2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache
*s
)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
127 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
129 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
130 p
+= s
->red_left_pad
;
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s
);
145 * Issues still to be resolved:
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 * - Variable sizing of the per node arrays
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 #define MIN_PARTIAL 5
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
169 #define MAX_PARTIAL 10
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
198 * Tracking user of a slab.
200 #define TRACK_ADDRS_COUNT 16
202 unsigned long addr
; /* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
206 int cpu
; /* Was running on cpu */
207 int pid
; /* Pid context */
208 unsigned long when
; /* When did the operation occur */
211 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
214 static int sysfs_slab_add(struct kmem_cache
*);
215 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
217 static void sysfs_slab_remove(struct kmem_cache
*s
);
219 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
220 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
222 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
223 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
226 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
228 #ifdef CONFIG_SLUB_STATS
230 * The rmw is racy on a preemptible kernel but this is acceptable, so
231 * avoid this_cpu_add()'s irq-disable overhead.
233 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
237 /********************************************************************
238 * Core slab cache functions
239 *******************************************************************/
241 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
243 return *(void **)(object
+ s
->offset
);
246 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
248 prefetch(object
+ s
->offset
);
251 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
255 if (!debug_pagealloc_enabled())
256 return get_freepointer(s
, object
);
258 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
262 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
264 *(void **)(object
+ s
->offset
) = fp
;
267 /* Loop over all objects in a slab */
268 #define for_each_object(__p, __s, __addr, __objects) \
269 for (__p = fixup_red_left(__s, __addr); \
270 __p < (__addr) + (__objects) * (__s)->size; \
273 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
274 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
275 __idx <= __objects; \
276 __p += (__s)->size, __idx++)
278 /* Determine object index from a given position */
279 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
281 return (p
- addr
) / s
->size
;
284 static inline int order_objects(int order
, unsigned long size
, int reserved
)
286 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
289 static inline struct kmem_cache_order_objects
oo_make(int order
,
290 unsigned long size
, int reserved
)
292 struct kmem_cache_order_objects x
= {
293 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
299 static inline int oo_order(struct kmem_cache_order_objects x
)
301 return x
.x
>> OO_SHIFT
;
304 static inline int oo_objects(struct kmem_cache_order_objects x
)
306 return x
.x
& OO_MASK
;
310 * Per slab locking using the pagelock
312 static __always_inline
void slab_lock(struct page
*page
)
314 VM_BUG_ON_PAGE(PageTail(page
), page
);
315 bit_spin_lock(PG_locked
, &page
->flags
);
318 static __always_inline
void slab_unlock(struct page
*page
)
320 VM_BUG_ON_PAGE(PageTail(page
), page
);
321 __bit_spin_unlock(PG_locked
, &page
->flags
);
324 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
327 tmp
.counters
= counters_new
;
329 * page->counters can cover frozen/inuse/objects as well
330 * as page->_refcount. If we assign to ->counters directly
331 * we run the risk of losing updates to page->_refcount, so
332 * be careful and only assign to the fields we need.
334 page
->frozen
= tmp
.frozen
;
335 page
->inuse
= tmp
.inuse
;
336 page
->objects
= tmp
.objects
;
339 /* Interrupts must be disabled (for the fallback code to work right) */
340 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
341 void *freelist_old
, unsigned long counters_old
,
342 void *freelist_new
, unsigned long counters_new
,
345 VM_BUG_ON(!irqs_disabled());
346 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
347 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
348 if (s
->flags
& __CMPXCHG_DOUBLE
) {
349 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
350 freelist_old
, counters_old
,
351 freelist_new
, counters_new
))
357 if (page
->freelist
== freelist_old
&&
358 page
->counters
== counters_old
) {
359 page
->freelist
= freelist_new
;
360 set_page_slub_counters(page
, counters_new
);
368 stat(s
, CMPXCHG_DOUBLE_FAIL
);
370 #ifdef SLUB_DEBUG_CMPXCHG
371 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
377 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
378 void *freelist_old
, unsigned long counters_old
,
379 void *freelist_new
, unsigned long counters_new
,
382 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
383 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
384 if (s
->flags
& __CMPXCHG_DOUBLE
) {
385 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
386 freelist_old
, counters_old
,
387 freelist_new
, counters_new
))
394 local_irq_save(flags
);
396 if (page
->freelist
== freelist_old
&&
397 page
->counters
== counters_old
) {
398 page
->freelist
= freelist_new
;
399 set_page_slub_counters(page
, counters_new
);
401 local_irq_restore(flags
);
405 local_irq_restore(flags
);
409 stat(s
, CMPXCHG_DOUBLE_FAIL
);
411 #ifdef SLUB_DEBUG_CMPXCHG
412 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
418 #ifdef CONFIG_SLUB_DEBUG
420 * Determine a map of object in use on a page.
422 * Node listlock must be held to guarantee that the page does
423 * not vanish from under us.
425 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
428 void *addr
= page_address(page
);
430 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
431 set_bit(slab_index(p
, s
, addr
), map
);
434 static inline int size_from_object(struct kmem_cache
*s
)
436 if (s
->flags
& SLAB_RED_ZONE
)
437 return s
->size
- s
->red_left_pad
;
442 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
444 if (s
->flags
& SLAB_RED_ZONE
)
445 p
-= s
->red_left_pad
;
453 #if defined(CONFIG_SLUB_DEBUG_ON)
454 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
456 static int slub_debug
;
459 static char *slub_debug_slabs
;
460 static int disable_higher_order_debug
;
463 * slub is about to manipulate internal object metadata. This memory lies
464 * outside the range of the allocated object, so accessing it would normally
465 * be reported by kasan as a bounds error. metadata_access_enable() is used
466 * to tell kasan that these accesses are OK.
468 static inline void metadata_access_enable(void)
470 kasan_disable_current();
473 static inline void metadata_access_disable(void)
475 kasan_enable_current();
482 /* Verify that a pointer has an address that is valid within a slab page */
483 static inline int check_valid_pointer(struct kmem_cache
*s
,
484 struct page
*page
, void *object
)
491 base
= page_address(page
);
492 object
= restore_red_left(s
, object
);
493 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
494 (object
- base
) % s
->size
) {
501 static void print_section(char *level
, char *text
, u8
*addr
,
504 metadata_access_enable();
505 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
507 metadata_access_disable();
510 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
511 enum track_item alloc
)
516 p
= object
+ s
->offset
+ sizeof(void *);
518 p
= object
+ s
->inuse
;
523 static void set_track(struct kmem_cache
*s
, void *object
,
524 enum track_item alloc
, unsigned long addr
)
526 struct track
*p
= get_track(s
, object
, alloc
);
529 #ifdef CONFIG_STACKTRACE
530 struct stack_trace trace
;
533 trace
.nr_entries
= 0;
534 trace
.max_entries
= TRACK_ADDRS_COUNT
;
535 trace
.entries
= p
->addrs
;
537 metadata_access_enable();
538 save_stack_trace(&trace
);
539 metadata_access_disable();
541 /* See rant in lockdep.c */
542 if (trace
.nr_entries
!= 0 &&
543 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
546 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
550 p
->cpu
= smp_processor_id();
551 p
->pid
= current
->pid
;
554 memset(p
, 0, sizeof(struct track
));
557 static void init_tracking(struct kmem_cache
*s
, void *object
)
559 if (!(s
->flags
& SLAB_STORE_USER
))
562 set_track(s
, object
, TRACK_FREE
, 0UL);
563 set_track(s
, object
, TRACK_ALLOC
, 0UL);
566 static void print_track(const char *s
, struct track
*t
)
571 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
572 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
573 #ifdef CONFIG_STACKTRACE
576 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
578 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
585 static void print_tracking(struct kmem_cache
*s
, void *object
)
587 if (!(s
->flags
& SLAB_STORE_USER
))
590 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
591 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
594 static void print_page_info(struct page
*page
)
596 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
597 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
601 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
603 struct va_format vaf
;
609 pr_err("=============================================================================\n");
610 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
611 pr_err("-----------------------------------------------------------------------------\n\n");
613 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
617 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
619 struct va_format vaf
;
625 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
629 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
631 unsigned int off
; /* Offset of last byte */
632 u8
*addr
= page_address(page
);
634 print_tracking(s
, p
);
636 print_page_info(page
);
638 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
639 p
, p
- addr
, get_freepointer(s
, p
));
641 if (s
->flags
& SLAB_RED_ZONE
)
642 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
644 else if (p
> addr
+ 16)
645 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
647 print_section(KERN_ERR
, "Object ", p
,
648 min_t(unsigned long, s
->object_size
, PAGE_SIZE
));
649 if (s
->flags
& SLAB_RED_ZONE
)
650 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
651 s
->inuse
- s
->object_size
);
654 off
= s
->offset
+ sizeof(void *);
658 if (s
->flags
& SLAB_STORE_USER
)
659 off
+= 2 * sizeof(struct track
);
661 off
+= kasan_metadata_size(s
);
663 if (off
!= size_from_object(s
))
664 /* Beginning of the filler is the free pointer */
665 print_section(KERN_ERR
, "Padding ", p
+ off
,
666 size_from_object(s
) - off
);
671 void object_err(struct kmem_cache
*s
, struct page
*page
,
672 u8
*object
, char *reason
)
674 slab_bug(s
, "%s", reason
);
675 print_trailer(s
, page
, object
);
678 static void slab_err(struct kmem_cache
*s
, struct page
*page
,
679 const char *fmt
, ...)
685 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
687 slab_bug(s
, "%s", buf
);
688 print_page_info(page
);
692 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
696 if (s
->flags
& SLAB_RED_ZONE
)
697 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
699 if (s
->flags
& __OBJECT_POISON
) {
700 memset(p
, POISON_FREE
, s
->object_size
- 1);
701 p
[s
->object_size
- 1] = POISON_END
;
704 if (s
->flags
& SLAB_RED_ZONE
)
705 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
708 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
709 void *from
, void *to
)
711 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
712 memset(from
, data
, to
- from
);
715 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
716 u8
*object
, char *what
,
717 u8
*start
, unsigned int value
, unsigned int bytes
)
722 metadata_access_enable();
723 fault
= memchr_inv(start
, value
, bytes
);
724 metadata_access_disable();
729 while (end
> fault
&& end
[-1] == value
)
732 slab_bug(s
, "%s overwritten", what
);
733 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
734 fault
, end
- 1, fault
[0], value
);
735 print_trailer(s
, page
, object
);
737 restore_bytes(s
, what
, value
, fault
, end
);
745 * Bytes of the object to be managed.
746 * If the freepointer may overlay the object then the free
747 * pointer is the first word of the object.
749 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
752 * object + s->object_size
753 * Padding to reach word boundary. This is also used for Redzoning.
754 * Padding is extended by another word if Redzoning is enabled and
755 * object_size == inuse.
757 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
758 * 0xcc (RED_ACTIVE) for objects in use.
761 * Meta data starts here.
763 * A. Free pointer (if we cannot overwrite object on free)
764 * B. Tracking data for SLAB_STORE_USER
765 * C. Padding to reach required alignment boundary or at mininum
766 * one word if debugging is on to be able to detect writes
767 * before the word boundary.
769 * Padding is done using 0x5a (POISON_INUSE)
772 * Nothing is used beyond s->size.
774 * If slabcaches are merged then the object_size and inuse boundaries are mostly
775 * ignored. And therefore no slab options that rely on these boundaries
776 * may be used with merged slabcaches.
779 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
781 unsigned long off
= s
->inuse
; /* The end of info */
784 /* Freepointer is placed after the object. */
785 off
+= sizeof(void *);
787 if (s
->flags
& SLAB_STORE_USER
)
788 /* We also have user information there */
789 off
+= 2 * sizeof(struct track
);
791 off
+= kasan_metadata_size(s
);
793 if (size_from_object(s
) == off
)
796 return check_bytes_and_report(s
, page
, p
, "Object padding",
797 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
800 /* Check the pad bytes at the end of a slab page */
801 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
809 if (!(s
->flags
& SLAB_POISON
))
812 start
= page_address(page
);
813 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
814 end
= start
+ length
;
815 remainder
= length
% s
->size
;
819 metadata_access_enable();
820 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
821 metadata_access_disable();
824 while (end
> fault
&& end
[-1] == POISON_INUSE
)
827 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
828 print_section(KERN_ERR
, "Padding ", end
- remainder
, remainder
);
830 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
834 static int check_object(struct kmem_cache
*s
, struct page
*page
,
835 void *object
, u8 val
)
838 u8
*endobject
= object
+ s
->object_size
;
840 if (s
->flags
& SLAB_RED_ZONE
) {
841 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
842 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
845 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
846 endobject
, val
, s
->inuse
- s
->object_size
))
849 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
850 check_bytes_and_report(s
, page
, p
, "Alignment padding",
851 endobject
, POISON_INUSE
,
852 s
->inuse
- s
->object_size
);
856 if (s
->flags
& SLAB_POISON
) {
857 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
858 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
859 POISON_FREE
, s
->object_size
- 1) ||
860 !check_bytes_and_report(s
, page
, p
, "Poison",
861 p
+ s
->object_size
- 1, POISON_END
, 1)))
864 * check_pad_bytes cleans up on its own.
866 check_pad_bytes(s
, page
, p
);
869 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
871 * Object and freepointer overlap. Cannot check
872 * freepointer while object is allocated.
876 /* Check free pointer validity */
877 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
878 object_err(s
, page
, p
, "Freepointer corrupt");
880 * No choice but to zap it and thus lose the remainder
881 * of the free objects in this slab. May cause
882 * another error because the object count is now wrong.
884 set_freepointer(s
, p
, NULL
);
890 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
894 VM_BUG_ON(!irqs_disabled());
896 if (!PageSlab(page
)) {
897 slab_err(s
, page
, "Not a valid slab page");
901 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
902 if (page
->objects
> maxobj
) {
903 slab_err(s
, page
, "objects %u > max %u",
904 page
->objects
, maxobj
);
907 if (page
->inuse
> page
->objects
) {
908 slab_err(s
, page
, "inuse %u > max %u",
909 page
->inuse
, page
->objects
);
912 /* Slab_pad_check fixes things up after itself */
913 slab_pad_check(s
, page
);
918 * Determine if a certain object on a page is on the freelist. Must hold the
919 * slab lock to guarantee that the chains are in a consistent state.
