Merge tag 'chrome-platform-for-linus-4.13' of git://git.kernel.org/pub/scm/linux...
[linux/fpc-iii.git] / mm / vmscan.c
blobe9210f825219c4ec944b747a84656c5e8f5fd007
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
58 #include "internal.h"
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
63 struct scan_control {
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
67 /* This context's GFP mask */
68 gfp_t gfp_mask;
70 /* Allocation order */
71 int order;
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * are scanned.
77 nodemask_t *nodemask;
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
83 struct mem_cgroup *target_mem_cgroup;
85 /* Scan (total_size >> priority) pages at once */
86 int priority;
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
92 unsigned int may_writepage:1;
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
101 * Cgroups are not reclaimed below their configured memory.low,
102 * unless we threaten to OOM. If any cgroups are skipped due to
103 * memory.low and nothing was reclaimed, go back for memory.low.
105 unsigned int memcg_low_reclaim:1;
106 unsigned int memcg_low_skipped:1;
108 unsigned int hibernation_mode:1;
110 /* One of the zones is ready for compaction */
111 unsigned int compaction_ready:1;
113 /* Incremented by the number of inactive pages that were scanned */
114 unsigned long nr_scanned;
116 /* Number of pages freed so far during a call to shrink_zones() */
117 unsigned long nr_reclaimed;
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field) \
122 do { \
123 if ((_page)->lru.prev != _base) { \
124 struct page *prev; \
126 prev = lru_to_page(&(_page->lru)); \
127 prefetch(&prev->_field); \
129 } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field) \
136 do { \
137 if ((_page)->lru.prev != _base) { \
138 struct page *prev; \
140 prev = lru_to_page(&(_page->lru)); \
141 prefetchw(&prev->_field); \
143 } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
149 * From 0 .. 100. Higher means more swappy.
151 int vm_swappiness = 60;
153 * The total number of pages which are beyond the high watermark within all
154 * zones.
156 unsigned long vm_total_pages;
158 static LIST_HEAD(shrinker_list);
159 static DECLARE_RWSEM(shrinker_rwsem);
161 #ifdef CONFIG_MEMCG
162 static bool global_reclaim(struct scan_control *sc)
164 return !sc->target_mem_cgroup;
168 * sane_reclaim - is the usual dirty throttling mechanism operational?
169 * @sc: scan_control in question
171 * The normal page dirty throttling mechanism in balance_dirty_pages() is
172 * completely broken with the legacy memcg and direct stalling in
173 * shrink_page_list() is used for throttling instead, which lacks all the
174 * niceties such as fairness, adaptive pausing, bandwidth proportional
175 * allocation and configurability.
177 * This function tests whether the vmscan currently in progress can assume
178 * that the normal dirty throttling mechanism is operational.
180 static bool sane_reclaim(struct scan_control *sc)
182 struct mem_cgroup *memcg = sc->target_mem_cgroup;
184 if (!memcg)
185 return true;
186 #ifdef CONFIG_CGROUP_WRITEBACK
187 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 return true;
189 #endif
190 return false;
192 #else
193 static bool global_reclaim(struct scan_control *sc)
195 return true;
198 static bool sane_reclaim(struct scan_control *sc)
200 return true;
202 #endif
205 * This misses isolated pages which are not accounted for to save counters.
206 * As the data only determines if reclaim or compaction continues, it is
207 * not expected that isolated pages will be a dominating factor.
209 unsigned long zone_reclaimable_pages(struct zone *zone)
211 unsigned long nr;
213 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
214 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
215 if (get_nr_swap_pages() > 0)
216 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
217 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219 return nr;
222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
224 unsigned long nr;
226 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
230 if (get_nr_swap_pages() > 0)
231 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
232 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
235 return nr;
239 * lruvec_lru_size - Returns the number of pages on the given LRU list.
240 * @lruvec: lru vector
241 * @lru: lru to use
242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
246 unsigned long lru_size;
247 int zid;
249 if (!mem_cgroup_disabled())
250 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 else
252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 unsigned long size;
258 if (!managed_zone(zone))
259 continue;
261 if (!mem_cgroup_disabled())
262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 else
264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 NR_ZONE_LRU_BASE + lru);
266 lru_size -= min(size, lru_size);
269 return lru_size;
274 * Add a shrinker callback to be called from the vm.
276 int register_shrinker(struct shrinker *shrinker)
278 size_t size = sizeof(*shrinker->nr_deferred);
280 if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 size *= nr_node_ids;
283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 if (!shrinker->nr_deferred)
285 return -ENOMEM;
287 down_write(&shrinker_rwsem);
288 list_add_tail(&shrinker->list, &shrinker_list);
289 up_write(&shrinker_rwsem);
290 return 0;
292 EXPORT_SYMBOL(register_shrinker);
295 * Remove one
297 void unregister_shrinker(struct shrinker *shrinker)
299 down_write(&shrinker_rwsem);
300 list_del(&shrinker->list);
301 up_write(&shrinker_rwsem);
302 kfree(shrinker->nr_deferred);
304 EXPORT_SYMBOL(unregister_shrinker);
306 #define SHRINK_BATCH 128
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 struct shrinker *shrinker,
310 unsigned long nr_scanned,
311 unsigned long nr_eligible)
313 unsigned long freed = 0;
314 unsigned long long delta;
315 long total_scan;
316 long freeable;
317 long nr;
318 long new_nr;
319 int nid = shrinkctl->nid;
320 long batch_size = shrinker->batch ? shrinker->batch
321 : SHRINK_BATCH;
322 long scanned = 0, next_deferred;
324 freeable = shrinker->count_objects(shrinker, shrinkctl);
325 if (freeable == 0)
326 return 0;
329 * copy the current shrinker scan count into a local variable
330 * and zero it so that other concurrent shrinker invocations
331 * don't also do this scanning work.
333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
335 total_scan = nr;
336 delta = (4 * nr_scanned) / shrinker->seeks;
337 delta *= freeable;
338 do_div(delta, nr_eligible + 1);
339 total_scan += delta;
340 if (total_scan < 0) {
341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 shrinker->scan_objects, total_scan);
343 total_scan = freeable;
344 next_deferred = nr;
345 } else
346 next_deferred = total_scan;
349 * We need to avoid excessive windup on filesystem shrinkers
350 * due to large numbers of GFP_NOFS allocations causing the
351 * shrinkers to return -1 all the time. This results in a large
352 * nr being built up so when a shrink that can do some work
353 * comes along it empties the entire cache due to nr >>>
354 * freeable. This is bad for sustaining a working set in
355 * memory.
357 * Hence only allow the shrinker to scan the entire cache when
358 * a large delta change is calculated directly.
360 if (delta < freeable / 4)
361 total_scan = min(total_scan, freeable / 2);
364 * Avoid risking looping forever due to too large nr value:
365 * never try to free more than twice the estimate number of
366 * freeable entries.
368 if (total_scan > freeable * 2)
369 total_scan = freeable * 2;
371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 nr_scanned, nr_eligible,
373 freeable, delta, total_scan);
376 * Normally, we should not scan less than batch_size objects in one
377 * pass to avoid too frequent shrinker calls, but if the slab has less
378 * than batch_size objects in total and we are really tight on memory,
379 * we will try to reclaim all available objects, otherwise we can end
380 * up failing allocations although there are plenty of reclaimable
381 * objects spread over several slabs with usage less than the
382 * batch_size.
384 * We detect the "tight on memory" situations by looking at the total
385 * number of objects we want to scan (total_scan). If it is greater
386 * than the total number of objects on slab (freeable), we must be
387 * scanning at high prio and therefore should try to reclaim as much as
388 * possible.
390 while (total_scan >= batch_size ||
391 total_scan >= freeable) {
392 unsigned long ret;
393 unsigned long nr_to_scan = min(batch_size, total_scan);
395 shrinkctl->nr_to_scan = nr_to_scan;
396 ret = shrinker->scan_objects(shrinker, shrinkctl);
397 if (ret == SHRINK_STOP)
398 break;
399 freed += ret;
401 count_vm_events(SLABS_SCANNED, nr_to_scan);
402 total_scan -= nr_to_scan;
403 scanned += nr_to_scan;
405 cond_resched();
408 if (next_deferred >= scanned)
409 next_deferred -= scanned;
410 else
411 next_deferred = 0;
413 * move the unused scan count back into the shrinker in a
414 * manner that handles concurrent updates. If we exhausted the
415 * scan, there is no need to do an update.
417 if (next_deferred > 0)
418 new_nr = atomic_long_add_return(next_deferred,
419 &shrinker->nr_deferred[nid]);
420 else
421 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
423 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
424 return freed;
428 * shrink_slab - shrink slab caches
429 * @gfp_mask: allocation context
430 * @nid: node whose slab caches to target
431 * @memcg: memory cgroup whose slab caches to target
432 * @nr_scanned: pressure numerator
433 * @nr_eligible: pressure denominator
435 * Call the shrink functions to age shrinkable caches.
437 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
438 * unaware shrinkers will receive a node id of 0 instead.
440 * @memcg specifies the memory cgroup to target. If it is not NULL,
441 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442 * objects from the memory cgroup specified. Otherwise, only unaware
443 * shrinkers are called.
445 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
446 * the available objects should be scanned. Page reclaim for example
447 * passes the number of pages scanned and the number of pages on the
448 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
449 * when it encountered mapped pages. The ratio is further biased by
450 * the ->seeks setting of the shrink function, which indicates the
451 * cost to recreate an object relative to that of an LRU page.
453 * Returns the number of reclaimed slab objects.
455 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
456 struct mem_cgroup *memcg,
457 unsigned long nr_scanned,
458 unsigned long nr_eligible)
460 struct shrinker *shrinker;
461 unsigned long freed = 0;
463 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 return 0;
466 if (nr_scanned == 0)
467 nr_scanned = SWAP_CLUSTER_MAX;
469 if (!down_read_trylock(&shrinker_rwsem)) {
471 * If we would return 0, our callers would understand that we
472 * have nothing else to shrink and give up trying. By returning
473 * 1 we keep it going and assume we'll be able to shrink next
474 * time.
476 freed = 1;
477 goto out;
480 list_for_each_entry(shrinker, &shrinker_list, list) {
481 struct shrink_control sc = {
482 .gfp_mask = gfp_mask,
483 .nid = nid,
484 .memcg = memcg,
488 * If kernel memory accounting is disabled, we ignore
489 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
490 * passing NULL for memcg.
492 if (memcg_kmem_enabled() &&
493 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 continue;
496 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
497 sc.nid = 0;
499 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
502 up_read(&shrinker_rwsem);
503 out:
504 cond_resched();
505 return freed;
508 void drop_slab_node(int nid)
510 unsigned long freed;
512 do {
513 struct mem_cgroup *memcg = NULL;
515 freed = 0;
516 do {
517 freed += shrink_slab(GFP_KERNEL, nid, memcg,
518 1000, 1000);
519 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
520 } while (freed > 10);
523 void drop_slab(void)
525 int nid;
527 for_each_online_node(nid)
528 drop_slab_node(nid);
531 static inline int is_page_cache_freeable(struct page *page)
534 * A freeable page cache page is referenced only by the caller
535 * that isolated the page, the page cache radix tree and
536 * optional buffer heads at page->private.
538 return page_count(page) - page_has_private(page) == 2;
541 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
543 if (current->flags & PF_SWAPWRITE)
544 return 1;
545 if (!inode_write_congested(inode))
546 return 1;
547 if (inode_to_bdi(inode) == current->backing_dev_info)
548 return 1;
549 return 0;
553 * We detected a synchronous write error writing a page out. Probably
554 * -ENOSPC. We need to propagate that into the address_space for a subsequent
555 * fsync(), msync() or close().
557 * The tricky part is that after writepage we cannot touch the mapping: nothing
558 * prevents it from being freed up. But we have a ref on the page and once
559 * that page is locked, the mapping is pinned.
561 * We're allowed to run sleeping lock_page() here because we know the caller has
562 * __GFP_FS.
564 static void handle_write_error(struct address_space *mapping,
565 struct page *page, int error)
567 lock_page(page);
568 if (page_mapping(page) == mapping)
569 mapping_set_error(mapping, error);
570 unlock_page(page);
573 /* possible outcome of pageout() */
574 typedef enum {
575 /* failed to write page out, page is locked */
576 PAGE_KEEP,
577 /* move page to the active list, page is locked */
578 PAGE_ACTIVATE,
579 /* page has been sent to the disk successfully, page is unlocked */
580 PAGE_SUCCESS,
581 /* page is clean and locked */
582 PAGE_CLEAN,
583 } pageout_t;
586 * pageout is called by shrink_page_list() for each dirty page.
587 * Calls ->writepage().
589 static pageout_t pageout(struct page *page, struct address_space *mapping,
590 struct scan_control *sc)
593 * If the page is dirty, only perform writeback if that write
594 * will be non-blocking. To prevent this allocation from being
595 * stalled by pagecache activity. But note that there may be
596 * stalls if we need to run get_block(). We could test
597 * PagePrivate for that.
599 * If this process is currently in __generic_file_write_iter() against
600 * this page's queue, we can perform writeback even if that
601 * will block.
603 * If the page is swapcache, write it back even if that would
604 * block, for some throttling. This happens by accident, because
605 * swap_backing_dev_info is bust: it doesn't reflect the
606 * congestion state of the swapdevs. Easy to fix, if needed.
608 if (!is_page_cache_freeable(page))
609 return PAGE_KEEP;
610 if (!mapping) {
612 * Some data journaling orphaned pages can have
613 * page->mapping == NULL while being dirty with clean buffers.
