
2088 if (!raw_spin_trylock(&p
->pi_lock
)) {
2090 * This is OK, because current is on_cpu, which avoids it being
2091 * picked for load-balance and preemption/IRQs are still
2092 * disabled avoiding further scheduler activity on it and we've
2093 * not yet picked a replacement task.
2096 raw_spin_lock(&p
->pi_lock
);
2100 if (!(p
->state
& TASK_NORMAL
))
2103 trace_sched_waking(p
);
2105 if (!task_on_rq_queued(p
)) {
2107 delayacct_blkio_end();
2108 atomic_dec(&rq
->nr_iowait
);
2110 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_NOCLOCK
);
2113 ttwu_do_wakeup(rq
, p
, 0, rf
);
2114 ttwu_stat(p
, smp_processor_id(), 0);
2116 raw_spin_unlock(&p
->pi_lock
);
2120 * wake_up_process - Wake up a specific process
2121 * @p: The process to be woken up.
2123 * Attempt to wake up the nominated process and move it to the set of runnable
2126 * Return: 1 if the process was woken up, 0 if it was already running.
2128 * It may be assumed that this function implies a write memory barrier before
2129 * changing the task state if and only if any tasks are woken up.
2131 int wake_up_process(struct task_struct
*p
)
2133 return try_to_wake_up(p
, TASK_NORMAL
, 0);
2135 EXPORT_SYMBOL(wake_up_process
);
2137 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2139 return try_to_wake_up(p
, state
, 0);
2143 * Perform scheduler related setup for a newly forked process p.
2144 * p is forked by current.
2146 * __sched_fork() is basic setup used by init_idle() too:
2148 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2153 p
->se
.exec_start
= 0;
2154 p
->se
.sum_exec_runtime
= 0;
2155 p
->se
.prev_sum_exec_runtime
= 0;
2156 p
->se
.nr_migrations
= 0;
2158 INIT_LIST_HEAD(&p
->se
.group_node
);
2160 #ifdef CONFIG_FAIR_GROUP_SCHED
2161 p
->se
.cfs_rq
= NULL
;
2164 #ifdef CONFIG_SCHEDSTATS
2165 /* Even if schedstat is disabled, there should not be garbage */
2166 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2169 RB_CLEAR_NODE(&p
->dl
.rb_node
);
2170 init_dl_task_timer(&p
->dl
);
2171 init_dl_inactive_task_timer(&p
->dl
);
2172 __dl_clear_params(p
);
2174 INIT_LIST_HEAD(&p
->rt
.run_list
);
2176 p
->rt
.time_slice
= sched_rr_timeslice
;
2180 #ifdef CONFIG_PREEMPT_NOTIFIERS
2181 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2184 #ifdef CONFIG_NUMA_BALANCING
2185 if (p
->mm
&& atomic_read(&p
->mm
->mm_users
) == 1) {
2186 p
->mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2187 p
->mm
->numa_scan_seq
= 0;
2190 if (clone_flags
& CLONE_VM
)
2191 p
->numa_preferred_nid
= current
->numa_preferred_nid
;
2193 p
->numa_preferred_nid
= -1;
2195 p
->node_stamp
= 0ULL;
2196 p
->numa_scan_seq
= p
->mm
? p
->mm
->numa_scan_seq
: 0;
2197 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
2198 p
->numa_work
.next
= &p
->numa_work
;
2199 p
->numa_faults
= NULL
;
2200 p
->last_task_numa_placement
= 0;
2201 p
->last_sum_exec_runtime
= 0;
2203 p
->numa_group
= NULL
;
2204 #endif /* CONFIG_NUMA_BALANCING */
2207 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing
);
2209 #ifdef CONFIG_NUMA_BALANCING
2211 void set_numabalancing_state(bool enabled
)
2214 static_branch_enable(&sched_numa_balancing
);
2216 static_branch_disable(&sched_numa_balancing
);
2219 #ifdef CONFIG_PROC_SYSCTL
2220 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
2221 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2225 int state
= static_branch_likely(&sched_numa_balancing
);
2227 if (write
&& !capable(CAP_SYS_ADMIN
))
2232 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2236 set_numabalancing_state(state
);
2242 #ifdef CONFIG_SCHEDSTATS
2244 DEFINE_STATIC_KEY_FALSE(sched_schedstats
);
2245 static bool __initdata __sched_schedstats
= false;
2247 static void set_schedstats(bool enabled
)
2250 static_branch_enable(&sched_schedstats
);
2252 static_branch_disable(&sched_schedstats
);
2255 void force_schedstat_enabled(void)
2257 if (!schedstat_enabled()) {
2258 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2259 static_branch_enable(&sched_schedstats
);
2263 static int __init
setup_schedstats(char *str
)
2270 * This code is called before jump labels have been set up, so we can't
2271 * change the static branch directly just yet. Instead set a temporary
2272 * variable so init_schedstats() can do it later.
2274 if (!strcmp(str
, "enable")) {
2275 __sched_schedstats
= true;
2277 } else if (!strcmp(str
, "disable")) {
2278 __sched_schedstats
= false;
2283 pr_warn("Unable to parse schedstats=\n");
2287 __setup("schedstats=", setup_schedstats
);
2289 static void __init
init_schedstats(void)
2291 set_schedstats(__sched_schedstats
);
2294 #ifdef CONFIG_PROC_SYSCTL
2295 int sysctl_schedstats(struct ctl_table
*table
, int write
,
2296 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2300 int state
= static_branch_likely(&sched_schedstats
);
2302 if (write
&& !capable(CAP_SYS_ADMIN
))
2307 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2311 set_schedstats(state
);
2314 #endif /* CONFIG_PROC_SYSCTL */
2315 #else /* !CONFIG_SCHEDSTATS */
2316 static inline void init_schedstats(void) {}
2317 #endif /* CONFIG_SCHEDSTATS */
2320 * fork()/clone()-time setup:
2322 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2324 unsigned long flags
;
2325 int cpu
= get_cpu();
2327 __sched_fork(clone_flags
, p
);
2329 * We mark the process as NEW here. This guarantees that
2330 * nobody will actually run it, and a signal or other external
2331 * event cannot wake it up and insert it on the runqueue either.
2333 p
->state
= TASK_NEW
;
2336 * Make sure we do not leak PI boosting priority to the child.
2338 p
->prio
= current
->normal_prio
;
2341 * Revert to default priority/policy on fork if requested.
2343 if (unlikely(p
->sched_reset_on_fork
)) {
2344 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
2345 p
->policy
= SCHED_NORMAL
;
2346 p
->static_prio
= NICE_TO_PRIO(0);
2348 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
2349 p
->static_prio
= NICE_TO_PRIO(0);
2351 p
->prio
= p
->normal_prio
= __normal_prio(p
);
2355 * We don't need the reset flag anymore after the fork. It has
2356 * fulfilled its duty:
2358 p
->sched_reset_on_fork
= 0;
2361 if (dl_prio(p
->prio
)) {
2364 } else if (rt_prio(p
->prio
)) {
2365 p
->sched_class
= &rt_sched_class
;
2367 p
->sched_class
= &fair_sched_class
;
2370 init_entity_runnable_average(&p
->se
);
2373 * The child is not yet in the pid-hash so no cgroup attach races,
2374 * and the cgroup is pinned to this child due to cgroup_fork()
2375 * is ran before sched_fork().
2377 * Silence PROVE_RCU.
2379 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2381 * We're setting the CPU for the first time, we don't migrate,
2382 * so use __set_task_cpu().
2384 __set_task_cpu(p
, cpu
);
2385 if (p
->sched_class
->task_fork
)
2386 p
->sched_class
->task_fork(p
);
2387 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2389 #ifdef CONFIG_SCHED_INFO
2390 if (likely(sched_info_on()))
2391 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2393 #if defined(CONFIG_SMP)
2396 init_task_preempt_count(p
);
2398 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2399 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
2406 unsigned long to_ratio(u64 period
, u64 runtime
)
2408 if (runtime
== RUNTIME_INF
)
2412 * Doing this here saves a lot of checks in all
2413 * the calling paths, and returning zero seems
2414 * safe for them anyway.
2419 return div64_u64(runtime
<< BW_SHIFT
, period
);
2423 * wake_up_new_task - wake up a newly created task for the first time.
2425 * This function will do some initial scheduler statistics housekeeping
2426 * that must be done for every newly created context, then puts the task
2427 * on the runqueue and wakes it.
2429 void wake_up_new_task(struct task_struct
*p
)
2434 raw_spin_lock_irqsave(&p
->pi_lock
, rf
.flags
);
2435 p
->state
= TASK_RUNNING
;
2438 * Fork balancing, do it here and not earlier because:
2439 * - cpus_allowed can change in the fork path
2440 * - any previously selected CPU might disappear through hotplug
2442 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2443 * as we're not fully set-up yet.
2445 __set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
2447 rq
= __task_rq_lock(p
, &rf
);
2448 update_rq_clock(rq
);
2449 post_init_entity_util_avg(&p
->se
);
2451 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
2452 p
->on_rq
= TASK_ON_RQ_QUEUED
;
2453 trace_sched_wakeup_new(p
);
2454 check_preempt_curr(rq
, p
, WF_FORK
);
2456 if (p
->sched_class
->task_woken
) {
2458 * Nothing relies on rq->lock after this, so its fine to
2461 rq_unpin_lock(rq
, &rf
);
2462 p
->sched_class
->task_woken(rq
, p
);
2463 rq_repin_lock(rq
, &rf
);
2466 task_rq_unlock(rq
, p
, &rf
);
2469 #ifdef CONFIG_PREEMPT_NOTIFIERS
2471 static struct static_key preempt_notifier_key
= STATIC_KEY_INIT_FALSE
;
2473 void preempt_notifier_inc(void)
2475 static_key_slow_inc(&preempt_notifier_key
);
2477 EXPORT_SYMBOL_GPL(preempt_notifier_inc
);
2479 void preempt_notifier_dec(void)
2481 static_key_slow_dec(&preempt_notifier_key
);
2483 EXPORT_SYMBOL_GPL(preempt_notifier_dec
);
2486 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2487 * @notifier: notifier struct to register
2489 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2491 if (!static_key_false(&preempt_notifier_key
))
2492 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2494 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2496 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2499 * preempt_notifier_unregister - no longer interested in preemption notifications
2500 * @notifier: notifier struct to unregister
2502 * This is *not* safe to call from within a preemption notifier.
2504 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2506 hlist_del(¬ifier
->link
);
2508 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2510 static void __fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2512 struct preempt_notifier
*notifier
;
2514 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2515 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2518 static __always_inline
void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2520 if (static_key_false(&preempt_notifier_key
))
2521 __fire_sched_in_preempt_notifiers(curr
);
2525 __fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2526 struct task_struct
*next
)
2528 struct preempt_notifier
*notifier
;
2530 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2531 notifier
->ops
->sched_out(notifier
, next
);
2534 static __always_inline
void
2535 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2536 struct task_struct
*next
)
2538 if (static_key_false(&preempt_notifier_key
))
2539 __fire_sched_out_preempt_notifiers(curr
, next
);
2542 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2544 static inline void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2549 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2550 struct task_struct
*next
)
2554 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2557 * prepare_task_switch - prepare to switch tasks
2558 * @rq: the runqueue preparing to switch
2559 * @prev: the current task that is being switched out
2560 * @next: the task we are going to switch to.
2562 * This is called with the rq lock held and interrupts off. It must
2563 * be paired with a subsequent finish_task_switch after the context
2566 * prepare_task_switch sets up locking and calls architecture specific
2570 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2571 struct task_struct
*next
)
2573 sched_info_switch(rq
, prev
, next
);
2574 perf_event_task_sched_out(prev
, next
);
2575 fire_sched_out_preempt_notifiers(prev
, next
);
2576 prepare_lock_switch(rq
, next
);
2577 prepare_arch_switch(next
);
2581 * finish_task_switch - clean up after a task-switch
2582 * @prev: the thread we just switched away from.
2584 * finish_task_switch must be called after the context switch, paired
2585 * with a prepare_task_switch call before the context switch.
2586 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2587 * and do any other architecture-specific cleanup actions.
2589 * Note that we may have delayed dropping an mm in context_switch(). If
2590 * so, we finish that here outside of the runqueue lock. (Doing it
2591 * with the lock held can cause deadlocks; see schedule() for
2594 * The context switch have flipped the stack from under us and restored the
2595 * local variables which were saved when this task called schedule() in the
2596 * past. prev == current is still correct but we need to recalculate this_rq
2597 * because prev may have moved to another CPU.
2599 static struct rq
*finish_task_switch(struct task_struct
*prev
)
2600 __releases(rq
->lock
)
2602 struct rq
*rq
= this_rq();
2603 struct mm_struct
*mm
= rq
->prev_mm
;
2607 * The previous task will have left us with a preempt_count of 2
2608 * because it left us after:
2611 * preempt_disable(); // 1
2613 * raw_spin_lock_irq(&rq->lock) // 2
2615 * Also, see FORK_PREEMPT_COUNT.
2617 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET
,
2618 "corrupted preempt_count: %s/%d/0x%x\n",
2619 current
->comm
, current
->pid
, preempt_count()))
2620 preempt_count_set(FORK_PREEMPT_COUNT
);
2625 * A task struct has one reference for the use as "current".
2626 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2627 * schedule one last time. The schedule call will never return, and
2628 * the scheduled task must drop that reference.
2630 * We must observe prev->state before clearing prev->on_cpu (in
2631 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2632 * running on another CPU and we could rave with its RUNNING -> DEAD
2633 * transition, resulting in a double drop.
2635 prev_state
= prev
->state
;
2636 vtime_task_switch(prev
);
2637 perf_event_task_sched_in(prev
, current
);
2638 finish_lock_switch(rq
, prev
);
2639 finish_arch_post_lock_switch();
2641 fire_sched_in_preempt_notifiers(current
);
2644 if (unlikely(prev_state
== TASK_DEAD
)) {
2645 if (prev
->sched_class
->task_dead
)
2646 prev
->sched_class
->task_dead(prev
);
2649 * Remove function-return probe instances associated with this
2650 * task and put them back on the free list.