921 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
929 while (fp
&& nr
<= page
->objects
) {
932 if (!check_valid_pointer(s
, page
, fp
)) {
934 object_err(s
, page
, object
,
935 "Freechain corrupt");
936 set_freepointer(s
, object
, NULL
);
938 slab_err(s
, page
, "Freepointer corrupt");
939 page
->freelist
= NULL
;
940 page
->inuse
= page
->objects
;
941 slab_fix(s
, "Freelist cleared");
947 fp
= get_freepointer(s
, object
);
951 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
952 if (max_objects
> MAX_OBJS_PER_PAGE
)
953 max_objects
= MAX_OBJS_PER_PAGE
;
955 if (page
->objects
!= max_objects
) {
956 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
957 page
->objects
, max_objects
);
958 page
->objects
= max_objects
;
959 slab_fix(s
, "Number of objects adjusted.");
961 if (page
->inuse
!= page
->objects
- nr
) {
962 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
963 page
->inuse
, page
->objects
- nr
);
964 page
->inuse
= page
->objects
- nr
;
965 slab_fix(s
, "Object count adjusted.");
967 return search
== NULL
;
970 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
973 if (s
->flags
& SLAB_TRACE
) {
974 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
976 alloc
? "alloc" : "free",
981 print_section(KERN_INFO
, "Object ", (void *)object
,
989 * Tracking of fully allocated slabs for debugging purposes.
991 static void add_full(struct kmem_cache
*s
,
992 struct kmem_cache_node
*n
, struct page
*page
)
994 if (!(s
->flags
& SLAB_STORE_USER
))
997 lockdep_assert_held(&n
->list_lock
);
998 list_add(&page
->lru
, &n
->full
);
1001 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1003 if (!(s
->flags
& SLAB_STORE_USER
))
1006 lockdep_assert_held(&n
->list_lock
);
1007 list_del(&page
->lru
);
1010 /* Tracking of the number of slabs for debugging purposes */
1011 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1013 struct kmem_cache_node
*n
= get_node(s
, node
);
1015 return atomic_long_read(&n
->nr_slabs
);
1018 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1020 return atomic_long_read(&n
->nr_slabs
);
1023 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1025 struct kmem_cache_node
*n
= get_node(s
, node
);
1028 * May be called early in order to allocate a slab for the
1029 * kmem_cache_node structure. Solve the chicken-egg
1030 * dilemma by deferring the increment of the count during
1031 * bootstrap (see early_kmem_cache_node_alloc).
1034 atomic_long_inc(&n
->nr_slabs
);
1035 atomic_long_add(objects
, &n
->total_objects
);
1038 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1040 struct kmem_cache_node
*n
= get_node(s
, node
);
1042 atomic_long_dec(&n
->nr_slabs
);
1043 atomic_long_sub(objects
, &n
->total_objects
);
1046 /* Object debug checks for alloc/free paths */
1047 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1050 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1053 init_object(s
, object
, SLUB_RED_INACTIVE
);
1054 init_tracking(s
, object
);
1057 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1059 void *object
, unsigned long addr
)
1061 if (!check_slab(s
, page
))
1064 if (!check_valid_pointer(s
, page
, object
)) {
1065 object_err(s
, page
, object
, "Freelist Pointer check fails");
1069 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1075 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1077 void *object
, unsigned long addr
)
1079 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1080 if (!alloc_consistency_checks(s
, page
, object
, addr
))
1084 /* Success perform special debug activities for allocs */
1085 if (s
->flags
& SLAB_STORE_USER
)
1086 set_track(s
, object
, TRACK_ALLOC
, addr
);
1087 trace(s
, page
, object
, 1);
1088 init_object(s
, object
, SLUB_RED_ACTIVE
);
1092 if (PageSlab(page
)) {
1094 * If this is a slab page then lets do the best we can
1095 * to avoid issues in the future. Marking all objects
1096 * as used avoids touching the remaining objects.
1098 slab_fix(s
, "Marking all objects used");
1099 page
->inuse
= page
->objects
;
1100 page
->freelist
= NULL
;
1105 static inline int free_consistency_checks(struct kmem_cache
*s
,
1106 struct page
*page
, void *object
, unsigned long addr
)
1108 if (!check_valid_pointer(s
, page
, object
)) {
1109 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1113 if (on_freelist(s
, page
, object
)) {
1114 object_err(s
, page
, object
, "Object already free");
1118 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1121 if (unlikely(s
!= page
->slab_cache
)) {
1122 if (!PageSlab(page
)) {
1123 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1125 } else if (!page
->slab_cache
) {
1126 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1130 object_err(s
, page
, object
,
1131 "page slab pointer corrupt.");
1137 /* Supports checking bulk free of a constructed freelist */
1138 static noinline
int free_debug_processing(
1139 struct kmem_cache
*s
, struct page
*page
,
1140 void *head
, void *tail
, int bulk_cnt
,
1143 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1144 void *object
= head
;
1146 unsigned long uninitialized_var(flags
);
1149 spin_lock_irqsave(&n
->list_lock
, flags
);
1152 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1153 if (!check_slab(s
, page
))
1160 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1161 if (!free_consistency_checks(s
, page
, object
, addr
))
1165 if (s
->flags
& SLAB_STORE_USER
)
1166 set_track(s
, object
, TRACK_FREE
, addr
);
1167 trace(s
, page
, object
, 0);
1168 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1169 init_object(s
, object
, SLUB_RED_INACTIVE
);
1171 /* Reached end of constructed freelist yet? */
1172 if (object
!= tail
) {
1173 object
= get_freepointer(s
, object
);
1179 if (cnt
!= bulk_cnt
)
1180 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1184 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1186 slab_fix(s
, "Object at 0x%p not freed", object
);
1190 static int __init
setup_slub_debug(char *str
)
1192 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1193 if (*str
++ != '=' || !*str
)
1195 * No options specified. Switch on full debugging.
1201 * No options but restriction on slabs. This means full
1202 * debugging for slabs matching a pattern.
1209 * Switch off all debugging measures.
1214 * Determine which debug features should be switched on
1216 for (; *str
&& *str
!= ','; str
++) {
1217 switch (tolower(*str
)) {
1219 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1222 slub_debug
|= SLAB_RED_ZONE
;
1225 slub_debug
|= SLAB_POISON
;
1228 slub_debug
|= SLAB_STORE_USER
;
1231 slub_debug
|= SLAB_TRACE
;
1234 slub_debug
|= SLAB_FAILSLAB
;
1238 * Avoid enabling debugging on caches if its minimum
1239 * order would increase as a result.
1241 disable_higher_order_debug
= 1;
1244 pr_err("slub_debug option '%c' unknown. skipped\n",
1251 slub_debug_slabs
= str
+ 1;
1256 __setup("slub_debug", setup_slub_debug
);
1258 unsigned long kmem_cache_flags(unsigned long object_size
,
1259 unsigned long flags
, const char *name
,
1260 void (*ctor
)(void *))
1263 * Enable debugging if selected on the kernel commandline.
1265 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1266 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1267 flags
|= slub_debug
;
1271 #else /* !CONFIG_SLUB_DEBUG */
1272 static inline void setup_object_debug(struct kmem_cache
*s
,
1273 struct page
*page
, void *object
) {}
1275 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1276 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1278 static inline int free_debug_processing(
1279 struct kmem_cache
*s
, struct page
*page
,
1280 void *head
, void *tail
, int bulk_cnt
,
1281 unsigned long addr
) { return 0; }
1283 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1285 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1286 void *object
, u8 val
) { return 1; }
1287 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1288 struct page
*page
) {}
1289 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1290 struct page
*page
) {}
1291 unsigned long kmem_cache_flags(unsigned long object_size
,
1292 unsigned long flags
, const char *name
,
1293 void (*ctor
)(void *))
1297 #define slub_debug 0
1299 #define disable_higher_order_debug 0
1301 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1303 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1305 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1307 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1310 #endif /* CONFIG_SLUB_DEBUG */
1313 * Hooks for other subsystems that check memory allocations. In a typical
1314 * production configuration these hooks all should produce no code at all.
1316 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1318 kmemleak_alloc(ptr
, size
, 1, flags
);
1319 kasan_kmalloc_large(ptr
, size
, flags
);
1322 static inline void kfree_hook(const void *x
)
1325 kasan_kfree_large(x
);
1328 static inline void *slab_free_hook(struct kmem_cache
*s
, void *x
)
1332 kmemleak_free_recursive(x
, s
->flags
);
1335 * Trouble is that we may no longer disable interrupts in the fast path
1336 * So in order to make the debug calls that expect irqs to be
1337 * disabled we need to disable interrupts temporarily.
1339 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1341 unsigned long flags
;
1343 local_irq_save(flags
);
1344 kmemcheck_slab_free(s
, x
, s
->object_size
);
1345 debug_check_no_locks_freed(x
, s
->object_size
);
1346 local_irq_restore(flags
);
1349 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1350 debug_check_no_obj_freed(x
, s
->object_size
);
1352 freeptr
= get_freepointer(s
, x
);
1354 * kasan_slab_free() may put x into memory quarantine, delaying its
1355 * reuse. In this case the object's freelist pointer is changed.
1357 kasan_slab_free(s
, x
);
1361 static inline void slab_free_freelist_hook(struct kmem_cache
*s
,
1362 void *head
, void *tail
)
1365 * Compiler cannot detect this function can be removed if slab_free_hook()
1366 * evaluates to nothing. Thus, catch all relevant config debug options here.
1368 #if defined(CONFIG_KMEMCHECK) || \
1369 defined(CONFIG_LOCKDEP) || \
1370 defined(CONFIG_DEBUG_KMEMLEAK) || \
1371 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1372 defined(CONFIG_KASAN)
1374 void *object
= head
;
1375 void *tail_obj
= tail
? : head
;
1379 freeptr
= slab_free_hook(s
, object
);
1380 } while ((object
!= tail_obj
) && (object
= freeptr
));
1384 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1387 setup_object_debug(s
, page
, object
);
1388 kasan_init_slab_obj(s
, object
);
1389 if (unlikely(s
->ctor
)) {
1390 kasan_unpoison_object_data(s
, object
);
1392 kasan_poison_object_data(s
, object
);
1397 * Slab allocation and freeing
1399 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1400 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1403 int order
= oo_order(oo
);
1405 flags
|= __GFP_NOTRACK
;
1407 if (node
== NUMA_NO_NODE
)
1408 page
= alloc_pages(flags
, order
);
1410 page
= __alloc_pages_node(node
, flags
, order
);
1412 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1413 __free_pages(page
, order
);
1420 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1421 /* Pre-initialize the random sequence cache */
1422 static int init_cache_random_seq(struct kmem_cache
*s
)
1425 unsigned long i
, count
= oo_objects(s
->oo
);
1427 /* Bailout if already initialised */
1431 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1433 pr_err("SLUB: Unable to initialize free list for %s\n",
1438 /* Transform to an offset on the set of pages */
1439 if (s
->random_seq
) {
1440 for (i
= 0; i
< count
; i
++)
1441 s
->random_seq
[i
] *= s
->size
;
1446 /* Initialize each random sequence freelist per cache */
1447 static void __init
init_freelist_randomization(void)
1449 struct kmem_cache
*s
;
1451 mutex_lock(&slab_mutex
);
1453 list_for_each_entry(s
, &slab_caches
, list
)
1454 init_cache_random_seq(s
);
1456 mutex_unlock(&slab_mutex
);
1459 /* Get the next entry on the pre-computed freelist randomized */
1460 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1461 unsigned long *pos
, void *start
,
1462 unsigned long page_limit
,
1463 unsigned long freelist_count
)
1468 * If the target page allocation failed, the number of objects on the
1469 * page might be smaller than the usual size defined by the cache.
1472 idx
= s
->random_seq
[*pos
];
1474 if (*pos
>= freelist_count
)
1476 } while (unlikely(idx
>= page_limit
));
1478 return (char *)start
+ idx
;
1481 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1482 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1487 unsigned long idx
, pos
, page_limit
, freelist_count
;
1489 if (page
->objects
< 2 || !s
->random_seq
)
1492 freelist_count
= oo_objects(s
->oo
);
1493 pos
= get_random_int() % freelist_count
;
1495 page_limit
= page
->objects
* s
->size
;
1496 start
= fixup_red_left(s
, page_address(page
));
1498 /* First entry is used as the base of the freelist */
1499 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1501 page
->freelist
= cur
;
1503 for (idx
= 1; idx
< page
->objects
; idx
++) {
1504 setup_object(s
, page
, cur
);
1505 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1507 set_freepointer(s
, cur
, next
);
1510 setup_object(s
, page
, cur
);
1511 set_freepointer(s
, cur
, NULL
);
1516 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1520 static inline void init_freelist_randomization(void) { }
1521 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1525 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1527 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1530 struct kmem_cache_order_objects oo
= s
->oo
;
1536 flags
&= gfp_allowed_mask
;
1538 if (gfpflags_allow_blocking(flags
))
1541 flags
|= s
->allocflags
;
1544 * Let the initial higher-order allocation fail under memory pressure
1545 * so we fall-back to the minimum order allocation.
1547 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1548 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1549 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1551 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1552 if (unlikely(!page
)) {
1556 * Allocation may have failed due to fragmentation.
1557 * Try a lower order alloc if possible
1559 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1560 if (unlikely(!page
))
1562 stat(s
, ORDER_FALLBACK
);
1565 if (kmemcheck_enabled
&&
1566 !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1567 int pages
= 1 << oo_order(oo
);
1569 kmemcheck_alloc_shadow(page
, oo_order(oo
), alloc_gfp
, node
);
1572 * Objects from caches that have a constructor don't get
1573 * cleared when they're allocated, so we need to do it here.
