Merge tag 'chrome-platform-for-linus-4.13' of git://git.kernel.org/pub/scm/linux...
[linux/fpc-iii.git] / net / sunrpc / xprtrdma / rpc_rdma.c
blob694e9b13ecf07722848d86345589ad4793474fb5
1 /*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 * rpc_rdma.c
43 * This file contains the guts of the RPC RDMA protocol, and
44 * does marshaling/unmarshaling, etc. It is also where interfacing
45 * to the Linux RPC framework lives.
48 #include "xprt_rdma.h"
50 #include <linux/highmem.h>
52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
53 # define RPCDBG_FACILITY RPCDBG_TRANS
54 #endif
56 static const char transfertypes[][12] = {
57 "inline", /* no chunks */
58 "read list", /* some argument via rdma read */
59 "*read list", /* entire request via rdma read */
60 "write list", /* some result via rdma write */
61 "reply chunk" /* entire reply via rdma write */
64 /* Returns size of largest RPC-over-RDMA header in a Call message
66 * The largest Call header contains a full-size Read list and a
67 * minimal Reply chunk.
69 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
71 unsigned int size;
73 /* Fixed header fields and list discriminators */
74 size = RPCRDMA_HDRLEN_MIN;
76 /* Maximum Read list size */
77 maxsegs += 2; /* segment for head and tail buffers */
78 size = maxsegs * sizeof(struct rpcrdma_read_chunk);
80 /* Minimal Read chunk size */
81 size += sizeof(__be32); /* segment count */
82 size += sizeof(struct rpcrdma_segment);
83 size += sizeof(__be32); /* list discriminator */
85 dprintk("RPC: %s: max call header size = %u\n",
86 __func__, size);
87 return size;
90 /* Returns size of largest RPC-over-RDMA header in a Reply message
92 * There is only one Write list or one Reply chunk per Reply
93 * message. The larger list is the Write list.
95 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
97 unsigned int size;
99 /* Fixed header fields and list discriminators */
100 size = RPCRDMA_HDRLEN_MIN;
102 /* Maximum Write list size */
103 maxsegs += 2; /* segment for head and tail buffers */
104 size = sizeof(__be32); /* segment count */
105 size += maxsegs * sizeof(struct rpcrdma_segment);
106 size += sizeof(__be32); /* list discriminator */
108 dprintk("RPC: %s: max reply header size = %u\n",
109 __func__, size);
110 return size;
113 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
115 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
116 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
117 unsigned int maxsegs = ia->ri_max_segs;
119 ia->ri_max_inline_write = cdata->inline_wsize -
120 rpcrdma_max_call_header_size(maxsegs);
121 ia->ri_max_inline_read = cdata->inline_rsize -
122 rpcrdma_max_reply_header_size(maxsegs);
125 /* The client can send a request inline as long as the RPCRDMA header
126 * plus the RPC call fit under the transport's inline limit. If the
127 * combined call message size exceeds that limit, the client must use
128 * a Read chunk for this operation.
130 * A Read chunk is also required if sending the RPC call inline would
131 * exceed this device's max_sge limit.
133 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
134 struct rpc_rqst *rqst)
136 struct xdr_buf *xdr = &rqst->rq_snd_buf;
137 unsigned int count, remaining, offset;
139 if (xdr->len > r_xprt->rx_ia.ri_max_inline_write)
140 return false;
142 if (xdr->page_len) {
143 remaining = xdr->page_len;
144 offset = xdr->page_base & ~PAGE_MASK;
145 count = 0;
146 while (remaining) {
147 remaining -= min_t(unsigned int,
148 PAGE_SIZE - offset, remaining);
149 offset = 0;
150 if (++count > r_xprt->rx_ia.ri_max_send_sges)
151 return false;
155 return true;
158 /* The client can't know how large the actual reply will be. Thus it
159 * plans for the largest possible reply for that particular ULP
160 * operation. If the maximum combined reply message size exceeds that
161 * limit, the client must provide a write list or a reply chunk for
162 * this request.
164 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
165 struct rpc_rqst *rqst)
167 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
169 return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
172 /* Split "vec" on page boundaries into segments. FMR registers pages,
173 * not a byte range. Other modes coalesce these segments into a single
174 * MR when they can.