2652 kprobe_flush_task(prev
);
2654 /* Task is done with its stack. */
2655 put_task_stack(prev
);
2657 put_task_struct(prev
);
2660 tick_nohz_task_switch();
2666 /* rq->lock is NOT held, but preemption is disabled */
2667 static void __balance_callback(struct rq
*rq
)
2669 struct callback_head
*head
, *next
;
2670 void (*func
)(struct rq
*rq
);
2671 unsigned long flags
;
2673 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2674 head
= rq
->balance_callback
;
2675 rq
->balance_callback
= NULL
;
2677 func
= (void (*)(struct rq
*))head
->func
;
2684 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2687 static inline void balance_callback(struct rq
*rq
)
2689 if (unlikely(rq
->balance_callback
))
2690 __balance_callback(rq
);
2695 static inline void balance_callback(struct rq
*rq
)
2702 * schedule_tail - first thing a freshly forked thread must call.
2703 * @prev: the thread we just switched away from.
2705 asmlinkage __visible
void schedule_tail(struct task_struct
*prev
)
2706 __releases(rq
->lock
)
2711 * New tasks start with FORK_PREEMPT_COUNT, see there and
2712 * finish_task_switch() for details.
2714 * finish_task_switch() will drop rq->lock() and lower preempt_count
2715 * and the preempt_enable() will end up enabling preemption (on
2716 * PREEMPT_COUNT kernels).
2719 rq
= finish_task_switch(prev
);
2720 balance_callback(rq
);
2723 if (current
->set_child_tid
)
2724 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2728 * context_switch - switch to the new MM and the new thread's register state.
2730 static __always_inline
struct rq
*
2731 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2732 struct task_struct
*next
, struct rq_flags
*rf
)
2734 struct mm_struct
*mm
, *oldmm
;
2736 prepare_task_switch(rq
, prev
, next
);
2739 oldmm
= prev
->active_mm
;
2741 * For paravirt, this is coupled with an exit in switch_to to
2742 * combine the page table reload and the switch backend into
2745 arch_start_context_switch(prev
);
2748 next
->active_mm
= oldmm
;
2750 enter_lazy_tlb(oldmm
, next
);
2752 switch_mm_irqs_off(oldmm
, mm
, next
);
2755 prev
->active_mm
= NULL
;
2756 rq
->prev_mm
= oldmm
;
2759 rq
->clock_update_flags
&= ~(RQCF_ACT_SKIP
|RQCF_REQ_SKIP
);
2762 * Since the runqueue lock will be released by the next
2763 * task (which is an invalid locking op but in the case
2764 * of the scheduler it's an obvious special-case), so we
2765 * do an early lockdep release here:
2767 rq_unpin_lock(rq
, rf
);
2768 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2770 /* Here we just switch the register state and the stack. */
2771 switch_to(prev
, next
, prev
);
2774 return finish_task_switch(prev
);
2778 * nr_running and nr_context_switches:
2780 * externally visible scheduler statistics: current number of runnable
2781 * threads, total number of context switches performed since bootup.
2783 unsigned long nr_running(void)
2785 unsigned long i
, sum
= 0;
2787 for_each_online_cpu(i
)
2788 sum
+= cpu_rq(i
)->nr_running
;
2794 * Check if only the current task is running on the CPU.
2796 * Caution: this function does not check that the caller has disabled
2797 * preemption, thus the result might have a time-of-check-to-time-of-use
2798 * race. The caller is responsible to use it correctly, for example:
2800 * - from a non-preemptable section (of course)
2802 * - from a thread that is bound to a single CPU
2804 * - in a loop with very short iterations (e.g. a polling loop)
2806 bool single_task_running(void)
2808 return raw_rq()->nr_running
== 1;
2810 EXPORT_SYMBOL(single_task_running
);
2812 unsigned long long nr_context_switches(void)
2815 unsigned long long sum
= 0;
2817 for_each_possible_cpu(i
)
2818 sum
+= cpu_rq(i
)->nr_switches
;
2824 * IO-wait accounting, and how its mostly bollocks (on SMP).
2826 * The idea behind IO-wait account is to account the idle time that we could
2827 * have spend running if it were not for IO. That is, if we were to improve the
2828 * storage performance, we'd have a proportional reduction in IO-wait time.
2830 * This all works nicely on UP, where, when a task blocks on IO, we account
2831 * idle time as IO-wait, because if the storage were faster, it could've been
2832 * running and we'd not be idle.
2834 * This has been extended to SMP, by doing the same for each CPU. This however
2837 * Imagine for instance the case where two tasks block on one CPU, only the one
2838 * CPU will have IO-wait accounted, while the other has regular idle. Even
2839 * though, if the storage were faster, both could've ran at the same time,
2840 * utilising both CPUs.
2842 * This means, that when looking globally, the current IO-wait accounting on
2843 * SMP is a lower bound, by reason of under accounting.
2845 * Worse, since the numbers are provided per CPU, they are sometimes
2846 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2847 * associated with any one particular CPU, it can wake to another CPU than it
2848 * blocked on. This means the per CPU IO-wait number is meaningless.
2850 * Task CPU affinities can make all that even more 'interesting'.
2853 unsigned long nr_iowait(void)
2855 unsigned long i
, sum
= 0;
2857 for_each_possible_cpu(i
)
2858 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2864 * Consumers of these two interfaces, like for example the cpufreq menu
2865 * governor are using nonsensical data. Boosting frequency for a CPU that has
2866 * IO-wait which might not even end up running the task when it does become
2870 unsigned long nr_iowait_cpu(int cpu
)
2872 struct rq
*this = cpu_rq(cpu
);
2873 return atomic_read(&this->nr_iowait
);
2876 void get_iowait_load(unsigned long *nr_waiters
, unsigned long *load
)
2878 struct rq
*rq
= this_rq();
2879 *nr_waiters
= atomic_read(&rq
->nr_iowait
);
2880 *load
= rq
->load
.weight
;
2886 * sched_exec - execve() is a valuable balancing opportunity, because at
2887 * this point the task has the smallest effective memory and cache footprint.
2889 void sched_exec(void)
2891 struct task_struct
*p
= current
;
2892 unsigned long flags
;
2895 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2896 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
2897 if (dest_cpu
== smp_processor_id())
2900 if (likely(cpu_active(dest_cpu
))) {
2901 struct migration_arg arg
= { p
, dest_cpu
};
2903 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2904 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
2908 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2913 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2914 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
2916 EXPORT_PER_CPU_SYMBOL(kstat
);
2917 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
2920 * The function fair_sched_class.update_curr accesses the struct curr
2921 * and its field curr->exec_start; when called from task_sched_runtime(),
2922 * we observe a high rate of cache misses in practice.
2923 * Prefetching this data results in improved performance.
2925 static inline void prefetch_curr_exec_start(struct task_struct
*p
)
2927 #ifdef CONFIG_FAIR_GROUP_SCHED
2928 struct sched_entity
*curr
= (&p
->se
)->cfs_rq
->curr
;
2930 struct sched_entity
*curr
= (&task_rq(p
)->cfs
)->curr
;
2933 prefetch(&curr
->exec_start
);
2937 * Return accounted runtime for the task.
2938 * In case the task is currently running, return the runtime plus current's
2939 * pending runtime that have not been accounted yet.
2941 unsigned long long task_sched_runtime(struct task_struct
*p
)
2947 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2949 * 64-bit doesn't need locks to atomically read a 64bit value.
2950 * So we have a optimization chance when the task's delta_exec is 0.
2951 * Reading ->on_cpu is racy, but this is ok.
2953 * If we race with it leaving CPU, we'll take a lock. So we're correct.
2954 * If we race with it entering CPU, unaccounted time is 0. This is
2955 * indistinguishable from the read occurring a few cycles earlier.
2956 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2957 * been accounted, so we're correct here as well.
2959 if (!p
->on_cpu
|| !task_on_rq_queued(p
))
2960 return p
->se
.sum_exec_runtime
;
2963 rq
= task_rq_lock(p
, &rf
);
2965 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2966 * project cycles that may never be accounted to this
2967 * thread, breaking clock_gettime().
2969 if (task_current(rq
, p
) && task_on_rq_queued(p
)) {
2970 prefetch_curr_exec_start(p
);
2971 update_rq_clock(rq
);
2972 p
->sched_class
->update_curr(rq
);
2974 ns
= p
->se
.sum_exec_runtime
;
2975 task_rq_unlock(rq
, p
, &rf
);
2981 * This function gets called by the timer code, with HZ frequency.
2982 * We call it with interrupts disabled.
2984 void scheduler_tick(void)
2986 int cpu
= smp_processor_id();
2987 struct rq
*rq
= cpu_rq(cpu
);
2988 struct task_struct
*curr
= rq
->curr
;
2995 update_rq_clock(rq
);
2996 curr
->sched_class
->task_tick(rq
, curr
, 0);
2997 cpu_load_update_active(rq
);
2998 calc_global_load_tick(rq
);
3002 perf_event_task_tick();
3005 rq
->idle_balance
= idle_cpu(cpu
);
3006 trigger_load_balance(rq
);
3008 rq_last_tick_reset(rq
);
3011 #ifdef CONFIG_NO_HZ_FULL
3013 * scheduler_tick_max_deferment
3015 * Keep at least one tick per second when a single
3016 * active task is running because the scheduler doesn't
3017 * yet completely support full dynticks environment.
3019 * This makes sure that uptime, CFS vruntime, load
3020 * balancing, etc... continue to move forward, even
3021 * with a very low granularity.
3023 * Return: Maximum deferment in nanoseconds.
3025 u64
scheduler_tick_max_deferment(void)
3027 struct rq
*rq
= this_rq();
3028 unsigned long next
, now
= READ_ONCE(jiffies
);
3030 next
= rq
->last_sched_tick
+ HZ
;
3032 if (time_before_eq(next
, now
))
3035 return jiffies_to_nsecs(next
- now
);
3039 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3040 defined(CONFIG_PREEMPT_TRACER))
3042 * If the value passed in is equal to the current preempt count
3043 * then we just disabled preemption. Start timing the latency.
3045 static inline void preempt_latency_start(int val
)
3047 if (preempt_count() == val
) {
3048 unsigned long ip
= get_lock_parent_ip();
3049 #ifdef CONFIG_DEBUG_PREEMPT
3050 current
->preempt_disable_ip
= ip
;
3052 trace_preempt_off(CALLER_ADDR0
, ip
);
3056 void preempt_count_add(int val
)
3058 #ifdef CONFIG_DEBUG_PREEMPT
3062 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3065 __preempt_count_add(val
);
3066 #ifdef CONFIG_DEBUG_PREEMPT
3068 * Spinlock count overflowing soon?
3070 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3073 preempt_latency_start(val
);
3075 EXPORT_SYMBOL(preempt_count_add
);
3076 NOKPROBE_SYMBOL(preempt_count_add
);
3079 * If the value passed in equals to the current preempt count
3080 * then we just enabled preemption. Stop timing the latency.
3082 static inline void preempt_latency_stop(int val
)
3084 if (preempt_count() == val
)
3085 trace_preempt_on(CALLER_ADDR0
, get_lock_parent_ip());
3088 void preempt_count_sub(int val
)
3090 #ifdef CONFIG_DEBUG_PREEMPT
3094 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3097 * Is the spinlock portion underflowing?
3099 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3100 !(preempt_count() & PREEMPT_MASK
)))
3104 preempt_latency_stop(val
);
3105 __preempt_count_sub(val
);
3107 EXPORT_SYMBOL(preempt_count_sub
);
3108 NOKPROBE_SYMBOL(preempt_count_sub
);
3111 static inline void preempt_latency_start(int val
) { }
3112 static inline void preempt_latency_stop(int val
) { }
3115 static inline unsigned long get_preempt_disable_ip(struct task_struct
*p
)
3117 #ifdef CONFIG_DEBUG_PREEMPT
3118 return p
->preempt_disable_ip
;
3125 * Print scheduling while atomic bug:
3127 static noinline
void __schedule_bug(struct task_struct
*prev
)
3129 /* Save this before calling printk(), since that will clobber it */
3130 unsigned long preempt_disable_ip
= get_preempt_disable_ip(current
);
3132 if (oops_in_progress
)
3135 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3136 prev
->comm
, prev
->pid
, preempt_count());
3138 debug_show_held_locks(prev
);
3140 if (irqs_disabled())
3141 print_irqtrace_events(prev
);
3142 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT
)
3143 && in_atomic_preempt_off()) {
3144 pr_err("Preemption disabled at:");
3145 print_ip_sym(preempt_disable_ip
);
3149 panic("scheduling while atomic\n");
3152 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
3156 * Various schedule()-time debugging checks and statistics:
3158 static inline void schedule_debug(struct task_struct
*prev
)
3160 #ifdef CONFIG_SCHED_STACK_END_CHECK
3161 if (task_stack_end_corrupted(prev
))
3162 panic("corrupted stack end detected inside scheduler\n");
3165 if (unlikely(in_atomic_preempt_off())) {
3166 __schedule_bug(prev
);
3167 preempt_count_set(PREEMPT_DISABLED
);
3171 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3173 schedstat_inc(this_rq()->sched_count
);
3177 * Pick up the highest-prio task:
3179 static inline struct task_struct
*
3180 pick_next_task(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
3182 const struct sched_class
*class;
3183 struct task_struct
*p
;
3186 * Optimization: we know that if all tasks are in the fair class we can
3187 * call that function directly, but only if the @prev task wasn't of a
3188 * higher scheduling class, because otherwise those loose the
3189 * opportunity to pull in more work from other CPUs.
3191 if (likely((prev
->sched_class
== &idle_sched_class
||
3192 prev
->sched_class
== &fair_sched_class
) &&
3193 rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
3195 p
= fair_sched_class
.pick_next_task(rq
, prev
, rf
);
3196 if (unlikely(p
== RETRY_TASK
))
3199 /* Assumes fair_sched_class->next == idle_sched_class */
3201 p
= idle_sched_class
.pick_next_task(rq
, prev
, rf
);
3207 for_each_class(class) {
3208 p
= class->pick_next_task(rq
, prev
, rf
);
3210 if (unlikely(p
== RETRY_TASK
))
3216 /* The idle class should always have a runnable task: */
3221 * __schedule() is the main scheduler function.