1576 kmemcheck_mark_uninitialized_pages(page
, pages
);
1578 kmemcheck_mark_unallocated_pages(page
, pages
);
1581 page
->objects
= oo_objects(oo
);
1583 order
= compound_order(page
);
1584 page
->slab_cache
= s
;
1585 __SetPageSlab(page
);
1586 if (page_is_pfmemalloc(page
))
1587 SetPageSlabPfmemalloc(page
);
1589 start
= page_address(page
);
1591 if (unlikely(s
->flags
& SLAB_POISON
))
1592 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1594 kasan_poison_slab(page
);
1596 shuffle
= shuffle_freelist(s
, page
);
1599 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1600 setup_object(s
, page
, p
);
1601 if (likely(idx
< page
->objects
))
1602 set_freepointer(s
, p
, p
+ s
->size
);
1604 set_freepointer(s
, p
, NULL
);
1606 page
->freelist
= fixup_red_left(s
, start
);
1609 page
->inuse
= page
->objects
;
1613 if (gfpflags_allow_blocking(flags
))
1614 local_irq_disable();
1618 mod_lruvec_page_state(page
,
1619 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1620 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1623 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1628 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1630 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1631 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1632 flags
&= ~GFP_SLAB_BUG_MASK
;
1633 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1634 invalid_mask
, &invalid_mask
, flags
, &flags
);
1638 return allocate_slab(s
,
1639 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1642 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1644 int order
= compound_order(page
);
1645 int pages
= 1 << order
;
1647 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1650 slab_pad_check(s
, page
);
1651 for_each_object(p
, s
, page_address(page
),
1653 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1656 kmemcheck_free_shadow(page
, compound_order(page
));
1658 mod_lruvec_page_state(page
,
1659 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1660 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1663 __ClearPageSlabPfmemalloc(page
);
1664 __ClearPageSlab(page
);
1666 page_mapcount_reset(page
);
1667 if (current
->reclaim_state
)
1668 current
->reclaim_state
->reclaimed_slab
+= pages
;
1669 memcg_uncharge_slab(page
, order
, s
);
1670 __free_pages(page
, order
);
1673 #define need_reserve_slab_rcu \
1674 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1676 static void rcu_free_slab(struct rcu_head
*h
)
1680 if (need_reserve_slab_rcu
)
1681 page
= virt_to_head_page(h
);
1683 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1685 __free_slab(page
->slab_cache
, page
);
1688 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1690 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
)) {
1691 struct rcu_head
*head
;
1693 if (need_reserve_slab_rcu
) {
1694 int order
= compound_order(page
);
1695 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1697 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1698 head
= page_address(page
) + offset
;
1700 head
= &page
->rcu_head
;
1703 call_rcu(head
, rcu_free_slab
);
1705 __free_slab(s
, page
);
1708 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1710 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1715 * Management of partially allocated slabs.
1718 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1721 if (tail
== DEACTIVATE_TO_TAIL
)
1722 list_add_tail(&page
->lru
, &n
->partial
);
1724 list_add(&page
->lru
, &n
->partial
);
1727 static inline void add_partial(struct kmem_cache_node
*n
,
1728 struct page
*page
, int tail
)
1730 lockdep_assert_held(&n
->list_lock
);
1731 __add_partial(n
, page
, tail
);
1734 static inline void remove_partial(struct kmem_cache_node
*n
,
1737 lockdep_assert_held(&n
->list_lock
);
1738 list_del(&page
->lru
);
1743 * Remove slab from the partial list, freeze it and
1744 * return the pointer to the freelist.
1746 * Returns a list of objects or NULL if it fails.
1748 static inline void *acquire_slab(struct kmem_cache
*s
,
1749 struct kmem_cache_node
*n
, struct page
*page
,
1750 int mode
, int *objects
)
1753 unsigned long counters
;
1756 lockdep_assert_held(&n
->list_lock
);
1759 * Zap the freelist and set the frozen bit.
1760 * The old freelist is the list of objects for the
1761 * per cpu allocation list.
1763 freelist
= page
->freelist
;
1764 counters
= page
->counters
;
1765 new.counters
= counters
;
1766 *objects
= new.objects
- new.inuse
;
1768 new.inuse
= page
->objects
;
1769 new.freelist
= NULL
;
1771 new.freelist
= freelist
;
1774 VM_BUG_ON(new.frozen
);
1777 if (!__cmpxchg_double_slab(s
, page
,
1779 new.freelist
, new.counters
,
1783 remove_partial(n
, page
);
1788 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1789 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1792 * Try to allocate a partial slab from a specific node.
1794 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1795 struct kmem_cache_cpu
*c
, gfp_t flags
)
1797 struct page
*page
, *page2
;
1798 void *object
= NULL
;
1803 * Racy check. If we mistakenly see no partial slabs then we
1804 * just allocate an empty slab. If we mistakenly try to get a
1805 * partial slab and there is none available then get_partials()
1808 if (!n
|| !n
->nr_partial
)
1811 spin_lock(&n
->list_lock
);
1812 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1815 if (!pfmemalloc_match(page
, flags
))
1818 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1822 available
+= objects
;
1825 stat(s
, ALLOC_FROM_PARTIAL
);
1828 put_cpu_partial(s
, page
, 0);
1829 stat(s
, CPU_PARTIAL_NODE
);
1831 if (!kmem_cache_has_cpu_partial(s
)
1832 || available
> slub_cpu_partial(s
) / 2)
1836 spin_unlock(&n
->list_lock
);
1841 * Get a page from somewhere. Search in increasing NUMA distances.
1843 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1844 struct kmem_cache_cpu
*c
)
1847 struct zonelist
*zonelist
;
1850 enum zone_type high_zoneidx
= gfp_zone(flags
);
1852 unsigned int cpuset_mems_cookie
;
1855 * The defrag ratio allows a configuration of the tradeoffs between
1856 * inter node defragmentation and node local allocations. A lower
1857 * defrag_ratio increases the tendency to do local allocations
1858 * instead of attempting to obtain partial slabs from other nodes.
1860 * If the defrag_ratio is set to 0 then kmalloc() always
1861 * returns node local objects. If the ratio is higher then kmalloc()
1862 * may return off node objects because partial slabs are obtained
1863 * from other nodes and filled up.
1865 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1866 * (which makes defrag_ratio = 1000) then every (well almost)
1867 * allocation will first attempt to defrag slab caches on other nodes.
1868 * This means scanning over all nodes to look for partial slabs which
1869 * may be expensive if we do it every time we are trying to find a slab
1870 * with available objects.
1872 if (!s
->remote_node_defrag_ratio
||
1873 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1877 cpuset_mems_cookie
= read_mems_allowed_begin();
1878 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1879 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1880 struct kmem_cache_node
*n
;
1882 n
= get_node(s
, zone_to_nid(zone
));
1884 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1885 n
->nr_partial
> s
->min_partial
) {
1886 object
= get_partial_node(s
, n
, c
, flags
);
1889 * Don't check read_mems_allowed_retry()
1890 * here - if mems_allowed was updated in
1891 * parallel, that was a harmless race
1892 * between allocation and the cpuset
1899 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1905 * Get a partial page, lock it and return it.
1907 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1908 struct kmem_cache_cpu
*c
)
1911 int searchnode
= node
;
1913 if (node
== NUMA_NO_NODE
)
1914 searchnode
= numa_mem_id();
1915 else if (!node_present_pages(node
))
1916 searchnode
= node_to_mem_node(node
);
1918 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1919 if (object
|| node
!= NUMA_NO_NODE
)
1922 return get_any_partial(s
, flags
, c
);
1925 #ifdef CONFIG_PREEMPT
1927 * Calculate the next globally unique transaction for disambiguiation
1928 * during cmpxchg. The transactions start with the cpu number and are then
1929 * incremented by CONFIG_NR_CPUS.
1931 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1934 * No preemption supported therefore also no need to check for
1940 static inline unsigned long next_tid(unsigned long tid
)
1942 return tid
+ TID_STEP
;
1945 static inline unsigned int tid_to_cpu(unsigned long tid
)
1947 return tid
% TID_STEP
;
1950 static inline unsigned long tid_to_event(unsigned long tid
)
1952 return tid
/ TID_STEP
;
1955 static inline unsigned int init_tid(int cpu
)
1960 static inline void note_cmpxchg_failure(const char *n
,
1961 const struct kmem_cache
*s
, unsigned long tid
)
1963 #ifdef SLUB_DEBUG_CMPXCHG
1964 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1966 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
1968 #ifdef CONFIG_PREEMPT
1969 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1970 pr_warn("due to cpu change %d -> %d\n",
1971 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1974 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1975 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1976 tid_to_event(tid
), tid_to_event(actual_tid
));
1978 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1979 actual_tid
, tid
, next_tid(tid
));
1981 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1984 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1988 for_each_possible_cpu(cpu
)
1989 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1993 * Remove the cpu slab
1995 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
1996 void *freelist
, struct kmem_cache_cpu
*c
)
1998 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1999 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
2001 enum slab_modes l
= M_NONE
, m
= M_NONE
;
2003 int tail
= DEACTIVATE_TO_HEAD
;
2007 if (page
->freelist
) {
2008 stat(s
, DEACTIVATE_REMOTE_FREES
);
2009 tail
= DEACTIVATE_TO_TAIL
;
2013 * Stage one: Free all available per cpu objects back
2014 * to the page freelist while it is still frozen. Leave the
2017 * There is no need to take the list->lock because the page
2020 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2022 unsigned long counters
;
2025 prior
= page
->freelist
;
2026 counters
= page
->counters
;
2027 set_freepointer(s
, freelist
, prior
);
2028 new.counters
= counters
;
2030 VM_BUG_ON(!new.frozen
);
2032 } while (!__cmpxchg_double_slab(s
, page
,
2034 freelist
, new.counters
,
2035 "drain percpu freelist"));
2037 freelist
= nextfree
;
2041 * Stage two: Ensure that the page is unfrozen while the
2042 * list presence reflects the actual number of objects
2045 * We setup the list membership and then perform a cmpxchg
2046 * with the count. If there is a mismatch then the page
2047 * is not unfrozen but the page is on the wrong list.
2049 * Then we restart the process which may have to remove
2050 * the page from the list that we just put it on again
2051 * because the number of objects in the slab may have
2056 old
.freelist
= page
->freelist
;
2057 old
.counters
= page
->counters
;
2058 VM_BUG_ON(!old
.frozen
);
2060 /* Determine target state of the slab */
2061 new.counters
= old
.counters
;
2064 set_freepointer(s
, freelist
, old
.freelist
);
2065 new.freelist
= freelist
;
2067 new.freelist
= old
.freelist
;
2071 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2073 else if (new.freelist
) {
2078 * Taking the spinlock removes the possiblity
2079 * that acquire_slab() will see a slab page that
2082 spin_lock(&n
->list_lock
);
2086 if (kmem_cache_debug(s
) && !lock
) {
2089 * This also ensures that the scanning of full
2090 * slabs from diagnostic functions will not see
2093 spin_lock(&n
->list_lock
);
2101 remove_partial(n
, page
);
2103 else if (l
== M_FULL
)
2105 remove_full(s
, n
, page
);
2107 if (m
== M_PARTIAL
) {
2109 add_partial(n
, page
, tail
);
2112 } else if (m
== M_FULL
) {
2114 stat(s
, DEACTIVATE_FULL
);
2115 add_full(s
, n
, page
);
2121 if (!__cmpxchg_double_slab(s
, page
,
2122 old
.freelist
, old
.counters
,
2123 new.freelist
, new.counters
,
2128 spin_unlock(&n
->list_lock
);
2131 stat(s
, DEACTIVATE_EMPTY
);
2132 discard_slab(s
, page
);
2141 * Unfreeze all the cpu partial slabs.
2143 * This function must be called with interrupts disabled
2144 * for the cpu using c (or some other guarantee must be there
2145 * to guarantee no concurrent accesses).
2147 static void unfreeze_partials(struct kmem_cache
*s
,
2148 struct kmem_cache_cpu
*c
)
2150 #ifdef CONFIG_SLUB_CPU_PARTIAL
2151 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2152 struct page
*page
, *discard_page
= NULL
;
2154 while ((page
= c
->partial
)) {
2158 c
->partial
= page
->next
;
2160 n2
= get_node(s
, page_to_nid(page
));
2163 spin_unlock(&n
->list_lock
);
2166 spin_lock(&n
->list_lock
);
2171 old
.freelist
= page
->freelist
;
2172 old
.counters
= page
->counters
;
2173 VM_BUG_ON(!old
.frozen
);
2175 new.counters
= old
.counters
;
2176 new.freelist
= old
.freelist
;
2180 } while (!__cmpxchg_double_slab(s
, page
,
2181 old
.freelist
, old
.counters
,
2182 new.freelist
, new.counters
,
2183 "unfreezing slab"));
2185 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2186 page
->next
= discard_page
;
2187 discard_page
= page
;
2189 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2190 stat(s
, FREE_ADD_PARTIAL
);
2195 spin_unlock(&n
->list_lock
);
2197 while (discard_page
) {
2198 page
= discard_page
;
2199 discard_page
= discard_page
->next
;
2201 stat(s
, DEACTIVATE_EMPTY
);
2202 discard_slab(s
, page
);
2209 * Put a page that was just frozen (in __slab_free) into a partial page
2210 * slot if available. This is done without interrupts disabled and without
2211 * preemption disabled. The cmpxchg is racy and may put the partial page
2212 * onto a random cpus partial slot.
2214 * If we did not find a slot then simply move all the partials to the
2215 * per node partial list.
2217 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2219 #ifdef CONFIG_SLUB_CPU_PARTIAL
2220 struct page
*oldpage
;
2228 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2231 pobjects
= oldpage
->pobjects
;
2232 pages
= oldpage
->pages
;
2233 if (drain
&& pobjects
> s
->cpu_partial
) {
2234 unsigned long flags
;
2236 * partial array is full. Move the existing
2237 * set to the per node partial list.
2239 local_irq_save(flags
);
2240 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2241 local_irq_restore(flags
);
2245 stat(s
, CPU_PARTIAL_DRAIN
);
2250 pobjects
+= page
->objects
- page
->inuse
;
2252 page
->pages
= pages
;
2253 page
->pobjects
= pobjects
;
2254 page
->next
= oldpage
;
2256 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2258 if (unlikely(!s
->cpu_partial
)) {
2259 unsigned long flags
;
2261 local_irq_save(flags
);
2262 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2263 local_irq_restore(flags
);
2269 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2271 stat(s
, CPUSLAB_FLUSH
);
2272 deactivate_slab(s
, c
->page
, c
->freelist
, c
);
2274 c
->tid
= next_tid(c
->tid
);
2280 * Called from IPI handler with interrupts disabled.
2282 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2284 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2290 unfreeze_partials(s
, c
);
2294 static void flush_cpu_slab(void *d
)
2296 struct kmem_cache
*s
= d
;
2298 __flush_cpu_slab(s
, smp_processor_id());
2301 static bool has_cpu_slab(int cpu
, void *info
)
2303 struct kmem_cache
*s
= info
;
2304 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2306 return c
->page
|| slub_percpu_partial(c
);
2309 static void flush_all(struct kmem_cache
*s
)
2311 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2315 * Use the cpu notifier to insure that the cpu slabs are flushed when
2318 static int slub_cpu_dead(unsigned int cpu
)
2320 struct kmem_cache
*s
;
2321 unsigned long flags
;
2323 mutex_lock(&slab_mutex
);
2324 list_for_each_entry(s
, &slab_caches
, list
) {
2325 local_irq_save(flags
);
2326 __flush_cpu_slab(s
, cpu
);
2327 local_irq_restore(flags
);
2329 mutex_unlock(&slab_mutex
);
2334 * Check if the objects in a per cpu structure fit numa
2335 * locality expectations.