615 if (page_has_private(page)) {
616 if (try_to_free_buffers(page)) {
617 ClearPageDirty(page);
618 pr_info("%s: orphaned page\n", __func__);
619 return PAGE_CLEAN;
622 return PAGE_KEEP;
624 if (mapping->a_ops->writepage == NULL)
625 return PAGE_ACTIVATE;
626 if (!may_write_to_inode(mapping->host, sc))
627 return PAGE_KEEP;
629 if (clear_page_dirty_for_io(page)) {
630 int res;
631 struct writeback_control wbc = {
632 .sync_mode = WB_SYNC_NONE,
633 .nr_to_write = SWAP_CLUSTER_MAX,
634 .range_start = 0,
635 .range_end = LLONG_MAX,
636 .for_reclaim = 1,
639 SetPageReclaim(page);
640 res = mapping->a_ops->writepage(page, &wbc);
641 if (res < 0)
642 handle_write_error(mapping, page, res);
643 if (res == AOP_WRITEPAGE_ACTIVATE) {
644 ClearPageReclaim(page);
645 return PAGE_ACTIVATE;
648 if (!PageWriteback(page)) {
649 /* synchronous write or broken a_ops? */
650 ClearPageReclaim(page);
652 trace_mm_vmscan_writepage(page);
653 inc_node_page_state(page, NR_VMSCAN_WRITE);
654 return PAGE_SUCCESS;
657 return PAGE_CLEAN;
661 * Same as remove_mapping, but if the page is removed from the mapping, it
662 * gets returned with a refcount of 0.
664 static int __remove_mapping(struct address_space *mapping, struct page *page,
665 bool reclaimed)
667 unsigned long flags;
669 BUG_ON(!PageLocked(page));
670 BUG_ON(mapping != page_mapping(page));
672 spin_lock_irqsave(&mapping->tree_lock, flags);
674 * The non racy check for a busy page.
676 * Must be careful with the order of the tests. When someone has
677 * a ref to the page, it may be possible that they dirty it then
678 * drop the reference. So if PageDirty is tested before page_count
679 * here, then the following race may occur:
681 * get_user_pages(&page);
682 * [user mapping goes away]
683 * write_to(page);
684 * !PageDirty(page) [good]
685 * SetPageDirty(page);
686 * put_page(page);
687 * !page_count(page) [good, discard it]
689 * [oops, our write_to data is lost]
691 * Reversing the order of the tests ensures such a situation cannot
692 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693 * load is not satisfied before that of page->_refcount.
695 * Note that if SetPageDirty is always performed via set_page_dirty,
696 * and thus under tree_lock, then this ordering is not required.
698 if (!page_ref_freeze(page, 2))
699 goto cannot_free;
700 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
701 if (unlikely(PageDirty(page))) {
702 page_ref_unfreeze(page, 2);
703 goto cannot_free;
706 if (PageSwapCache(page)) {
707 swp_entry_t swap = { .val = page_private(page) };
708 mem_cgroup_swapout(page, swap);
709 __delete_from_swap_cache(page);
710 spin_unlock_irqrestore(&mapping->tree_lock, flags);
711 put_swap_page(page, swap);
712 } else {
713 void (*freepage)(struct page *);
714 void *shadow = NULL;
716 freepage = mapping->a_ops->freepage;
718 * Remember a shadow entry for reclaimed file cache in
719 * order to detect refaults, thus thrashing, later on.
721 * But don't store shadows in an address space that is
722 * already exiting. This is not just an optizimation,
723 * inode reclaim needs to empty out the radix tree or
724 * the nodes are lost. Don't plant shadows behind its
725 * back.
727 * We also don't store shadows for DAX mappings because the
728 * only page cache pages found in these are zero pages
729 * covering holes, and because we don't want to mix DAX
730 * exceptional entries and shadow exceptional entries in the
731 * same page_tree.
733 if (reclaimed && page_is_file_cache(page) &&
734 !mapping_exiting(mapping) && !dax_mapping(mapping))
735 shadow = workingset_eviction(mapping, page);
736 __delete_from_page_cache(page, shadow);
737 spin_unlock_irqrestore(&mapping->tree_lock, flags);
739 if (freepage != NULL)
740 freepage(page);
743 return 1;
745 cannot_free:
746 spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 return 0;
751 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
752 * someone else has a ref on the page, abort and return 0. If it was
753 * successfully detached, return 1. Assumes the caller has a single ref on
754 * this page.
756 int remove_mapping(struct address_space *mapping, struct page *page)
758 if (__remove_mapping(mapping, page, false)) {
760 * Unfreezing the refcount with 1 rather than 2 effectively
761 * drops the pagecache ref for us without requiring another
762 * atomic operation.
764 page_ref_unfreeze(page, 1);
765 return 1;
767 return 0;
771 * putback_lru_page - put previously isolated page onto appropriate LRU list
772 * @page: page to be put back to appropriate lru list
774 * Add previously isolated @page to appropriate LRU list.
775 * Page may still be unevictable for other reasons.
777 * lru_lock must not be held, interrupts must be enabled.
779 void putback_lru_page(struct page *page)
781 bool is_unevictable;
782 int was_unevictable = PageUnevictable(page);
784 VM_BUG_ON_PAGE(PageLRU(page), page);
786 redo:
787 ClearPageUnevictable(page);
789 if (page_evictable(page)) {
791 * For evictable pages, we can use the cache.
792 * In event of a race, worst case is we end up with an
793 * unevictable page on [in]active list.
794 * We know how to handle that.
796 is_unevictable = false;
797 lru_cache_add(page);
798 } else {
800 * Put unevictable pages directly on zone's unevictable
801 * list.
803 is_unevictable = true;
804 add_page_to_unevictable_list(page);
806 * When racing with an mlock or AS_UNEVICTABLE clearing
807 * (page is unlocked) make sure that if the other thread
808 * does not observe our setting of PG_lru and fails
809 * isolation/check_move_unevictable_pages,
810 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 * the page back to the evictable list.
813 * The other side is TestClearPageMlocked() or shmem_lock().
815 smp_mb();
819 * page's status can change while we move it among lru. If an evictable
820 * page is on unevictable list, it never be freed. To avoid that,
821 * check after we added it to the list, again.
823 if (is_unevictable && page_evictable(page)) {
824 if (!isolate_lru_page(page)) {
825 put_page(page);
826 goto redo;
828 /* This means someone else dropped this page from LRU
829 * So, it will be freed or putback to LRU again. There is
830 * nothing to do here.
834 if (was_unevictable && !is_unevictable)
835 count_vm_event(UNEVICTABLE_PGRESCUED);
836 else if (!was_unevictable && is_unevictable)
837 count_vm_event(UNEVICTABLE_PGCULLED);
839 put_page(page); /* drop ref from isolate */
842 enum page_references {
843 PAGEREF_RECLAIM,
844 PAGEREF_RECLAIM_CLEAN,
845 PAGEREF_KEEP,
846 PAGEREF_ACTIVATE,
849 static enum page_references page_check_references(struct page *page,
850 struct scan_control *sc)
852 int referenced_ptes, referenced_page;
853 unsigned long vm_flags;
855 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
856 &vm_flags);
857 referenced_page = TestClearPageReferenced(page);
860 * Mlock lost the isolation race with us. Let try_to_unmap()
861 * move the page to the unevictable list.
863 if (vm_flags & VM_LOCKED)
864 return PAGEREF_RECLAIM;
866 if (referenced_ptes) {
867 if (PageSwapBacked(page))
868 return PAGEREF_ACTIVATE;
870 * All mapped pages start out with page table
871 * references from the instantiating fault, so we need
872 * to look twice if a mapped file page is used more
873 * than once.
875 * Mark it and spare it for another trip around the
876 * inactive list. Another page table reference will
877 * lead to its activation.
879 * Note: the mark is set for activated pages as well
880 * so that recently deactivated but used pages are
881 * quickly recovered.
883 SetPageReferenced(page);
885 if (referenced_page || referenced_ptes > 1)
886 return PAGEREF_ACTIVATE;
889 * Activate file-backed executable pages after first usage.
891 if (vm_flags & VM_EXEC)
892 return PAGEREF_ACTIVATE;
894 return PAGEREF_KEEP;
897 /* Reclaim if clean, defer dirty pages to writeback */
898 if (referenced_page && !PageSwapBacked(page))
899 return PAGEREF_RECLAIM_CLEAN;
901 return PAGEREF_RECLAIM;
904 /* Check if a page is dirty or under writeback */
905 static void page_check_dirty_writeback(struct page *page,
906 bool *dirty, bool *writeback)
908 struct address_space *mapping;
911 * Anonymous pages are not handled by flushers and must be written
912 * from reclaim context. Do not stall reclaim based on them
914 if (!page_is_file_cache(page) ||
915 (PageAnon(page) && !PageSwapBacked(page))) {
916 *dirty = false;
917 *writeback = false;
918 return;
921 /* By default assume that the page flags are accurate */
922 *dirty = PageDirty(page);
923 *writeback = PageWriteback(page);
925 /* Verify dirty/writeback state if the filesystem supports it */
926 if (!page_has_private(page))
927 return;
929 mapping = page_mapping(page);
930 if (mapping && mapping->a_ops->is_dirty_writeback)
931 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
934 struct reclaim_stat {
935 unsigned nr_dirty;
936 unsigned nr_unqueued_dirty;
937 unsigned nr_congested;
938 unsigned nr_writeback;
939 unsigned nr_immediate;
940 unsigned nr_activate;
941 unsigned nr_ref_keep;
942 unsigned nr_unmap_fail;
946 * shrink_page_list() returns the number of reclaimed pages
948 static unsigned long shrink_page_list(struct list_head *page_list,
949 struct pglist_data *pgdat,
950 struct scan_control *sc,
951 enum ttu_flags ttu_flags,
952 struct reclaim_stat *stat,
953 bool force_reclaim)
955 LIST_HEAD(ret_pages);
956 LIST_HEAD(free_pages);
957 int pgactivate = 0;
958 unsigned nr_unqueued_dirty = 0;
959 unsigned nr_dirty = 0;
960 unsigned nr_congested = 0;
961 unsigned nr_reclaimed = 0;
962 unsigned nr_writeback = 0;
963 unsigned nr_immediate = 0;
964 unsigned nr_ref_keep = 0;
965 unsigned nr_unmap_fail = 0;
967 cond_resched();
969 while (!list_empty(page_list)) {
970 struct address_space *mapping;
971 struct page *page;
972 int may_enter_fs;
973 enum page_references references = PAGEREF_RECLAIM_CLEAN;
974 bool dirty, writeback;
976 cond_resched();
978 page = lru_to_page(page_list);
979 list_del(&page->lru);
981 if (!trylock_page(page))
982 goto keep;
984 VM_BUG_ON_PAGE(PageActive(page), page);
986 sc->nr_scanned++;
988 if (unlikely(!page_evictable(page)))
989 goto activate_locked;
991 if (!sc->may_unmap && page_mapped(page))
992 goto keep_locked;
994 /* Double the slab pressure for mapped and swapcache pages */
995 if ((page_mapped(page) || PageSwapCache(page)) &&
996 !(PageAnon(page) && !PageSwapBacked(page)))
997 sc->nr_scanned++;
999 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1000 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1003 * The number of dirty pages determines if a zone is marked
1004 * reclaim_congested which affects wait_iff_congested. kswapd
1005 * will stall and start writing pages if the tail of the LRU
1006 * is all dirty unqueued pages.
1008 page_check_dirty_writeback(page, &dirty, &writeback);
1009 if (dirty || writeback)
1010 nr_dirty++;
1012 if (dirty && !writeback)
1013 nr_unqueued_dirty++;
1016 * Treat this page as congested if the underlying BDI is or if
1017 * pages are cycling through the LRU so quickly that the
1018 * pages marked for immediate reclaim are making it to the
1019 * end of the LRU a second time.
1021 mapping = page_mapping(page);
1022 if (((dirty || writeback) && mapping &&
1023 inode_write_congested(mapping->host)) ||
1024 (writeback && PageReclaim(page)))
1025 nr_congested++;
1028 * If a page at the tail of the LRU is under writeback, there
1029 * are three cases to consider.
1031 * 1) If reclaim is encountering an excessive number of pages
1032 * under writeback and this page is both under writeback and
1033 * PageReclaim then it indicates that pages are being queued
1034 * for IO but are being recycled through the LRU before the
1035 * IO can complete. Waiting on the page itself risks an
1036 * indefinite stall if it is impossible to writeback the
1037 * page due to IO error or disconnected storage so instead
1038 * note that the LRU is being scanned too quickly and the
1039 * caller can stall after page list has been processed.
1041 * 2) Global or new memcg reclaim encounters a page that is
1042 * not marked for immediate reclaim, or the caller does not
1043 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1044 * not to fs). In this case mark the page for immediate
1045 * reclaim and continue scanning.
1047 * Require may_enter_fs because we would wait on fs, which
1048 * may not have submitted IO yet. And the loop driver might
1049 * enter reclaim, and deadlock if it waits on a page for
1050 * which it is needed to do the write (loop masks off
1051 * __GFP_IO|__GFP_FS for this reason); but more thought
1052 * would probably show more reasons.
1054 * 3) Legacy memcg encounters a page that is already marked
1055 * PageReclaim. memcg does not have any dirty pages
1056 * throttling so we could easily OOM just because too many
1057 * pages are in writeback and there is nothing else to
1058 * reclaim. Wait for the writeback to complete.
1060 * In cases 1) and 2) we activate the pages to get them out of
1061 * the way while we continue scanning for clean pages on the
1062 * inactive list and refilling from the active list. The
1063 * observation here is that waiting for disk writes is more
1064 * expensive than potentially causing reloads down the line.