3223 * The main means of driving the scheduler and thus entering this function are:
3225 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3227 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3228 * paths. For example, see arch/x86/entry_64.S.
3230 * To drive preemption between tasks, the scheduler sets the flag in timer
3231 * interrupt handler scheduler_tick().
3233 * 3. Wakeups don't really cause entry into schedule(). They add a
3234 * task to the run-queue and that's it.
3236 * Now, if the new task added to the run-queue preempts the current
3237 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3238 * called on the nearest possible occasion:
3240 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3242 * - in syscall or exception context, at the next outmost
3243 * preempt_enable(). (this might be as soon as the wake_up()'s
3246 * - in IRQ context, return from interrupt-handler to
3247 * preemptible context
3249 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3252 * - cond_resched() call
3253 * - explicit schedule() call
3254 * - return from syscall or exception to user-space
3255 * - return from interrupt-handler to user-space
3257 * WARNING: must be called with preemption disabled!
3259 static void __sched notrace
__schedule(bool preempt
)
3261 struct task_struct
*prev
, *next
;
3262 unsigned long *switch_count
;
3267 cpu
= smp_processor_id();
3271 schedule_debug(prev
);
3273 if (sched_feat(HRTICK
))
3276 local_irq_disable();
3277 rcu_note_context_switch(preempt
);
3280 * Make sure that signal_pending_state()->signal_pending() below
3281 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3282 * done by the caller to avoid the race with signal_wake_up().
3284 smp_mb__before_spinlock();
3287 /* Promote REQ to ACT */
3288 rq
->clock_update_flags
<<= 1;
3289 update_rq_clock(rq
);
3291 switch_count
= &prev
->nivcsw
;
3292 if (!preempt
&& prev
->state
) {
3293 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3294 prev
->state
= TASK_RUNNING
;
3296 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
| DEQUEUE_NOCLOCK
);
3299 if (prev
->in_iowait
) {
3300 atomic_inc(&rq
->nr_iowait
);
3301 delayacct_blkio_start();
3305 * If a worker went to sleep, notify and ask workqueue
3306 * whether it wants to wake up a task to maintain
3309 if (prev
->flags
& PF_WQ_WORKER
) {
3310 struct task_struct
*to_wakeup
;
3312 to_wakeup
= wq_worker_sleeping(prev
);
3314 try_to_wake_up_local(to_wakeup
, &rf
);
3317 switch_count
= &prev
->nvcsw
;
3320 next
= pick_next_task(rq
, prev
, &rf
);
3321 clear_tsk_need_resched(prev
);
3322 clear_preempt_need_resched();
3324 if (likely(prev
!= next
)) {
3329 trace_sched_switch(preempt
, prev
, next
);
3331 /* Also unlocks the rq: */
3332 rq
= context_switch(rq
, prev
, next
, &rf
);
3334 rq
->clock_update_flags
&= ~(RQCF_ACT_SKIP
|RQCF_REQ_SKIP
);
3335 rq_unlock_irq(rq
, &rf
);
3338 balance_callback(rq
);
3341 void __noreturn
do_task_dead(void)
3344 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3345 * when the following two conditions become true.
3346 * - There is race condition of mmap_sem (It is acquired by
3348 * - SMI occurs before setting TASK_RUNINNG.
3349 * (or hypervisor of virtual machine switches to other guest)
3350 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3352 * To avoid it, we have to wait for releasing tsk->pi_lock which
3353 * is held by try_to_wake_up()
3356 raw_spin_unlock_wait(¤t
->pi_lock
);
3358 /* Causes final put_task_struct in finish_task_switch(): */
3359 __set_current_state(TASK_DEAD
);
3361 /* Tell freezer to ignore us: */
3362 current
->flags
|= PF_NOFREEZE
;
3367 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3372 static inline void sched_submit_work(struct task_struct
*tsk
)
3374 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
3377 * If we are going to sleep and we have plugged IO queued,
3378 * make sure to submit it to avoid deadlocks.
3380 if (blk_needs_flush_plug(tsk
))
3381 blk_schedule_flush_plug(tsk
);
3384 asmlinkage __visible
void __sched
schedule(void)
3386 struct task_struct
*tsk
= current
;
3388 sched_submit_work(tsk
);
3392 sched_preempt_enable_no_resched();
3393 } while (need_resched());
3395 EXPORT_SYMBOL(schedule
);
3398 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3399 * state (have scheduled out non-voluntarily) by making sure that all
3400 * tasks have either left the run queue or have gone into user space.
3401 * As idle tasks do not do either, they must not ever be preempted
3402 * (schedule out non-voluntarily).
3404 * schedule_idle() is similar to schedule_preempt_disable() except that it
3405 * never enables preemption because it does not call sched_submit_work().
3407 void __sched
schedule_idle(void)
3410 * As this skips calling sched_submit_work(), which the idle task does
3411 * regardless because that function is a nop when the task is in a
3412 * TASK_RUNNING state, make sure this isn't used someplace that the
3413 * current task can be in any other state. Note, idle is always in the
3414 * TASK_RUNNING state.
3416 WARN_ON_ONCE(current
->state
);
3419 } while (need_resched());
3422 #ifdef CONFIG_CONTEXT_TRACKING
3423 asmlinkage __visible
void __sched
schedule_user(void)
3426 * If we come here after a random call to set_need_resched(),
3427 * or we have been woken up remotely but the IPI has not yet arrived,
3428 * we haven't yet exited the RCU idle mode. Do it here manually until
3429 * we find a better solution.
3431 * NB: There are buggy callers of this function. Ideally we
3432 * should warn if prev_state != CONTEXT_USER, but that will trigger
3433 * too frequently to make sense yet.
3435 enum ctx_state prev_state
= exception_enter();
3437 exception_exit(prev_state
);
3442 * schedule_preempt_disabled - called with preemption disabled
3444 * Returns with preemption disabled. Note: preempt_count must be 1
3446 void __sched
schedule_preempt_disabled(void)
3448 sched_preempt_enable_no_resched();
3453 static void __sched notrace
preempt_schedule_common(void)
3457 * Because the function tracer can trace preempt_count_sub()
3458 * and it also uses preempt_enable/disable_notrace(), if
3459 * NEED_RESCHED is set, the preempt_enable_notrace() called
3460 * by the function tracer will call this function again and
3461 * cause infinite recursion.
3463 * Preemption must be disabled here before the function
3464 * tracer can trace. Break up preempt_disable() into two
3465 * calls. One to disable preemption without fear of being
3466 * traced. The other to still record the preemption latency,
3467 * which can also be traced by the function tracer.
3469 preempt_disable_notrace();
3470 preempt_latency_start(1);
3472 preempt_latency_stop(1);
3473 preempt_enable_no_resched_notrace();
3476 * Check again in case we missed a preemption opportunity
3477 * between schedule and now.
3479 } while (need_resched());
3482 #ifdef CONFIG_PREEMPT
3484 * this is the entry point to schedule() from in-kernel preemption
3485 * off of preempt_enable. Kernel preemptions off return from interrupt
3486 * occur there and call schedule directly.
3488 asmlinkage __visible
void __sched notrace
preempt_schedule(void)
3491 * If there is a non-zero preempt_count or interrupts are disabled,
3492 * we do not want to preempt the current task. Just return..
3494 if (likely(!preemptible()))
3497 preempt_schedule_common();
3499 NOKPROBE_SYMBOL(preempt_schedule
);
3500 EXPORT_SYMBOL(preempt_schedule
);
3503 * preempt_schedule_notrace - preempt_schedule called by tracing
3505 * The tracing infrastructure uses preempt_enable_notrace to prevent
3506 * recursion and tracing preempt enabling caused by the tracing
3507 * infrastructure itself. But as tracing can happen in areas coming
3508 * from userspace or just about to enter userspace, a preempt enable
3509 * can occur before user_exit() is called. This will cause the scheduler
3510 * to be called when the system is still in usermode.
3512 * To prevent this, the preempt_enable_notrace will use this function
3513 * instead of preempt_schedule() to exit user context if needed before
3514 * calling the scheduler.
3516 asmlinkage __visible
void __sched notrace
preempt_schedule_notrace(void)
3518 enum ctx_state prev_ctx
;
3520 if (likely(!preemptible()))
3525 * Because the function tracer can trace preempt_count_sub()
3526 * and it also uses preempt_enable/disable_notrace(), if
3527 * NEED_RESCHED is set, the preempt_enable_notrace() called
3528 * by the function tracer will call this function again and
3529 * cause infinite recursion.
3531 * Preemption must be disabled here before the function
3532 * tracer can trace. Break up preempt_disable() into two
3533 * calls. One to disable preemption without fear of being
3534 * traced. The other to still record the preemption latency,
3535 * which can also be traced by the function tracer.
3537 preempt_disable_notrace();
3538 preempt_latency_start(1);
3540 * Needs preempt disabled in case user_exit() is traced
3541 * and the tracer calls preempt_enable_notrace() causing
3542 * an infinite recursion.
3544 prev_ctx
= exception_enter();
3546 exception_exit(prev_ctx
);
3548 preempt_latency_stop(1);
3549 preempt_enable_no_resched_notrace();
3550 } while (need_resched());
3552 EXPORT_SYMBOL_GPL(preempt_schedule_notrace
);
3554 #endif /* CONFIG_PREEMPT */
3557 * this is the entry point to schedule() from kernel preemption
3558 * off of irq context.
3559 * Note, that this is called and return with irqs disabled. This will
3560 * protect us against recursive calling from irq.
3562 asmlinkage __visible
void __sched
preempt_schedule_irq(void)
3564 enum ctx_state prev_state
;
3566 /* Catch callers which need to be fixed */
3567 BUG_ON(preempt_count() || !irqs_disabled());
3569 prev_state
= exception_enter();
3575 local_irq_disable();
3576 sched_preempt_enable_no_resched();
3577 } while (need_resched());
3579 exception_exit(prev_state
);
3582 int default_wake_function(wait_queue_entry_t
*curr
, unsigned mode
, int wake_flags
,
3585 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3587 EXPORT_SYMBOL(default_wake_function
);
3589 #ifdef CONFIG_RT_MUTEXES
3591 static inline int __rt_effective_prio(struct task_struct
*pi_task
, int prio
)
3594 prio
= min(prio
, pi_task
->prio
);
3599 static inline int rt_effective_prio(struct task_struct
*p
, int prio
)
3601 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
3603 return __rt_effective_prio(pi_task
, prio
);
3607 * rt_mutex_setprio - set the current priority of a task
3609 * @pi_task: donor task
3611 * This function changes the 'effective' priority of a task. It does
3612 * not touch ->normal_prio like __setscheduler().
3614 * Used by the rt_mutex code to implement priority inheritance
3615 * logic. Call site only calls if the priority of the task changed.
3617 void rt_mutex_setprio(struct task_struct
*p
, struct task_struct
*pi_task
)
3619 int prio
, oldprio
, queued
, running
, queue_flag
=
3620 DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
3621 const struct sched_class
*prev_class
;
3625 /* XXX used to be waiter->prio, not waiter->task->prio */
3626 prio
= __rt_effective_prio(pi_task
, p
->normal_prio
);
3629 * If nothing changed; bail early.
3631 if (p
->pi_top_task
== pi_task
&& prio
== p
->prio
&& !dl_prio(prio
))
3634 rq
= __task_rq_lock(p
, &rf
);
3635 update_rq_clock(rq
);
3637 * Set under pi_lock && rq->lock, such that the value can be used under
3640 * Note that there is loads of tricky to make this pointer cache work
3641 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3642 * ensure a task is de-boosted (pi_task is set to NULL) before the
3643 * task is allowed to run again (and can exit). This ensures the pointer
3644 * points to a blocked task -- which guaratees the task is present.
3646 p
->pi_top_task
= pi_task
;
3649 * For FIFO/RR we only need to set prio, if that matches we're done.
3651 if (prio
== p
->prio
&& !dl_prio(prio
))
3655 * Idle task boosting is a nono in general. There is one
3656 * exception, when PREEMPT_RT and NOHZ is active:
3658 * The idle task calls get_next_timer_interrupt() and holds
3659 * the timer wheel base->lock on the CPU and another CPU wants
3660 * to access the timer (probably to cancel it). We can safely
3661 * ignore the boosting request, as the idle CPU runs this code
3662 * with interrupts disabled and will complete the lock
3663 * protected section without being interrupted. So there is no
3664 * real need to boost.
3666 if (unlikely(p
== rq
->idle
)) {
3667 WARN_ON(p
!= rq
->curr
);
3668 WARN_ON(p
->pi_blocked_on
);
3672 trace_sched_pi_setprio(p
, pi_task
);
3675 if (oldprio
== prio
)
3676 queue_flag
&= ~DEQUEUE_MOVE
;
3678 prev_class
= p
->sched_class
;
3679 queued
= task_on_rq_queued(p
);
3680 running
= task_current(rq
, p
);
3682 dequeue_task(rq
, p
, queue_flag
);
3684 put_prev_task(rq
, p
);
3687 * Boosting condition are:
3688 * 1. -rt task is running and holds mutex A
3689 * --> -dl task blocks on mutex A
3691 * 2. -dl task is running and holds mutex A
3692 * --> -dl task blocks on mutex A and could preempt the
3695 if (dl_prio(prio
)) {
3696 if (!dl_prio(p
->normal_prio
) ||
3697 (pi_task
&& dl_entity_preempt(&pi_task
->dl
, &p
->dl
))) {
3698 p
->dl
.dl_boosted
= 1;
3699 queue_flag
|= ENQUEUE_REPLENISH
;
3701 p
->dl
.dl_boosted
= 0;
3702 p
->sched_class
= &dl_sched_class
;
3703 } else if (rt_prio(prio
)) {
3704 if (dl_prio(oldprio
))
3705 p
->dl
.dl_boosted
= 0;
3707 queue_flag
|= ENQUEUE_HEAD
;
3708 p
->sched_class
= &rt_sched_class
;
3710 if (dl_prio(oldprio
))
3711 p
->dl
.dl_boosted
= 0;
3712 if (rt_prio(oldprio
))
3714 p
->sched_class
= &fair_sched_class
;
3720 enqueue_task(rq
, p
, queue_flag
);
3722 set_curr_task(rq
, p
);
3724 check_class_changed(rq
, p
, prev_class
, oldprio
);
3726 /* Avoid rq from going away on us: */
3728 __task_rq_unlock(rq
, &rf
);
3730 balance_callback(rq
);
3734 static inline int rt_effective_prio(struct task_struct
*p
, int prio
)
3740 void set_user_nice(struct task_struct
*p
, long nice
)
3742 bool queued
, running
;
3743 int old_prio
, delta
;
3747 if (task_nice(p
) == nice
|| nice
< MIN_NICE
|| nice
> MAX_NICE
)
3750 * We have to be careful, if called from sys_setpriority(),
3751 * the task might be in the middle of scheduling on another CPU.