2337 static inline int node_match(struct page
*page
, int node
)
2340 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2346 #ifdef CONFIG_SLUB_DEBUG
2347 static int count_free(struct page
*page
)
2349 return page
->objects
- page
->inuse
;
2352 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2354 return atomic_long_read(&n
->total_objects
);
2356 #endif /* CONFIG_SLUB_DEBUG */
2358 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2359 static unsigned long count_partial(struct kmem_cache_node
*n
,
2360 int (*get_count
)(struct page
*))
2362 unsigned long flags
;
2363 unsigned long x
= 0;
2366 spin_lock_irqsave(&n
->list_lock
, flags
);
2367 list_for_each_entry(page
, &n
->partial
, lru
)
2368 x
+= get_count(page
);
2369 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2372 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2374 static noinline
void
2375 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2377 #ifdef CONFIG_SLUB_DEBUG
2378 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2379 DEFAULT_RATELIMIT_BURST
);
2381 struct kmem_cache_node
*n
;
2383 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2386 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2387 nid
, gfpflags
, &gfpflags
);
2388 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2389 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2392 if (oo_order(s
->min
) > get_order(s
->object_size
))
2393 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2396 for_each_kmem_cache_node(s
, node
, n
) {
2397 unsigned long nr_slabs
;
2398 unsigned long nr_objs
;
2399 unsigned long nr_free
;
2401 nr_free
= count_partial(n
, count_free
);
2402 nr_slabs
= node_nr_slabs(n
);
2403 nr_objs
= node_nr_objs(n
);
2405 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2406 node
, nr_slabs
, nr_objs
, nr_free
);
2411 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2412 int node
, struct kmem_cache_cpu
**pc
)
2415 struct kmem_cache_cpu
*c
= *pc
;
2418 freelist
= get_partial(s
, flags
, node
, c
);
2423 page
= new_slab(s
, flags
, node
);
2425 c
= raw_cpu_ptr(s
->cpu_slab
);
2430 * No other reference to the page yet so we can
2431 * muck around with it freely without cmpxchg
2433 freelist
= page
->freelist
;
2434 page
->freelist
= NULL
;
2436 stat(s
, ALLOC_SLAB
);
2445 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2447 if (unlikely(PageSlabPfmemalloc(page
)))
2448 return gfp_pfmemalloc_allowed(gfpflags
);
2454 * Check the page->freelist of a page and either transfer the freelist to the
2455 * per cpu freelist or deactivate the page.
2457 * The page is still frozen if the return value is not NULL.
2459 * If this function returns NULL then the page has been unfrozen.
2461 * This function must be called with interrupt disabled.
2463 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2466 unsigned long counters
;
2470 freelist
= page
->freelist
;
2471 counters
= page
->counters
;
2473 new.counters
= counters
;
2474 VM_BUG_ON(!new.frozen
);
2476 new.inuse
= page
->objects
;
2477 new.frozen
= freelist
!= NULL
;
2479 } while (!__cmpxchg_double_slab(s
, page
,
2488 * Slow path. The lockless freelist is empty or we need to perform
2491 * Processing is still very fast if new objects have been freed to the
2492 * regular freelist. In that case we simply take over the regular freelist
2493 * as the lockless freelist and zap the regular freelist.
2495 * If that is not working then we fall back to the partial lists. We take the
2496 * first element of the freelist as the object to allocate now and move the
2497 * rest of the freelist to the lockless freelist.
2499 * And if we were unable to get a new slab from the partial slab lists then
2500 * we need to allocate a new slab. This is the slowest path since it involves
2501 * a call to the page allocator and the setup of a new slab.
2503 * Version of __slab_alloc to use when we know that interrupts are
2504 * already disabled (which is the case for bulk allocation).
2506 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2507 unsigned long addr
, struct kmem_cache_cpu
*c
)
2517 if (unlikely(!node_match(page
, node
))) {
2518 int searchnode
= node
;
2520 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2521 searchnode
= node_to_mem_node(node
);
2523 if (unlikely(!node_match(page
, searchnode
))) {
2524 stat(s
, ALLOC_NODE_MISMATCH
);
2525 deactivate_slab(s
, page
, c
->freelist
, c
);
2531 * By rights, we should be searching for a slab page that was
2532 * PFMEMALLOC but right now, we are losing the pfmemalloc
2533 * information when the page leaves the per-cpu allocator
2535 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2536 deactivate_slab(s
, page
, c
->freelist
, c
);
2540 /* must check again c->freelist in case of cpu migration or IRQ */
2541 freelist
= c
->freelist
;
2545 freelist
= get_freelist(s
, page
);
2549 stat(s
, DEACTIVATE_BYPASS
);
2553 stat(s
, ALLOC_REFILL
);
2557 * freelist is pointing to the list of objects to be used.
2558 * page is pointing to the page from which the objects are obtained.
2559 * That page must be frozen for per cpu allocations to work.
2561 VM_BUG_ON(!c
->page
->frozen
);
2562 c
->freelist
= get_freepointer(s
, freelist
);
2563 c
->tid
= next_tid(c
->tid
);
2568 if (slub_percpu_partial(c
)) {
2569 page
= c
->page
= slub_percpu_partial(c
);
2570 slub_set_percpu_partial(c
, page
);
2571 stat(s
, CPU_PARTIAL_ALLOC
);
2575 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2577 if (unlikely(!freelist
)) {
2578 slab_out_of_memory(s
, gfpflags
, node
);
2583 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2586 /* Only entered in the debug case */
2587 if (kmem_cache_debug(s
) &&
2588 !alloc_debug_processing(s
, page
, freelist
, addr
))
2589 goto new_slab
; /* Slab failed checks. Next slab needed */
2591 deactivate_slab(s
, page
, get_freepointer(s
, freelist
), c
);
2596 * Another one that disabled interrupt and compensates for possible
2597 * cpu changes by refetching the per cpu area pointer.
2599 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2600 unsigned long addr
, struct kmem_cache_cpu
*c
)
2603 unsigned long flags
;
2605 local_irq_save(flags
);
2606 #ifdef CONFIG_PREEMPT
2608 * We may have been preempted and rescheduled on a different
2609 * cpu before disabling interrupts. Need to reload cpu area
2612 c
= this_cpu_ptr(s
->cpu_slab
);
2615 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2616 local_irq_restore(flags
);
2621 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2622 * have the fastpath folded into their functions. So no function call
2623 * overhead for requests that can be satisfied on the fastpath.
2625 * The fastpath works by first checking if the lockless freelist can be used.
2626 * If not then __slab_alloc is called for slow processing.
2628 * Otherwise we can simply pick the next object from the lockless free list.
2630 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2631 gfp_t gfpflags
, int node
, unsigned long addr
)
2634 struct kmem_cache_cpu
*c
;
2638 s
= slab_pre_alloc_hook(s
, gfpflags
);
2643 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2644 * enabled. We may switch back and forth between cpus while
2645 * reading from one cpu area. That does not matter as long
2646 * as we end up on the original cpu again when doing the cmpxchg.
2648 * We should guarantee that tid and kmem_cache are retrieved on
2649 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2650 * to check if it is matched or not.
2653 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2654 c
= raw_cpu_ptr(s
->cpu_slab
);
2655 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2656 unlikely(tid
!= READ_ONCE(c
->tid
)));
2659 * Irqless object alloc/free algorithm used here depends on sequence
2660 * of fetching cpu_slab's data. tid should be fetched before anything
2661 * on c to guarantee that object and page associated with previous tid
2662 * won't be used with current tid. If we fetch tid first, object and
2663 * page could be one associated with next tid and our alloc/free
2664 * request will be failed. In this case, we will retry. So, no problem.
2669 * The transaction ids are globally unique per cpu and per operation on
2670 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2671 * occurs on the right processor and that there was no operation on the
2672 * linked list in between.
2675 object
= c
->freelist
;
2677 if (unlikely(!object
|| !node_match(page
, node
))) {
2678 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2679 stat(s
, ALLOC_SLOWPATH
);
2681 void *next_object
= get_freepointer_safe(s
, object
);
2684 * The cmpxchg will only match if there was no additional
2685 * operation and if we are on the right processor.
2687 * The cmpxchg does the following atomically (without lock
2689 * 1. Relocate first pointer to the current per cpu area.
2690 * 2. Verify that tid and freelist have not been changed
2691 * 3. If they were not changed replace tid and freelist
2693 * Since this is without lock semantics the protection is only
2694 * against code executing on this cpu *not* from access by
2697 if (unlikely(!this_cpu_cmpxchg_double(
2698 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2700 next_object
, next_tid(tid
)))) {
2702 note_cmpxchg_failure("slab_alloc", s
, tid
);
2705 prefetch_freepointer(s
, next_object
);
2706 stat(s
, ALLOC_FASTPATH
);
2709 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2710 memset(object
, 0, s
->object_size
);
2712 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2717 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2718 gfp_t gfpflags
, unsigned long addr
)
2720 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2723 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2725 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2727 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2732 EXPORT_SYMBOL(kmem_cache_alloc
);
2734 #ifdef CONFIG_TRACING
2735 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2737 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2738 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2739 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2742 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2746 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2748 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2750 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2751 s
->object_size
, s
->size
, gfpflags
, node
);
2755 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2757 #ifdef CONFIG_TRACING
2758 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2760 int node
, size_t size
)
2762 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2764 trace_kmalloc_node(_RET_IP_
, ret
,
2765 size
, s
->size
, gfpflags
, node
);
2767 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2770 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2775 * Slow path handling. This may still be called frequently since objects
2776 * have a longer lifetime than the cpu slabs in most processing loads.
2778 * So we still attempt to reduce cache line usage. Just take the slab
2779 * lock and free the item. If there is no additional partial page
2780 * handling required then we can return immediately.
2782 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2783 void *head
, void *tail
, int cnt
,
2790 unsigned long counters
;
2791 struct kmem_cache_node
*n
= NULL
;
2792 unsigned long uninitialized_var(flags
);
2794 stat(s
, FREE_SLOWPATH
);
2796 if (kmem_cache_debug(s
) &&
2797 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2802 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2805 prior
= page
->freelist
;
2806 counters
= page
->counters
;
2807 set_freepointer(s
, tail
, prior
);
2808 new.counters
= counters
;
2809 was_frozen
= new.frozen
;
2811 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2813 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2816 * Slab was on no list before and will be
2818 * We can defer the list move and instead
2823 } else { /* Needs to be taken off a list */
2825 n
= get_node(s
, page_to_nid(page
));
2827 * Speculatively acquire the list_lock.
2828 * If the cmpxchg does not succeed then we may
2829 * drop the list_lock without any processing.
2831 * Otherwise the list_lock will synchronize with
2832 * other processors updating the list of slabs.
2834 spin_lock_irqsave(&n
->list_lock
, flags
);
2839 } while (!cmpxchg_double_slab(s
, page
,
2847 * If we just froze the page then put it onto the
2848 * per cpu partial list.
2850 if (new.frozen
&& !was_frozen
) {
2851 put_cpu_partial(s
, page
, 1);
2852 stat(s
, CPU_PARTIAL_FREE
);
2855 * The list lock was not taken therefore no list
2856 * activity can be necessary.
2859 stat(s
, FREE_FROZEN
);
2863 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2867 * Objects left in the slab. If it was not on the partial list before
2870 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2871 if (kmem_cache_debug(s
))
2872 remove_full(s
, n
, page
);
2873 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2874 stat(s
, FREE_ADD_PARTIAL
);
2876 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2882 * Slab on the partial list.
2884 remove_partial(n
, page
);
2885 stat(s
, FREE_REMOVE_PARTIAL
);
2887 /* Slab must be on the full list */
2888 remove_full(s
, n
, page
);
2891 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2893 discard_slab(s
, page
);
2897 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2898 * can perform fastpath freeing without additional function calls.
2900 * The fastpath is only possible if we are freeing to the current cpu slab
2901 * of this processor. This typically the case if we have just allocated
2904 * If fastpath is not possible then fall back to __slab_free where we deal
2905 * with all sorts of special processing.
2907 * Bulk free of a freelist with several objects (all pointing to the
2908 * same page) possible by specifying head and tail ptr, plus objects
2909 * count (cnt). Bulk free indicated by tail pointer being set.
2911 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2912 struct page
*page
, void *head
, void *tail
,
2913 int cnt
, unsigned long addr
)
2915 void *tail_obj
= tail
? : head
;
2916 struct kmem_cache_cpu
*c
;
2920 * Determine the currently cpus per cpu slab.
2921 * The cpu may change afterward. However that does not matter since
2922 * data is retrieved via this pointer. If we are on the same cpu
2923 * during the cmpxchg then the free will succeed.
2926 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2927 c
= raw_cpu_ptr(s
->cpu_slab
);
2928 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2929 unlikely(tid
!= READ_ONCE(c
->tid
)));
2931 /* Same with comment on barrier() in slab_alloc_node() */
2934 if (likely(page
== c
->page
)) {
2935 set_freepointer(s
, tail_obj
, c
->freelist
);
2937 if (unlikely(!this_cpu_cmpxchg_double(
2938 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2940 head
, next_tid(tid
)))) {
2942 note_cmpxchg_failure("slab_free", s
, tid
);
2945 stat(s
, FREE_FASTPATH
);
2947 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2951 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2952 void *head
, void *tail
, int cnt
,
2955 slab_free_freelist_hook(s
, head
, tail
);
2957 * slab_free_freelist_hook() could have put the items into quarantine.
2958 * If so, no need to free them.
2960 if (s
->flags
& SLAB_KASAN
&& !(s
->flags
& SLAB_TYPESAFE_BY_RCU
))
2962 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
2966 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
2968 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
2972 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2974 s
= cache_from_obj(s
, x
);
2977 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
2978 trace_kmem_cache_free(_RET_IP_
, x
);
2980 EXPORT_SYMBOL(kmem_cache_free
);
2982 struct detached_freelist
{
2987 struct kmem_cache
*s
;
2991 * This function progressively scans the array with free objects (with
2992 * a limited look ahead) and extract objects belonging to the same
2993 * page. It builds a detached freelist directly within the given
2994 * page/objects. This can happen without any need for
2995 * synchronization, because the objects are owned by running process.
2996 * The freelist is build up as a single linked list in the objects.
2997 * The idea is, that this detached freelist can then be bulk
2998 * transferred to the real freelist(s), but only requiring a single
2999 * synchronization primitive. Look ahead in the array is limited due
3000 * to performance reasons.