1065 * Since they're marked for immediate reclaim, they won't put
1066 * memory pressure on the cache working set any longer than it
1067 * takes to write them to disk.
1069 if (PageWriteback(page)) {
1070 /* Case 1 above */
1071 if (current_is_kswapd() &&
1072 PageReclaim(page) &&
1073 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1074 nr_immediate++;
1075 goto activate_locked;
1077 /* Case 2 above */
1078 } else if (sane_reclaim(sc) ||
1079 !PageReclaim(page) || !may_enter_fs) {
1081 * This is slightly racy - end_page_writeback()
1082 * might have just cleared PageReclaim, then
1083 * setting PageReclaim here end up interpreted
1084 * as PageReadahead - but that does not matter
1085 * enough to care. What we do want is for this
1086 * page to have PageReclaim set next time memcg
1087 * reclaim reaches the tests above, so it will
1088 * then wait_on_page_writeback() to avoid OOM;
1089 * and it's also appropriate in global reclaim.
1091 SetPageReclaim(page);
1092 nr_writeback++;
1093 goto activate_locked;
1095 /* Case 3 above */
1096 } else {
1097 unlock_page(page);
1098 wait_on_page_writeback(page);
1099 /* then go back and try same page again */
1100 list_add_tail(&page->lru, page_list);
1101 continue;
1105 if (!force_reclaim)
1106 references = page_check_references(page, sc);
1108 switch (references) {
1109 case PAGEREF_ACTIVATE:
1110 goto activate_locked;
1111 case PAGEREF_KEEP:
1112 nr_ref_keep++;
1113 goto keep_locked;
1114 case PAGEREF_RECLAIM:
1115 case PAGEREF_RECLAIM_CLEAN:
1116 ; /* try to reclaim the page below */
1120 * Anonymous process memory has backing store?
1121 * Try to allocate it some swap space here.
1122 * Lazyfree page could be freed directly
1124 if (PageAnon(page) && PageSwapBacked(page) &&
1125 !PageSwapCache(page)) {
1126 if (!(sc->gfp_mask & __GFP_IO))
1127 goto keep_locked;
1128 if (PageTransHuge(page)) {
1129 /* cannot split THP, skip it */
1130 if (!can_split_huge_page(page, NULL))
1131 goto activate_locked;
1133 * Split pages without a PMD map right
1134 * away. Chances are some or all of the
1135 * tail pages can be freed without IO.
1137 if (!compound_mapcount(page) &&
1138 split_huge_page_to_list(page, page_list))
1139 goto activate_locked;
1141 if (!add_to_swap(page)) {
1142 if (!PageTransHuge(page))
1143 goto activate_locked;
1144 /* Split THP and swap individual base pages */
1145 if (split_huge_page_to_list(page, page_list))
1146 goto activate_locked;
1147 if (!add_to_swap(page))
1148 goto activate_locked;
1151 /* XXX: We don't support THP writes */
1152 if (PageTransHuge(page) &&
1153 split_huge_page_to_list(page, page_list)) {
1154 delete_from_swap_cache(page);
1155 goto activate_locked;
1158 may_enter_fs = 1;
1160 /* Adding to swap updated mapping */
1161 mapping = page_mapping(page);
1162 } else if (unlikely(PageTransHuge(page))) {
1163 /* Split file THP */
1164 if (split_huge_page_to_list(page, page_list))
1165 goto keep_locked;
1168 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1171 * The page is mapped into the page tables of one or more
1172 * processes. Try to unmap it here.
1174 if (page_mapped(page)) {
1175 if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) {
1176 nr_unmap_fail++;
1177 goto activate_locked;
1181 if (PageDirty(page)) {
1183 * Only kswapd can writeback filesystem pages
1184 * to avoid risk of stack overflow. But avoid
1185 * injecting inefficient single-page IO into
1186 * flusher writeback as much as possible: only
1187 * write pages when we've encountered many
1188 * dirty pages, and when we've already scanned
1189 * the rest of the LRU for clean pages and see
1190 * the same dirty pages again (PageReclaim).
1192 if (page_is_file_cache(page) &&
1193 (!current_is_kswapd() || !PageReclaim(page) ||
1194 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1196 * Immediately reclaim when written back.
1197 * Similar in principal to deactivate_page()
1198 * except we already have the page isolated
1199 * and know it's dirty
1201 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1202 SetPageReclaim(page);
1204 goto activate_locked;
1207 if (references == PAGEREF_RECLAIM_CLEAN)
1208 goto keep_locked;
1209 if (!may_enter_fs)
1210 goto keep_locked;
1211 if (!sc->may_writepage)
1212 goto keep_locked;
1215 * Page is dirty. Flush the TLB if a writable entry
1216 * potentially exists to avoid CPU writes after IO
1217 * starts and then write it out here.
1219 try_to_unmap_flush_dirty();
1220 switch (pageout(page, mapping, sc)) {
1221 case PAGE_KEEP:
1222 goto keep_locked;
1223 case PAGE_ACTIVATE:
1224 goto activate_locked;
1225 case PAGE_SUCCESS:
1226 if (PageWriteback(page))
1227 goto keep;
1228 if (PageDirty(page))
1229 goto keep;
1232 * A synchronous write - probably a ramdisk. Go
1233 * ahead and try to reclaim the page.
1235 if (!trylock_page(page))
1236 goto keep;
1237 if (PageDirty(page) || PageWriteback(page))
1238 goto keep_locked;
1239 mapping = page_mapping(page);
1240 case PAGE_CLEAN:
1241 ; /* try to free the page below */
1246 * If the page has buffers, try to free the buffer mappings
1247 * associated with this page. If we succeed we try to free
1248 * the page as well.
1250 * We do this even if the page is PageDirty().
1251 * try_to_release_page() does not perform I/O, but it is
1252 * possible for a page to have PageDirty set, but it is actually
1253 * clean (all its buffers are clean). This happens if the
1254 * buffers were written out directly, with submit_bh(). ext3
1255 * will do this, as well as the blockdev mapping.
1256 * try_to_release_page() will discover that cleanness and will
1257 * drop the buffers and mark the page clean - it can be freed.
1259 * Rarely, pages can have buffers and no ->mapping. These are
1260 * the pages which were not successfully invalidated in
1261 * truncate_complete_page(). We try to drop those buffers here
1262 * and if that worked, and the page is no longer mapped into
1263 * process address space (page_count == 1) it can be freed.
1264 * Otherwise, leave the page on the LRU so it is swappable.
1266 if (page_has_private(page)) {
1267 if (!try_to_release_page(page, sc->gfp_mask))
1268 goto activate_locked;
1269 if (!mapping && page_count(page) == 1) {
1270 unlock_page(page);
1271 if (put_page_testzero(page))
1272 goto free_it;
1273 else {
1275 * rare race with speculative reference.
1276 * the speculative reference will free
1277 * this page shortly, so we may
1278 * increment nr_reclaimed here (and
1279 * leave it off the LRU).
1281 nr_reclaimed++;
1282 continue;
1287 if (PageAnon(page) && !PageSwapBacked(page)) {
1288 /* follow __remove_mapping for reference */
1289 if (!page_ref_freeze(page, 1))
1290 goto keep_locked;
1291 if (PageDirty(page)) {
1292 page_ref_unfreeze(page, 1);
1293 goto keep_locked;
1296 count_vm_event(PGLAZYFREED);
1297 count_memcg_page_event(page, PGLAZYFREED);
1298 } else if (!mapping || !__remove_mapping(mapping, page, true))
1299 goto keep_locked;
1301 * At this point, we have no other references and there is
1302 * no way to pick any more up (removed from LRU, removed
1303 * from pagecache). Can use non-atomic bitops now (and
1304 * we obviously don't have to worry about waking up a process
1305 * waiting on the page lock, because there are no references.
1307 __ClearPageLocked(page);
1308 free_it:
1309 nr_reclaimed++;
1312 * Is there need to periodically free_page_list? It would
1313 * appear not as the counts should be low
1315 list_add(&page->lru, &free_pages);
1316 continue;
1318 activate_locked:
1319 /* Not a candidate for swapping, so reclaim swap space. */
1320 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1321 PageMlocked(page)))
1322 try_to_free_swap(page);
1323 VM_BUG_ON_PAGE(PageActive(page), page);
1324 if (!PageMlocked(page)) {
1325 SetPageActive(page);
1326 pgactivate++;
1327 count_memcg_page_event(page, PGACTIVATE);
1329 keep_locked:
1330 unlock_page(page);
1331 keep:
1332 list_add(&page->lru, &ret_pages);
1333 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1336 mem_cgroup_uncharge_list(&free_pages);
1337 try_to_unmap_flush();
1338 free_hot_cold_page_list(&free_pages, true);
1340 list_splice(&ret_pages, page_list);
1341 count_vm_events(PGACTIVATE, pgactivate);
1343 if (stat) {
1344 stat->nr_dirty = nr_dirty;
1345 stat->nr_congested = nr_congested;
1346 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1347 stat->nr_writeback = nr_writeback;
1348 stat->nr_immediate = nr_immediate;
1349 stat->nr_activate = pgactivate;
1350 stat->nr_ref_keep = nr_ref_keep;
1351 stat->nr_unmap_fail = nr_unmap_fail;
1353 return nr_reclaimed;
1356 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1357 struct list_head *page_list)
1359 struct scan_control sc = {
1360 .gfp_mask = GFP_KERNEL,
1361 .priority = DEF_PRIORITY,
1362 .may_unmap = 1,
1364 unsigned long ret;
1365 struct page *page, *next;
1366 LIST_HEAD(clean_pages);
1368 list_for_each_entry_safe(page, next, page_list, lru) {
1369 if (page_is_file_cache(page) && !PageDirty(page) &&
1370 !__PageMovable(page)) {
1371 ClearPageActive(page);
1372 list_move(&page->lru, &clean_pages);
1376 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1377 TTU_IGNORE_ACCESS, NULL, true);
1378 list_splice(&clean_pages, page_list);
1379 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1380 return ret;
1384 * Attempt to remove the specified page from its LRU. Only take this page
1385 * if it is of the appropriate PageActive status. Pages which are being
1386 * freed elsewhere are also ignored.
1388 * page: page to consider
1389 * mode: one of the LRU isolation modes defined above
1391 * returns 0 on success, -ve errno on failure.
1393 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1395 int ret = -EINVAL;
1397 /* Only take pages on the LRU. */
1398 if (!PageLRU(page))
1399 return ret;
1401 /* Compaction should not handle unevictable pages but CMA can do so */
1402 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1403 return ret;
1405 ret = -EBUSY;
1408 * To minimise LRU disruption, the caller can indicate that it only
1409 * wants to isolate pages it will be able to operate on without
1410 * blocking - clean pages for the most part.
1412 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1413 * that it is possible to migrate without blocking
1415 if (mode & ISOLATE_ASYNC_MIGRATE) {
1416 /* All the caller can do on PageWriteback is block */
1417 if (PageWriteback(page))
1418 return ret;
1420 if (PageDirty(page)) {
1421 struct address_space *mapping;
1424 * Only pages without mappings or that have a
1425 * ->migratepage callback are possible to migrate
1426 * without blocking
1428 mapping = page_mapping(page);
1429 if (mapping && !mapping->a_ops->migratepage)
1430 return ret;
1434 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1435 return ret;
1437 if (likely(get_page_unless_zero(page))) {
1439 * Be careful not to clear PageLRU until after we're
1440 * sure the page is not being freed elsewhere -- the
1441 * page release code relies on it.
1443 ClearPageLRU(page);
1444 ret = 0;
1447 return ret;
1452 * Update LRU sizes after isolating pages. The LRU size updates must
1453 * be complete before mem_cgroup_update_lru_size due to a santity check.
1455 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1456 enum lru_list lru, unsigned long *nr_zone_taken)
1458 int zid;
1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 if (!nr_zone_taken[zid])
1462 continue;
1464 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1465 #ifdef CONFIG_MEMCG
1466 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1467 #endif
1473 * zone_lru_lock is heavily contended. Some of the functions that
1474 * shrink the lists perform better by taking out a batch of pages
1475 * and working on them outside the LRU lock.
1477 * For pagecache intensive workloads, this function is the hottest
1478 * spot in the kernel (apart from copy_*_user functions).
1480 * Appropriate locks must be held before calling this function.
1482 * @nr_to_scan: The number of eligible pages to look through on the list.
1483 * @lruvec: The LRU vector to pull pages from.
1484 * @dst: The temp list to put pages on to.
1485 * @nr_scanned: The number of pages that were scanned.
1486 * @sc: The scan_control struct for this reclaim session
1487 * @mode: One of the LRU isolation modes
1488 * @lru: LRU list id for isolating
1490 * returns how many pages were moved onto *@dst.
1492 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1493 struct lruvec *lruvec, struct list_head *dst,
1494 unsigned long *nr_scanned, struct scan_control *sc,
1495 isolate_mode_t mode, enum lru_list lru)
1497 struct list_head *src = &lruvec->lists[lru];
1498 unsigned long nr_taken = 0;
1499 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1500 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1501 unsigned long skipped = 0;
1502 unsigned long scan, total_scan, nr_pages;
1503 LIST_HEAD(pages_skipped);
1505 scan = 0;
1506 for (total_scan = 0;
1507 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1508 total_scan++) {
1509 struct page *page;
1511 page = lru_to_page(src);
1512 prefetchw_prev_lru_page(page, src, flags);
1514 VM_BUG_ON_PAGE(!PageLRU(page), page);
1516 if (page_zonenum(page) > sc->reclaim_idx) {
1517 list_move(&page->lru, &pages_skipped);
1518 nr_skipped[page_zonenum(page)]++;
1519 continue;
1523 * Do not count skipped pages because that makes the function
1524 * return with no isolated pages if the LRU mostly contains
1525 * ineligible pages. This causes the VM to not reclaim any
1526 * pages, triggering a premature OOM.