3753 rq
= task_rq_lock(p
, &rf
);
3754 update_rq_clock(rq
);
3757 * The RT priorities are set via sched_setscheduler(), but we still
3758 * allow the 'normal' nice value to be set - but as expected
3759 * it wont have any effect on scheduling until the task is
3760 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3762 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3763 p
->static_prio
= NICE_TO_PRIO(nice
);
3766 queued
= task_on_rq_queued(p
);
3767 running
= task_current(rq
, p
);
3769 dequeue_task(rq
, p
, DEQUEUE_SAVE
| DEQUEUE_NOCLOCK
);
3771 put_prev_task(rq
, p
);
3773 p
->static_prio
= NICE_TO_PRIO(nice
);
3776 p
->prio
= effective_prio(p
);
3777 delta
= p
->prio
- old_prio
;
3780 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
3782 * If the task increased its priority or is running and
3783 * lowered its priority, then reschedule its CPU:
3785 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3789 set_curr_task(rq
, p
);
3791 task_rq_unlock(rq
, p
, &rf
);
3793 EXPORT_SYMBOL(set_user_nice
);
3796 * can_nice - check if a task can reduce its nice value
3800 int can_nice(const struct task_struct
*p
, const int nice
)
3802 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3803 int nice_rlim
= nice_to_rlimit(nice
);
3805 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3806 capable(CAP_SYS_NICE
));
3809 #ifdef __ARCH_WANT_SYS_NICE
3812 * sys_nice - change the priority of the current process.
3813 * @increment: priority increment
3815 * sys_setpriority is a more generic, but much slower function that
3816 * does similar things.
3818 SYSCALL_DEFINE1(nice
, int, increment
)
3823 * Setpriority might change our priority at the same moment.
3824 * We don't have to worry. Conceptually one call occurs first
3825 * and we have a single winner.
3827 increment
= clamp(increment
, -NICE_WIDTH
, NICE_WIDTH
);
3828 nice
= task_nice(current
) + increment
;
3830 nice
= clamp_val(nice
, MIN_NICE
, MAX_NICE
);
3831 if (increment
< 0 && !can_nice(current
, nice
))
3834 retval
= security_task_setnice(current
, nice
);
3838 set_user_nice(current
, nice
);
3845 * task_prio - return the priority value of a given task.
3846 * @p: the task in question.
3848 * Return: The priority value as seen by users in /proc.
3849 * RT tasks are offset by -200. Normal tasks are centered
3850 * around 0, value goes from -16 to +15.
3852 int task_prio(const struct task_struct
*p
)
3854 return p
->prio
- MAX_RT_PRIO
;
3858 * idle_cpu - is a given CPU idle currently?
3859 * @cpu: the processor in question.
3861 * Return: 1 if the CPU is currently idle. 0 otherwise.
3863 int idle_cpu(int cpu
)
3865 struct rq
*rq
= cpu_rq(cpu
);
3867 if (rq
->curr
!= rq
->idle
)
3874 if (!llist_empty(&rq
->wake_list
))
3882 * idle_task - return the idle task for a given CPU.
3883 * @cpu: the processor in question.
3885 * Return: The idle task for the CPU @cpu.
3887 struct task_struct
*idle_task(int cpu
)
3889 return cpu_rq(cpu
)->idle
;
3893 * find_process_by_pid - find a process with a matching PID value.
3894 * @pid: the pid in question.
3896 * The task of @pid, if found. %NULL otherwise.
3898 static struct task_struct
*find_process_by_pid(pid_t pid
)
3900 return pid
? find_task_by_vpid(pid
) : current
;
3904 * sched_setparam() passes in -1 for its policy, to let the functions
3905 * it calls know not to change it.
3907 #define SETPARAM_POLICY -1
3909 static void __setscheduler_params(struct task_struct
*p
,
3910 const struct sched_attr
*attr
)
3912 int policy
= attr
->sched_policy
;
3914 if (policy
== SETPARAM_POLICY
)
3919 if (dl_policy(policy
))
3920 __setparam_dl(p
, attr
);
3921 else if (fair_policy(policy
))
3922 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
3925 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3926 * !rt_policy. Always setting this ensures that things like
3927 * getparam()/getattr() don't report silly values for !rt tasks.
3929 p
->rt_priority
= attr
->sched_priority
;
3930 p
->normal_prio
= normal_prio(p
);
3934 /* Actually do priority change: must hold pi & rq lock. */
3935 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
3936 const struct sched_attr
*attr
, bool keep_boost
)
3938 __setscheduler_params(p
, attr
);
3941 * Keep a potential priority boosting if called from
3942 * sched_setscheduler().
3944 p
->prio
= normal_prio(p
);
3946 p
->prio
= rt_effective_prio(p
, p
->prio
);
3948 if (dl_prio(p
->prio
))
3949 p
->sched_class
= &dl_sched_class
;
3950 else if (rt_prio(p
->prio
))
3951 p
->sched_class
= &rt_sched_class
;
3953 p
->sched_class
= &fair_sched_class
;
3957 * Check the target process has a UID that matches the current process's:
3959 static bool check_same_owner(struct task_struct
*p
)
3961 const struct cred
*cred
= current_cred(), *pcred
;
3965 pcred
= __task_cred(p
);
3966 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
3967 uid_eq(cred
->euid
, pcred
->uid
));
3972 static int __sched_setscheduler(struct task_struct
*p
,
3973 const struct sched_attr
*attr
,
3976 int newprio
= dl_policy(attr
->sched_policy
) ? MAX_DL_PRIO
- 1 :
3977 MAX_RT_PRIO
- 1 - attr
->sched_priority
;
3978 int retval
, oldprio
, oldpolicy
= -1, queued
, running
;
3979 int new_effective_prio
, policy
= attr
->sched_policy
;
3980 const struct sched_class
*prev_class
;
3983 int queue_flags
= DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
3986 /* The pi code expects interrupts enabled */
3987 BUG_ON(pi
&& in_interrupt());
3989 /* Double check policy once rq lock held: */
3991 reset_on_fork
= p
->sched_reset_on_fork
;
3992 policy
= oldpolicy
= p
->policy
;
3994 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
3996 if (!valid_policy(policy
))
4000 if (attr
->sched_flags
&
4001 ~(SCHED_FLAG_RESET_ON_FORK
| SCHED_FLAG_RECLAIM
))
4005 * Valid priorities for SCHED_FIFO and SCHED_RR are
4006 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4007 * SCHED_BATCH and SCHED_IDLE is 0.
4009 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4010 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
4012 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
4013 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
4017 * Allow unprivileged RT tasks to decrease priority:
4019 if (user
&& !capable(CAP_SYS_NICE
)) {
4020 if (fair_policy(policy
)) {
4021 if (attr
->sched_nice
< task_nice(p
) &&
4022 !can_nice(p
, attr
->sched_nice
))
4026 if (rt_policy(policy
)) {
4027 unsigned long rlim_rtprio
=
4028 task_rlimit(p
, RLIMIT_RTPRIO
);
4030 /* Can't set/change the rt policy: */
4031 if (policy
!= p
->policy
&& !rlim_rtprio
)
4034 /* Can't increase priority: */
4035 if (attr
->sched_priority
> p
->rt_priority
&&
4036 attr
->sched_priority
> rlim_rtprio
)
4041 * Can't set/change SCHED_DEADLINE policy at all for now
4042 * (safest behavior); in the future we would like to allow
4043 * unprivileged DL tasks to increase their relative deadline
4044 * or reduce their runtime (both ways reducing utilization)
4046 if (dl_policy(policy
))
4050 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4051 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4053 if (idle_policy(p
->policy
) && !idle_policy(policy
)) {
4054 if (!can_nice(p
, task_nice(p
)))
4058 /* Can't change other user's priorities: */
4059 if (!check_same_owner(p
))
4062 /* Normal users shall not reset the sched_reset_on_fork flag: */
4063 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4068 retval
= security_task_setscheduler(p
);
4074 * Make sure no PI-waiters arrive (or leave) while we are
4075 * changing the priority of the task:
4077 * To be able to change p->policy safely, the appropriate
4078 * runqueue lock must be held.
4080 rq
= task_rq_lock(p
, &rf
);
4081 update_rq_clock(rq
);
4084 * Changing the policy of the stop threads its a very bad idea:
4086 if (p
== rq
->stop
) {
4087 task_rq_unlock(rq
, p
, &rf
);
4092 * If not changing anything there's no need to proceed further,
4093 * but store a possible modification of reset_on_fork.
4095 if (unlikely(policy
== p
->policy
)) {
4096 if (fair_policy(policy
) && attr
->sched_nice
!= task_nice(p
))
4098 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
4100 if (dl_policy(policy
) && dl_param_changed(p
, attr
))
4103 p
->sched_reset_on_fork
= reset_on_fork
;
4104 task_rq_unlock(rq
, p
, &rf
);
4110 #ifdef CONFIG_RT_GROUP_SCHED
4112 * Do not allow realtime tasks into groups that have no runtime
4115 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4116 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
4117 !task_group_is_autogroup(task_group(p
))) {
4118 task_rq_unlock(rq
, p
, &rf
);
4123 if (dl_bandwidth_enabled() && dl_policy(policy
)) {
4124 cpumask_t
*span
= rq
->rd
->span
;
4127 * Don't allow tasks with an affinity mask smaller than
4128 * the entire root_domain to become SCHED_DEADLINE. We
4129 * will also fail if there's no bandwidth available.
4131 if (!cpumask_subset(span
, &p
->cpus_allowed
) ||
4132 rq
->rd
->dl_bw
.bw
== 0) {
4133 task_rq_unlock(rq
, p
, &rf
);
4140 /* Re-check policy now with rq lock held: */
4141 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4142 policy
= oldpolicy
= -1;
4143 task_rq_unlock(rq
, p
, &rf
);
4148 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4149 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4152 if ((dl_policy(policy
) || dl_task(p
)) && sched_dl_overflow(p
, policy
, attr
)) {
4153 task_rq_unlock(rq
, p
, &rf
);
4157 p
->sched_reset_on_fork
= reset_on_fork
;
4162 * Take priority boosted tasks into account. If the new
4163 * effective priority is unchanged, we just store the new
4164 * normal parameters and do not touch the scheduler class and
4165 * the runqueue. This will be done when the task deboost
4168 new_effective_prio
= rt_effective_prio(p
, newprio
);
4169 if (new_effective_prio
== oldprio
)
4170 queue_flags
&= ~DEQUEUE_MOVE
;
4173 queued
= task_on_rq_queued(p
);
4174 running
= task_current(rq
, p
);
4176 dequeue_task(rq
, p
, queue_flags
);
4178 put_prev_task(rq
, p
);
4180 prev_class
= p
->sched_class
;
4181 __setscheduler(rq
, p
, attr
, pi
);
4185 * We enqueue to tail when the priority of a task is
4186 * increased (user space view).
4188 if (oldprio
< p
->prio
)
4189 queue_flags
|= ENQUEUE_HEAD
;
4191 enqueue_task(rq
, p
, queue_flags
);
4194 set_curr_task(rq
, p
);
4196 check_class_changed(rq
, p
, prev_class
, oldprio
);
4198 /* Avoid rq from going away on us: */
4200 task_rq_unlock(rq
, p
, &rf
);
4203 rt_mutex_adjust_pi(p
);
4205 /* Run balance callbacks after we've adjusted the PI chain: */
4206 balance_callback(rq
);
4212 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
4213 const struct sched_param
*param
, bool check
)
4215 struct sched_attr attr
= {
4216 .sched_policy
= policy
,
4217 .sched_priority
= param
->sched_priority
,
4218 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
4221 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4222 if ((policy
!= SETPARAM_POLICY
) && (policy
& SCHED_RESET_ON_FORK
)) {
4223 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4224 policy
&= ~SCHED_RESET_ON_FORK
;
4225 attr
.sched_policy
= policy
;
4228 return __sched_setscheduler(p
, &attr
, check
, true);
4231 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4232 * @p: the task in question.
4233 * @policy: new policy.
4234 * @param: structure containing the new RT priority.
4236 * Return: 0 on success. An error code otherwise.
4238 * NOTE that the task may be already dead.
4240 int sched_setscheduler(struct task_struct
*p
, int policy
,
4241 const struct sched_param
*param
)
4243 return _sched_setscheduler(p
, policy
, param
, true);
4245 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4247 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
4249 return __sched_setscheduler(p
, attr
, true, true);
4251 EXPORT_SYMBOL_GPL(sched_setattr
);
4254 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4255 * @p: the task in question.
4256 * @policy: new policy.
4257 * @param: structure containing the new RT priority.
4259 * Just like sched_setscheduler, only don't bother checking if the
4260 * current context has permission. For example, this is needed in
4261 * stop_machine(): we create temporary high priority worker threads,
4262 * but our caller might not have that capability.
4264 * Return: 0 on success. An error code otherwise.
4266 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4267 const struct sched_param
*param
)
4269 return _sched_setscheduler(p
, policy
, param
, false);
4271 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck
);
4274 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4276 struct sched_param lparam
;
4277 struct task_struct
*p
;
4280 if (!param
|| pid
< 0)
4282 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4287 p
= find_process_by_pid(pid
);
4289 retval
= sched_setscheduler(p
, policy
, &lparam
);
4296 * Mimics kernel/events/core.c perf_copy_attr().