3003 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3004 void **p
, struct detached_freelist
*df
)
3006 size_t first_skipped_index
= 0;
3011 /* Always re-init detached_freelist */
3016 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3017 } while (!object
&& size
);
3022 page
= virt_to_head_page(object
);
3024 /* Handle kalloc'ed objects */
3025 if (unlikely(!PageSlab(page
))) {
3026 BUG_ON(!PageCompound(page
));
3028 __free_pages(page
, compound_order(page
));
3029 p
[size
] = NULL
; /* mark object processed */
3032 /* Derive kmem_cache from object */
3033 df
->s
= page
->slab_cache
;
3035 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3038 /* Start new detached freelist */
3040 set_freepointer(df
->s
, object
, NULL
);
3042 df
->freelist
= object
;
3043 p
[size
] = NULL
; /* mark object processed */
3049 continue; /* Skip processed objects */
3051 /* df->page is always set at this point */
3052 if (df
->page
== virt_to_head_page(object
)) {
3053 /* Opportunity build freelist */
3054 set_freepointer(df
->s
, object
, df
->freelist
);
3055 df
->freelist
= object
;
3057 p
[size
] = NULL
; /* mark object processed */
3062 /* Limit look ahead search */
3066 if (!first_skipped_index
)
3067 first_skipped_index
= size
+ 1;
3070 return first_skipped_index
;
3073 /* Note that interrupts must be enabled when calling this function. */
3074 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3080 struct detached_freelist df
;
3082 size
= build_detached_freelist(s
, size
, p
, &df
);
3086 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3087 } while (likely(size
));
3089 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3091 /* Note that interrupts must be enabled when calling this function. */
3092 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3095 struct kmem_cache_cpu
*c
;
3098 /* memcg and kmem_cache debug support */
3099 s
= slab_pre_alloc_hook(s
, flags
);
3103 * Drain objects in the per cpu slab, while disabling local
3104 * IRQs, which protects against PREEMPT and interrupts
3105 * handlers invoking normal fastpath.
3107 local_irq_disable();
3108 c
= this_cpu_ptr(s
->cpu_slab
);
3110 for (i
= 0; i
< size
; i
++) {
3111 void *object
= c
->freelist
;
3113 if (unlikely(!object
)) {
3115 * Invoking slow path likely have side-effect
3116 * of re-populating per CPU c->freelist
3118 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3120 if (unlikely(!p
[i
]))
3123 c
= this_cpu_ptr(s
->cpu_slab
);
3124 continue; /* goto for-loop */
3126 c
->freelist
= get_freepointer(s
, object
);
3129 c
->tid
= next_tid(c
->tid
);
3132 /* Clear memory outside IRQ disabled fastpath loop */
3133 if (unlikely(flags
& __GFP_ZERO
)) {
3136 for (j
= 0; j
< i
; j
++)
3137 memset(p
[j
], 0, s
->object_size
);
3140 /* memcg and kmem_cache debug support */
3141 slab_post_alloc_hook(s
, flags
, size
, p
);
3145 slab_post_alloc_hook(s
, flags
, i
, p
);
3146 __kmem_cache_free_bulk(s
, i
, p
);
3149 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3153 * Object placement in a slab is made very easy because we always start at
3154 * offset 0. If we tune the size of the object to the alignment then we can
3155 * get the required alignment by putting one properly sized object after
3158 * Notice that the allocation order determines the sizes of the per cpu
3159 * caches. Each processor has always one slab available for allocations.
3160 * Increasing the allocation order reduces the number of times that slabs
3161 * must be moved on and off the partial lists and is therefore a factor in
3166 * Mininum / Maximum order of slab pages. This influences locking overhead
3167 * and slab fragmentation. A higher order reduces the number of partial slabs
3168 * and increases the number of allocations possible without having to
3169 * take the list_lock.
3171 static int slub_min_order
;
3172 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3173 static int slub_min_objects
;
3176 * Calculate the order of allocation given an slab object size.
3178 * The order of allocation has significant impact on performance and other
3179 * system components. Generally order 0 allocations should be preferred since
3180 * order 0 does not cause fragmentation in the page allocator. Larger objects
3181 * be problematic to put into order 0 slabs because there may be too much
3182 * unused space left. We go to a higher order if more than 1/16th of the slab
3185 * In order to reach satisfactory performance we must ensure that a minimum
3186 * number of objects is in one slab. Otherwise we may generate too much
3187 * activity on the partial lists which requires taking the list_lock. This is
3188 * less a concern for large slabs though which are rarely used.
3190 * slub_max_order specifies the order where we begin to stop considering the
3191 * number of objects in a slab as critical. If we reach slub_max_order then
3192 * we try to keep the page order as low as possible. So we accept more waste
3193 * of space in favor of a small page order.
3195 * Higher order allocations also allow the placement of more objects in a
3196 * slab and thereby reduce object handling overhead. If the user has
3197 * requested a higher mininum order then we start with that one instead of
3198 * the smallest order which will fit the object.
3200 static inline int slab_order(int size
, int min_objects
,
3201 int max_order
, int fract_leftover
, int reserved
)
3205 int min_order
= slub_min_order
;
3207 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
3208 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3210 for (order
= max(min_order
, get_order(min_objects
* size
+ reserved
));
3211 order
<= max_order
; order
++) {
3213 unsigned long slab_size
= PAGE_SIZE
<< order
;
3215 rem
= (slab_size
- reserved
) % size
;
3217 if (rem
<= slab_size
/ fract_leftover
)
3224 static inline int calculate_order(int size
, int reserved
)
3232 * Attempt to find best configuration for a slab. This
3233 * works by first attempting to generate a layout with
3234 * the best configuration and backing off gradually.
3236 * First we increase the acceptable waste in a slab. Then
3237 * we reduce the minimum objects required in a slab.
3239 min_objects
= slub_min_objects
;
3241 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3242 max_objects
= order_objects(slub_max_order
, size
, reserved
);
3243 min_objects
= min(min_objects
, max_objects
);
3245 while (min_objects
> 1) {
3247 while (fraction
>= 4) {
3248 order
= slab_order(size
, min_objects
,
3249 slub_max_order
, fraction
, reserved
);
3250 if (order
<= slub_max_order
)
3258 * We were unable to place multiple objects in a slab. Now
3259 * lets see if we can place a single object there.
3261 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
3262 if (order
<= slub_max_order
)
3266 * Doh this slab cannot be placed using slub_max_order.
3268 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
3269 if (order
< MAX_ORDER
)
3275 init_kmem_cache_node(struct kmem_cache_node
*n
)
3278 spin_lock_init(&n
->list_lock
);
3279 INIT_LIST_HEAD(&n
->partial
);
3280 #ifdef CONFIG_SLUB_DEBUG
3281 atomic_long_set(&n
->nr_slabs
, 0);
3282 atomic_long_set(&n
->total_objects
, 0);
3283 INIT_LIST_HEAD(&n
->full
);
3287 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3289 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3290 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3293 * Must align to double word boundary for the double cmpxchg
3294 * instructions to work; see __pcpu_double_call_return_bool().
3296 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3297 2 * sizeof(void *));
3302 init_kmem_cache_cpus(s
);
3307 static struct kmem_cache
*kmem_cache_node
;
3310 * No kmalloc_node yet so do it by hand. We know that this is the first
3311 * slab on the node for this slabcache. There are no concurrent accesses
3314 * Note that this function only works on the kmem_cache_node
3315 * when allocating for the kmem_cache_node. This is used for bootstrapping
3316 * memory on a fresh node that has no slab structures yet.
3318 static void early_kmem_cache_node_alloc(int node
)
3321 struct kmem_cache_node
*n
;
3323 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3325 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3328 if (page_to_nid(page
) != node
) {
3329 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3330 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3335 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3338 kmem_cache_node
->node
[node
] = n
;
3339 #ifdef CONFIG_SLUB_DEBUG
3340 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3341 init_tracking(kmem_cache_node
, n
);
3343 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3345 init_kmem_cache_node(n
);
3346 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3349 * No locks need to be taken here as it has just been
3350 * initialized and there is no concurrent access.
3352 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3355 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3358 struct kmem_cache_node
*n
;
3360 for_each_kmem_cache_node(s
, node
, n
) {
3361 kmem_cache_free(kmem_cache_node
, n
);
3362 s
->node
[node
] = NULL
;
3366 void __kmem_cache_release(struct kmem_cache
*s
)
3368 cache_random_seq_destroy(s
);
3369 free_percpu(s
->cpu_slab
);
3370 free_kmem_cache_nodes(s
);
3373 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3377 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3378 struct kmem_cache_node
*n
;
3380 if (slab_state
== DOWN
) {
3381 early_kmem_cache_node_alloc(node
);
3384 n
= kmem_cache_alloc_node(kmem_cache_node
,
3388 free_kmem_cache_nodes(s
);
3393 init_kmem_cache_node(n
);
3398 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3400 if (min
< MIN_PARTIAL
)
3402 else if (min
> MAX_PARTIAL
)
3404 s
->min_partial
= min
;
3407 static void set_cpu_partial(struct kmem_cache
*s
)
3409 #ifdef CONFIG_SLUB_CPU_PARTIAL
3411 * cpu_partial determined the maximum number of objects kept in the
3412 * per cpu partial lists of a processor.
3414 * Per cpu partial lists mainly contain slabs that just have one
3415 * object freed. If they are used for allocation then they can be
3416 * filled up again with minimal effort. The slab will never hit the
3417 * per node partial lists and therefore no locking will be required.
3419 * This setting also determines
3421 * A) The number of objects from per cpu partial slabs dumped to the
3422 * per node list when we reach the limit.
3423 * B) The number of objects in cpu partial slabs to extract from the
3424 * per node list when we run out of per cpu objects. We only fetch
3425 * 50% to keep some capacity around for frees.
3427 if (!kmem_cache_has_cpu_partial(s
))
3429 else if (s
->size
>= PAGE_SIZE
)
3431 else if (s
->size
>= 1024)
3433 else if (s
->size
>= 256)
3434 s
->cpu_partial
= 13;
3436 s
->cpu_partial
= 30;
3441 * calculate_sizes() determines the order and the distribution of data within
3444 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3446 unsigned long flags
= s
->flags
;
3447 size_t size
= s
->object_size
;
3451 * Round up object size to the next word boundary. We can only
3452 * place the free pointer at word boundaries and this determines
3453 * the possible location of the free pointer.
3455 size
= ALIGN(size
, sizeof(void *));
3457 #ifdef CONFIG_SLUB_DEBUG
3459 * Determine if we can poison the object itself. If the user of
3460 * the slab may touch the object after free or before allocation
3461 * then we should never poison the object itself.
3463 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
3465 s
->flags
|= __OBJECT_POISON
;
3467 s
->flags
&= ~__OBJECT_POISON
;
3471 * If we are Redzoning then check if there is some space between the
3472 * end of the object and the free pointer. If not then add an
3473 * additional word to have some bytes to store Redzone information.
3475 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3476 size
+= sizeof(void *);
3480 * With that we have determined the number of bytes in actual use
3481 * by the object. This is the potential offset to the free pointer.
3485 if (((flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)) ||
3488 * Relocate free pointer after the object if it is not
3489 * permitted to overwrite the first word of the object on
3492 * This is the case if we do RCU, have a constructor or
3493 * destructor or are poisoning the objects.
3496 size
+= sizeof(void *);
3499 #ifdef CONFIG_SLUB_DEBUG
3500 if (flags
& SLAB_STORE_USER
)
3502 * Need to store information about allocs and frees after
3505 size
+= 2 * sizeof(struct track
);
3508 kasan_cache_create(s
, &size
, &s
->flags
);
3509 #ifdef CONFIG_SLUB_DEBUG
3510 if (flags
& SLAB_RED_ZONE
) {
3512 * Add some empty padding so that we can catch
3513 * overwrites from earlier objects rather than let
3514 * tracking information or the free pointer be
3515 * corrupted if a user writes before the start
3518 size
+= sizeof(void *);
3520 s
->red_left_pad
= sizeof(void *);
3521 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3522 size
+= s
->red_left_pad
;
3527 * SLUB stores one object immediately after another beginning from
3528 * offset 0. In order to align the objects we have to simply size
3529 * each object to conform to the alignment.
3531 size
= ALIGN(size
, s
->align
);
3533 if (forced_order
>= 0)
3534 order
= forced_order
;
3536 order
= calculate_order(size
, s
->reserved
);
3543 s
->allocflags
|= __GFP_COMP
;
3545 if (s
->flags
& SLAB_CACHE_DMA
)
3546 s
->allocflags
|= GFP_DMA
;
3548 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3549 s
->allocflags
|= __GFP_RECLAIMABLE
;
3552 * Determine the number of objects per slab
3554 s
->oo
= oo_make(order
, size
, s
->reserved
);
3555 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3556 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3559 return !!oo_objects(s
->oo
);
3562 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3564 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3567 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_TYPESAFE_BY_RCU
))
3568 s
->reserved
= sizeof(struct rcu_head
);
3570 if (!calculate_sizes(s
, -1))
3572 if (disable_higher_order_debug
) {
3574 * Disable debugging flags that store metadata if the min slab
3577 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3578 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3580 if (!calculate_sizes(s
, -1))
3585 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3586 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3587 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3588 /* Enable fast mode */
3589 s
->flags
|= __CMPXCHG_DOUBLE
;
3593 * The larger the object size is, the more pages we want on the partial
3594 * list to avoid pounding the page allocator excessively.
3596 set_min_partial(s
, ilog2(s
->size
) / 2);
3601 s
->remote_node_defrag_ratio
= 1000;
3604 /* Initialize the pre-computed randomized freelist if slab is up */
3605 if (slab_state
>= UP
) {
3606 if (init_cache_random_seq(s
))
3610 if (!init_kmem_cache_nodes(s
))
3613 if (alloc_kmem_cache_cpus(s
))
3616 free_kmem_cache_nodes(s
);
3618 if (flags
& SLAB_PANIC
)
3619 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3620 s
->name
, (unsigned long)s
->size
, s
->size
,
3621 oo_order(s
->oo
), s
->offset
, flags
);
3625 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3628 #ifdef CONFIG_SLUB_DEBUG
3629 void *addr
= page_address(page
);
3631 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3632 sizeof(long), GFP_ATOMIC
);
3635 slab_err(s
, page
, text
, s
->name
);
3638 get_map(s
, page
, map
);
3639 for_each_object(p
, s
, addr
, page
->objects
) {
3641 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3642 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3643 print_tracking(s
, p
);
3652 * Attempt to free all partial slabs on a node.
3653 * This is called from __kmem_cache_shutdown(). We must take list_lock
3654 * because sysfs file might still access partial list after the shutdowning.
