2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
7 #include <linux/sched.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/security.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/mman.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/userfaultfd_k.h>
18 #include <asm/sections.h>
19 #include <linux/uaccess.h>
23 static inline int is_kernel_rodata(unsigned long addr
)
25 return addr
>= (unsigned long)__start_rodata
&&
26 addr
< (unsigned long)__end_rodata
;
30 * kfree_const - conditionally free memory
31 * @x: pointer to the memory
33 * Function calls kfree only if @x is not in .rodata section.
35 void kfree_const(const void *x
)
37 if (!is_kernel_rodata((unsigned long)x
))
40 EXPORT_SYMBOL(kfree_const
);
43 * kstrdup - allocate space for and copy an existing string
44 * @s: the string to duplicate
45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
47 char *kstrdup(const char *s
, gfp_t gfp
)
56 buf
= kmalloc_track_caller(len
, gfp
);
61 EXPORT_SYMBOL(kstrdup
);
64 * kstrdup_const - conditionally duplicate an existing const string
65 * @s: the string to duplicate
66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
68 * Function returns source string if it is in .rodata section otherwise it
69 * fallbacks to kstrdup.
70 * Strings allocated by kstrdup_const should be freed by kfree_const.
72 const char *kstrdup_const(const char *s
, gfp_t gfp
)
74 if (is_kernel_rodata((unsigned long)s
))
77 return kstrdup(s
, gfp
);
79 EXPORT_SYMBOL(kstrdup_const
);
82 * kstrndup - allocate space for and copy an existing string
83 * @s: the string to duplicate
84 * @max: read at most @max chars from @s
85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
87 char *kstrndup(const char *s
, size_t max
, gfp_t gfp
)
95 len
= strnlen(s
, max
);
96 buf
= kmalloc_track_caller(len
+1, gfp
);
103 EXPORT_SYMBOL(kstrndup
);
106 * kmemdup - duplicate region of memory
108 * @src: memory region to duplicate
109 * @len: memory region length
110 * @gfp: GFP mask to use
112 void *kmemdup(const void *src
, size_t len
, gfp_t gfp
)
116 p
= kmalloc_track_caller(len
, gfp
);
121 EXPORT_SYMBOL(kmemdup
);
124 * memdup_user - duplicate memory region from user space
126 * @src: source address in user space
127 * @len: number of bytes to copy
129 * Returns an ERR_PTR() on failure.
131 void *memdup_user(const void __user
*src
, size_t len
)
136 * Always use GFP_KERNEL, since copy_from_user() can sleep and
137 * cause pagefault, which makes it pointless to use GFP_NOFS
140 p
= kmalloc_track_caller(len
, GFP_KERNEL
);
142 return ERR_PTR(-ENOMEM
);
144 if (copy_from_user(p
, src
, len
)) {
146 return ERR_PTR(-EFAULT
);
151 EXPORT_SYMBOL(memdup_user
);
154 * strndup_user - duplicate an existing string from user space
155 * @s: The string to duplicate
156 * @n: Maximum number of bytes to copy, including the trailing NUL.
158 char *strndup_user(const char __user
*s
, long n
)
163 length
= strnlen_user(s
, n
);
166 return ERR_PTR(-EFAULT
);
169 return ERR_PTR(-EINVAL
);
171 p
= memdup_user(s
, length
);
176 p
[length
- 1] = '\0';
180 EXPORT_SYMBOL(strndup_user
);
183 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
185 * @src: source address in user space
186 * @len: number of bytes to copy
188 * Returns an ERR_PTR() on failure.
190 void *memdup_user_nul(const void __user
*src
, size_t len
)
195 * Always use GFP_KERNEL, since copy_from_user() can sleep and
196 * cause pagefault, which makes it pointless to use GFP_NOFS
199 p
= kmalloc_track_caller(len
+ 1, GFP_KERNEL
);
201 return ERR_PTR(-ENOMEM
);
203 if (copy_from_user(p
, src
, len
)) {
205 return ERR_PTR(-EFAULT
);
211 EXPORT_SYMBOL(memdup_user_nul
);
213 void __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
214 struct vm_area_struct
*prev
, struct rb_node
*rb_parent
)
216 struct vm_area_struct
*next
;
220 next
= prev
->vm_next
;
225 next
= rb_entry(rb_parent
,
226 struct vm_area_struct
, vm_rb
);
235 /* Check if the vma is being used as a stack by this task */
236 int vma_is_stack_for_current(struct vm_area_struct
*vma
)
238 struct task_struct
* __maybe_unused t
= current
;
240 return (vma
->vm_start
<= KSTK_ESP(t
) && vma
->vm_end
>= KSTK_ESP(t
));
243 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
244 void arch_pick_mmap_layout(struct mm_struct
*mm
)
246 mm
->mmap_base
= TASK_UNMAPPED_BASE
;
247 mm
->get_unmapped_area
= arch_get_unmapped_area
;
252 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
253 * back to the regular GUP.