1528 scan++;
1529 switch (__isolate_lru_page(page, mode)) {
1530 case 0:
1531 nr_pages = hpage_nr_pages(page);
1532 nr_taken += nr_pages;
1533 nr_zone_taken[page_zonenum(page)] += nr_pages;
1534 list_move(&page->lru, dst);
1535 break;
1537 case -EBUSY:
1538 /* else it is being freed elsewhere */
1539 list_move(&page->lru, src);
1540 continue;
1542 default:
1543 BUG();
1548 * Splice any skipped pages to the start of the LRU list. Note that
1549 * this disrupts the LRU order when reclaiming for lower zones but
1550 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1551 * scanning would soon rescan the same pages to skip and put the
1552 * system at risk of premature OOM.
1554 if (!list_empty(&pages_skipped)) {
1555 int zid;
1557 list_splice(&pages_skipped, src);
1558 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1559 if (!nr_skipped[zid])
1560 continue;
1562 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1563 skipped += nr_skipped[zid];
1566 *nr_scanned = total_scan;
1567 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1568 total_scan, skipped, nr_taken, mode, lru);
1569 update_lru_sizes(lruvec, lru, nr_zone_taken);
1570 return nr_taken;
1574 * isolate_lru_page - tries to isolate a page from its LRU list
1575 * @page: page to isolate from its LRU list
1577 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1578 * vmstat statistic corresponding to whatever LRU list the page was on.
1580 * Returns 0 if the page was removed from an LRU list.
1581 * Returns -EBUSY if the page was not on an LRU list.
1583 * The returned page will have PageLRU() cleared. If it was found on
1584 * the active list, it will have PageActive set. If it was found on
1585 * the unevictable list, it will have the PageUnevictable bit set. That flag
1586 * may need to be cleared by the caller before letting the page go.
1588 * The vmstat statistic corresponding to the list on which the page was
1589 * found will be decremented.
1591 * Restrictions:
1592 * (1) Must be called with an elevated refcount on the page. This is a
1593 * fundamentnal difference from isolate_lru_pages (which is called
1594 * without a stable reference).
1595 * (2) the lru_lock must not be held.
1596 * (3) interrupts must be enabled.
1598 int isolate_lru_page(struct page *page)
1600 int ret = -EBUSY;
1602 VM_BUG_ON_PAGE(!page_count(page), page);
1603 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1605 if (PageLRU(page)) {
1606 struct zone *zone = page_zone(page);
1607 struct lruvec *lruvec;
1609 spin_lock_irq(zone_lru_lock(zone));
1610 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1611 if (PageLRU(page)) {
1612 int lru = page_lru(page);
1613 get_page(page);
1614 ClearPageLRU(page);
1615 del_page_from_lru_list(page, lruvec, lru);
1616 ret = 0;
1618 spin_unlock_irq(zone_lru_lock(zone));
1620 return ret;
1624 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1625 * then get resheduled. When there are massive number of tasks doing page
1626 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1627 * the LRU list will go small and be scanned faster than necessary, leading to
1628 * unnecessary swapping, thrashing and OOM.
1630 static int too_many_isolated(struct pglist_data *pgdat, int file,
1631 struct scan_control *sc)
1633 unsigned long inactive, isolated;
1635 if (current_is_kswapd())
1636 return 0;
1638 if (!sane_reclaim(sc))
1639 return 0;
1641 if (file) {
1642 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1643 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1644 } else {
1645 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1646 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1650 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1651 * won't get blocked by normal direct-reclaimers, forming a circular
1652 * deadlock.
1654 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1655 inactive >>= 3;
1657 return isolated > inactive;
1660 static noinline_for_stack void
1661 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1663 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1664 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1665 LIST_HEAD(pages_to_free);
1668 * Put back any unfreeable pages.
1670 while (!list_empty(page_list)) {
1671 struct page *page = lru_to_page(page_list);
1672 int lru;
1674 VM_BUG_ON_PAGE(PageLRU(page), page);
1675 list_del(&page->lru);
1676 if (unlikely(!page_evictable(page))) {
1677 spin_unlock_irq(&pgdat->lru_lock);
1678 putback_lru_page(page);
1679 spin_lock_irq(&pgdat->lru_lock);
1680 continue;
1683 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1685 SetPageLRU(page);
1686 lru = page_lru(page);
1687 add_page_to_lru_list(page, lruvec, lru);
1689 if (is_active_lru(lru)) {
1690 int file = is_file_lru(lru);
1691 int numpages = hpage_nr_pages(page);
1692 reclaim_stat->recent_rotated[file] += numpages;
1694 if (put_page_testzero(page)) {
1695 __ClearPageLRU(page);
1696 __ClearPageActive(page);
1697 del_page_from_lru_list(page, lruvec, lru);
1699 if (unlikely(PageCompound(page))) {
1700 spin_unlock_irq(&pgdat->lru_lock);
1701 mem_cgroup_uncharge(page);
1702 (*get_compound_page_dtor(page))(page);
1703 spin_lock_irq(&pgdat->lru_lock);
1704 } else
1705 list_add(&page->lru, &pages_to_free);
1710 * To save our caller's stack, now use input list for pages to free.
1712 list_splice(&pages_to_free, page_list);
1716 * If a kernel thread (such as nfsd for loop-back mounts) services
1717 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1718 * In that case we should only throttle if the backing device it is
1719 * writing to is congested. In other cases it is safe to throttle.
1721 static int current_may_throttle(void)
1723 return !(current->flags & PF_LESS_THROTTLE) ||
1724 current->backing_dev_info == NULL ||
1725 bdi_write_congested(current->backing_dev_info);
1729 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1730 * of reclaimed pages
1732 static noinline_for_stack unsigned long
1733 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1734 struct scan_control *sc, enum lru_list lru)
1736 LIST_HEAD(page_list);
1737 unsigned long nr_scanned;
1738 unsigned long nr_reclaimed = 0;
1739 unsigned long nr_taken;
1740 struct reclaim_stat stat = {};
1741 isolate_mode_t isolate_mode = 0;
1742 int file = is_file_lru(lru);
1743 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1744 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1746 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1747 congestion_wait(BLK_RW_ASYNC, HZ/10);
1749 /* We are about to die and free our memory. Return now. */
1750 if (fatal_signal_pending(current))
1751 return SWAP_CLUSTER_MAX;
1754 lru_add_drain();
1756 if (!sc->may_unmap)
1757 isolate_mode |= ISOLATE_UNMAPPED;
1759 spin_lock_irq(&pgdat->lru_lock);
1761 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1762 &nr_scanned, sc, isolate_mode, lru);
1764 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1765 reclaim_stat->recent_scanned[file] += nr_taken;
1767 if (current_is_kswapd()) {
1768 if (global_reclaim(sc))
1769 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1770 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1771 nr_scanned);
1772 } else {
1773 if (global_reclaim(sc))
1774 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1775 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1776 nr_scanned);
1778 spin_unlock_irq(&pgdat->lru_lock);
1780 if (nr_taken == 0)
1781 return 0;
1783 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1784 &stat, false);
1786 spin_lock_irq(&pgdat->lru_lock);
1788 if (current_is_kswapd()) {
1789 if (global_reclaim(sc))
1790 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1791 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1792 nr_reclaimed);
1793 } else {
1794 if (global_reclaim(sc))
1795 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1796 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1797 nr_reclaimed);
1800 putback_inactive_pages(lruvec, &page_list);
1802 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1804 spin_unlock_irq(&pgdat->lru_lock);
1806 mem_cgroup_uncharge_list(&page_list);
1807 free_hot_cold_page_list(&page_list, true);
1810 * If reclaim is isolating dirty pages under writeback, it implies
1811 * that the long-lived page allocation rate is exceeding the page
1812 * laundering rate. Either the global limits are not being effective
1813 * at throttling processes due to the page distribution throughout
1814 * zones or there is heavy usage of a slow backing device. The
1815 * only option is to throttle from reclaim context which is not ideal
1816 * as there is no guarantee the dirtying process is throttled in the
1817 * same way balance_dirty_pages() manages.
1819 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1820 * of pages under pages flagged for immediate reclaim and stall if any
1821 * are encountered in the nr_immediate check below.
1823 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1824 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1827 * Legacy memcg will stall in page writeback so avoid forcibly
1828 * stalling here.
1830 if (sane_reclaim(sc)) {
1832 * Tag a zone as congested if all the dirty pages scanned were
1833 * backed by a congested BDI and wait_iff_congested will stall.
1835 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1836 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1839 * If dirty pages are scanned that are not queued for IO, it
1840 * implies that flushers are not doing their job. This can
1841 * happen when memory pressure pushes dirty pages to the end of
1842 * the LRU before the dirty limits are breached and the dirty
1843 * data has expired. It can also happen when the proportion of
1844 * dirty pages grows not through writes but through memory
1845 * pressure reclaiming all the clean cache. And in some cases,
1846 * the flushers simply cannot keep up with the allocation
1847 * rate. Nudge the flusher threads in case they are asleep, but
1848 * also allow kswapd to start writing pages during reclaim.
1850 if (stat.nr_unqueued_dirty == nr_taken) {
1851 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1852 set_bit(PGDAT_DIRTY, &pgdat->flags);
1856 * If kswapd scans pages marked marked for immediate
1857 * reclaim and under writeback (nr_immediate), it implies
1858 * that pages are cycling through the LRU faster than
1859 * they are written so also forcibly stall.
1861 if (stat.nr_immediate && current_may_throttle())
1862 congestion_wait(BLK_RW_ASYNC, HZ/10);
1866 * Stall direct reclaim for IO completions if underlying BDIs or zone
1867 * is congested. Allow kswapd to continue until it starts encountering
1868 * unqueued dirty pages or cycling through the LRU too quickly.
1870 if (!sc->hibernation_mode && !current_is_kswapd() &&
1871 current_may_throttle())
1872 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1874 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1875 nr_scanned, nr_reclaimed,
1876 stat.nr_dirty, stat.nr_writeback,
1877 stat.nr_congested, stat.nr_immediate,
1878 stat.nr_activate, stat.nr_ref_keep,
1879 stat.nr_unmap_fail,
1880 sc->priority, file);
1881 return nr_reclaimed;
1885 * This moves pages from the active list to the inactive list.
1887 * We move them the other way if the page is referenced by one or more
1888 * processes, from rmap.
1890 * If the pages are mostly unmapped, the processing is fast and it is
1891 * appropriate to hold zone_lru_lock across the whole operation. But if
1892 * the pages are mapped, the processing is slow (page_referenced()) so we
1893 * should drop zone_lru_lock around each page. It's impossible to balance
1894 * this, so instead we remove the pages from the LRU while processing them.
1895 * It is safe to rely on PG_active against the non-LRU pages in here because
1896 * nobody will play with that bit on a non-LRU page.
1898 * The downside is that we have to touch page->_refcount against each page.
1899 * But we had to alter page->flags anyway.
1901 * Returns the number of pages moved to the given lru.
1904 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1905 struct list_head *list,
1906 struct list_head *pages_to_free,
1907 enum lru_list lru)
1909 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1910 struct page *page;
1911 int nr_pages;
1912 int nr_moved = 0;
1914 while (!list_empty(list)) {
1915 page = lru_to_page(list);
1916 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1918 VM_BUG_ON_PAGE(PageLRU(page), page);
1919 SetPageLRU(page);
1921 nr_pages = hpage_nr_pages(page);
1922 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1923 list_move(&page->lru, &lruvec->lists[lru]);
1925 if (put_page_testzero(page)) {
1926 __ClearPageLRU(page);
1927 __ClearPageActive(page);
1928 del_page_from_lru_list(page, lruvec, lru);
1930 if (unlikely(PageCompound(page))) {
1931 spin_unlock_irq(&pgdat->lru_lock);
1932 mem_cgroup_uncharge(page);
1933 (*get_compound_page_dtor(page))(page);
1934 spin_lock_irq(&pgdat->lru_lock);
1935 } else
1936 list_add(&page->lru, pages_to_free);
1937 } else {
1938 nr_moved += nr_pages;
1942 if (!is_active_lru(lru)) {
1943 __count_vm_events(PGDEACTIVATE, nr_moved);
1944 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1945 nr_moved);
1948 return nr_moved;
1951 static void shrink_active_list(unsigned long nr_to_scan,
1952 struct lruvec *lruvec,
1953 struct scan_control *sc,
1954 enum lru_list lru)
1956 unsigned long nr_taken;
1957 unsigned long nr_scanned;
1958 unsigned long vm_flags;
1959 LIST_HEAD(l_hold); /* The pages which were snipped off */
1960 LIST_HEAD(l_active);
1961 LIST_HEAD(l_inactive);
1962 struct page *page;
1963 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1964 unsigned nr_deactivate, nr_activate;
1965 unsigned nr_rotated = 0;
1966 isolate_mode_t isolate_mode = 0;
1967 int file = is_file_lru(lru);
1968 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1970 lru_add_drain();
1972 if (!sc->may_unmap)
1973 isolate_mode |= ISOLATE_UNMAPPED;
1975 spin_lock_irq(&pgdat->lru_lock);
1977 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1978 &nr_scanned, sc, isolate_mode, lru);
1980 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1981 reclaim_stat->recent_scanned[file] += nr_taken;
1983 __count_vm_events(PGREFILL, nr_scanned);
1984 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1986 spin_unlock_irq(&pgdat->lru_lock);
1988 while (!list_empty(&l_hold)) {
1989 cond_resched();
1990 page = lru_to_page(&l_hold);
1991 list_del(&page->lru);
1993 if (unlikely(!page_evictable(page))) {
1994 putback_lru_page(page);
1995 continue;
1998 if (unlikely(buffer_heads_over_limit)) {
1999 if (page_has_private(page) && trylock_page(page)) {
2000 if (page_has_private(page))
2001 try_to_release_page(page, 0);
2002 unlock_page(page);
2006 if (page_referenced(page, 0, sc->target_mem_cgroup,
2007 &vm_flags)) {
2008 nr_rotated += hpage_nr_pages(page);
2010 * Identify referenced, file-backed active pages and
2011 * give them one more trip around the active list. So
2012 * that executable code get better chances to stay in
2013 * memory under moderate memory pressure. Anon pages
2014 * are not likely to be evicted by use-once streaming
2015 * IO, plus JVM can create lots of anon VM_EXEC pages,
2016 * so we ignore them here.