4298 static int sched_copy_attr(struct sched_attr __user
*uattr
, struct sched_attr
*attr
)
4303 if (!access_ok(VERIFY_WRITE
, uattr
, SCHED_ATTR_SIZE_VER0
))
4306 /* Zero the full structure, so that a short copy will be nice: */
4307 memset(attr
, 0, sizeof(*attr
));
4309 ret
= get_user(size
, &uattr
->size
);
4313 /* Bail out on silly large: */
4314 if (size
> PAGE_SIZE
)
4317 /* ABI compatibility quirk: */
4319 size
= SCHED_ATTR_SIZE_VER0
;
4321 if (size
< SCHED_ATTR_SIZE_VER0
)
4325 * If we're handed a bigger struct than we know of,
4326 * ensure all the unknown bits are 0 - i.e. new
4327 * user-space does not rely on any kernel feature
4328 * extensions we dont know about yet.
4330 if (size
> sizeof(*attr
)) {
4331 unsigned char __user
*addr
;
4332 unsigned char __user
*end
;
4335 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4336 end
= (void __user
*)uattr
+ size
;
4338 for (; addr
< end
; addr
++) {
4339 ret
= get_user(val
, addr
);
4345 size
= sizeof(*attr
);
4348 ret
= copy_from_user(attr
, uattr
, size
);
4353 * XXX: Do we want to be lenient like existing syscalls; or do we want
4354 * to be strict and return an error on out-of-bounds values?
4356 attr
->sched_nice
= clamp(attr
->sched_nice
, MIN_NICE
, MAX_NICE
);
4361 put_user(sizeof(*attr
), &uattr
->size
);
4366 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4367 * @pid: the pid in question.
4368 * @policy: new policy.
4369 * @param: structure containing the new RT priority.
4371 * Return: 0 on success. An error code otherwise.
4373 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
, struct sched_param __user
*, param
)
4378 return do_sched_setscheduler(pid
, policy
, param
);
4382 * sys_sched_setparam - set/change the RT priority of a thread
4383 * @pid: the pid in question.
4384 * @param: structure containing the new RT priority.
4386 * Return: 0 on success. An error code otherwise.
4388 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4390 return do_sched_setscheduler(pid
, SETPARAM_POLICY
, param
);
4394 * sys_sched_setattr - same as above, but with extended sched_attr
4395 * @pid: the pid in question.
4396 * @uattr: structure containing the extended parameters.
4397 * @flags: for future extension.
4399 SYSCALL_DEFINE3(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4400 unsigned int, flags
)
4402 struct sched_attr attr
;
4403 struct task_struct
*p
;
4406 if (!uattr
|| pid
< 0 || flags
)
4409 retval
= sched_copy_attr(uattr
, &attr
);
4413 if ((int)attr
.sched_policy
< 0)
4418 p
= find_process_by_pid(pid
);
4420 retval
= sched_setattr(p
, &attr
);
4427 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4428 * @pid: the pid in question.
4430 * Return: On success, the policy of the thread. Otherwise, a negative error
4433 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4435 struct task_struct
*p
;
4443 p
= find_process_by_pid(pid
);
4445 retval
= security_task_getscheduler(p
);
4448 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4455 * sys_sched_getparam - get the RT priority of a thread
4456 * @pid: the pid in question.
4457 * @param: structure containing the RT priority.
4459 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4462 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4464 struct sched_param lp
= { .sched_priority
= 0 };
4465 struct task_struct
*p
;
4468 if (!param
|| pid
< 0)
4472 p
= find_process_by_pid(pid
);
4477 retval
= security_task_getscheduler(p
);
4481 if (task_has_rt_policy(p
))
4482 lp
.sched_priority
= p
->rt_priority
;
4486 * This one might sleep, we cannot do it with a spinlock held ...
4488 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4497 static int sched_read_attr(struct sched_attr __user
*uattr
,
4498 struct sched_attr
*attr
,
4503 if (!access_ok(VERIFY_WRITE
, uattr
, usize
))
4507 * If we're handed a smaller struct than we know of,
4508 * ensure all the unknown bits are 0 - i.e. old
4509 * user-space does not get uncomplete information.
4511 if (usize
< sizeof(*attr
)) {
4512 unsigned char *addr
;
4515 addr
= (void *)attr
+ usize
;
4516 end
= (void *)attr
+ sizeof(*attr
);
4518 for (; addr
< end
; addr
++) {
4526 ret
= copy_to_user(uattr
, attr
, attr
->size
);
4534 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4535 * @pid: the pid in question.
4536 * @uattr: structure containing the extended parameters.
4537 * @size: sizeof(attr) for fwd/bwd comp.
4538 * @flags: for future extension.
4540 SYSCALL_DEFINE4(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4541 unsigned int, size
, unsigned int, flags
)
4543 struct sched_attr attr
= {
4544 .size
= sizeof(struct sched_attr
),
4546 struct task_struct
*p
;
4549 if (!uattr
|| pid
< 0 || size
> PAGE_SIZE
||
4550 size
< SCHED_ATTR_SIZE_VER0
|| flags
)
4554 p
= find_process_by_pid(pid
);
4559 retval
= security_task_getscheduler(p
);
4563 attr
.sched_policy
= p
->policy
;
4564 if (p
->sched_reset_on_fork
)
4565 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4566 if (task_has_dl_policy(p
))
4567 __getparam_dl(p
, &attr
);
4568 else if (task_has_rt_policy(p
))
4569 attr
.sched_priority
= p
->rt_priority
;
4571 attr
.sched_nice
= task_nice(p
);
4575 retval
= sched_read_attr(uattr
, &attr
, size
);
4583 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4585 cpumask_var_t cpus_allowed
, new_mask
;
4586 struct task_struct
*p
;
4591 p
= find_process_by_pid(pid
);
4597 /* Prevent p going away */
4601 if (p
->flags
& PF_NO_SETAFFINITY
) {
4605 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4609 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4611 goto out_free_cpus_allowed
;
4614 if (!check_same_owner(p
)) {
4616 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
4618 goto out_free_new_mask
;
4623 retval
= security_task_setscheduler(p
);
4625 goto out_free_new_mask
;
4628 cpuset_cpus_allowed(p
, cpus_allowed
);
4629 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4632 * Since bandwidth control happens on root_domain basis,
4633 * if admission test is enabled, we only admit -deadline
4634 * tasks allowed to run on all the CPUs in the task's
4638 if (task_has_dl_policy(p
) && dl_bandwidth_enabled()) {
4640 if (!cpumask_subset(task_rq(p
)->rd
->span
, new_mask
)) {
4643 goto out_free_new_mask
;
4649 retval
= __set_cpus_allowed_ptr(p
, new_mask
, true);
4652 cpuset_cpus_allowed(p
, cpus_allowed
);
4653 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4655 * We must have raced with a concurrent cpuset
4656 * update. Just reset the cpus_allowed to the
4657 * cpuset's cpus_allowed
4659 cpumask_copy(new_mask
, cpus_allowed
);
4664 free_cpumask_var(new_mask
);
4665 out_free_cpus_allowed
:
4666 free_cpumask_var(cpus_allowed
);
4672 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4673 struct cpumask
*new_mask
)
4675 if (len
< cpumask_size())
4676 cpumask_clear(new_mask
);
4677 else if (len
> cpumask_size())
4678 len
= cpumask_size();
4680 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4684 * sys_sched_setaffinity - set the CPU affinity of a process
4685 * @pid: pid of the process
4686 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4687 * @user_mask_ptr: user-space pointer to the new CPU mask
4689 * Return: 0 on success. An error code otherwise.
4691 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4692 unsigned long __user
*, user_mask_ptr
)
4694 cpumask_var_t new_mask
;
4697 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4700 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4702 retval
= sched_setaffinity(pid
, new_mask
);
4703 free_cpumask_var(new_mask
);
4707 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4709 struct task_struct
*p
;
4710 unsigned long flags
;
4716 p
= find_process_by_pid(pid
);
4720 retval
= security_task_getscheduler(p
);
4724 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4725 cpumask_and(mask
, &p
->cpus_allowed
, cpu_active_mask
);
4726 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4735 * sys_sched_getaffinity - get the CPU affinity of a process
4736 * @pid: pid of the process
4737 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4738 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4740 * Return: size of CPU mask copied to user_mask_ptr on success. An
4741 * error code otherwise.
4743 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4744 unsigned long __user
*, user_mask_ptr
)
4749 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4751 if (len
& (sizeof(unsigned long)-1))
4754 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4757 ret
= sched_getaffinity(pid
, mask
);
4759 size_t retlen
= min_t(size_t, len
, cpumask_size());
4761 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4766 free_cpumask_var(mask
);
4772 * sys_sched_yield - yield the current processor to other threads.
4774 * This function yields the current CPU to other tasks. If there are no
4775 * other threads running on this CPU then this function will return.
4779 SYSCALL_DEFINE0(sched_yield
)
4784 local_irq_disable();
4788 schedstat_inc(rq
->yld_count
);
4789 current
->sched_class
->yield_task(rq
);
4792 * Since we are going to call schedule() anyway, there's
4793 * no need to preempt or enable interrupts:
4797 sched_preempt_enable_no_resched();
4804 #ifndef CONFIG_PREEMPT
4805 int __sched
_cond_resched(void)
4807 if (should_resched(0)) {
4808 preempt_schedule_common();
4813 EXPORT_SYMBOL(_cond_resched
);
4817 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4818 * call schedule, and on return reacquire the lock.
4820 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4821 * operations here to prevent schedule() from being called twice (once via
4822 * spin_unlock(), once by hand).
4824 int __cond_resched_lock(spinlock_t
*lock
)
4826 int resched
= should_resched(PREEMPT_LOCK_OFFSET
);
4829 lockdep_assert_held(lock
);
4831 if (spin_needbreak(lock
) || resched
) {
4834 preempt_schedule_common();
4842 EXPORT_SYMBOL(__cond_resched_lock
);
4844 int __sched
__cond_resched_softirq(void)
4846 BUG_ON(!in_softirq());
4848 if (should_resched(SOFTIRQ_DISABLE_OFFSET
)) {
4850 preempt_schedule_common();
4856 EXPORT_SYMBOL(__cond_resched_softirq
);
4859 * yield - yield the current processor to other threads.
4861 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4863 * The scheduler is at all times free to pick the calling task as the most
4864 * eligible task to run, if removing the yield() call from your code breaks
4865 * it, its already broken.
4867 * Typical broken usage is:
4872 * where one assumes that yield() will let 'the other' process run that will
4873 * make event true. If the current task is a SCHED_FIFO task that will never
4874 * happen. Never use yield() as a progress guarantee!!
4876 * If you want to use yield() to wait for something, use wait_event().
4877 * If you want to use yield() to be 'nice' for others, use cond_resched().
4878 * If you still want to use yield(), do not!
4880 void __sched
yield(void)
4882 set_current_state(TASK_RUNNING
);
4885 EXPORT_SYMBOL(yield
);
4888 * yield_to - yield the current processor to another thread in
4889 * your thread group, or accelerate that thread toward the
4890 * processor it's on.
4892 * @preempt: whether task preemption is allowed or not
4894 * It's the caller's job to ensure that the target task struct
4895 * can't go away on us before we can do any checks.
4898 * true (>0) if we indeed boosted the target task.
4899 * false (0) if we failed to boost the target.
4900 * -ESRCH if there's no task to yield to.
4902 int __sched
yield_to(struct task_struct
*p
, bool preempt
)
4904 struct task_struct
*curr
= current
;
4905 struct rq
*rq
, *p_rq
;
4906 unsigned long flags
;
4909 local_irq_save(flags
);
4915 * If we're the only runnable task on the rq and target rq also
4916 * has only one task, there's absolutely no point in yielding.
4918 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
4923 double_rq_lock(rq
, p_rq
);
4924 if (task_rq(p
) != p_rq
) {
4925 double_rq_unlock(rq
, p_rq
);
4929 if (!curr
->sched_class
->yield_to_task
)
4932 if (curr
->sched_class
!= p
->sched_class
)
4935 if (task_running(p_rq
, p
) || p
->state
)
4938 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
4940 schedstat_inc(rq
->yld_count
);
4942 * Make p's CPU reschedule; pick_next_entity takes care of
4945 if (preempt
&& rq
!= p_rq
)
4950 double_rq_unlock(rq
, p_rq
);
4952 local_irq_restore(flags
);
4959 EXPORT_SYMBOL_GPL(yield_to
);
4961 int io_schedule_prepare(void)
4963 int old_iowait
= current
->in_iowait
;
4965 current
->in_iowait
= 1;
4966 blk_schedule_flush_plug(current
);
4971 void io_schedule_finish(int token
)
4973 current
->in_iowait
= token
;
4977 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4978 * that process accounting knows that this is a task in IO wait state.
4980 long __sched
io_schedule_timeout(long timeout
)
4985 token
= io_schedule_prepare();
4986 ret
= schedule_timeout(timeout
);
4987 io_schedule_finish(token
);
4991 EXPORT_SYMBOL(io_schedule_timeout
);
4993 void io_schedule(void)
4997 token
= io_schedule_prepare();
4999 io_schedule_finish(token
);
5001 EXPORT_SYMBOL(io_schedule
);
5004 * sys_sched_get_priority_max - return maximum RT priority.
5005 * @policy: scheduling class.
5007 * Return: On success, this syscall returns the maximum
5008 * rt_priority that can be used by a given scheduling class.
5009 * On failure, a negative error code is returned.
5011 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5018 ret
= MAX_USER_RT_PRIO
-1;
5020 case SCHED_DEADLINE
:
5031 * sys_sched_get_priority_min - return minimum RT priority.
5032 * @policy: scheduling class.
5034 * Return: On success, this syscall returns the minimum
5035 * rt_priority that can be used by a given scheduling class.
5036 * On failure, a negative error code is returned.