254 * If the architecture not support this function, simply return with no
257 int __weak
__get_user_pages_fast(unsigned long start
,
258 int nr_pages
, int write
, struct page
**pages
)
262 EXPORT_SYMBOL_GPL(__get_user_pages_fast
);
265 * get_user_pages_fast() - pin user pages in memory
266 * @start: starting user address
267 * @nr_pages: number of pages from start to pin
268 * @write: whether pages will be written to
269 * @pages: array that receives pointers to the pages pinned.
270 * Should be at least nr_pages long.
272 * Returns number of pages pinned. This may be fewer than the number
273 * requested. If nr_pages is 0 or negative, returns 0. If no pages
274 * were pinned, returns -errno.
276 * get_user_pages_fast provides equivalent functionality to get_user_pages,
277 * operating on current and current->mm, with force=0 and vma=NULL. However
278 * unlike get_user_pages, it must be called without mmap_sem held.
280 * get_user_pages_fast may take mmap_sem and page table locks, so no
281 * assumptions can be made about lack of locking. get_user_pages_fast is to be
282 * implemented in a way that is advantageous (vs get_user_pages()) when the
283 * user memory area is already faulted in and present in ptes. However if the
284 * pages have to be faulted in, it may turn out to be slightly slower so
285 * callers need to carefully consider what to use. On many architectures,
286 * get_user_pages_fast simply falls back to get_user_pages.
288 int __weak
get_user_pages_fast(unsigned long start
,
289 int nr_pages
, int write
, struct page
**pages
)
291 return get_user_pages_unlocked(start
, nr_pages
, pages
,
292 write
? FOLL_WRITE
: 0);
294 EXPORT_SYMBOL_GPL(get_user_pages_fast
);
296 unsigned long vm_mmap_pgoff(struct file
*file
, unsigned long addr
,
297 unsigned long len
, unsigned long prot
,
298 unsigned long flag
, unsigned long pgoff
)
301 struct mm_struct
*mm
= current
->mm
;
302 unsigned long populate
;
305 ret
= security_mmap_file(file
, prot
, flag
);
307 if (down_write_killable(&mm
->mmap_sem
))
309 ret
= do_mmap_pgoff(file
, addr
, len
, prot
, flag
, pgoff
,
311 up_write(&mm
->mmap_sem
);
312 userfaultfd_unmap_complete(mm
, &uf
);
314 mm_populate(ret
, populate
);
319 unsigned long vm_mmap(struct file
*file
, unsigned long addr
,
320 unsigned long len
, unsigned long prot
,
321 unsigned long flag
, unsigned long offset
)
323 if (unlikely(offset
+ PAGE_ALIGN(len
) < offset
))
325 if (unlikely(offset_in_page(offset
)))
328 return vm_mmap_pgoff(file
, addr
, len
, prot
, flag
, offset
>> PAGE_SHIFT
);
330 EXPORT_SYMBOL(vm_mmap
);
333 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
334 * failure, fall back to non-contiguous (vmalloc) allocation.
335 * @size: size of the request.
336 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
337 * @node: numa node to allocate from
339 * Uses kmalloc to get the memory but if the allocation fails then falls back
340 * to the vmalloc allocator. Use kvfree for freeing the memory.
342 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. __GFP_REPEAT
343 * is supported only for large (>32kB) allocations, and it should be used only if
344 * kmalloc is preferable to the vmalloc fallback, due to visible performance drawbacks.
346 * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
348 void *kvmalloc_node(size_t size
, gfp_t flags
, int node
)
350 gfp_t kmalloc_flags
= flags
;
354 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
355 * so the given set of flags has to be compatible.
357 WARN_ON_ONCE((flags
& GFP_KERNEL
) != GFP_KERNEL
);
360 * We want to attempt a large physically contiguous block first because
361 * it is less likely to fragment multiple larger blocks and therefore
362 * contribute to a long term fragmentation less than vmalloc fallback.