3656 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3659 struct page
*page
, *h
;
3661 BUG_ON(irqs_disabled());
3662 spin_lock_irq(&n
->list_lock
);
3663 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3665 remove_partial(n
, page
);
3666 list_add(&page
->lru
, &discard
);
3668 list_slab_objects(s
, page
,
3669 "Objects remaining in %s on __kmem_cache_shutdown()");
3672 spin_unlock_irq(&n
->list_lock
);
3674 list_for_each_entry_safe(page
, h
, &discard
, lru
)
3675 discard_slab(s
, page
);
3679 * Release all resources used by a slab cache.
3681 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3684 struct kmem_cache_node
*n
;
3687 /* Attempt to free all objects */
3688 for_each_kmem_cache_node(s
, node
, n
) {
3690 if (n
->nr_partial
|| slabs_node(s
, node
))
3693 sysfs_slab_remove(s
);
3697 /********************************************************************
3699 *******************************************************************/
3701 static int __init
setup_slub_min_order(char *str
)
3703 get_option(&str
, &slub_min_order
);
3708 __setup("slub_min_order=", setup_slub_min_order
);
3710 static int __init
setup_slub_max_order(char *str
)
3712 get_option(&str
, &slub_max_order
);
3713 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3718 __setup("slub_max_order=", setup_slub_max_order
);
3720 static int __init
setup_slub_min_objects(char *str
)
3722 get_option(&str
, &slub_min_objects
);
3727 __setup("slub_min_objects=", setup_slub_min_objects
);
3729 void *__kmalloc(size_t size
, gfp_t flags
)
3731 struct kmem_cache
*s
;
3734 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3735 return kmalloc_large(size
, flags
);
3737 s
= kmalloc_slab(size
, flags
);
3739 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3742 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3744 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3746 kasan_kmalloc(s
, ret
, size
, flags
);
3750 EXPORT_SYMBOL(__kmalloc
);
3753 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3758 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3759 page
= alloc_pages_node(node
, flags
, get_order(size
));
3761 ptr
= page_address(page
);
3763 kmalloc_large_node_hook(ptr
, size
, flags
);
3767 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3769 struct kmem_cache
*s
;
3772 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3773 ret
= kmalloc_large_node(size
, flags
, node
);
3775 trace_kmalloc_node(_RET_IP_
, ret
,
3776 size
, PAGE_SIZE
<< get_order(size
),
3782 s
= kmalloc_slab(size
, flags
);
3784 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3787 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3789 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3791 kasan_kmalloc(s
, ret
, size
, flags
);
3795 EXPORT_SYMBOL(__kmalloc_node
);
3798 #ifdef CONFIG_HARDENED_USERCOPY
3800 * Rejects objects that are incorrectly sized.
3802 * Returns NULL if check passes, otherwise const char * to name of cache
3803 * to indicate an error.
3805 const char *__check_heap_object(const void *ptr
, unsigned long n
,
3808 struct kmem_cache
*s
;
3809 unsigned long offset
;
3812 /* Find object and usable object size. */
3813 s
= page
->slab_cache
;
3814 object_size
= slab_ksize(s
);
3816 /* Reject impossible pointers. */
3817 if (ptr
< page_address(page
))
3820 /* Find offset within object. */
3821 offset
= (ptr
- page_address(page
)) % s
->size
;
3823 /* Adjust for redzone and reject if within the redzone. */
3824 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3825 if (offset
< s
->red_left_pad
)
3827 offset
-= s
->red_left_pad
;
3830 /* Allow address range falling entirely within object size. */
3831 if (offset
<= object_size
&& n
<= object_size
- offset
)
3836 #endif /* CONFIG_HARDENED_USERCOPY */
3838 static size_t __ksize(const void *object
)
3842 if (unlikely(object
== ZERO_SIZE_PTR
))
3845 page
= virt_to_head_page(object
);
3847 if (unlikely(!PageSlab(page
))) {
3848 WARN_ON(!PageCompound(page
));
3849 return PAGE_SIZE
<< compound_order(page
);
3852 return slab_ksize(page
->slab_cache
);
3855 size_t ksize(const void *object
)
3857 size_t size
= __ksize(object
);
3858 /* We assume that ksize callers could use whole allocated area,
3859 * so we need to unpoison this area.
3861 kasan_unpoison_shadow(object
, size
);
3864 EXPORT_SYMBOL(ksize
);
3866 void kfree(const void *x
)
3869 void *object
= (void *)x
;
3871 trace_kfree(_RET_IP_
, x
);
3873 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3876 page
= virt_to_head_page(x
);
3877 if (unlikely(!PageSlab(page
))) {
3878 BUG_ON(!PageCompound(page
));
3880 __free_pages(page
, compound_order(page
));
3883 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3885 EXPORT_SYMBOL(kfree
);
3887 #define SHRINK_PROMOTE_MAX 32
3890 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3891 * up most to the head of the partial lists. New allocations will then
3892 * fill those up and thus they can be removed from the partial lists.
3894 * The slabs with the least items are placed last. This results in them
3895 * being allocated from last increasing the chance that the last objects
3896 * are freed in them.
3898 int __kmem_cache_shrink(struct kmem_cache
*s
)
3902 struct kmem_cache_node
*n
;
3905 struct list_head discard
;
3906 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3907 unsigned long flags
;
3911 for_each_kmem_cache_node(s
, node
, n
) {
3912 INIT_LIST_HEAD(&discard
);
3913 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3914 INIT_LIST_HEAD(promote
+ i
);
3916 spin_lock_irqsave(&n
->list_lock
, flags
);
3919 * Build lists of slabs to discard or promote.
3921 * Note that concurrent frees may occur while we hold the
3922 * list_lock. page->inuse here is the upper limit.
3924 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3925 int free
= page
->objects
- page
->inuse
;
3927 /* Do not reread page->inuse */
3930 /* We do not keep full slabs on the list */
3933 if (free
== page
->objects
) {
3934 list_move(&page
->lru
, &discard
);
3936 } else if (free
<= SHRINK_PROMOTE_MAX
)
3937 list_move(&page
->lru
, promote
+ free
- 1);
3941 * Promote the slabs filled up most to the head of the
3944 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
3945 list_splice(promote
+ i
, &n
->partial
);
3947 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3949 /* Release empty slabs */
3950 list_for_each_entry_safe(page
, t
, &discard
, lru
)
3951 discard_slab(s
, page
);
3953 if (slabs_node(s
, node
))
3961 static void kmemcg_cache_deact_after_rcu(struct kmem_cache
*s
)
3964 * Called with all the locks held after a sched RCU grace period.
3965 * Even if @s becomes empty after shrinking, we can't know that @s
3966 * doesn't have allocations already in-flight and thus can't
3967 * destroy @s until the associated memcg is released.
3969 * However, let's remove the sysfs files for empty caches here.
3970 * Each cache has a lot of interface files which aren't
3971 * particularly useful for empty draining caches; otherwise, we can
3972 * easily end up with millions of unnecessary sysfs files on
3973 * systems which have a lot of memory and transient cgroups.
3975 if (!__kmem_cache_shrink(s
))
3976 sysfs_slab_remove(s
);
3979 void __kmemcg_cache_deactivate(struct kmem_cache
*s
)
3982 * Disable empty slabs caching. Used to avoid pinning offline
3983 * memory cgroups by kmem pages that can be freed.
3985 slub_set_cpu_partial(s
, 0);
3989 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
3990 * we have to make sure the change is visible before shrinking.
3992 slab_deactivate_memcg_cache_rcu_sched(s
, kmemcg_cache_deact_after_rcu
);
3996 static int slab_mem_going_offline_callback(void *arg
)
3998 struct kmem_cache
*s
;
4000 mutex_lock(&slab_mutex
);
4001 list_for_each_entry(s
, &slab_caches
, list
)
4002 __kmem_cache_shrink(s
);
4003 mutex_unlock(&slab_mutex
);
4008 static void slab_mem_offline_callback(void *arg
)
4010 struct kmem_cache_node
*n
;
4011 struct kmem_cache
*s
;
4012 struct memory_notify
*marg
= arg
;
4015 offline_node
= marg
->status_change_nid_normal
;
4018 * If the node still has available memory. we need kmem_cache_node
4021 if (offline_node
< 0)
4024 mutex_lock(&slab_mutex
);
4025 list_for_each_entry(s
, &slab_caches
, list
) {
4026 n
= get_node(s
, offline_node
);
4029 * if n->nr_slabs > 0, slabs still exist on the node
4030 * that is going down. We were unable to free them,
4031 * and offline_pages() function shouldn't call this
4032 * callback. So, we must fail.
4034 BUG_ON(slabs_node(s
, offline_node
));
4036 s
->node
[offline_node
] = NULL
;
4037 kmem_cache_free(kmem_cache_node
, n
);
4040 mutex_unlock(&slab_mutex
);
4043 static int slab_mem_going_online_callback(void *arg
)
4045 struct kmem_cache_node
*n
;
4046 struct kmem_cache
*s
;
4047 struct memory_notify
*marg
= arg
;
4048 int nid
= marg
->status_change_nid_normal
;
4052 * If the node's memory is already available, then kmem_cache_node is
4053 * already created. Nothing to do.
4059 * We are bringing a node online. No memory is available yet. We must
4060 * allocate a kmem_cache_node structure in order to bring the node
4063 mutex_lock(&slab_mutex
);
4064 list_for_each_entry(s
, &slab_caches
, list
) {
4066 * XXX: kmem_cache_alloc_node will fallback to other nodes
4067 * since memory is not yet available from the node that
4070 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4075 init_kmem_cache_node(n
);
4079 mutex_unlock(&slab_mutex
);
4083 static int slab_memory_callback(struct notifier_block
*self
,
4084 unsigned long action
, void *arg
)
4089 case MEM_GOING_ONLINE
:
4090 ret
= slab_mem_going_online_callback(arg
);
4092 case MEM_GOING_OFFLINE
:
4093 ret
= slab_mem_going_offline_callback(arg
);
4096 case MEM_CANCEL_ONLINE
:
4097 slab_mem_offline_callback(arg
);
4100 case MEM_CANCEL_OFFLINE
:
4104 ret
= notifier_from_errno(ret
);
4110 static struct notifier_block slab_memory_callback_nb
= {
4111 .notifier_call
= slab_memory_callback
,
4112 .priority
= SLAB_CALLBACK_PRI
,
4115 /********************************************************************
4116 * Basic setup of slabs
4117 *******************************************************************/
4120 * Used for early kmem_cache structures that were allocated using
4121 * the page allocator. Allocate them properly then fix up the pointers
4122 * that may be pointing to the wrong kmem_cache structure.
4125 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4128 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4129 struct kmem_cache_node
*n
;
4131 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4134 * This runs very early, and only the boot processor is supposed to be
4135 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4138 __flush_cpu_slab(s
, smp_processor_id());
4139 for_each_kmem_cache_node(s
, node
, n
) {
4142 list_for_each_entry(p
, &n
->partial
, lru
)
4145 #ifdef CONFIG_SLUB_DEBUG
4146 list_for_each_entry(p
, &n
->full
, lru
)
4150 slab_init_memcg_params(s
);
4151 list_add(&s
->list
, &slab_caches
);
4152 memcg_link_cache(s
);
4156 void __init
kmem_cache_init(void)
4158 static __initdata
struct kmem_cache boot_kmem_cache
,
4159 boot_kmem_cache_node
;
4161 if (debug_guardpage_minorder())
4164 kmem_cache_node
= &boot_kmem_cache_node
;
4165 kmem_cache
= &boot_kmem_cache
;
4167 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4168 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
4170 register_hotmemory_notifier(&slab_memory_callback_nb
);
4172 /* Able to allocate the per node structures */
4173 slab_state
= PARTIAL
;
4175 create_boot_cache(kmem_cache
, "kmem_cache",
4176 offsetof(struct kmem_cache
, node
) +
4177 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4178 SLAB_HWCACHE_ALIGN
);
4180 kmem_cache
= bootstrap(&boot_kmem_cache
);
4183 * Allocate kmem_cache_node properly from the kmem_cache slab.
4184 * kmem_cache_node is separately allocated so no need to
4185 * update any list pointers.
4187 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4189 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4190 setup_kmalloc_cache_index_table();
4191 create_kmalloc_caches(0);
4193 /* Setup random freelists for each cache */
4194 init_freelist_randomization();
4196 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4199 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4201 slub_min_order
, slub_max_order
, slub_min_objects
,
4202 nr_cpu_ids
, nr_node_ids
);
4205 void __init
kmem_cache_init_late(void)
4210 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
4211 unsigned long flags
, void (*ctor
)(void *))
4213 struct kmem_cache
*s
, *c
;
4215 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4220 * Adjust the object sizes so that we clear
4221 * the complete object on kzalloc.