2018 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2019 list_add(&page->lru, &l_active);
2020 continue;
2024 ClearPageActive(page); /* we are de-activating */
2025 list_add(&page->lru, &l_inactive);
2029 * Move pages back to the lru list.
2031 spin_lock_irq(&pgdat->lru_lock);
2033 * Count referenced pages from currently used mappings as rotated,
2034 * even though only some of them are actually re-activated. This
2035 * helps balance scan pressure between file and anonymous pages in
2036 * get_scan_count.
2038 reclaim_stat->recent_rotated[file] += nr_rotated;
2040 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2041 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2042 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2043 spin_unlock_irq(&pgdat->lru_lock);
2045 mem_cgroup_uncharge_list(&l_hold);
2046 free_hot_cold_page_list(&l_hold, true);
2047 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2048 nr_deactivate, nr_rotated, sc->priority, file);
2052 * The inactive anon list should be small enough that the VM never has
2053 * to do too much work.
2055 * The inactive file list should be small enough to leave most memory
2056 * to the established workingset on the scan-resistant active list,
2057 * but large enough to avoid thrashing the aggregate readahead window.
2059 * Both inactive lists should also be large enough that each inactive
2060 * page has a chance to be referenced again before it is reclaimed.
2062 * If that fails and refaulting is observed, the inactive list grows.
2064 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2065 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2066 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2068 * total target max
2069 * memory ratio inactive
2070 * -------------------------------------
2071 * 10MB 1 5MB
2072 * 100MB 1 50MB
2073 * 1GB 3 250MB
2074 * 10GB 10 0.9GB
2075 * 100GB 31 3GB
2076 * 1TB 101 10GB
2077 * 10TB 320 32GB
2079 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2080 struct mem_cgroup *memcg,
2081 struct scan_control *sc, bool actual_reclaim)
2083 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2084 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2085 enum lru_list inactive_lru = file * LRU_FILE;
2086 unsigned long inactive, active;
2087 unsigned long inactive_ratio;
2088 unsigned long refaults;
2089 unsigned long gb;
2092 * If we don't have swap space, anonymous page deactivation
2093 * is pointless.
2095 if (!file && !total_swap_pages)
2096 return false;
2098 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2099 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2101 if (memcg)
2102 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2103 else
2104 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2107 * When refaults are being observed, it means a new workingset
2108 * is being established. Disable active list protection to get
2109 * rid of the stale workingset quickly.
2111 if (file && actual_reclaim && lruvec->refaults != refaults) {
2112 inactive_ratio = 0;
2113 } else {
2114 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2115 if (gb)
2116 inactive_ratio = int_sqrt(10 * gb);
2117 else
2118 inactive_ratio = 1;
2121 if (actual_reclaim)
2122 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2123 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2124 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2125 inactive_ratio, file);
2127 return inactive * inactive_ratio < active;
2130 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2131 struct lruvec *lruvec, struct mem_cgroup *memcg,
2132 struct scan_control *sc)
2134 if (is_active_lru(lru)) {
2135 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2136 memcg, sc, true))
2137 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2138 return 0;
2141 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2144 enum scan_balance {
2145 SCAN_EQUAL,
2146 SCAN_FRACT,
2147 SCAN_ANON,
2148 SCAN_FILE,
2152 * Determine how aggressively the anon and file LRU lists should be
2153 * scanned. The relative value of each set of LRU lists is determined
2154 * by looking at the fraction of the pages scanned we did rotate back
2155 * onto the active list instead of evict.
2157 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2158 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2160 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2161 struct scan_control *sc, unsigned long *nr,
2162 unsigned long *lru_pages)
2164 int swappiness = mem_cgroup_swappiness(memcg);
2165 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2166 u64 fraction[2];
2167 u64 denominator = 0; /* gcc */
2168 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2169 unsigned long anon_prio, file_prio;
2170 enum scan_balance scan_balance;
2171 unsigned long anon, file;
2172 unsigned long ap, fp;
2173 enum lru_list lru;
2175 /* If we have no swap space, do not bother scanning anon pages. */
2176 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2177 scan_balance = SCAN_FILE;
2178 goto out;
2182 * Global reclaim will swap to prevent OOM even with no
2183 * swappiness, but memcg users want to use this knob to
2184 * disable swapping for individual groups completely when
2185 * using the memory controller's swap limit feature would be
2186 * too expensive.
2188 if (!global_reclaim(sc) && !swappiness) {
2189 scan_balance = SCAN_FILE;
2190 goto out;
2194 * Do not apply any pressure balancing cleverness when the
2195 * system is close to OOM, scan both anon and file equally
2196 * (unless the swappiness setting disagrees with swapping).
2198 if (!sc->priority && swappiness) {
2199 scan_balance = SCAN_EQUAL;
2200 goto out;
2204 * Prevent the reclaimer from falling into the cache trap: as
2205 * cache pages start out inactive, every cache fault will tip
2206 * the scan balance towards the file LRU. And as the file LRU
2207 * shrinks, so does the window for rotation from references.
2208 * This means we have a runaway feedback loop where a tiny
2209 * thrashing file LRU becomes infinitely more attractive than
2210 * anon pages. Try to detect this based on file LRU size.
2212 if (global_reclaim(sc)) {
2213 unsigned long pgdatfile;
2214 unsigned long pgdatfree;
2215 int z;
2216 unsigned long total_high_wmark = 0;
2218 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2219 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2220 node_page_state(pgdat, NR_INACTIVE_FILE);
2222 for (z = 0; z < MAX_NR_ZONES; z++) {
2223 struct zone *zone = &pgdat->node_zones[z];
2224 if (!managed_zone(zone))
2225 continue;
2227 total_high_wmark += high_wmark_pages(zone);
2230 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2232 * Force SCAN_ANON if there are enough inactive
2233 * anonymous pages on the LRU in eligible zones.
2234 * Otherwise, the small LRU gets thrashed.
2236 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2237 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2238 >> sc->priority) {
2239 scan_balance = SCAN_ANON;
2240 goto out;
2246 * If there is enough inactive page cache, i.e. if the size of the
2247 * inactive list is greater than that of the active list *and* the
2248 * inactive list actually has some pages to scan on this priority, we
2249 * do not reclaim anything from the anonymous working set right now.
2250 * Without the second condition we could end up never scanning an
2251 * lruvec even if it has plenty of old anonymous pages unless the
2252 * system is under heavy pressure.
2254 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2255 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2256 scan_balance = SCAN_FILE;
2257 goto out;
2260 scan_balance = SCAN_FRACT;
2263 * With swappiness at 100, anonymous and file have the same priority.
2264 * This scanning priority is essentially the inverse of IO cost.
2266 anon_prio = swappiness;
2267 file_prio = 200 - anon_prio;
2270 * OK, so we have swap space and a fair amount of page cache
2271 * pages. We use the recently rotated / recently scanned
2272 * ratios to determine how valuable each cache is.
2274 * Because workloads change over time (and to avoid overflow)
2275 * we keep these statistics as a floating average, which ends
2276 * up weighing recent references more than old ones.
2278 * anon in [0], file in [1]
2281 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2282 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2283 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2284 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2286 spin_lock_irq(&pgdat->lru_lock);
2287 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2288 reclaim_stat->recent_scanned[0] /= 2;
2289 reclaim_stat->recent_rotated[0] /= 2;
2292 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2293 reclaim_stat->recent_scanned[1] /= 2;
2294 reclaim_stat->recent_rotated[1] /= 2;
2298 * The amount of pressure on anon vs file pages is inversely
2299 * proportional to the fraction of recently scanned pages on
2300 * each list that were recently referenced and in active use.
2302 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2303 ap /= reclaim_stat->recent_rotated[0] + 1;
2305 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2306 fp /= reclaim_stat->recent_rotated[1] + 1;
2307 spin_unlock_irq(&pgdat->lru_lock);
2309 fraction[0] = ap;
2310 fraction[1] = fp;
2311 denominator = ap + fp + 1;
2312 out:
2313 *lru_pages = 0;
2314 for_each_evictable_lru(lru) {
2315 int file = is_file_lru(lru);
2316 unsigned long size;
2317 unsigned long scan;
2319 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2320 scan = size >> sc->priority;
2322 * If the cgroup's already been deleted, make sure to
2323 * scrape out the remaining cache.
2325 if (!scan && !mem_cgroup_online(memcg))
2326 scan = min(size, SWAP_CLUSTER_MAX);
2328 switch (scan_balance) {
2329 case SCAN_EQUAL:
2330 /* Scan lists relative to size */
2331 break;
2332 case SCAN_FRACT:
2334 * Scan types proportional to swappiness and
2335 * their relative recent reclaim efficiency.
2337 scan = div64_u64(scan * fraction[file],
2338 denominator);
2339 break;
2340 case SCAN_FILE:
2341 case SCAN_ANON:
2342 /* Scan one type exclusively */
2343 if ((scan_balance == SCAN_FILE) != file) {
2344 size = 0;
2345 scan = 0;
2347 break;
2348 default:
2349 /* Look ma, no brain */
2350 BUG();
2353 *lru_pages += size;
2354 nr[lru] = scan;
2359 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2361 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2362 struct scan_control *sc, unsigned long *lru_pages)
2364 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2365 unsigned long nr[NR_LRU_LISTS];
2366 unsigned long targets[NR_LRU_LISTS];
2367 unsigned long nr_to_scan;
2368 enum lru_list lru;
2369 unsigned long nr_reclaimed = 0;
2370 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2371 struct blk_plug plug;
2372 bool scan_adjusted;
2374 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2376 /* Record the original scan target for proportional adjustments later */
2377 memcpy(targets, nr, sizeof(nr));
2380 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2381 * event that can occur when there is little memory pressure e.g.
2382 * multiple streaming readers/writers. Hence, we do not abort scanning
2383 * when the requested number of pages are reclaimed when scanning at
2384 * DEF_PRIORITY on the assumption that the fact we are direct
2385 * reclaiming implies that kswapd is not keeping up and it is best to
2386 * do a batch of work at once. For memcg reclaim one check is made to
2387 * abort proportional reclaim if either the file or anon lru has already
2388 * dropped to zero at the first pass.
2390 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2391 sc->priority == DEF_PRIORITY);
2393 blk_start_plug(&plug);
2394 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2395 nr[LRU_INACTIVE_FILE]) {
2396 unsigned long nr_anon, nr_file, percentage;
2397 unsigned long nr_scanned;
2399 for_each_evictable_lru(lru) {
2400 if (nr[lru]) {
2401 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2402 nr[lru] -= nr_to_scan;
2404 nr_reclaimed += shrink_list(lru, nr_to_scan,
2405 lruvec, memcg, sc);
2409 cond_resched();
2411 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2412 continue;
2415 * For kswapd and memcg, reclaim at least the number of pages
2416 * requested. Ensure that the anon and file LRUs are scanned
2417 * proportionally what was requested by get_scan_count(). We
2418 * stop reclaiming one LRU and reduce the amount scanning
2419 * proportional to the original scan target.
2421 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2422 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2425 * It's just vindictive to attack the larger once the smaller
2426 * has gone to zero. And given the way we stop scanning the
2427 * smaller below, this makes sure that we only make one nudge
2428 * towards proportionality once we've got nr_to_reclaim.
2430 if (!nr_file || !nr_anon)
2431 break;
2433 if (nr_file > nr_anon) {
2434 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2435 targets[LRU_ACTIVE_ANON] + 1;
2436 lru = LRU_BASE;
2437 percentage = nr_anon * 100 / scan_target;
2438 } else {
2439 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2440 targets[LRU_ACTIVE_FILE] + 1;
2441 lru = LRU_FILE;
2442 percentage = nr_file * 100 / scan_target;
2445 /* Stop scanning the smaller of the LRU */
2446 nr[lru] = 0;
2447 nr[lru + LRU_ACTIVE] = 0;
2450 * Recalculate the other LRU scan count based on its original
2451 * scan target and the percentage scanning already complete
2453 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2454 nr_scanned = targets[lru] - nr[lru];
2455 nr[lru] = targets[lru] * (100 - percentage) / 100;
2456 nr[lru] -= min(nr[lru], nr_scanned);
2458 lru += LRU_ACTIVE;
2459 nr_scanned = targets[lru] - nr[lru];
2460 nr[lru] = targets[lru] * (100 - percentage) / 100;
2461 nr[lru] -= min(nr[lru], nr_scanned);
2463 scan_adjusted = true;
2465 blk_finish_plug(&plug);
2466 sc->nr_reclaimed += nr_reclaimed;
2469 * Even if we did not try to evict anon pages at all, we want to
2470 * rebalance the anon lru active/inactive ratio.