363 * However make sure that larger requests are not too disruptive - no
364 * OOM killer and no allocation failure warnings as we have a fallback.
366 if (size
> PAGE_SIZE
) {
367 kmalloc_flags
|= __GFP_NOWARN
;
370 * We have to override __GFP_REPEAT by __GFP_NORETRY for !costly
371 * requests because there is no other way to tell the allocator
372 * that we want to fail rather than retry endlessly.
374 if (!(kmalloc_flags
& __GFP_REPEAT
) ||
375 (size
<= PAGE_SIZE
<< PAGE_ALLOC_COSTLY_ORDER
))
376 kmalloc_flags
|= __GFP_NORETRY
;
379 ret
= kmalloc_node(size
, kmalloc_flags
, node
);
382 * It doesn't really make sense to fallback to vmalloc for sub page
385 if (ret
|| size
<= PAGE_SIZE
)
388 return __vmalloc_node_flags_caller(size
, node
, flags
,
389 __builtin_return_address(0));
391 EXPORT_SYMBOL(kvmalloc_node
);
393 void kvfree(const void *addr
)
395 if (is_vmalloc_addr(addr
))
400 EXPORT_SYMBOL(kvfree
);
402 static inline void *__page_rmapping(struct page
*page
)
404 unsigned long mapping
;
406 mapping
= (unsigned long)page
->mapping
;
407 mapping
&= ~PAGE_MAPPING_FLAGS
;
409 return (void *)mapping
;
412 /* Neutral page->mapping pointer to address_space or anon_vma or other */
413 void *page_rmapping(struct page
*page
)
415 page
= compound_head(page
);
416 return __page_rmapping(page
);
420 * Return true if this page is mapped into pagetables.
421 * For compound page it returns true if any subpage of compound page is mapped.
423 bool page_mapped(struct page
*page
)
427 if (likely(!PageCompound(page
)))
428 return atomic_read(&page
->_mapcount
) >= 0;
429 page
= compound_head(page
);
430 if (atomic_read(compound_mapcount_ptr(page
)) >= 0)
434 for (i
= 0; i
< hpage_nr_pages(page
); i
++) {
435 if (atomic_read(&page
[i
]._mapcount
) >= 0)
440 EXPORT_SYMBOL(page_mapped
);
442 struct anon_vma
*page_anon_vma(struct page
*page
)
444 unsigned long mapping
;
446 page
= compound_head(page
);
447 mapping
= (unsigned long)page
->mapping
;
448 if ((mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
450 return __page_rmapping(page
);
453 struct address_space
*page_mapping(struct page
*page
)
455 struct address_space
*mapping
;
457 page
= compound_head(page
);
459 /* This happens if someone calls flush_dcache_page on slab page */
460 if (unlikely(PageSlab(page
)))
463 if (unlikely(PageSwapCache(page
))) {
466 entry
.val
= page_private(page
);
467 return swap_address_space(entry
);
470 mapping
= page
->mapping
;
471 if ((unsigned long)mapping
& PAGE_MAPPING_ANON
)
474 return (void *)((unsigned long)mapping
& ~PAGE_MAPPING_FLAGS
);
476 EXPORT_SYMBOL(page_mapping
);
478 /* Slow path of page_mapcount() for compound pages */
479 int __page_mapcount(struct page
*page
)
483 ret
= atomic_read(&page
->_mapcount
) + 1;
485 * For file THP page->_mapcount contains total number of mapping
486 * of the page: no need to look into compound_mapcount.