4223 s
->object_size
= max(s
->object_size
, (int)size
);
4224 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
4226 for_each_memcg_cache(c
, s
) {
4227 c
->object_size
= s
->object_size
;
4228 c
->inuse
= max_t(int, c
->inuse
,
4229 ALIGN(size
, sizeof(void *)));
4232 if (sysfs_slab_alias(s
, name
)) {
4241 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
4245 err
= kmem_cache_open(s
, flags
);
4249 /* Mutex is not taken during early boot */
4250 if (slab_state
<= UP
)
4253 memcg_propagate_slab_attrs(s
);
4254 err
= sysfs_slab_add(s
);
4256 __kmem_cache_release(s
);
4261 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4263 struct kmem_cache
*s
;
4266 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4267 return kmalloc_large(size
, gfpflags
);
4269 s
= kmalloc_slab(size
, gfpflags
);
4271 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4274 ret
= slab_alloc(s
, gfpflags
, caller
);
4276 /* Honor the call site pointer we received. */
4277 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4283 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4284 int node
, unsigned long caller
)
4286 struct kmem_cache
*s
;
4289 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4290 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4292 trace_kmalloc_node(caller
, ret
,
4293 size
, PAGE_SIZE
<< get_order(size
),
4299 s
= kmalloc_slab(size
, gfpflags
);
4301 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4304 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4306 /* Honor the call site pointer we received. */
4307 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4314 static int count_inuse(struct page
*page
)
4319 static int count_total(struct page
*page
)
4321 return page
->objects
;
4325 #ifdef CONFIG_SLUB_DEBUG
4326 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4330 void *addr
= page_address(page
);
4332 if (!check_slab(s
, page
) ||
4333 !on_freelist(s
, page
, NULL
))
4336 /* Now we know that a valid freelist exists */
4337 bitmap_zero(map
, page
->objects
);
4339 get_map(s
, page
, map
);
4340 for_each_object(p
, s
, addr
, page
->objects
) {
4341 if (test_bit(slab_index(p
, s
, addr
), map
))
4342 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4346 for_each_object(p
, s
, addr
, page
->objects
)
4347 if (!test_bit(slab_index(p
, s
, addr
), map
))
4348 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4353 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4357 validate_slab(s
, page
, map
);
4361 static int validate_slab_node(struct kmem_cache
*s
,
4362 struct kmem_cache_node
*n
, unsigned long *map
)
4364 unsigned long count
= 0;
4366 unsigned long flags
;
4368 spin_lock_irqsave(&n
->list_lock
, flags
);
4370 list_for_each_entry(page
, &n
->partial
, lru
) {
4371 validate_slab_slab(s
, page
, map
);
4374 if (count
!= n
->nr_partial
)
4375 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4376 s
->name
, count
, n
->nr_partial
);
4378 if (!(s
->flags
& SLAB_STORE_USER
))
4381 list_for_each_entry(page
, &n
->full
, lru
) {
4382 validate_slab_slab(s
, page
, map
);
4385 if (count
!= atomic_long_read(&n
->nr_slabs
))
4386 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4387 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4390 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4394 static long validate_slab_cache(struct kmem_cache
*s
)
4397 unsigned long count
= 0;
4398 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4399 sizeof(unsigned long), GFP_KERNEL
);
4400 struct kmem_cache_node
*n
;
4406 for_each_kmem_cache_node(s
, node
, n
)
4407 count
+= validate_slab_node(s
, n
, map
);
4412 * Generate lists of code addresses where slabcache objects are allocated
4417 unsigned long count
;
4424 DECLARE_BITMAP(cpus
, NR_CPUS
);
4430 unsigned long count
;
4431 struct location
*loc
;
4434 static void free_loc_track(struct loc_track
*t
)
4437 free_pages((unsigned long)t
->loc
,
4438 get_order(sizeof(struct location
) * t
->max
));
4441 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4446 order
= get_order(sizeof(struct location
) * max
);
4448 l
= (void *)__get_free_pages(flags
, order
);
4453 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4461 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4462 const struct track
*track
)
4464 long start
, end
, pos
;
4466 unsigned long caddr
;
4467 unsigned long age
= jiffies
- track
->when
;
4473 pos
= start
+ (end
- start
+ 1) / 2;
4476 * There is nothing at "end". If we end up there
4477 * we need to add something to before end.
4482 caddr
= t
->loc
[pos
].addr
;
4483 if (track
->addr
== caddr
) {
4489 if (age
< l
->min_time
)
4491 if (age
> l
->max_time
)
4494 if (track
->pid
< l
->min_pid
)
4495 l
->min_pid
= track
->pid
;
4496 if (track
->pid
> l
->max_pid
)
4497 l
->max_pid
= track
->pid
;
4499 cpumask_set_cpu(track
->cpu
,
4500 to_cpumask(l
->cpus
));
4502 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4506 if (track
->addr
< caddr
)
4513 * Not found. Insert new tracking element.
4515 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4521 (t
->count
- pos
) * sizeof(struct location
));
4524 l
->addr
= track
->addr
;
4528 l
->min_pid
= track
->pid
;
4529 l
->max_pid
= track
->pid
;
4530 cpumask_clear(to_cpumask(l
->cpus
));
4531 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4532 nodes_clear(l
->nodes
);
4533 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4537 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4538 struct page
*page
, enum track_item alloc
,
4541 void *addr
= page_address(page
);
4544 bitmap_zero(map
, page
->objects
);
4545 get_map(s
, page
, map
);
4547 for_each_object(p
, s
, addr
, page
->objects
)
4548 if (!test_bit(slab_index(p
, s
, addr
), map
))
4549 add_location(t
, s
, get_track(s
, p
, alloc
));
4552 static int list_locations(struct kmem_cache
*s
, char *buf
,
4553 enum track_item alloc
)
4557 struct loc_track t
= { 0, 0, NULL
};
4559 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4560 sizeof(unsigned long), GFP_KERNEL
);
4561 struct kmem_cache_node
*n
;
4563 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4566 return sprintf(buf
, "Out of memory\n");
4568 /* Push back cpu slabs */
4571 for_each_kmem_cache_node(s
, node
, n
) {
4572 unsigned long flags
;
4575 if (!atomic_long_read(&n
->nr_slabs
))
4578 spin_lock_irqsave(&n
->list_lock
, flags
);
4579 list_for_each_entry(page
, &n
->partial
, lru
)
4580 process_slab(&t
, s
, page
, alloc
, map
);
4581 list_for_each_entry(page
, &n
->full
, lru
)
4582 process_slab(&t
, s
, page
, alloc
, map
);
4583 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4586 for (i
= 0; i
< t
.count
; i
++) {
4587 struct location
*l
= &t
.loc
[i
];
4589 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4591 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4594 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4596 len
+= sprintf(buf
+ len
, "<not-available>");
4598 if (l
->sum_time
!= l
->min_time
) {
4599 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4601 (long)div_u64(l
->sum_time
, l
->count
),
4604 len
+= sprintf(buf
+ len
, " age=%ld",
4607 if (l
->min_pid
!= l
->max_pid
)
4608 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4609 l
->min_pid
, l
->max_pid
);
4611 len
+= sprintf(buf
+ len
, " pid=%ld",
4614 if (num_online_cpus() > 1 &&
4615 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4616 len
< PAGE_SIZE
- 60)
4617 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4619 cpumask_pr_args(to_cpumask(l
->cpus
)));
4621 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4622 len
< PAGE_SIZE
- 60)
4623 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4625 nodemask_pr_args(&l
->nodes
));
4627 len
+= sprintf(buf
+ len
, "\n");
4633 len
+= sprintf(buf
, "No data\n");
4638 #ifdef SLUB_RESILIENCY_TEST
4639 static void __init
resiliency_test(void)
4643 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4645 pr_err("SLUB resiliency testing\n");
4646 pr_err("-----------------------\n");
4647 pr_err("A. Corruption after allocation\n");
4649 p
= kzalloc(16, GFP_KERNEL
);
4651 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4654 validate_slab_cache(kmalloc_caches
[4]);
4656 /* Hmmm... The next two are dangerous */
4657 p
= kzalloc(32, GFP_KERNEL
);
4658 p
[32 + sizeof(void *)] = 0x34;
4659 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4661 pr_err("If allocated object is overwritten then not detectable\n\n");
4663 validate_slab_cache(kmalloc_caches
[5]);
4664 p
= kzalloc(64, GFP_KERNEL
);
4665 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4667 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4669 pr_err("If allocated object is overwritten then not detectable\n\n");
4670 validate_slab_cache(kmalloc_caches
[6]);
4672 pr_err("\nB. Corruption after free\n");
4673 p
= kzalloc(128, GFP_KERNEL
);
4676 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4677 validate_slab_cache(kmalloc_caches
[7]);
4679 p
= kzalloc(256, GFP_KERNEL
);
4682 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4683 validate_slab_cache(kmalloc_caches
[8]);
4685 p
= kzalloc(512, GFP_KERNEL
);
4688 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4689 validate_slab_cache(kmalloc_caches
[9]);
4693 static void resiliency_test(void) {};
4698 enum slab_stat_type
{
4699 SL_ALL
, /* All slabs */
4700 SL_PARTIAL
, /* Only partially allocated slabs */
4701 SL_CPU
, /* Only slabs used for cpu caches */
4702 SL_OBJECTS
, /* Determine allocated objects not slabs */
4703 SL_TOTAL
/* Determine object capacity not slabs */
4706 #define SO_ALL (1 << SL_ALL)
4707 #define SO_PARTIAL (1 << SL_PARTIAL)
4708 #define SO_CPU (1 << SL_CPU)
4709 #define SO_OBJECTS (1 << SL_OBJECTS)
4710 #define SO_TOTAL (1 << SL_TOTAL)
4713 static bool memcg_sysfs_enabled
= IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON
);
4715 static int __init
setup_slub_memcg_sysfs(char *str
)
4719 if (get_option(&str
, &v
) > 0)
4720 memcg_sysfs_enabled
= v
;
4725 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs
);
4728 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4729 char *buf
, unsigned long flags
)
4731 unsigned long total
= 0;
4734 unsigned long *nodes
;
4736 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4740 if (flags
& SO_CPU
) {
4743 for_each_possible_cpu(cpu
) {
4744 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4749 page
= READ_ONCE(c
->page
);
4753 node
= page_to_nid(page
);
4754 if (flags
& SO_TOTAL
)
4756 else if (flags
& SO_OBJECTS
)
4764 page
= slub_percpu_partial_read_once(c
);
4766 node
= page_to_nid(page
);
4767 if (flags
& SO_TOTAL
)
4769 else if (flags
& SO_OBJECTS
)
4780 #ifdef CONFIG_SLUB_DEBUG
4781 if (flags
& SO_ALL
) {
4782 struct kmem_cache_node
*n
;
4784 for_each_kmem_cache_node(s
, node
, n
) {
4786 if (flags
& SO_TOTAL
)
4787 x
= atomic_long_read(&n
->total_objects
);
4788 else if (flags
& SO_OBJECTS
)
4789 x
= atomic_long_read(&n
->total_objects
) -
4790 count_partial(n
, count_free
);
4792 x
= atomic_long_read(&n
->nr_slabs
);
4799 if (flags
& SO_PARTIAL
) {
4800 struct kmem_cache_node
*n
;
4802 for_each_kmem_cache_node(s
, node
, n
) {
4803 if (flags
& SO_TOTAL
)
4804 x
= count_partial(n
, count_total
);
4805 else if (flags
& SO_OBJECTS
)
4806 x
= count_partial(n
, count_inuse
);
4813 x
= sprintf(buf
, "%lu", total
);
4815 for (node
= 0; node
< nr_node_ids
; node
++)
4817 x
+= sprintf(buf
+ x
, " N%d=%lu",
4822 return x
+ sprintf(buf
+ x
, "\n");
4825 #ifdef CONFIG_SLUB_DEBUG
4826 static int any_slab_objects(struct kmem_cache
*s
)
4829 struct kmem_cache_node
*n
;
4831 for_each_kmem_cache_node(s
, node
, n
)
4832 if (atomic_long_read(&n
->total_objects
))
4839 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4840 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4842 struct slab_attribute
{
4843 struct attribute attr
;
4844 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4845 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4848 #define SLAB_ATTR_RO(_name) \
4849 static struct slab_attribute _name##_attr = \
4850 __ATTR(_name, 0400, _name##_show, NULL)
4852 #define SLAB_ATTR(_name) \
4853 static struct slab_attribute _name##_attr = \
4854 __ATTR(_name, 0600, _name##_show, _name##_store)
4856 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4858 return sprintf(buf
, "%d\n", s
->size
);
4860 SLAB_ATTR_RO(slab_size
);
4862 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4864 return sprintf(buf
, "%d\n", s
->align
);
4866 SLAB_ATTR_RO(align
);
4868 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4870 return sprintf(buf
, "%d\n", s
->object_size
);
4872 SLAB_ATTR_RO(object_size
);
4874 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4876 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4878 SLAB_ATTR_RO(objs_per_slab
);
4880 static ssize_t
order_store(struct kmem_cache
*s
,
4881 const char *buf
, size_t length
)
4883 unsigned long order
;
4886 err
= kstrtoul(buf
, 10, &order
);
4890 if (order
> slub_max_order
|| order
< slub_min_order
)
4893 calculate_sizes(s
, order
);
4897 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4899 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4903 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4905 return sprintf(buf
, "%lu\n", s
->min_partial
);
4908 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4914 err
= kstrtoul(buf
, 10, &min
);
4918 set_min_partial(s
, min
);
4921 SLAB_ATTR(min_partial
);
4923 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4925 return sprintf(buf
, "%u\n", slub_cpu_partial(s
));
4928 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4931 unsigned long objects
;
4934 err
= kstrtoul(buf
, 10, &objects
);
4937 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4940 slub_set_cpu_partial(s
, objects
);
4944 SLAB_ATTR(cpu_partial
);
4946 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4950 return sprintf(buf
, "%pS\n", s
->ctor
);
4954 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4956 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
4958 SLAB_ATTR_RO(aliases
);
4960 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4962 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4964 SLAB_ATTR_RO(partial
);
4966 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4968 return show_slab_objects(s
, buf
, SO_CPU
);
4970 SLAB_ATTR_RO(cpu_slabs
);
4972 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4974 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4976 SLAB_ATTR_RO(objects
);
4978 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4980 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4982 SLAB_ATTR_RO(objects_partial
);
4984 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4991 for_each_online_cpu(cpu
) {
4994 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
4997 pages
+= page
->pages
;
4998 objects
+= page
->pobjects
;
5002 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
5005 for_each_online_cpu(cpu
) {
5008 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5010 if (page
&& len
< PAGE_SIZE
- 20)
5011 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
5012 page
->pobjects
, page
->pages
);
5015 return len
+ sprintf(buf
+ len
, "\n");
5017 SLAB_ATTR_RO(slabs_cpu_partial
);
5019 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
5021 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
5024 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
5025 const char *buf
, size_t length
)
5027 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
5029 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
5032 SLAB_ATTR(reclaim_account
);
5034 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
5036 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
5038 SLAB_ATTR_RO(hwcache_align
);
5040 #ifdef CONFIG_ZONE_DMA
5041 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
5043 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
5045 SLAB_ATTR_RO(cache_dma
);
5048 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
5050 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
5052 SLAB_ATTR_RO(destroy_by_rcu
);
5054 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
5056 return sprintf(buf
, "%d\n", s
->reserved
);
5058 SLAB_ATTR_RO(reserved
);
5060 #ifdef CONFIG_SLUB_DEBUG
5061 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5063 return show_slab_objects(s
, buf
, SO_ALL
);
5065 SLAB_ATTR_RO(slabs
);
5067 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5069 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5071 SLAB_ATTR_RO(total_objects
);
5073 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5075 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5078 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5079 const char *buf
, size_t length
)
5081 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5082 if (buf
[0] == '1') {
5083 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5084 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5088 SLAB_ATTR(sanity_checks
);
5090 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5092 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5095 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5099 * Tracing a merged cache is going to give confusing results
5100 * as well as cause other issues like converting a mergeable
5101 * cache into an umergeable one.