2472 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2473 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2474 sc, LRU_ACTIVE_ANON);
2477 /* Use reclaim/compaction for costly allocs or under memory pressure */
2478 static bool in_reclaim_compaction(struct scan_control *sc)
2480 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2481 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2482 sc->priority < DEF_PRIORITY - 2))
2483 return true;
2485 return false;
2489 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2490 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2491 * true if more pages should be reclaimed such that when the page allocator
2492 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2493 * It will give up earlier than that if there is difficulty reclaiming pages.
2495 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2496 unsigned long nr_reclaimed,
2497 unsigned long nr_scanned,
2498 struct scan_control *sc)
2500 unsigned long pages_for_compaction;
2501 unsigned long inactive_lru_pages;
2502 int z;
2504 /* If not in reclaim/compaction mode, stop */
2505 if (!in_reclaim_compaction(sc))
2506 return false;
2508 /* Consider stopping depending on scan and reclaim activity */
2509 if (sc->gfp_mask & __GFP_REPEAT) {
2511 * For __GFP_REPEAT allocations, stop reclaiming if the
2512 * full LRU list has been scanned and we are still failing
2513 * to reclaim pages. This full LRU scan is potentially
2514 * expensive but a __GFP_REPEAT caller really wants to succeed
2516 if (!nr_reclaimed && !nr_scanned)
2517 return false;
2518 } else {
2520 * For non-__GFP_REPEAT allocations which can presumably
2521 * fail without consequence, stop if we failed to reclaim
2522 * any pages from the last SWAP_CLUSTER_MAX number of
2523 * pages that were scanned. This will return to the
2524 * caller faster at the risk reclaim/compaction and
2525 * the resulting allocation attempt fails
2527 if (!nr_reclaimed)
2528 return false;
2532 * If we have not reclaimed enough pages for compaction and the
2533 * inactive lists are large enough, continue reclaiming
2535 pages_for_compaction = compact_gap(sc->order);
2536 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2537 if (get_nr_swap_pages() > 0)
2538 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2539 if (sc->nr_reclaimed < pages_for_compaction &&
2540 inactive_lru_pages > pages_for_compaction)
2541 return true;
2543 /* If compaction would go ahead or the allocation would succeed, stop */
2544 for (z = 0; z <= sc->reclaim_idx; z++) {
2545 struct zone *zone = &pgdat->node_zones[z];
2546 if (!managed_zone(zone))
2547 continue;
2549 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2550 case COMPACT_SUCCESS:
2551 case COMPACT_CONTINUE:
2552 return false;
2553 default:
2554 /* check next zone */
2558 return true;
2561 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2563 struct reclaim_state *reclaim_state = current->reclaim_state;
2564 unsigned long nr_reclaimed, nr_scanned;
2565 bool reclaimable = false;
2567 do {
2568 struct mem_cgroup *root = sc->target_mem_cgroup;
2569 struct mem_cgroup_reclaim_cookie reclaim = {
2570 .pgdat = pgdat,
2571 .priority = sc->priority,
2573 unsigned long node_lru_pages = 0;
2574 struct mem_cgroup *memcg;
2576 nr_reclaimed = sc->nr_reclaimed;
2577 nr_scanned = sc->nr_scanned;
2579 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2580 do {
2581 unsigned long lru_pages;
2582 unsigned long reclaimed;
2583 unsigned long scanned;
2585 if (mem_cgroup_low(root, memcg)) {
2586 if (!sc->memcg_low_reclaim) {
2587 sc->memcg_low_skipped = 1;
2588 continue;
2590 mem_cgroup_event(memcg, MEMCG_LOW);
2593 reclaimed = sc->nr_reclaimed;
2594 scanned = sc->nr_scanned;
2596 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2597 node_lru_pages += lru_pages;
2599 if (memcg)
2600 shrink_slab(sc->gfp_mask, pgdat->node_id,
2601 memcg, sc->nr_scanned - scanned,
2602 lru_pages);
2604 /* Record the group's reclaim efficiency */
2605 vmpressure(sc->gfp_mask, memcg, false,
2606 sc->nr_scanned - scanned,
2607 sc->nr_reclaimed - reclaimed);
2610 * Direct reclaim and kswapd have to scan all memory
2611 * cgroups to fulfill the overall scan target for the
2612 * node.
2614 * Limit reclaim, on the other hand, only cares about
2615 * nr_to_reclaim pages to be reclaimed and it will
2616 * retry with decreasing priority if one round over the
2617 * whole hierarchy is not sufficient.
2619 if (!global_reclaim(sc) &&
2620 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2621 mem_cgroup_iter_break(root, memcg);
2622 break;
2624 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2627 * Shrink the slab caches in the same proportion that
2628 * the eligible LRU pages were scanned.
2630 if (global_reclaim(sc))
2631 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2632 sc->nr_scanned - nr_scanned,
2633 node_lru_pages);
2635 if (reclaim_state) {
2636 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2637 reclaim_state->reclaimed_slab = 0;
2640 /* Record the subtree's reclaim efficiency */
2641 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2642 sc->nr_scanned - nr_scanned,
2643 sc->nr_reclaimed - nr_reclaimed);
2645 if (sc->nr_reclaimed - nr_reclaimed)
2646 reclaimable = true;
2648 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2649 sc->nr_scanned - nr_scanned, sc));
2652 * Kswapd gives up on balancing particular nodes after too
2653 * many failures to reclaim anything from them and goes to
2654 * sleep. On reclaim progress, reset the failure counter. A
2655 * successful direct reclaim run will revive a dormant kswapd.
2657 if (reclaimable)
2658 pgdat->kswapd_failures = 0;
2660 return reclaimable;
2664 * Returns true if compaction should go ahead for a costly-order request, or
2665 * the allocation would already succeed without compaction. Return false if we
2666 * should reclaim first.
2668 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2670 unsigned long watermark;
2671 enum compact_result suitable;
2673 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2674 if (suitable == COMPACT_SUCCESS)
2675 /* Allocation should succeed already. Don't reclaim. */
2676 return true;
2677 if (suitable == COMPACT_SKIPPED)
2678 /* Compaction cannot yet proceed. Do reclaim. */
2679 return false;
2682 * Compaction is already possible, but it takes time to run and there
2683 * are potentially other callers using the pages just freed. So proceed
2684 * with reclaim to make a buffer of free pages available to give
2685 * compaction a reasonable chance of completing and allocating the page.
2686 * Note that we won't actually reclaim the whole buffer in one attempt
2687 * as the target watermark in should_continue_reclaim() is lower. But if
2688 * we are already above the high+gap watermark, don't reclaim at all.
2690 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2692 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2696 * This is the direct reclaim path, for page-allocating processes. We only
2697 * try to reclaim pages from zones which will satisfy the caller's allocation
2698 * request.
2700 * If a zone is deemed to be full of pinned pages then just give it a light
2701 * scan then give up on it.
2703 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2705 struct zoneref *z;
2706 struct zone *zone;
2707 unsigned long nr_soft_reclaimed;
2708 unsigned long nr_soft_scanned;
2709 gfp_t orig_mask;
2710 pg_data_t *last_pgdat = NULL;
2713 * If the number of buffer_heads in the machine exceeds the maximum
2714 * allowed level, force direct reclaim to scan the highmem zone as
2715 * highmem pages could be pinning lowmem pages storing buffer_heads
2717 orig_mask = sc->gfp_mask;
2718 if (buffer_heads_over_limit) {
2719 sc->gfp_mask |= __GFP_HIGHMEM;
2720 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2723 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2724 sc->reclaim_idx, sc->nodemask) {
2726 * Take care memory controller reclaiming has small influence
2727 * to global LRU.
2729 if (global_reclaim(sc)) {
2730 if (!cpuset_zone_allowed(zone,
2731 GFP_KERNEL | __GFP_HARDWALL))
2732 continue;
2735 * If we already have plenty of memory free for
2736 * compaction in this zone, don't free any more.
2737 * Even though compaction is invoked for any
2738 * non-zero order, only frequent costly order
2739 * reclamation is disruptive enough to become a
2740 * noticeable problem, like transparent huge
2741 * page allocations.
2743 if (IS_ENABLED(CONFIG_COMPACTION) &&
2744 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2745 compaction_ready(zone, sc)) {
2746 sc->compaction_ready = true;
2747 continue;
2751 * Shrink each node in the zonelist once. If the
2752 * zonelist is ordered by zone (not the default) then a
2753 * node may be shrunk multiple times but in that case
2754 * the user prefers lower zones being preserved.
2756 if (zone->zone_pgdat == last_pgdat)
2757 continue;
2760 * This steals pages from memory cgroups over softlimit
2761 * and returns the number of reclaimed pages and
2762 * scanned pages. This works for global memory pressure
2763 * and balancing, not for a memcg's limit.
2765 nr_soft_scanned = 0;
2766 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2767 sc->order, sc->gfp_mask,
2768 &nr_soft_scanned);
2769 sc->nr_reclaimed += nr_soft_reclaimed;
2770 sc->nr_scanned += nr_soft_scanned;
2771 /* need some check for avoid more shrink_zone() */
2774 /* See comment about same check for global reclaim above */
2775 if (zone->zone_pgdat == last_pgdat)
2776 continue;
2777 last_pgdat = zone->zone_pgdat;
2778 shrink_node(zone->zone_pgdat, sc);
2782 * Restore to original mask to avoid the impact on the caller if we
2783 * promoted it to __GFP_HIGHMEM.
2785 sc->gfp_mask = orig_mask;
2788 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2790 struct mem_cgroup *memcg;
2792 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2793 do {
2794 unsigned long refaults;
2795 struct lruvec *lruvec;
2797 if (memcg)
2798 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2799 else
2800 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2802 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2803 lruvec->refaults = refaults;
2804 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2808 * This is the main entry point to direct page reclaim.
2810 * If a full scan of the inactive list fails to free enough memory then we
2811 * are "out of memory" and something needs to be killed.
2813 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2814 * high - the zone may be full of dirty or under-writeback pages, which this
2815 * caller can't do much about. We kick the writeback threads and take explicit
2816 * naps in the hope that some of these pages can be written. But if the
2817 * allocating task holds filesystem locks which prevent writeout this might not
2818 * work, and the allocation attempt will fail.
2820 * returns: 0, if no pages reclaimed
2821 * else, the number of pages reclaimed
2823 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2824 struct scan_control *sc)
2826 int initial_priority = sc->priority;
2827 pg_data_t *last_pgdat;
2828 struct zoneref *z;
2829 struct zone *zone;
2830 retry:
2831 delayacct_freepages_start();
2833 if (global_reclaim(sc))
2834 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2836 do {
2837 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2838 sc->priority);
2839 sc->nr_scanned = 0;
2840 shrink_zones(zonelist, sc);
2842 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2843 break;
2845 if (sc->compaction_ready)
2846 break;
2849 * If we're getting trouble reclaiming, start doing
2850 * writepage even in laptop mode.
2852 if (sc->priority < DEF_PRIORITY - 2)
2853 sc->may_writepage = 1;
2854 } while (--sc->priority >= 0);
2856 last_pgdat = NULL;
2857 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2858 sc->nodemask) {
2859 if (zone->zone_pgdat == last_pgdat)
2860 continue;
2861 last_pgdat = zone->zone_pgdat;
2862 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2865 delayacct_freepages_end();
2867 if (sc->nr_reclaimed)
2868 return sc->nr_reclaimed;
2870 /* Aborted reclaim to try compaction? don't OOM, then */
2871 if (sc->compaction_ready)
2872 return 1;
2874 /* Untapped cgroup reserves? Don't OOM, retry. */
2875 if (sc->memcg_low_skipped) {
2876 sc->priority = initial_priority;
2877 sc->memcg_low_reclaim = 1;
2878 sc->memcg_low_skipped = 0;
2879 goto retry;
2882 return 0;
2885 static bool allow_direct_reclaim(pg_data_t *pgdat)
2887 struct zone *zone;
2888 unsigned long pfmemalloc_reserve = 0;
2889 unsigned long free_pages = 0;
2890 int i;
2891 bool wmark_ok;
2893 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2894 return true;
2896 for (i = 0; i <= ZONE_NORMAL; i++) {
2897 zone = &pgdat->node_zones[i];
2898 if (!managed_zone(zone))
2899 continue;
2901 if (!zone_reclaimable_pages(zone))
2902 continue;
2904 pfmemalloc_reserve += min_wmark_pages(zone);
2905 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2908 /* If there are no reserves (unexpected config) then do not throttle */
2909 if (!pfmemalloc_reserve)
2910 return true;
2912 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2914 /* kswapd must be awake if processes are being throttled */
2915 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2916 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2917 (enum zone_type)ZONE_NORMAL);
2918 wake_up_interruptible(&pgdat->kswapd_wait);
2921 return wmark_ok;
2925 * Throttle direct reclaimers if backing storage is backed by the network
2926 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2927 * depleted. kswapd will continue to make progress and wake the processes
2928 * when the low watermark is reached.
2930 * Returns true if a fatal signal was delivered during throttling. If this
2931 * happens, the page allocator should not consider triggering the OOM killer.
2933 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2934 nodemask_t *nodemask)
2936 struct zoneref *z;
2937 struct zone *zone;
2938 pg_data_t *pgdat = NULL;
2941 * Kernel threads should not be throttled as they may be indirectly
2942 * responsible for cleaning pages necessary for reclaim to make forward
2943 * progress. kjournald for example may enter direct reclaim while
2944 * committing a transaction where throttling it could forcing other
2945 * processes to block on log_wait_commit().
2947 if (current->flags & PF_KTHREAD)
2948 goto out;
2951 * If a fatal signal is pending, this process should not throttle.