176 static int
177 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, int n)
179 size_t page_offset;
180 u32 remaining;
181 char *base;
183 base = vec->iov_base;
184 page_offset = offset_in_page(base);
185 remaining = vec->iov_len;
186 while (remaining && n < RPCRDMA_MAX_SEGS) {
187 seg[n].mr_page = NULL;
188 seg[n].mr_offset = base;
189 seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
190 remaining -= seg[n].mr_len;
191 base += seg[n].mr_len;
192 ++n;
193 page_offset = 0;
195 return n;
199 * Chunk assembly from upper layer xdr_buf.
201 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
202 * elements. Segments are then coalesced when registered, if possible
203 * within the selected memreg mode.
205 * Returns positive number of segments converted, or a negative errno.
208 static int
209 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
210 unsigned int pos, enum rpcrdma_chunktype type,
211 struct rpcrdma_mr_seg *seg)
213 int len, n, p, page_base;
214 struct page **ppages;
216 n = 0;
217 if (pos == 0) {
218 n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n);
219 if (n == RPCRDMA_MAX_SEGS)
220 goto out_overflow;
223 len = xdrbuf->page_len;
224 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
225 page_base = xdrbuf->page_base & ~PAGE_MASK;
226 p = 0;
227 while (len && n < RPCRDMA_MAX_SEGS) {
228 if (!ppages[p]) {
229 /* alloc the pagelist for receiving buffer */
230 ppages[p] = alloc_page(GFP_ATOMIC);
231 if (!ppages[p])
232 return -EAGAIN;
234 seg[n].mr_page = ppages[p];
235 seg[n].mr_offset = (void *)(unsigned long) page_base;
236 seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
237 if (seg[n].mr_len > PAGE_SIZE)
238 goto out_overflow;
239 len -= seg[n].mr_len;
240 ++n;
241 ++p;
242 page_base = 0; /* page offset only applies to first page */
245 /* Message overflows the seg array */
246 if (len && n == RPCRDMA_MAX_SEGS)
247 goto out_overflow;
249 /* When encoding a Read chunk, the tail iovec contains an
250 * XDR pad and may be omitted.
252 if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
253 return n;
255 /* When encoding a Write chunk, some servers need to see an
256 * extra segment for non-XDR-aligned Write chunks. The upper
257 * layer provides space in the tail iovec that may be used
258 * for this purpose.
260 if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
261 return n;
263 if (xdrbuf->tail[0].iov_len) {
264 n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n);
265 if (n == RPCRDMA_MAX_SEGS)
266 goto out_overflow;
269 return n;
271 out_overflow:
272 pr_err("rpcrdma: segment array overflow\n");
273 return -EIO;
276 static inline __be32 *
277 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mw *mw)
279 *iptr++ = cpu_to_be32(mw->mw_handle);
280 *iptr++ = cpu_to_be32(mw->mw_length);
281 return xdr_encode_hyper(iptr, mw->mw_offset);
284 /* XDR-encode the Read list. Supports encoding a list of read
285 * segments that belong to a single read chunk.
287 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
289 * Read chunklist (a linked list):
290 * N elements, position P (same P for all chunks of same arg!):
291 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
293 * Returns a pointer to the XDR word in the RDMA header following
294 * the end of the Read list, or an error pointer.
296 static __be32 *
297 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
298 struct rpcrdma_req *req, struct rpc_rqst *rqst,
299 __be32 *iptr, enum rpcrdma_chunktype rtype)
301 struct rpcrdma_mr_seg *seg;
302 struct rpcrdma_mw *mw;
303 unsigned int pos;
304 int n, nsegs;
306 if (rtype == rpcrdma_noch) {
307 *iptr++ = xdr_zero; /* item not present */
308 return iptr;
311 pos = rqst->rq_snd_buf.head[0].iov_len;
312 if (rtype == rpcrdma_areadch)
313 pos = 0;
314 seg = req->rl_segments;
315 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
316 rtype, seg);
317 if (nsegs < 0)
318 return ERR_PTR(nsegs);
320 do {
321 n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
322 false, &mw);
323 if (n < 0)
324 return ERR_PTR(n);
325 rpcrdma_push_mw(mw, &req->rl_registered);
327 *iptr++ = xdr_one; /* item present */
329 /* All read segments in this chunk
330 * have the same "position".