5038 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5047 case SCHED_DEADLINE
:
5057 * sys_sched_rr_get_interval - return the default timeslice of a process.
5058 * @pid: pid of the process.
5059 * @interval: userspace pointer to the timeslice value.
5061 * this syscall writes the default timeslice value of a given process
5062 * into the user-space timespec buffer. A value of '0' means infinity.
5064 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5067 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5068 struct timespec __user
*, interval
)
5070 struct task_struct
*p
;
5071 unsigned int time_slice
;
5082 p
= find_process_by_pid(pid
);
5086 retval
= security_task_getscheduler(p
);
5090 rq
= task_rq_lock(p
, &rf
);
5092 if (p
->sched_class
->get_rr_interval
)
5093 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5094 task_rq_unlock(rq
, p
, &rf
);
5097 jiffies_to_timespec(time_slice
, &t
);
5098 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5106 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5108 void sched_show_task(struct task_struct
*p
)
5110 unsigned long free
= 0;
5112 unsigned long state
= p
->state
;
5114 /* Make sure the string lines up properly with the number of task states: */
5115 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR
)-1 != ilog2(TASK_STATE_MAX
)+1);
5117 if (!try_get_task_stack(p
))
5120 state
= __ffs(state
) + 1;
5121 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
5122 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5123 if (state
== TASK_RUNNING
)
5124 printk(KERN_CONT
" running task ");
5125 #ifdef CONFIG_DEBUG_STACK_USAGE
5126 free
= stack_not_used(p
);
5131 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
5133 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5134 task_pid_nr(p
), ppid
,
5135 (unsigned long)task_thread_info(p
)->flags
);
5137 print_worker_info(KERN_INFO
, p
);
5138 show_stack(p
, NULL
);
5142 void show_state_filter(unsigned long state_filter
)
5144 struct task_struct
*g
, *p
;
5146 #if BITS_PER_LONG == 32
5148 " task PC stack pid father\n");
5151 " task PC stack pid father\n");
5154 for_each_process_thread(g
, p
) {
5156 * reset the NMI-timeout, listing all files on a slow
5157 * console might take a lot of time:
5158 * Also, reset softlockup watchdogs on all CPUs, because
5159 * another CPU might be blocked waiting for us to process
5162 touch_nmi_watchdog();
5163 touch_all_softlockup_watchdogs();
5164 if (!state_filter
|| (p
->state
& state_filter
))
5168 #ifdef CONFIG_SCHED_DEBUG
5170 sysrq_sched_debug_show();
5174 * Only show locks if all tasks are dumped:
5177 debug_show_all_locks();
5180 void init_idle_bootup_task(struct task_struct
*idle
)
5182 idle
->sched_class
= &idle_sched_class
;
5186 * init_idle - set up an idle thread for a given CPU
5187 * @idle: task in question
5188 * @cpu: CPU the idle task belongs to
5190 * NOTE: this function does not set the idle thread's NEED_RESCHED
5191 * flag, to make booting more robust.
5193 void init_idle(struct task_struct
*idle
, int cpu
)
5195 struct rq
*rq
= cpu_rq(cpu
);
5196 unsigned long flags
;
5198 raw_spin_lock_irqsave(&idle
->pi_lock
, flags
);
5199 raw_spin_lock(&rq
->lock
);
5201 __sched_fork(0, idle
);
5202 idle
->state
= TASK_RUNNING
;
5203 idle
->se
.exec_start
= sched_clock();
5204 idle
->flags
|= PF_IDLE
;
5206 kasan_unpoison_task_stack(idle
);
5210 * Its possible that init_idle() gets called multiple times on a task,
5211 * in that case do_set_cpus_allowed() will not do the right thing.
5213 * And since this is boot we can forgo the serialization.
5215 set_cpus_allowed_common(idle
, cpumask_of(cpu
));
5218 * We're having a chicken and egg problem, even though we are
5219 * holding rq->lock, the CPU isn't yet set to this CPU so the
5220 * lockdep check in task_group() will fail.
5222 * Similar case to sched_fork(). / Alternatively we could
5223 * use task_rq_lock() here and obtain the other rq->lock.
5228 __set_task_cpu(idle
, cpu
);
5231 rq
->curr
= rq
->idle
= idle
;
5232 idle
->on_rq
= TASK_ON_RQ_QUEUED
;
5236 raw_spin_unlock(&rq
->lock
);
5237 raw_spin_unlock_irqrestore(&idle
->pi_lock
, flags
);
5239 /* Set the preempt count _outside_ the spinlocks! */
5240 init_idle_preempt_count(idle
, cpu
);
5243 * The idle tasks have their own, simple scheduling class:
5245 idle
->sched_class
= &idle_sched_class
;
5246 ftrace_graph_init_idle_task(idle
, cpu
);
5247 vtime_init_idle(idle
, cpu
);
5249 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
5255 int cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
5256 const struct cpumask
*trial
)
5260 if (!cpumask_weight(cur
))
5263 ret
= dl_cpuset_cpumask_can_shrink(cur
, trial
);
5268 int task_can_attach(struct task_struct
*p
,
5269 const struct cpumask
*cs_cpus_allowed
)
5274 * Kthreads which disallow setaffinity shouldn't be moved
5275 * to a new cpuset; we don't want to change their CPU
5276 * affinity and isolating such threads by their set of
5277 * allowed nodes is unnecessary. Thus, cpusets are not
5278 * applicable for such threads. This prevents checking for
5279 * success of set_cpus_allowed_ptr() on all attached tasks
5280 * before cpus_allowed may be changed.
5282 if (p
->flags
& PF_NO_SETAFFINITY
) {
5287 if (dl_task(p
) && !cpumask_intersects(task_rq(p
)->rd
->span
,
5289 ret
= dl_task_can_attach(p
, cs_cpus_allowed
);
5295 bool sched_smp_initialized __read_mostly
;
5297 #ifdef CONFIG_NUMA_BALANCING
5298 /* Migrate current task p to target_cpu */
5299 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
5301 struct migration_arg arg
= { p
, target_cpu
};
5302 int curr_cpu
= task_cpu(p
);
5304 if (curr_cpu
== target_cpu
)
5307 if (!cpumask_test_cpu(target_cpu
, &p
->cpus_allowed
))
5310 /* TODO: This is not properly updating schedstats */
5312 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
5313 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
5317 * Requeue a task on a given node and accurately track the number of NUMA
5318 * tasks on the runqueues
5320 void sched_setnuma(struct task_struct
*p
, int nid
)
5322 bool queued
, running
;
5326 rq
= task_rq_lock(p
, &rf
);
5327 queued
= task_on_rq_queued(p
);
5328 running
= task_current(rq
, p
);
5331 dequeue_task(rq
, p
, DEQUEUE_SAVE
);
5333 put_prev_task(rq
, p
);
5335 p
->numa_preferred_nid
= nid
;
5338 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
5340 set_curr_task(rq
, p
);
5341 task_rq_unlock(rq
, p
, &rf
);
5343 #endif /* CONFIG_NUMA_BALANCING */
5345 #ifdef CONFIG_HOTPLUG_CPU
5347 * Ensure that the idle task is using init_mm right before its CPU goes
5350 void idle_task_exit(void)
5352 struct mm_struct
*mm
= current
->active_mm
;
5354 BUG_ON(cpu_online(smp_processor_id()));
5356 if (mm
!= &init_mm
) {
5357 switch_mm(mm
, &init_mm
, current
);
5358 finish_arch_post_lock_switch();
5364 * Since this CPU is going 'away' for a while, fold any nr_active delta
5365 * we might have. Assumes we're called after migrate_tasks() so that the
5366 * nr_active count is stable. We need to take the teardown thread which
5367 * is calling this into account, so we hand in adjust = 1 to the load
5370 * Also see the comment "Global load-average calculations".
5372 static void calc_load_migrate(struct rq
*rq
)
5374 long delta
= calc_load_fold_active(rq
, 1);
5376 atomic_long_add(delta
, &calc_load_tasks
);
5379 static void put_prev_task_fake(struct rq
*rq
, struct task_struct
*prev
)
5383 static const struct sched_class fake_sched_class
= {
5384 .put_prev_task
= put_prev_task_fake
,
5387 static struct task_struct fake_task
= {
5389 * Avoid pull_{rt,dl}_task()
5391 .prio
= MAX_PRIO
+ 1,
5392 .sched_class
= &fake_sched_class
,
5396 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5397 * try_to_wake_up()->select_task_rq().
5399 * Called with rq->lock held even though we'er in stop_machine() and
5400 * there's no concurrency possible, we hold the required locks anyway
5401 * because of lock validation efforts.
5403 static void migrate_tasks(struct rq
*dead_rq
, struct rq_flags
*rf
)
5405 struct rq
*rq
= dead_rq
;
5406 struct task_struct
*next
, *stop
= rq
->stop
;
5407 struct rq_flags orf
= *rf
;
5411 * Fudge the rq selection such that the below task selection loop
5412 * doesn't get stuck on the currently eligible stop task.
5414 * We're currently inside stop_machine() and the rq is either stuck
5415 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5416 * either way we should never end up calling schedule() until we're
5422 * put_prev_task() and pick_next_task() sched
5423 * class method both need to have an up-to-date
5424 * value of rq->clock[_task]
5426 update_rq_clock(rq
);
5430 * There's this thread running, bail when that's the only
5433 if (rq
->nr_running
== 1)
5437 * pick_next_task() assumes pinned rq->lock:
5439 next
= pick_next_task(rq
, &fake_task
, rf
);
5441 next
->sched_class
->put_prev_task(rq
, next
);
5444 * Rules for changing task_struct::cpus_allowed are holding
5445 * both pi_lock and rq->lock, such that holding either
5446 * stabilizes the mask.
5448 * Drop rq->lock is not quite as disastrous as it usually is
5449 * because !cpu_active at this point, which means load-balance
5450 * will not interfere. Also, stop-machine.
5453 raw_spin_lock(&next
->pi_lock
);
5457 * Since we're inside stop-machine, _nothing_ should have
5458 * changed the task, WARN if weird stuff happened, because in
5459 * that case the above rq->lock drop is a fail too.
5461 if (WARN_ON(task_rq(next
) != rq
|| !task_on_rq_queued(next
))) {
5462 raw_spin_unlock(&next
->pi_lock
);
5466 /* Find suitable destination for @next, with force if needed. */
5467 dest_cpu
= select_fallback_rq(dead_rq
->cpu
, next
);
5468 rq
= __migrate_task(rq
, rf
, next
, dest_cpu
);
5469 if (rq
!= dead_rq
) {
5475 raw_spin_unlock(&next
->pi_lock
);
5480 #endif /* CONFIG_HOTPLUG_CPU */
5482 void set_rq_online(struct rq
*rq
)
5485 const struct sched_class
*class;
5487 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5490 for_each_class(class) {
5491 if (class->rq_online
)
5492 class->rq_online(rq
);
5497 void set_rq_offline(struct rq
*rq
)
5500 const struct sched_class
*class;
5502 for_each_class(class) {
5503 if (class->rq_offline
)
5504 class->rq_offline(rq
);
5507 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5512 static void set_cpu_rq_start_time(unsigned int cpu
)
5514 struct rq
*rq
= cpu_rq(cpu
);
5516 rq
->age_stamp
= sched_clock_cpu(cpu
);
5520 * used to mark begin/end of suspend/resume:
5522 static int num_cpus_frozen
;
5525 * Update cpusets according to cpu_active mask. If cpusets are
5526 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5527 * around partition_sched_domains().
5529 * If we come here as part of a suspend/resume, don't touch cpusets because we
5530 * want to restore it back to its original state upon resume anyway.
5532 static void cpuset_cpu_active(void)
5534 if (cpuhp_tasks_frozen
) {
5536 * num_cpus_frozen tracks how many CPUs are involved in suspend
5537 * resume sequence. As long as this is not the last online
5538 * operation in the resume sequence, just build a single sched
5539 * domain, ignoring cpusets.
5542 if (likely(num_cpus_frozen
)) {
5543 partition_sched_domains(1, NULL
, NULL
);
5547 * This is the last CPU online operation. So fall through and
5548 * restore the original sched domains by considering the
5549 * cpuset configurations.
5552 cpuset_update_active_cpus();
5555 static int cpuset_cpu_inactive(unsigned int cpu
)
5557 if (!cpuhp_tasks_frozen
) {
5558 if (dl_cpu_busy(cpu
))
5560 cpuset_update_active_cpus();
5563 partition_sched_domains(1, NULL
, NULL
);
5568 int sched_cpu_activate(unsigned int cpu
)
5570 struct rq
*rq
= cpu_rq(cpu
);
5573 set_cpu_active(cpu
, true);
5575 if (sched_smp_initialized
) {
5576 sched_domains_numa_masks_set(cpu
);
5577 cpuset_cpu_active();
5581 * Put the rq online, if not already. This happens:
5583 * 1) In the early boot process, because we build the real domains
5584 * after all CPUs have been brought up.
5586 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5589 rq_lock_irqsave(rq
, &rf
);
5591 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5594 rq_unlock_irqrestore(rq
, &rf
);
5596 update_max_interval();
5601 int sched_cpu_deactivate(unsigned int cpu
)
5605 set_cpu_active(cpu
, false);
5607 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5608 * users of this state to go away such that all new such users will
5611 * Do sync before park smpboot threads to take care the rcu boost case.