2952 * It should return quickly so it can exit and free its memory
2954 if (fatal_signal_pending(current))
2955 goto out;
2958 * Check if the pfmemalloc reserves are ok by finding the first node
2959 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2960 * GFP_KERNEL will be required for allocating network buffers when
2961 * swapping over the network so ZONE_HIGHMEM is unusable.
2963 * Throttling is based on the first usable node and throttled processes
2964 * wait on a queue until kswapd makes progress and wakes them. There
2965 * is an affinity then between processes waking up and where reclaim
2966 * progress has been made assuming the process wakes on the same node.
2967 * More importantly, processes running on remote nodes will not compete
2968 * for remote pfmemalloc reserves and processes on different nodes
2969 * should make reasonable progress.
2971 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2972 gfp_zone(gfp_mask), nodemask) {
2973 if (zone_idx(zone) > ZONE_NORMAL)
2974 continue;
2976 /* Throttle based on the first usable node */
2977 pgdat = zone->zone_pgdat;
2978 if (allow_direct_reclaim(pgdat))
2979 goto out;
2980 break;
2983 /* If no zone was usable by the allocation flags then do not throttle */
2984 if (!pgdat)
2985 goto out;
2987 /* Account for the throttling */
2988 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2991 * If the caller cannot enter the filesystem, it's possible that it
2992 * is due to the caller holding an FS lock or performing a journal
2993 * transaction in the case of a filesystem like ext[3|4]. In this case,
2994 * it is not safe to block on pfmemalloc_wait as kswapd could be
2995 * blocked waiting on the same lock. Instead, throttle for up to a
2996 * second before continuing.
2998 if (!(gfp_mask & __GFP_FS)) {
2999 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3000 allow_direct_reclaim(pgdat), HZ);
3002 goto check_pending;
3005 /* Throttle until kswapd wakes the process */
3006 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3007 allow_direct_reclaim(pgdat));
3009 check_pending:
3010 if (fatal_signal_pending(current))
3011 return true;
3013 out:
3014 return false;
3017 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3018 gfp_t gfp_mask, nodemask_t *nodemask)
3020 unsigned long nr_reclaimed;
3021 struct scan_control sc = {
3022 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3023 .gfp_mask = current_gfp_context(gfp_mask),
3024 .reclaim_idx = gfp_zone(gfp_mask),
3025 .order = order,
3026 .nodemask = nodemask,
3027 .priority = DEF_PRIORITY,
3028 .may_writepage = !laptop_mode,
3029 .may_unmap = 1,
3030 .may_swap = 1,
3034 * Do not enter reclaim if fatal signal was delivered while throttled.
3035 * 1 is returned so that the page allocator does not OOM kill at this
3036 * point.
3038 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3039 return 1;
3041 trace_mm_vmscan_direct_reclaim_begin(order,
3042 sc.may_writepage,
3043 sc.gfp_mask,
3044 sc.reclaim_idx);
3046 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3048 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3050 return nr_reclaimed;
3053 #ifdef CONFIG_MEMCG
3055 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3056 gfp_t gfp_mask, bool noswap,
3057 pg_data_t *pgdat,
3058 unsigned long *nr_scanned)
3060 struct scan_control sc = {
3061 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3062 .target_mem_cgroup = memcg,
3063 .may_writepage = !laptop_mode,
3064 .may_unmap = 1,
3065 .reclaim_idx = MAX_NR_ZONES - 1,
3066 .may_swap = !noswap,
3068 unsigned long lru_pages;
3070 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3071 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3073 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3074 sc.may_writepage,
3075 sc.gfp_mask,
3076 sc.reclaim_idx);
3079 * NOTE: Although we can get the priority field, using it
3080 * here is not a good idea, since it limits the pages we can scan.
3081 * if we don't reclaim here, the shrink_node from balance_pgdat
3082 * will pick up pages from other mem cgroup's as well. We hack
3083 * the priority and make it zero.
3085 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3087 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3089 *nr_scanned = sc.nr_scanned;
3090 return sc.nr_reclaimed;
3093 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3094 unsigned long nr_pages,
3095 gfp_t gfp_mask,
3096 bool may_swap)
3098 struct zonelist *zonelist;
3099 unsigned long nr_reclaimed;
3100 int nid;
3101 unsigned int noreclaim_flag;
3102 struct scan_control sc = {
3103 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3104 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3105 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3106 .reclaim_idx = MAX_NR_ZONES - 1,
3107 .target_mem_cgroup = memcg,
3108 .priority = DEF_PRIORITY,
3109 .may_writepage = !laptop_mode,
3110 .may_unmap = 1,
3111 .may_swap = may_swap,
3115 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3116 * take care of from where we get pages. So the node where we start the
3117 * scan does not need to be the current node.
3119 nid = mem_cgroup_select_victim_node(memcg);
3121 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3123 trace_mm_vmscan_memcg_reclaim_begin(0,
3124 sc.may_writepage,
3125 sc.gfp_mask,
3126 sc.reclaim_idx);
3128 noreclaim_flag = memalloc_noreclaim_save();
3129 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3130 memalloc_noreclaim_restore(noreclaim_flag);
3132 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3134 return nr_reclaimed;
3136 #endif
3138 static void age_active_anon(struct pglist_data *pgdat,
3139 struct scan_control *sc)
3141 struct mem_cgroup *memcg;
3143 if (!total_swap_pages)
3144 return;
3146 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3147 do {
3148 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3150 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3151 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3152 sc, LRU_ACTIVE_ANON);
3154 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3155 } while (memcg);
3159 * Returns true if there is an eligible zone balanced for the request order
3160 * and classzone_idx
3162 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3164 int i;
3165 unsigned long mark = -1;
3166 struct zone *zone;
3168 for (i = 0; i <= classzone_idx; i++) {
3169 zone = pgdat->node_zones + i;
3171 if (!managed_zone(zone))
3172 continue;
3174 mark = high_wmark_pages(zone);
3175 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3176 return true;
3180 * If a node has no populated zone within classzone_idx, it does not
3181 * need balancing by definition. This can happen if a zone-restricted
3182 * allocation tries to wake a remote kswapd.
3184 if (mark == -1)
3185 return true;
3187 return false;
3190 /* Clear pgdat state for congested, dirty or under writeback. */
3191 static void clear_pgdat_congested(pg_data_t *pgdat)
3193 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3194 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3195 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3199 * Prepare kswapd for sleeping. This verifies that there are no processes
3200 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3202 * Returns true if kswapd is ready to sleep
3204 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3207 * The throttled processes are normally woken up in balance_pgdat() as
3208 * soon as allow_direct_reclaim() is true. But there is a potential
3209 * race between when kswapd checks the watermarks and a process gets
3210 * throttled. There is also a potential race if processes get
3211 * throttled, kswapd wakes, a large process exits thereby balancing the
3212 * zones, which causes kswapd to exit balance_pgdat() before reaching
3213 * the wake up checks. If kswapd is going to sleep, no process should
3214 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3215 * the wake up is premature, processes will wake kswapd and get
3216 * throttled again. The difference from wake ups in balance_pgdat() is
3217 * that here we are under prepare_to_wait().
3219 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3220 wake_up_all(&pgdat->pfmemalloc_wait);
3222 /* Hopeless node, leave it to direct reclaim */
3223 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3224 return true;
3226 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3227 clear_pgdat_congested(pgdat);
3228 return true;
3231 return false;
3235 * kswapd shrinks a node of pages that are at or below the highest usable
3236 * zone that is currently unbalanced.
3238 * Returns true if kswapd scanned at least the requested number of pages to
3239 * reclaim or if the lack of progress was due to pages under writeback.
3240 * This is used to determine if the scanning priority needs to be raised.
3242 static bool kswapd_shrink_node(pg_data_t *pgdat,
3243 struct scan_control *sc)
3245 struct zone *zone;
3246 int z;
3248 /* Reclaim a number of pages proportional to the number of zones */
3249 sc->nr_to_reclaim = 0;
3250 for (z = 0; z <= sc->reclaim_idx; z++) {
3251 zone = pgdat->node_zones + z;
3252 if (!managed_zone(zone))
3253 continue;
3255 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3259 * Historically care was taken to put equal pressure on all zones but
3260 * now pressure is applied based on node LRU order.
3262 shrink_node(pgdat, sc);
3265 * Fragmentation may mean that the system cannot be rebalanced for
3266 * high-order allocations. If twice the allocation size has been
3267 * reclaimed then recheck watermarks only at order-0 to prevent
3268 * excessive reclaim. Assume that a process requested a high-order
3269 * can direct reclaim/compact.
3271 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3272 sc->order = 0;
3274 return sc->nr_scanned >= sc->nr_to_reclaim;
3278 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3279 * that are eligible for use by the caller until at least one zone is
3280 * balanced.
3282 * Returns the order kswapd finished reclaiming at.
3284 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3285 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3286 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3287 * or lower is eligible for reclaim until at least one usable zone is
3288 * balanced.
3290 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3292 int i;
3293 unsigned long nr_soft_reclaimed;
3294 unsigned long nr_soft_scanned;
3295 struct zone *zone;
3296 struct scan_control sc = {
3297 .gfp_mask = GFP_KERNEL,
3298 .order = order,
3299 .priority = DEF_PRIORITY,
3300 .may_writepage = !laptop_mode,
3301 .may_unmap = 1,
3302 .may_swap = 1,
3304 count_vm_event(PAGEOUTRUN);
3306 do {
3307 unsigned long nr_reclaimed = sc.nr_reclaimed;
3308 bool raise_priority = true;
3310 sc.reclaim_idx = classzone_idx;
3313 * If the number of buffer_heads exceeds the maximum allowed
3314 * then consider reclaiming from all zones. This has a dual
3315 * purpose -- on 64-bit systems it is expected that
3316 * buffer_heads are stripped during active rotation. On 32-bit
3317 * systems, highmem pages can pin lowmem memory and shrinking
3318 * buffers can relieve lowmem pressure. Reclaim may still not
3319 * go ahead if all eligible zones for the original allocation
3320 * request are balanced to avoid excessive reclaim from kswapd.
3322 if (buffer_heads_over_limit) {
3323 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3324 zone = pgdat->node_zones + i;
3325 if (!managed_zone(zone))
3326 continue;
3328 sc.reclaim_idx = i;
3329 break;
3334 * Only reclaim if there are no eligible zones. Note that
3335 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3336 * have adjusted it.
3338 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3339 goto out;
3342 * Do some background aging of the anon list, to give
3343 * pages a chance to be referenced before reclaiming. All
3344 * pages are rotated regardless of classzone as this is
3345 * about consistent aging.
3347 age_active_anon(pgdat, &sc);
3350 * If we're getting trouble reclaiming, start doing writepage
3351 * even in laptop mode.
3353 if (sc.priority < DEF_PRIORITY - 2)
3354 sc.may_writepage = 1;
3356 /* Call soft limit reclaim before calling shrink_node. */
3357 sc.nr_scanned = 0;
3358 nr_soft_scanned = 0;
3359 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3360 sc.gfp_mask, &nr_soft_scanned);
3361 sc.nr_reclaimed += nr_soft_reclaimed;
3364 * There should be no need to raise the scanning priority if
3365 * enough pages are already being scanned that that high
3366 * watermark would be met at 100% efficiency.
3368 if (kswapd_shrink_node(pgdat, &sc))
3369 raise_priority = false;
3372 * If the low watermark is met there is no need for processes
3373 * to be throttled on pfmemalloc_wait as they should not be
3374 * able to safely make forward progress. Wake them
3376 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3377 allow_direct_reclaim(pgdat))
3378 wake_up_all(&pgdat->pfmemalloc_wait);
3380 /* Check if kswapd should be suspending */
3381 if (try_to_freeze() || kthread_should_stop())
3382 break;
3385 * Raise priority if scanning rate is too low or there was no
3386 * progress in reclaiming pages
3388 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3389 if (raise_priority || !nr_reclaimed)
3390 sc.priority--;
3391 } while (sc.priority >= 1);
3393 if (!sc.nr_reclaimed)
3394 pgdat->kswapd_failures++;
3396 out:
3397 snapshot_refaults(NULL, pgdat);
3399 * Return the order kswapd stopped reclaiming at as
3400 * prepare_kswapd_sleep() takes it into account. If another caller
3401 * entered the allocator slow path while kswapd was awake, order will
3402 * remain at the higher level.
3404 return sc.order;
3408 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3409 * allocation request woke kswapd for. When kswapd has not woken recently,
3410 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3411 * given classzone and returns it or the highest classzone index kswapd
3412 * was recently woke for.
3414 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3415 enum zone_type classzone_idx)
3417 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3418 return classzone_idx;
3420 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3423 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3424 unsigned int classzone_idx)
3426 long remaining = 0;
3427 DEFINE_WAIT(wait);
3429 if (freezing(current) || kthread_should_stop())
3430 return;
3432 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3435 * Try to sleep for a short interval. Note that kcompactd will only be
3436 * woken if it is possible to sleep for a short interval. This is
3437 * deliberate on the assumption that if reclaim cannot keep an
3438 * eligible zone balanced that it's also unlikely that compaction will
3439 * succeed.
3441 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3443 * Compaction records what page blocks it recently failed to
3444 * isolate pages from and skips them in the future scanning.
3445 * When kswapd is going to sleep, it is reasonable to assume
3446 * that pages and compaction may succeed so reset the cache.
3448 reset_isolation_suitable(pgdat);
3451 * We have freed the memory, now we should compact it to make
3452 * allocation of the requested order possible.
3454 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3456 remaining = schedule_timeout(HZ/10);
3459 * If woken prematurely then reset kswapd_classzone_idx and
3460 * order. The values will either be from a wakeup request or
3461 * the previous request that slept prematurely.