5103 if (s
->refcount
> 1)
5106 s
->flags
&= ~SLAB_TRACE
;
5107 if (buf
[0] == '1') {
5108 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5109 s
->flags
|= SLAB_TRACE
;
5115 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5117 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5120 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5121 const char *buf
, size_t length
)
5123 if (any_slab_objects(s
))
5126 s
->flags
&= ~SLAB_RED_ZONE
;
5127 if (buf
[0] == '1') {
5128 s
->flags
|= SLAB_RED_ZONE
;
5130 calculate_sizes(s
, -1);
5133 SLAB_ATTR(red_zone
);
5135 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5137 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5140 static ssize_t
poison_store(struct kmem_cache
*s
,
5141 const char *buf
, size_t length
)
5143 if (any_slab_objects(s
))
5146 s
->flags
&= ~SLAB_POISON
;
5147 if (buf
[0] == '1') {
5148 s
->flags
|= SLAB_POISON
;
5150 calculate_sizes(s
, -1);
5155 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5157 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5160 static ssize_t
store_user_store(struct kmem_cache
*s
,
5161 const char *buf
, size_t length
)
5163 if (any_slab_objects(s
))
5166 s
->flags
&= ~SLAB_STORE_USER
;
5167 if (buf
[0] == '1') {
5168 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5169 s
->flags
|= SLAB_STORE_USER
;
5171 calculate_sizes(s
, -1);
5174 SLAB_ATTR(store_user
);
5176 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5181 static ssize_t
validate_store(struct kmem_cache
*s
,
5182 const char *buf
, size_t length
)
5186 if (buf
[0] == '1') {
5187 ret
= validate_slab_cache(s
);
5193 SLAB_ATTR(validate
);
5195 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5197 if (!(s
->flags
& SLAB_STORE_USER
))
5199 return list_locations(s
, buf
, TRACK_ALLOC
);
5201 SLAB_ATTR_RO(alloc_calls
);
5203 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5205 if (!(s
->flags
& SLAB_STORE_USER
))
5207 return list_locations(s
, buf
, TRACK_FREE
);
5209 SLAB_ATTR_RO(free_calls
);
5210 #endif /* CONFIG_SLUB_DEBUG */
5212 #ifdef CONFIG_FAILSLAB
5213 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5215 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5218 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5221 if (s
->refcount
> 1)
5224 s
->flags
&= ~SLAB_FAILSLAB
;
5226 s
->flags
|= SLAB_FAILSLAB
;
5229 SLAB_ATTR(failslab
);
5232 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5237 static ssize_t
shrink_store(struct kmem_cache
*s
,
5238 const char *buf
, size_t length
)
5241 kmem_cache_shrink(s
);
5249 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5251 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
5254 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5255 const char *buf
, size_t length
)
5257 unsigned long ratio
;
5260 err
= kstrtoul(buf
, 10, &ratio
);
5265 s
->remote_node_defrag_ratio
= ratio
* 10;
5269 SLAB_ATTR(remote_node_defrag_ratio
);
5272 #ifdef CONFIG_SLUB_STATS
5273 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5275 unsigned long sum
= 0;
5278 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5283 for_each_online_cpu(cpu
) {
5284 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5290 len
= sprintf(buf
, "%lu", sum
);
5293 for_each_online_cpu(cpu
) {
5294 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5295 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5299 return len
+ sprintf(buf
+ len
, "\n");
5302 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5306 for_each_online_cpu(cpu
)
5307 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5310 #define STAT_ATTR(si, text) \
5311 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5313 return show_stat(s, buf, si); \
5315 static ssize_t text##_store(struct kmem_cache *s, \
5316 const char *buf, size_t length) \
5318 if (buf[0] != '0') \
5320 clear_stat(s, si); \
5325 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5326 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5327 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5328 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5329 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5330 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5331 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5332 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5333 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5334 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5335 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5336 STAT_ATTR(FREE_SLAB
, free_slab
);
5337 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5338 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5339 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5340 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5341 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5342 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5343 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5344 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5345 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5346 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5347 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5348 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5349 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5350 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5353 static struct attribute
*slab_attrs
[] = {
5354 &slab_size_attr
.attr
,
5355 &object_size_attr
.attr
,
5356 &objs_per_slab_attr
.attr
,
5358 &min_partial_attr
.attr
,
5359 &cpu_partial_attr
.attr
,
5361 &objects_partial_attr
.attr
,
5363 &cpu_slabs_attr
.attr
,
5367 &hwcache_align_attr
.attr
,
5368 &reclaim_account_attr
.attr
,
5369 &destroy_by_rcu_attr
.attr
,
5371 &reserved_attr
.attr
,
5372 &slabs_cpu_partial_attr
.attr
,
5373 #ifdef CONFIG_SLUB_DEBUG
5374 &total_objects_attr
.attr
,
5376 &sanity_checks_attr
.attr
,
5378 &red_zone_attr
.attr
,
5380 &store_user_attr
.attr
,
5381 &validate_attr
.attr
,
5382 &alloc_calls_attr
.attr
,
5383 &free_calls_attr
.attr
,
5385 #ifdef CONFIG_ZONE_DMA
5386 &cache_dma_attr
.attr
,
5389 &remote_node_defrag_ratio_attr
.attr
,
5391 #ifdef CONFIG_SLUB_STATS
5392 &alloc_fastpath_attr
.attr
,
5393 &alloc_slowpath_attr
.attr
,
5394 &free_fastpath_attr
.attr
,
5395 &free_slowpath_attr
.attr
,
5396 &free_frozen_attr
.attr
,
5397 &free_add_partial_attr
.attr
,
5398 &free_remove_partial_attr
.attr
,
5399 &alloc_from_partial_attr
.attr
,
5400 &alloc_slab_attr
.attr
,
5401 &alloc_refill_attr
.attr
,
5402 &alloc_node_mismatch_attr
.attr
,
5403 &free_slab_attr
.attr
,
5404 &cpuslab_flush_attr
.attr
,
5405 &deactivate_full_attr
.attr
,
5406 &deactivate_empty_attr
.attr
,
5407 &deactivate_to_head_attr
.attr
,
5408 &deactivate_to_tail_attr
.attr
,
5409 &deactivate_remote_frees_attr
.attr
,
5410 &deactivate_bypass_attr
.attr
,
5411 &order_fallback_attr
.attr
,
5412 &cmpxchg_double_fail_attr
.attr
,
5413 &cmpxchg_double_cpu_fail_attr
.attr
,
5414 &cpu_partial_alloc_attr
.attr
,
5415 &cpu_partial_free_attr
.attr
,
5416 &cpu_partial_node_attr
.attr
,
5417 &cpu_partial_drain_attr
.attr
,
5419 #ifdef CONFIG_FAILSLAB
5420 &failslab_attr
.attr
,
5426 static struct attribute_group slab_attr_group
= {
5427 .attrs
= slab_attrs
,
5430 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5431 struct attribute
*attr
,
5434 struct slab_attribute
*attribute
;
5435 struct kmem_cache
*s
;
5438 attribute
= to_slab_attr(attr
);
5441 if (!attribute
->show
)
5444 err
= attribute
->show(s
, buf
);
5449 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5450 struct attribute
*attr
,
5451 const char *buf
, size_t len
)
5453 struct slab_attribute
*attribute
;
5454 struct kmem_cache
*s
;
5457 attribute
= to_slab_attr(attr
);
5460 if (!attribute
->store
)
5463 err
= attribute
->store(s
, buf
, len
);
5465 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5466 struct kmem_cache
*c
;
5468 mutex_lock(&slab_mutex
);
5469 if (s
->max_attr_size
< len
)
5470 s
->max_attr_size
= len
;
5473 * This is a best effort propagation, so this function's return
5474 * value will be determined by the parent cache only. This is
5475 * basically because not all attributes will have a well
5476 * defined semantics for rollbacks - most of the actions will
5477 * have permanent effects.
5479 * Returning the error value of any of the children that fail
5480 * is not 100 % defined, in the sense that users seeing the
5481 * error code won't be able to know anything about the state of
5484 * Only returning the error code for the parent cache at least
5485 * has well defined semantics. The cache being written to
5486 * directly either failed or succeeded, in which case we loop
5487 * through the descendants with best-effort propagation.
5489 for_each_memcg_cache(c
, s
)
5490 attribute
->store(c
, buf
, len
);
5491 mutex_unlock(&slab_mutex
);
5497 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5501 char *buffer
= NULL
;
5502 struct kmem_cache
*root_cache
;
5504 if (is_root_cache(s
))
5507 root_cache
= s
->memcg_params
.root_cache
;
5510 * This mean this cache had no attribute written. Therefore, no point
5511 * in copying default values around
5513 if (!root_cache
->max_attr_size
)
5516 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5519 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5522 if (!attr
|| !attr
->store
|| !attr
->show
)
5526 * It is really bad that we have to allocate here, so we will
5527 * do it only as a fallback. If we actually allocate, though,
5528 * we can just use the allocated buffer until the end.
5530 * Most of the slub attributes will tend to be very small in
5531 * size, but sysfs allows buffers up to a page, so they can
5532 * theoretically happen.
5536 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5539 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5540 if (WARN_ON(!buffer
))
5545 len
= attr
->show(root_cache
, buf
);
5547 attr
->store(s
, buf
, len
);
5551 free_page((unsigned long)buffer
);
5555 static void kmem_cache_release(struct kobject
*k
)
5557 slab_kmem_cache_release(to_slab(k
));
5560 static const struct sysfs_ops slab_sysfs_ops
= {
5561 .show
= slab_attr_show
,
5562 .store
= slab_attr_store
,
5565 static struct kobj_type slab_ktype
= {
5566 .sysfs_ops
= &slab_sysfs_ops
,
5567 .release
= kmem_cache_release
,
5570 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5572 struct kobj_type
*ktype
= get_ktype(kobj
);
5574 if (ktype
== &slab_ktype
)
5579 static const struct kset_uevent_ops slab_uevent_ops
= {
5580 .filter
= uevent_filter
,
5583 static struct kset
*slab_kset
;
5585 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5588 if (!is_root_cache(s
))
5589 return s
->memcg_params
.root_cache
->memcg_kset
;
5594 #define ID_STR_LENGTH 64
5596 /* Create a unique string id for a slab cache:
5598 * Format :[flags-]size
5600 static char *create_unique_id(struct kmem_cache
*s
)
5602 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5609 * First flags affecting slabcache operations. We will only
5610 * get here for aliasable slabs so we do not need to support
5611 * too many flags. The flags here must cover all flags that
5612 * are matched during merging to guarantee that the id is
5615 if (s
->flags
& SLAB_CACHE_DMA
)
5617 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5619 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5621 if (!(s
->flags
& SLAB_NOTRACK
))
5623 if (s
->flags
& SLAB_ACCOUNT
)
5627 p
+= sprintf(p
, "%07d", s
->size
);
5629 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5633 static void sysfs_slab_remove_workfn(struct work_struct
*work
)
5635 struct kmem_cache
*s
=
5636 container_of(work
, struct kmem_cache
, kobj_remove_work
);
5638 if (!s
->kobj
.state_in_sysfs
)
5640 * For a memcg cache, this may be called during
5641 * deactivation and again on shutdown. Remove only once.
5642 * A cache is never shut down before deactivation is
5643 * complete, so no need to worry about synchronization.
5648 kset_unregister(s
->memcg_kset
);
5650 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5651 kobject_del(&s
->kobj
);
5652 kobject_put(&s
->kobj
);
5655 static int sysfs_slab_add(struct kmem_cache
*s
)
5659 struct kset
*kset
= cache_kset(s
);
5660 int unmergeable
= slab_unmergeable(s
);
5662 INIT_WORK(&s
->kobj_remove_work
, sysfs_slab_remove_workfn
);
5665 kobject_init(&s
->kobj
, &slab_ktype
);
5671 * Slabcache can never be merged so we can use the name proper.
5672 * This is typically the case for debug situations. In that
5673 * case we can catch duplicate names easily.
5675 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5679 * Create a unique name for the slab as a target
5682 name
= create_unique_id(s
);
5685 s
->kobj
.kset
= kset
;
5686 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5690 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5695 if (is_root_cache(s
) && memcg_sysfs_enabled
) {
5696 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5697 if (!s
->memcg_kset
) {
5704 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5706 /* Setup first alias */
5707 sysfs_slab_alias(s
, s
->name
);
5714 kobject_del(&s
->kobj
);
5718 static void sysfs_slab_remove(struct kmem_cache
*s
)
5720 if (slab_state
< FULL
)
5722 * Sysfs has not been setup yet so no need to remove the
5727 kobject_get(&s
->kobj
);
5728 schedule_work(&s
->kobj_remove_work
);
5731 void sysfs_slab_release(struct kmem_cache
*s
)
5733 if (slab_state
>= FULL
)
5734 kobject_put(&s
->kobj
);
5738 * Need to buffer aliases during bootup until sysfs becomes
5739 * available lest we lose that information.
5741 struct saved_alias
{
5742 struct kmem_cache
*s
;
5744 struct saved_alias
*next
;
5747 static struct saved_alias
*alias_list
;
5749 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5751 struct saved_alias
*al
;
5753 if (slab_state
== FULL
) {
5755 * If we have a leftover link then remove it.
5757 sysfs_remove_link(&slab_kset
->kobj
, name
);
5758 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5761 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5767 al
->next
= alias_list
;
5772 static int __init
slab_sysfs_init(void)
5774 struct kmem_cache
*s
;
5777 mutex_lock(&slab_mutex
);
5779 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5781 mutex_unlock(&slab_mutex
);
5782 pr_err("Cannot register slab subsystem.\n");
5788 list_for_each_entry(s
, &slab_caches
, list
) {
5789 err
= sysfs_slab_add(s
);
5791 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5795 while (alias_list
) {
5796 struct saved_alias
*al
= alias_list
;
5798 alias_list
= alias_list
->next
;
5799 err
= sysfs_slab_alias(al
->s
, al
->name
);
5801 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5806 mutex_unlock(&slab_mutex
);
5811 __initcall(slab_sysfs_init
);
5812 #endif /* CONFIG_SYSFS */
5815 * The /proc/slabinfo ABI
5817 #ifdef CONFIG_SLABINFO
5818 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5820 unsigned long nr_slabs
= 0;
5821 unsigned long nr_objs
= 0;
5822 unsigned long nr_free
= 0;
5824 struct kmem_cache_node
*n
;
5826 for_each_kmem_cache_node(s
, node
, n
) {
5827 nr_slabs
+= node_nr_slabs(n
);
5828 nr_objs
+= node_nr_objs(n
);
5829 nr_free
+= count_partial(n
, count_free
);
5832 sinfo
->active_objs
= nr_objs
- nr_free
;
5833 sinfo
->num_objs
= nr_objs
;
5834 sinfo
->active_slabs
= nr_slabs
;
5835 sinfo
->num_slabs
= nr_slabs
;
5836 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5837 sinfo
->cache_order
= oo_order(s
->oo
);
5840 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5844 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5845 size_t count
, loff_t
*ppos
)
5849 #endif /* CONFIG_SLABINFO */