5613 synchronize_rcu_mult(call_rcu
, call_rcu_sched
);
5615 if (!sched_smp_initialized
)
5618 ret
= cpuset_cpu_inactive(cpu
);
5620 set_cpu_active(cpu
, true);
5623 sched_domains_numa_masks_clear(cpu
);
5627 static void sched_rq_cpu_starting(unsigned int cpu
)
5629 struct rq
*rq
= cpu_rq(cpu
);
5631 rq
->calc_load_update
= calc_load_update
;
5632 update_max_interval();
5635 int sched_cpu_starting(unsigned int cpu
)
5637 set_cpu_rq_start_time(cpu
);
5638 sched_rq_cpu_starting(cpu
);
5642 #ifdef CONFIG_HOTPLUG_CPU
5643 int sched_cpu_dying(unsigned int cpu
)
5645 struct rq
*rq
= cpu_rq(cpu
);
5648 /* Handle pending wakeups and then migrate everything off */
5649 sched_ttwu_pending();
5651 rq_lock_irqsave(rq
, &rf
);
5653 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5656 migrate_tasks(rq
, &rf
);
5657 BUG_ON(rq
->nr_running
!= 1);
5658 rq_unlock_irqrestore(rq
, &rf
);
5660 calc_load_migrate(rq
);
5661 update_max_interval();
5662 nohz_balance_exit_idle(cpu
);
5668 #ifdef CONFIG_SCHED_SMT
5669 DEFINE_STATIC_KEY_FALSE(sched_smt_present
);
5671 static void sched_init_smt(void)
5674 * We've enumerated all CPUs and will assume that if any CPU
5675 * has SMT siblings, CPU0 will too.
5677 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5678 static_branch_enable(&sched_smt_present
);
5681 static inline void sched_init_smt(void) { }
5684 void __init
sched_init_smp(void)
5686 cpumask_var_t non_isolated_cpus
;
5688 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
5693 * There's no userspace yet to cause hotplug operations; hence all the
5694 * CPU masks are stable and all blatant races in the below code cannot
5697 mutex_lock(&sched_domains_mutex
);
5698 sched_init_domains(cpu_active_mask
);
5699 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
5700 if (cpumask_empty(non_isolated_cpus
))
5701 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
5702 mutex_unlock(&sched_domains_mutex
);
5704 /* Move init over to a non-isolated CPU */
5705 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
5707 sched_init_granularity();
5708 free_cpumask_var(non_isolated_cpus
);
5710 init_sched_rt_class();
5711 init_sched_dl_class();
5715 sched_smp_initialized
= true;
5718 static int __init
migration_init(void)
5720 sched_rq_cpu_starting(smp_processor_id());
5723 early_initcall(migration_init
);
5726 void __init
sched_init_smp(void)
5728 sched_init_granularity();
5730 #endif /* CONFIG_SMP */
5732 int in_sched_functions(unsigned long addr
)
5734 return in_lock_functions(addr
) ||
5735 (addr
>= (unsigned long)__sched_text_start
5736 && addr
< (unsigned long)__sched_text_end
);
5739 #ifdef CONFIG_CGROUP_SCHED
5741 * Default task group.
5742 * Every task in system belongs to this group at bootup.
5744 struct task_group root_task_group
;
5745 LIST_HEAD(task_groups
);
5747 /* Cacheline aligned slab cache for task_group */
5748 static struct kmem_cache
*task_group_cache __read_mostly
;
5751 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5752 DECLARE_PER_CPU(cpumask_var_t
, select_idle_mask
);
5754 void __init
sched_init(void)
5757 unsigned long alloc_size
= 0, ptr
;
5762 #ifdef CONFIG_FAIR_GROUP_SCHED
5763 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
5765 #ifdef CONFIG_RT_GROUP_SCHED
5766 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
5769 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
5771 #ifdef CONFIG_FAIR_GROUP_SCHED
5772 root_task_group
.se
= (struct sched_entity
**)ptr
;
5773 ptr
+= nr_cpu_ids
* sizeof(void **);
5775 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
5776 ptr
+= nr_cpu_ids
* sizeof(void **);
5778 #endif /* CONFIG_FAIR_GROUP_SCHED */
5779 #ifdef CONFIG_RT_GROUP_SCHED
5780 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
5781 ptr
+= nr_cpu_ids
* sizeof(void **);
5783 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
5784 ptr
+= nr_cpu_ids
* sizeof(void **);
5786 #endif /* CONFIG_RT_GROUP_SCHED */
5788 #ifdef CONFIG_CPUMASK_OFFSTACK
5789 for_each_possible_cpu(i
) {
5790 per_cpu(load_balance_mask
, i
) = (cpumask_var_t
)kzalloc_node(
5791 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
5792 per_cpu(select_idle_mask
, i
) = (cpumask_var_t
)kzalloc_node(
5793 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
5795 #endif /* CONFIG_CPUMASK_OFFSTACK */
5797 init_rt_bandwidth(&def_rt_bandwidth
, global_rt_period(), global_rt_runtime());
5798 init_dl_bandwidth(&def_dl_bandwidth
, global_rt_period(), global_rt_runtime());
5801 init_defrootdomain();
5804 #ifdef CONFIG_RT_GROUP_SCHED
5805 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
5806 global_rt_period(), global_rt_runtime());
5807 #endif /* CONFIG_RT_GROUP_SCHED */
5809 #ifdef CONFIG_CGROUP_SCHED
5810 task_group_cache
= KMEM_CACHE(task_group
, 0);
5812 list_add(&root_task_group
.list
, &task_groups
);
5813 INIT_LIST_HEAD(&root_task_group
.children
);
5814 INIT_LIST_HEAD(&root_task_group
.siblings
);
5815 autogroup_init(&init_task
);
5816 #endif /* CONFIG_CGROUP_SCHED */
5818 for_each_possible_cpu(i
) {
5822 raw_spin_lock_init(&rq
->lock
);
5824 rq
->calc_load_active
= 0;
5825 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
5826 init_cfs_rq(&rq
->cfs
);
5827 init_rt_rq(&rq
->rt
);
5828 init_dl_rq(&rq
->dl
);
5829 #ifdef CONFIG_FAIR_GROUP_SCHED
5830 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
5831 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
5832 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
5834 * How much CPU bandwidth does root_task_group get?
5836 * In case of task-groups formed thr' the cgroup filesystem, it
5837 * gets 100% of the CPU resources in the system. This overall
5838 * system CPU resource is divided among the tasks of
5839 * root_task_group and its child task-groups in a fair manner,
5840 * based on each entity's (task or task-group's) weight
5841 * (se->load.weight).
5843 * In other words, if root_task_group has 10 tasks of weight
5844 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5845 * then A0's share of the CPU resource is:
5847 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5849 * We achieve this by letting root_task_group's tasks sit
5850 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5852 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
5853 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
5854 #endif /* CONFIG_FAIR_GROUP_SCHED */
5856 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
5857 #ifdef CONFIG_RT_GROUP_SCHED
5858 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
5861 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
5862 rq
->cpu_load
[j
] = 0;
5867 rq
->cpu_capacity
= rq
->cpu_capacity_orig
= SCHED_CAPACITY_SCALE
;
5868 rq
->balance_callback
= NULL
;
5869 rq
->active_balance
= 0;
5870 rq
->next_balance
= jiffies
;
5875 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
5876 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
5878 INIT_LIST_HEAD(&rq
->cfs_tasks
);
5880 rq_attach_root(rq
, &def_root_domain
);
5881 #ifdef CONFIG_NO_HZ_COMMON
5882 rq
->last_load_update_tick
= jiffies
;
5885 #ifdef CONFIG_NO_HZ_FULL
5886 rq
->last_sched_tick
= 0;
5888 #endif /* CONFIG_SMP */
5890 atomic_set(&rq
->nr_iowait
, 0);
5893 set_load_weight(&init_task
);
5896 * The boot idle thread does lazy MMU switching as well:
5899 enter_lazy_tlb(&init_mm
, current
);
5902 * Make us the idle thread. Technically, schedule() should not be
5903 * called from this thread, however somewhere below it might be,
5904 * but because we are the idle thread, we just pick up running again
5905 * when this runqueue becomes "idle".
5907 init_idle(current
, smp_processor_id());
5909 calc_load_update
= jiffies
+ LOAD_FREQ
;
5912 /* May be allocated at isolcpus cmdline parse time */
5913 if (cpu_isolated_map
== NULL
)
5914 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
5915 idle_thread_set_boot_cpu();
5916 set_cpu_rq_start_time(smp_processor_id());
5918 init_sched_fair_class();
5922 scheduler_running
= 1;
5925 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5926 static inline int preempt_count_equals(int preempt_offset
)
5928 int nested
= preempt_count() + rcu_preempt_depth();
5930 return (nested
== preempt_offset
);
5933 void __might_sleep(const char *file
, int line
, int preempt_offset
)
5936 * Blocking primitives will set (and therefore destroy) current->state,
5937 * since we will exit with TASK_RUNNING make sure we enter with it,
5938 * otherwise we will destroy state.
5940 WARN_ONCE(current
->state
!= TASK_RUNNING
&& current
->task_state_change
,
5941 "do not call blocking ops when !TASK_RUNNING; "
5942 "state=%lx set at [<%p>] %pS\n",
5944 (void *)current
->task_state_change
,
5945 (void *)current
->task_state_change
);
5947 ___might_sleep(file
, line
, preempt_offset
);
5949 EXPORT_SYMBOL(__might_sleep
);
5951 void ___might_sleep(const char *file
, int line
, int preempt_offset
)
5953 /* Ratelimiting timestamp: */
5954 static unsigned long prev_jiffy
;
5956 unsigned long preempt_disable_ip
;
5958 /* WARN_ON_ONCE() by default, no rate limit required: */
5961 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled() &&
5962 !is_idle_task(current
)) ||
5963 system_state
== SYSTEM_BOOTING
|| system_state
> SYSTEM_RUNNING
||
5967 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
5969 prev_jiffy
= jiffies
;
5971 /* Save this before calling printk(), since that will clobber it: */
5972 preempt_disable_ip
= get_preempt_disable_ip(current
);
5975 "BUG: sleeping function called from invalid context at %s:%d\n",
5978 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
5979 in_atomic(), irqs_disabled(),
5980 current
->pid
, current
->comm
);
5982 if (task_stack_end_corrupted(current
))
5983 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
5985 debug_show_held_locks(current
);
5986 if (irqs_disabled())
5987 print_irqtrace_events(current
);
5988 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT
)
5989 && !preempt_count_equals(preempt_offset
)) {
5990 pr_err("Preemption disabled at:");
5991 print_ip_sym(preempt_disable_ip
);
5995 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
5997 EXPORT_SYMBOL(___might_sleep
);
6000 #ifdef CONFIG_MAGIC_SYSRQ
6001 void normalize_rt_tasks(void)
6003 struct task_struct
*g
, *p
;
6004 struct sched_attr attr
= {
6005 .sched_policy
= SCHED_NORMAL
,
6008 read_lock(&tasklist_lock
);
6009 for_each_process_thread(g
, p
) {
6011 * Only normalize user tasks:
6013 if (p
->flags
& PF_KTHREAD
)
6016 p
->se
.exec_start
= 0;
6017 schedstat_set(p
->se
.statistics
.wait_start
, 0);
6018 schedstat_set(p
->se
.statistics
.sleep_start
, 0);
6019 schedstat_set(p
->se
.statistics
.block_start
, 0);
6021 if (!dl_task(p
) && !rt_task(p
)) {
6023 * Renice negative nice level userspace
6026 if (task_nice(p
) < 0)
6027 set_user_nice(p
, 0);
6031 __sched_setscheduler(p
, &attr
, false, false);
6033 read_unlock(&tasklist_lock
);
6036 #endif /* CONFIG_MAGIC_SYSRQ */
6038 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6040 * These functions are only useful for the IA64 MCA handling, or kdb.
6042 * They can only be called when the whole system has been
6043 * stopped - every CPU needs to be quiescent, and no scheduling
6044 * activity can take place. Using them for anything else would
6045 * be a serious bug, and as a result, they aren't even visible
6046 * under any other configuration.
6050 * curr_task - return the current task for a given CPU.
6051 * @cpu: the processor in question.
6053 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6055 * Return: The current task for @cpu.
6057 struct task_struct
*curr_task(int cpu
)
6059 return cpu_curr(cpu
);
6062 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6066 * set_curr_task - set the current task for a given CPU.
6067 * @cpu: the processor in question.
6068 * @p: the task pointer to set.
6070 * Description: This function must only be used when non-maskable interrupts
6071 * are serviced on a separate stack. It allows the architecture to switch the
6072 * notion of the current task on a CPU in a non-blocking manner. This function
6073 * must be called with all CPU's synchronized, and interrupts disabled, the
6074 * and caller must save the original value of the current task (see
6075 * curr_task() above) and restore that value before reenabling interrupts and
6076 * re-starting the system.
6078 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6080 void ia64_set_curr_task(int cpu
, struct task_struct
*p
)
6087 #ifdef CONFIG_CGROUP_SCHED
6088 /* task_group_lock serializes the addition/removal of task groups */
6089 static DEFINE_SPINLOCK(task_group_lock
);
6091 static void sched_free_group(struct task_group
*tg
)
6093 free_fair_sched_group(tg
);
6094 free_rt_sched_group(tg
);
6096 kmem_cache_free(task_group_cache
, tg
);
6099 /* allocate runqueue etc for a new task group */
6100 struct task_group
*sched_create_group(struct task_group
*parent
)
6102 struct task_group
*tg
;
6104 tg
= kmem_cache_alloc(task_group_cache
, GFP_KERNEL
| __GFP_ZERO
);
6106 return ERR_PTR(-ENOMEM
);
6108 if (!alloc_fair_sched_group(tg
, parent
))
6111 if (!alloc_rt_sched_group(tg
, parent
))
6117 sched_free_group(tg
);
6118 return ERR_PTR(-ENOMEM
);
6121 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
6123 unsigned long flags
;
6125 spin_lock_irqsave(&task_group_lock
, flags
);
6126 list_add_rcu(&tg
->list
, &task_groups
);
6128 /* Root should already exist: */
6131 tg
->parent
= parent
;
6132 INIT_LIST_HEAD(&tg
->children
);
6133 list_add_rcu(&tg
->siblings
, &parent
->children
);
6134 spin_unlock_irqrestore(&task_group_lock
, flags
);
6136 online_fair_sched_group(tg
);
6139 /* rcu callback to free various structures associated with a task group */
6140 static void sched_free_group_rcu(struct rcu_head
*rhp
)
6142 /* Now it should be safe to free those cfs_rqs: */
6143 sched_free_group(container_of(rhp
, struct task_group
, rcu
));
6146 void sched_destroy_group(struct task_group
*tg
)
6148 /* Wait for possible concurrent references to cfs_rqs complete: */
6149 call_rcu(&tg
->rcu
, sched_free_group_rcu
);
6152 void sched_offline_group(struct task_group
*tg
)
6154 unsigned long flags
;
6156 /* End participation in shares distribution: */
6157 unregister_fair_sched_group(tg
);
6159 spin_lock_irqsave(&task_group_lock
, flags
);
6160 list_del_rcu(&tg
->list
);
6161 list_del_rcu(&tg
->siblings
);
6162 spin_unlock_irqrestore(&task_group_lock
, flags
);
6165 static void sched_change_group(struct task_struct
*tsk
, int type
)
6167 struct task_group
*tg
;
6170 * All callers are synchronized by task_rq_lock(); we do not use RCU
6171 * which is pointless here. Thus, we pass "true" to task_css_check()
6172 * to prevent lockdep warnings.