3463 if (remaining) {
3464 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3465 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3468 finish_wait(&pgdat->kswapd_wait, &wait);
3469 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3473 * After a short sleep, check if it was a premature sleep. If not, then
3474 * go fully to sleep until explicitly woken up.
3476 if (!remaining &&
3477 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3478 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3481 * vmstat counters are not perfectly accurate and the estimated
3482 * value for counters such as NR_FREE_PAGES can deviate from the
3483 * true value by nr_online_cpus * threshold. To avoid the zone
3484 * watermarks being breached while under pressure, we reduce the
3485 * per-cpu vmstat threshold while kswapd is awake and restore
3486 * them before going back to sleep.
3488 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3490 if (!kthread_should_stop())
3491 schedule();
3493 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3494 } else {
3495 if (remaining)
3496 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3497 else
3498 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3500 finish_wait(&pgdat->kswapd_wait, &wait);
3504 * The background pageout daemon, started as a kernel thread
3505 * from the init process.
3507 * This basically trickles out pages so that we have _some_
3508 * free memory available even if there is no other activity
3509 * that frees anything up. This is needed for things like routing
3510 * etc, where we otherwise might have all activity going on in
3511 * asynchronous contexts that cannot page things out.
3513 * If there are applications that are active memory-allocators
3514 * (most normal use), this basically shouldn't matter.
3516 static int kswapd(void *p)
3518 unsigned int alloc_order, reclaim_order;
3519 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3520 pg_data_t *pgdat = (pg_data_t*)p;
3521 struct task_struct *tsk = current;
3523 struct reclaim_state reclaim_state = {
3524 .reclaimed_slab = 0,
3526 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3528 lockdep_set_current_reclaim_state(GFP_KERNEL);
3530 if (!cpumask_empty(cpumask))
3531 set_cpus_allowed_ptr(tsk, cpumask);
3532 current->reclaim_state = &reclaim_state;
3535 * Tell the memory management that we're a "memory allocator",
3536 * and that if we need more memory we should get access to it
3537 * regardless (see "__alloc_pages()"). "kswapd" should
3538 * never get caught in the normal page freeing logic.
3540 * (Kswapd normally doesn't need memory anyway, but sometimes
3541 * you need a small amount of memory in order to be able to
3542 * page out something else, and this flag essentially protects
3543 * us from recursively trying to free more memory as we're
3544 * trying to free the first piece of memory in the first place).
3546 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3547 set_freezable();
3549 pgdat->kswapd_order = 0;
3550 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3551 for ( ; ; ) {
3552 bool ret;
3554 alloc_order = reclaim_order = pgdat->kswapd_order;
3555 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3557 kswapd_try_sleep:
3558 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3559 classzone_idx);
3561 /* Read the new order and classzone_idx */
3562 alloc_order = reclaim_order = pgdat->kswapd_order;
3563 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3564 pgdat->kswapd_order = 0;
3565 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3567 ret = try_to_freeze();
3568 if (kthread_should_stop())
3569 break;
3572 * We can speed up thawing tasks if we don't call balance_pgdat
3573 * after returning from the refrigerator
3575 if (ret)
3576 continue;
3579 * Reclaim begins at the requested order but if a high-order
3580 * reclaim fails then kswapd falls back to reclaiming for
3581 * order-0. If that happens, kswapd will consider sleeping
3582 * for the order it finished reclaiming at (reclaim_order)
3583 * but kcompactd is woken to compact for the original
3584 * request (alloc_order).
3586 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3587 alloc_order);
3588 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3589 if (reclaim_order < alloc_order)
3590 goto kswapd_try_sleep;
3593 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3594 current->reclaim_state = NULL;
3595 lockdep_clear_current_reclaim_state();
3597 return 0;
3601 * A zone is low on free memory, so wake its kswapd task to service it.
3603 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3605 pg_data_t *pgdat;
3607 if (!managed_zone(zone))
3608 return;
3610 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3611 return;
3612 pgdat = zone->zone_pgdat;
3613 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3614 classzone_idx);
3615 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3616 if (!waitqueue_active(&pgdat->kswapd_wait))
3617 return;
3619 /* Hopeless node, leave it to direct reclaim */
3620 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3621 return;
3623 if (pgdat_balanced(pgdat, order, classzone_idx))
3624 return;
3626 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3627 wake_up_interruptible(&pgdat->kswapd_wait);
3630 #ifdef CONFIG_HIBERNATION
3632 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3633 * freed pages.
3635 * Rather than trying to age LRUs the aim is to preserve the overall
3636 * LRU order by reclaiming preferentially
3637 * inactive > active > active referenced > active mapped
3639 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3641 struct reclaim_state reclaim_state;
3642 struct scan_control sc = {
3643 .nr_to_reclaim = nr_to_reclaim,
3644 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3645 .reclaim_idx = MAX_NR_ZONES - 1,
3646 .priority = DEF_PRIORITY,
3647 .may_writepage = 1,
3648 .may_unmap = 1,
3649 .may_swap = 1,
3650 .hibernation_mode = 1,
3652 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3653 struct task_struct *p = current;
3654 unsigned long nr_reclaimed;
3655 unsigned int noreclaim_flag;
3657 noreclaim_flag = memalloc_noreclaim_save();
3658 lockdep_set_current_reclaim_state(sc.gfp_mask);
3659 reclaim_state.reclaimed_slab = 0;
3660 p->reclaim_state = &reclaim_state;
3662 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3664 p->reclaim_state = NULL;
3665 lockdep_clear_current_reclaim_state();
3666 memalloc_noreclaim_restore(noreclaim_flag);
3668 return nr_reclaimed;
3670 #endif /* CONFIG_HIBERNATION */
3672 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3673 not required for correctness. So if the last cpu in a node goes
3674 away, we get changed to run anywhere: as the first one comes back,
3675 restore their cpu bindings. */
3676 static int kswapd_cpu_online(unsigned int cpu)
3678 int nid;
3680 for_each_node_state(nid, N_MEMORY) {
3681 pg_data_t *pgdat = NODE_DATA(nid);
3682 const struct cpumask *mask;
3684 mask = cpumask_of_node(pgdat->node_id);
3686 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3687 /* One of our CPUs online: restore mask */
3688 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3690 return 0;
3694 * This kswapd start function will be called by init and node-hot-add.
3695 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3697 int kswapd_run(int nid)
3699 pg_data_t *pgdat = NODE_DATA(nid);
3700 int ret = 0;
3702 if (pgdat->kswapd)
3703 return 0;
3705 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3706 if (IS_ERR(pgdat->kswapd)) {
3707 /* failure at boot is fatal */
3708 BUG_ON(system_state < SYSTEM_RUNNING);
3709 pr_err("Failed to start kswapd on node %d\n", nid);
3710 ret = PTR_ERR(pgdat->kswapd);
3711 pgdat->kswapd = NULL;
3713 return ret;
3717 * Called by memory hotplug when all memory in a node is offlined. Caller must
3718 * hold mem_hotplug_begin/end().
3720 void kswapd_stop(int nid)
3722 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3724 if (kswapd) {
3725 kthread_stop(kswapd);
3726 NODE_DATA(nid)->kswapd = NULL;
3730 static int __init kswapd_init(void)
3732 int nid, ret;
3734 swap_setup();
3735 for_each_node_state(nid, N_MEMORY)
3736 kswapd_run(nid);
3737 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3738 "mm/vmscan:online", kswapd_cpu_online,
3739 NULL);
3740 WARN_ON(ret < 0);
3741 return 0;
3744 module_init(kswapd_init)
3746 #ifdef CONFIG_NUMA
3748 * Node reclaim mode
3750 * If non-zero call node_reclaim when the number of free pages falls below
3751 * the watermarks.
3753 int node_reclaim_mode __read_mostly;
3755 #define RECLAIM_OFF 0
3756 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3757 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3758 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3761 * Priority for NODE_RECLAIM. This determines the fraction of pages
3762 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3763 * a zone.
3765 #define NODE_RECLAIM_PRIORITY 4
3768 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3769 * occur.
3771 int sysctl_min_unmapped_ratio = 1;
3774 * If the number of slab pages in a zone grows beyond this percentage then
3775 * slab reclaim needs to occur.
3777 int sysctl_min_slab_ratio = 5;
3779 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3781 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3782 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3783 node_page_state(pgdat, NR_ACTIVE_FILE);
3786 * It's possible for there to be more file mapped pages than
3787 * accounted for by the pages on the file LRU lists because
3788 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3790 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3793 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3794 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3796 unsigned long nr_pagecache_reclaimable;
3797 unsigned long delta = 0;
3800 * If RECLAIM_UNMAP is set, then all file pages are considered
3801 * potentially reclaimable. Otherwise, we have to worry about
3802 * pages like swapcache and node_unmapped_file_pages() provides
3803 * a better estimate
3805 if (node_reclaim_mode & RECLAIM_UNMAP)
3806 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3807 else
3808 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3810 /* If we can't clean pages, remove dirty pages from consideration */
3811 if (!(node_reclaim_mode & RECLAIM_WRITE))
3812 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3814 /* Watch for any possible underflows due to delta */
3815 if (unlikely(delta > nr_pagecache_reclaimable))
3816 delta = nr_pagecache_reclaimable;
3818 return nr_pagecache_reclaimable - delta;
3822 * Try to free up some pages from this node through reclaim.
3824 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3826 /* Minimum pages needed in order to stay on node */
3827 const unsigned long nr_pages = 1 << order;
3828 struct task_struct *p = current;
3829 struct reclaim_state reclaim_state;
3830 unsigned int noreclaim_flag;
3831 struct scan_control sc = {
3832 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3833 .gfp_mask = current_gfp_context(gfp_mask),
3834 .order = order,
3835 .priority = NODE_RECLAIM_PRIORITY,
3836 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3837 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3838 .may_swap = 1,
3839 .reclaim_idx = gfp_zone(gfp_mask),
3842 cond_resched();
3844 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3845 * and we also need to be able to write out pages for RECLAIM_WRITE
3846 * and RECLAIM_UNMAP.
3848 noreclaim_flag = memalloc_noreclaim_save();
3849 p->flags |= PF_SWAPWRITE;
3850 lockdep_set_current_reclaim_state(sc.gfp_mask);
3851 reclaim_state.reclaimed_slab = 0;
3852 p->reclaim_state = &reclaim_state;
3854 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3856 * Free memory by calling shrink zone with increasing
3857 * priorities until we have enough memory freed.
3859 do {
3860 shrink_node(pgdat, &sc);
3861 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3864 p->reclaim_state = NULL;
3865 current->flags &= ~PF_SWAPWRITE;
3866 memalloc_noreclaim_restore(noreclaim_flag);
3867 lockdep_clear_current_reclaim_state();
3868 return sc.nr_reclaimed >= nr_pages;
3871 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3873 int ret;
3876 * Node reclaim reclaims unmapped file backed pages and
3877 * slab pages if we are over the defined limits.
3879 * A small portion of unmapped file backed pages is needed for
3880 * file I/O otherwise pages read by file I/O will be immediately
3881 * thrown out if the node is overallocated. So we do not reclaim
3882 * if less than a specified percentage of the node is used by
3883 * unmapped file backed pages.
3885 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3886 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3887 return NODE_RECLAIM_FULL;
3890 * Do not scan if the allocation should not be delayed.
3892 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3893 return NODE_RECLAIM_NOSCAN;
3896 * Only run node reclaim on the local node or on nodes that do not
3897 * have associated processors. This will favor the local processor
3898 * over remote processors and spread off node memory allocations
3899 * as wide as possible.
3901 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3902 return NODE_RECLAIM_NOSCAN;
3904 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3905 return NODE_RECLAIM_NOSCAN;
3907 ret = __node_reclaim(pgdat, gfp_mask, order);
3908 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3910 if (!ret)
3911 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3913 return ret;
3915 #endif
3918 * page_evictable - test whether a page is evictable
3919 * @page: the page to test
3921 * Test whether page is evictable--i.e., should be placed on active/inactive
3922 * lists vs unevictable list.
3924 * Reasons page might not be evictable:
3925 * (1) page's mapping marked unevictable
3926 * (2) page is part of an mlocked VMA
3929 int page_evictable(struct page *page)
3931 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3934 #ifdef CONFIG_SHMEM
3936 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3937 * @pages: array of pages to check
3938 * @nr_pages: number of pages to check
3940 * Checks pages for evictability and moves them to the appropriate lru list.
3942 * This function is only used for SysV IPC SHM_UNLOCK.
3944 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3946 struct lruvec *lruvec;
3947 struct pglist_data *pgdat = NULL;
3948 int pgscanned = 0;
3949 int pgrescued = 0;
3950 int i;
3952 for (i = 0; i < nr_pages; i++) {
3953 struct page *page = pages[i];
3954 struct pglist_data *pagepgdat = page_pgdat(page);
3956 pgscanned++;
3957 if (pagepgdat != pgdat) {
3958 if (pgdat)
3959 spin_unlock_irq(&pgdat->lru_lock);
3960 pgdat = pagepgdat;
3961 spin_lock_irq(&pgdat->lru_lock);
3963 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3965 if (!PageLRU(page) || !PageUnevictable(page))
3966 continue;
3968 if (page_evictable(page)) {
3969 enum lru_list lru = page_lru_base_type(page);
3971 VM_BUG_ON_PAGE(PageActive(page), page);
3972 ClearPageUnevictable(page);
3973 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3974 add_page_to_lru_list(page, lruvec, lru);
3975 pgrescued++;
3979 if (pgdat) {
3980 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3981 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3982 spin_unlock_irq(&pgdat->lru_lock);
3985 #endif /* CONFIG_SHMEM */