488 if (!PageAnon(page
) && !PageHuge(page
))
490 page
= compound_head(page
);
491 ret
+= atomic_read(compound_mapcount_ptr(page
)) + 1;
492 if (PageDoubleMap(page
))
496 EXPORT_SYMBOL_GPL(__page_mapcount
);
498 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
;
499 int sysctl_overcommit_ratio __read_mostly
= 50;
500 unsigned long sysctl_overcommit_kbytes __read_mostly
;
501 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
502 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
503 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
505 int overcommit_ratio_handler(struct ctl_table
*table
, int write
,
506 void __user
*buffer
, size_t *lenp
,
511 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
512 if (ret
== 0 && write
)
513 sysctl_overcommit_kbytes
= 0;
517 int overcommit_kbytes_handler(struct ctl_table
*table
, int write
,
518 void __user
*buffer
, size_t *lenp
,
523 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
524 if (ret
== 0 && write
)
525 sysctl_overcommit_ratio
= 0;
530 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
532 unsigned long vm_commit_limit(void)
534 unsigned long allowed
;
536 if (sysctl_overcommit_kbytes
)
537 allowed
= sysctl_overcommit_kbytes
>> (PAGE_SHIFT
- 10);
539 allowed
= ((totalram_pages
- hugetlb_total_pages())
540 * sysctl_overcommit_ratio
/ 100);
541 allowed
+= total_swap_pages
;
547 * Make sure vm_committed_as in one cacheline and not cacheline shared with
548 * other variables. It can be updated by several CPUs frequently.
550 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
553 * The global memory commitment made in the system can be a metric
554 * that can be used to drive ballooning decisions when Linux is hosted
555 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
556 * balancing memory across competing virtual machines that are hosted.
557 * Several metrics drive this policy engine including the guest reported
560 unsigned long vm_memory_committed(void)
562 return percpu_counter_read_positive(&vm_committed_as
);
564 EXPORT_SYMBOL_GPL(vm_memory_committed
);
567 * Check that a process has enough memory to allocate a new virtual
568 * mapping. 0 means there is enough memory for the allocation to
569 * succeed and -ENOMEM implies there is not.
571 * We currently support three overcommit policies, which are set via the
572 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
574 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
575 * Additional code 2002 Jul 20 by Robert Love.
577 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
579 * Note this is a helper function intended to be used by LSMs which
580 * wish to use this logic.
582 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
584 long free
, allowed
, reserve
;
586 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as
) <
587 -(s64
)vm_committed_as_batch
* num_online_cpus(),
588 "memory commitment underflow");
590 vm_acct_memory(pages
);
593 * Sometimes we want to use more memory than we have
595 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
598 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
599 free
= global_page_state(NR_FREE_PAGES
);
600 free
+= global_node_page_state(NR_FILE_PAGES
);
603 * shmem pages shouldn't be counted as free in this
604 * case, they can't be purged, only swapped out, and
605 * that won't affect the overall amount of available
606 * memory in the system.
608 free
-= global_node_page_state(NR_SHMEM
);
610 free
+= get_nr_swap_pages();
613 * Any slabs which are created with the
614 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
615 * which are reclaimable, under pressure. The dentry
616 * cache and most inode caches should fall into this
618 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
621 * Leave reserved pages. The pages are not for anonymous pages.
623 if (free
<= totalreserve_pages
)
626 free
-= totalreserve_pages
;
629 * Reserve some for root
632 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
640 allowed
= vm_commit_limit();
642 * Reserve some for root
645 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
648 * Don't let a single process grow so big a user can't recover
651 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
652 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
655 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
658 vm_unacct_memory(pages
);
664 * get_cmdline() - copy the cmdline value to a buffer.
665 * @task: the task whose cmdline value to copy.
666 * @buffer: the buffer to copy to.
667 * @buflen: the length of the buffer. Larger cmdline values are truncated
669 * Returns the size of the cmdline field copied. Note that the copy does
670 * not guarantee an ending NULL byte.
672 int get_cmdline(struct task_struct
*task
, char *buffer
, int buflen
)
676 struct mm_struct
*mm
= get_task_mm(task
);
677 unsigned long arg_start
, arg_end
, env_start
, env_end
;
681 goto out_mm
; /* Shh! No looking before we're done */
683 down_read(&mm
->mmap_sem
);
684 arg_start
= mm
->arg_start
;
685 arg_end
= mm
->arg_end
;
686 env_start
= mm
->env_start
;
687 env_end
= mm
->env_end
;
688 up_read(&mm
->mmap_sem
);
690 len
= arg_end
- arg_start
;
695 res
= access_process_vm(task
, arg_start
, buffer
, len
, FOLL_FORCE
);
698 * If the nul at the end of args has been overwritten, then
699 * assume application is using setproctitle(3).
701 if (res
> 0 && buffer
[res
-1] != '\0' && len
< buflen
) {
702 len
= strnlen(buffer
, res
);
706 len
= env_end
- env_start
;
707 if (len
> buflen
- res
)
709 res
+= access_process_vm(task
, env_start
,
712 res
= strnlen(buffer
, res
);