6174 tg
= container_of(task_css_check(tsk
, cpu_cgrp_id
, true),
6175 struct task_group
, css
);
6176 tg
= autogroup_task_group(tsk
, tg
);
6177 tsk
->sched_task_group
= tg
;
6179 #ifdef CONFIG_FAIR_GROUP_SCHED
6180 if (tsk
->sched_class
->task_change_group
)
6181 tsk
->sched_class
->task_change_group(tsk
, type
);
6184 set_task_rq(tsk
, task_cpu(tsk
));
6188 * Change task's runqueue when it moves between groups.
6190 * The caller of this function should have put the task in its new group by
6191 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6194 void sched_move_task(struct task_struct
*tsk
)
6196 int queued
, running
, queue_flags
=
6197 DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
6201 rq
= task_rq_lock(tsk
, &rf
);
6202 update_rq_clock(rq
);
6204 running
= task_current(rq
, tsk
);
6205 queued
= task_on_rq_queued(tsk
);
6208 dequeue_task(rq
, tsk
, queue_flags
);
6210 put_prev_task(rq
, tsk
);
6212 sched_change_group(tsk
, TASK_MOVE_GROUP
);
6215 enqueue_task(rq
, tsk
, queue_flags
);
6217 set_curr_task(rq
, tsk
);
6219 task_rq_unlock(rq
, tsk
, &rf
);
6222 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
6224 return css
? container_of(css
, struct task_group
, css
) : NULL
;
6227 static struct cgroup_subsys_state
*
6228 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
6230 struct task_group
*parent
= css_tg(parent_css
);
6231 struct task_group
*tg
;
6234 /* This is early initialization for the top cgroup */
6235 return &root_task_group
.css
;
6238 tg
= sched_create_group(parent
);
6240 return ERR_PTR(-ENOMEM
);
6245 /* Expose task group only after completing cgroup initialization */
6246 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
6248 struct task_group
*tg
= css_tg(css
);
6249 struct task_group
*parent
= css_tg(css
->parent
);
6252 sched_online_group(tg
, parent
);
6256 static void cpu_cgroup_css_released(struct cgroup_subsys_state
*css
)
6258 struct task_group
*tg
= css_tg(css
);
6260 sched_offline_group(tg
);
6263 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
6265 struct task_group
*tg
= css_tg(css
);
6268 * Relies on the RCU grace period between css_released() and this.
6270 sched_free_group(tg
);
6274 * This is called before wake_up_new_task(), therefore we really only
6275 * have to set its group bits, all the other stuff does not apply.
6277 static void cpu_cgroup_fork(struct task_struct
*task
)
6282 rq
= task_rq_lock(task
, &rf
);
6284 update_rq_clock(rq
);
6285 sched_change_group(task
, TASK_SET_GROUP
);
6287 task_rq_unlock(rq
, task
, &rf
);
6290 static int cpu_cgroup_can_attach(struct cgroup_taskset
*tset
)
6292 struct task_struct
*task
;
6293 struct cgroup_subsys_state
*css
;
6296 cgroup_taskset_for_each(task
, css
, tset
) {
6297 #ifdef CONFIG_RT_GROUP_SCHED
6298 if (!sched_rt_can_attach(css_tg(css
), task
))
6301 /* We don't support RT-tasks being in separate groups */
6302 if (task
->sched_class
!= &fair_sched_class
)
6306 * Serialize against wake_up_new_task() such that if its
6307 * running, we're sure to observe its full state.
6309 raw_spin_lock_irq(&task
->pi_lock
);
6311 * Avoid calling sched_move_task() before wake_up_new_task()
6312 * has happened. This would lead to problems with PELT, due to
6313 * move wanting to detach+attach while we're not attached yet.
6315 if (task
->state
== TASK_NEW
)
6317 raw_spin_unlock_irq(&task
->pi_lock
);
6325 static void cpu_cgroup_attach(struct cgroup_taskset
*tset
)
6327 struct task_struct
*task
;
6328 struct cgroup_subsys_state
*css
;
6330 cgroup_taskset_for_each(task
, css
, tset
)
6331 sched_move_task(task
);
6334 #ifdef CONFIG_FAIR_GROUP_SCHED
6335 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
6336 struct cftype
*cftype
, u64 shareval
)
6338 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
6341 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
6344 struct task_group
*tg
= css_tg(css
);
6346 return (u64
) scale_load_down(tg
->shares
);
6349 #ifdef CONFIG_CFS_BANDWIDTH
6350 static DEFINE_MUTEX(cfs_constraints_mutex
);
6352 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
6353 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
6355 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
6357 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
6359 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
6360 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6362 if (tg
== &root_task_group
)
6366 * Ensure we have at some amount of bandwidth every period. This is
6367 * to prevent reaching a state of large arrears when throttled via
6368 * entity_tick() resulting in prolonged exit starvation.
6370 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
6374 * Likewise, bound things on the otherside by preventing insane quota
6375 * periods. This also allows us to normalize in computing quota
6378 if (period
> max_cfs_quota_period
)
6382 * Prevent race between setting of cfs_rq->runtime_enabled and
6383 * unthrottle_offline_cfs_rqs().
6386 mutex_lock(&cfs_constraints_mutex
);
6387 ret
= __cfs_schedulable(tg
, period
, quota
);
6391 runtime_enabled
= quota
!= RUNTIME_INF
;
6392 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
6394 * If we need to toggle cfs_bandwidth_used, off->on must occur
6395 * before making related changes, and on->off must occur afterwards
6397 if (runtime_enabled
&& !runtime_was_enabled
)
6398 cfs_bandwidth_usage_inc();
6399 raw_spin_lock_irq(&cfs_b
->lock
);
6400 cfs_b
->period
= ns_to_ktime(period
);
6401 cfs_b
->quota
= quota
;
6403 __refill_cfs_bandwidth_runtime(cfs_b
);
6405 /* Restart the period timer (if active) to handle new period expiry: */
6406 if (runtime_enabled
)
6407 start_cfs_bandwidth(cfs_b
);
6409 raw_spin_unlock_irq(&cfs_b
->lock
);
6411 for_each_online_cpu(i
) {
6412 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
6413 struct rq
*rq
= cfs_rq
->rq
;
6416 rq_lock_irq(rq
, &rf
);
6417 cfs_rq
->runtime_enabled
= runtime_enabled
;
6418 cfs_rq
->runtime_remaining
= 0;
6420 if (cfs_rq
->throttled
)
6421 unthrottle_cfs_rq(cfs_rq
);
6422 rq_unlock_irq(rq
, &rf
);
6424 if (runtime_was_enabled
&& !runtime_enabled
)
6425 cfs_bandwidth_usage_dec();
6427 mutex_unlock(&cfs_constraints_mutex
);
6433 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
6437 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
6438 if (cfs_quota_us
< 0)
6439 quota
= RUNTIME_INF
;
6441 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
6443 return tg_set_cfs_bandwidth(tg
, period
, quota
);
6446 long tg_get_cfs_quota(struct task_group
*tg
)
6450 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
6453 quota_us
= tg
->cfs_bandwidth
.quota
;
6454 do_div(quota_us
, NSEC_PER_USEC
);
6459 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
6463 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
6464 quota
= tg
->cfs_bandwidth
.quota
;
6466 return tg_set_cfs_bandwidth(tg
, period
, quota
);
6469 long tg_get_cfs_period(struct task_group
*tg
)
6473 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
6474 do_div(cfs_period_us
, NSEC_PER_USEC
);
6476 return cfs_period_us
;
6479 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
6482 return tg_get_cfs_quota(css_tg(css
));
6485 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
6486 struct cftype
*cftype
, s64 cfs_quota_us
)
6488 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
6491 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
6494 return tg_get_cfs_period(css_tg(css
));
6497 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
6498 struct cftype
*cftype
, u64 cfs_period_us
)
6500 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
6503 struct cfs_schedulable_data
{
6504 struct task_group
*tg
;
6509 * normalize group quota/period to be quota/max_period
6510 * note: units are usecs
6512 static u64
normalize_cfs_quota(struct task_group
*tg
,
6513 struct cfs_schedulable_data
*d
)
6521 period
= tg_get_cfs_period(tg
);
6522 quota
= tg_get_cfs_quota(tg
);
6525 /* note: these should typically be equivalent */
6526 if (quota
== RUNTIME_INF
|| quota
== -1)
6529 return to_ratio(period
, quota
);
6532 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
6534 struct cfs_schedulable_data
*d
= data
;
6535 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6536 s64 quota
= 0, parent_quota
= -1;
6539 quota
= RUNTIME_INF
;
6541 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
6543 quota
= normalize_cfs_quota(tg
, d
);
6544 parent_quota
= parent_b
->hierarchical_quota
;
6547 * Ensure max(child_quota) <= parent_quota, inherit when no
6550 if (quota
== RUNTIME_INF
)
6551 quota
= parent_quota
;
6552 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
6555 cfs_b
->hierarchical_quota
= quota
;
6560 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
6563 struct cfs_schedulable_data data
= {
6569 if (quota
!= RUNTIME_INF
) {
6570 do_div(data
.period
, NSEC_PER_USEC
);
6571 do_div(data
.quota
, NSEC_PER_USEC
);
6575 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
6581 static int cpu_stats_show(struct seq_file
*sf
, void *v
)
6583 struct task_group
*tg
= css_tg(seq_css(sf
));
6584 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6586 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
6587 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
6588 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
6592 #endif /* CONFIG_CFS_BANDWIDTH */
6593 #endif /* CONFIG_FAIR_GROUP_SCHED */
6595 #ifdef CONFIG_RT_GROUP_SCHED
6596 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
6597 struct cftype
*cft
, s64 val
)
6599 return sched_group_set_rt_runtime(css_tg(css
), val
);
6602 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
6605 return sched_group_rt_runtime(css_tg(css
));
6608 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
6609 struct cftype
*cftype
, u64 rt_period_us
)
6611 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
6614 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
6617 return sched_group_rt_period(css_tg(css
));
6619 #endif /* CONFIG_RT_GROUP_SCHED */
6621 static struct cftype cpu_files
[] = {
6622 #ifdef CONFIG_FAIR_GROUP_SCHED
6625 .read_u64
= cpu_shares_read_u64
,
6626 .write_u64
= cpu_shares_write_u64
,
6629 #ifdef CONFIG_CFS_BANDWIDTH
6631 .name
= "cfs_quota_us",
6632 .read_s64
= cpu_cfs_quota_read_s64
,
6633 .write_s64
= cpu_cfs_quota_write_s64
,
6636 .name
= "cfs_period_us",
6637 .read_u64
= cpu_cfs_period_read_u64
,
6638 .write_u64
= cpu_cfs_period_write_u64
,
6642 .seq_show
= cpu_stats_show
,
6645 #ifdef CONFIG_RT_GROUP_SCHED
6647 .name
= "rt_runtime_us",
6648 .read_s64
= cpu_rt_runtime_read
,
6649 .write_s64
= cpu_rt_runtime_write
,
6652 .name
= "rt_period_us",
6653 .read_u64
= cpu_rt_period_read_uint
,
6654 .write_u64
= cpu_rt_period_write_uint
,
6660 struct cgroup_subsys cpu_cgrp_subsys
= {
6661 .css_alloc
= cpu_cgroup_css_alloc
,
6662 .css_online
= cpu_cgroup_css_online
,
6663 .css_released
= cpu_cgroup_css_released
,
6664 .css_free
= cpu_cgroup_css_free
,
6665 .fork
= cpu_cgroup_fork
,
6666 .can_attach
= cpu_cgroup_can_attach
,
6667 .attach
= cpu_cgroup_attach
,
6668 .legacy_cftypes
= cpu_files
,
6672 #endif /* CONFIG_CGROUP_SCHED */
6674 void dump_cpu_task(int cpu
)
6676 pr_info("Task dump for CPU %d:\n", cpu
);
6677 sched_show_task(cpu_curr(cpu
));
6681 * Nice levels are multiplicative, with a gentle 10% change for every
6682 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6683 * nice 1, it will get ~10% less CPU time than another CPU-bound task
6684 * that remained on nice 0.
6686 * The "10% effect" is relative and cumulative: from _any_ nice level,
6687 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6688 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6689 * If a task goes up by ~10% and another task goes down by ~10% then
6690 * the relative distance between them is ~25%.)
6692 const int sched_prio_to_weight
[40] = {
6693 /* -20 */ 88761, 71755, 56483, 46273, 36291,
6694 /* -15 */ 29154, 23254, 18705, 14949, 11916,
6695 /* -10 */ 9548, 7620, 6100, 4904, 3906,
6696 /* -5 */ 3121, 2501, 1991, 1586, 1277,
6697 /* 0 */ 1024, 820, 655, 526, 423,
6698 /* 5 */ 335, 272, 215, 172, 137,
6699 /* 10 */ 110, 87, 70, 56, 45,
6700 /* 15 */ 36, 29, 23, 18, 15,
6704 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
6706 * In cases where the weight does not change often, we can use the
6707 * precalculated inverse to speed up arithmetics by turning divisions
6708 * into multiplications:
6710 const u32 sched_prio_to_wmult
[40] = {
6711 /* -20 */ 48388, 59856, 76040, 92818, 118348,
6712 /* -15 */ 147320, 184698, 229616, 287308, 360437,
6713 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
6714 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
6715 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
6716 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
6717 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
6718 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,