332 *iptr++ = cpu_to_be32(pos);
333 iptr = xdr_encode_rdma_segment(iptr, mw);
335 dprintk("RPC: %5u %s: pos %u %u@0x%016llx:0x%08x (%s)\n",
336 rqst->rq_task->tk_pid, __func__, pos,
337 mw->mw_length, (unsigned long long)mw->mw_offset,
338 mw->mw_handle, n < nsegs ? "more" : "last");
340 r_xprt->rx_stats.read_chunk_count++;
341 seg += n;
342 nsegs -= n;
343 } while (nsegs);
345 /* Finish Read list */
346 *iptr++ = xdr_zero; /* Next item not present */
347 return iptr;
350 /* XDR-encode the Write list. Supports encoding a list containing
351 * one array of plain segments that belong to a single write chunk.
353 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
355 * Write chunklist (a list of (one) counted array):
356 * N elements:
357 * 1 - N - HLOO - HLOO - ... - HLOO - 0
359 * Returns a pointer to the XDR word in the RDMA header following
360 * the end of the Write list, or an error pointer.
362 static __be32 *
363 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
364 struct rpc_rqst *rqst, __be32 *iptr,
365 enum rpcrdma_chunktype wtype)
367 struct rpcrdma_mr_seg *seg;
368 struct rpcrdma_mw *mw;
369 int n, nsegs, nchunks;
370 __be32 *segcount;
372 if (wtype != rpcrdma_writech) {
373 *iptr++ = xdr_zero; /* no Write list present */
374 return iptr;
377 seg = req->rl_segments;
378 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
379 rqst->rq_rcv_buf.head[0].iov_len,
380 wtype, seg);
381 if (nsegs < 0)
382 return ERR_PTR(nsegs);
384 *iptr++ = xdr_one; /* Write list present */
385 segcount = iptr++; /* save location of segment count */
387 nchunks = 0;
388 do {
389 n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
390 true, &mw);
391 if (n < 0)
392 return ERR_PTR(n);
393 rpcrdma_push_mw(mw, &req->rl_registered);
395 iptr = xdr_encode_rdma_segment(iptr, mw);
397 dprintk("RPC: %5u %s: %u@0x016%llx:0x%08x (%s)\n",
398 rqst->rq_task->tk_pid, __func__,
399 mw->mw_length, (unsigned long long)mw->mw_offset,
400 mw->mw_handle, n < nsegs ? "more" : "last");
402 r_xprt->rx_stats.write_chunk_count++;
403 r_xprt->rx_stats.total_rdma_request += seg->mr_len;
404 nchunks++;
405 seg += n;
406 nsegs -= n;
407 } while (nsegs);
409 /* Update count of segments in this Write chunk */
410 *segcount = cpu_to_be32(nchunks);
412 /* Finish Write list */
413 *iptr++ = xdr_zero; /* Next item not present */
414 return iptr;
417 /* XDR-encode the Reply chunk. Supports encoding an array of plain
418 * segments that belong to a single write (reply) chunk.
420 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
422 * Reply chunk (a counted array):
423 * N elements:
424 * 1 - N - HLOO - HLOO - ... - HLOO
426 * Returns a pointer to the XDR word in the RDMA header following
427 * the end of the Reply chunk, or an error pointer.
429 static __be32 *
430 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
431 struct rpcrdma_req *req, struct rpc_rqst *rqst,
432 __be32 *iptr, enum rpcrdma_chunktype wtype)
434 struct rpcrdma_mr_seg *seg;
435 struct rpcrdma_mw *mw;
436 int n, nsegs, nchunks;
437 __be32 *segcount;
439 if (wtype != rpcrdma_replych) {
440 *iptr++ = xdr_zero; /* no Reply chunk present */
441 return iptr;
444 seg = req->rl_segments;
445 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
446 if (nsegs < 0)
447 return ERR_PTR(nsegs);
449 *iptr++ = xdr_one; /* Reply chunk present */
450 segcount = iptr++; /* save location of segment count */
452 nchunks = 0;
453 do {
454 n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
455 true, &mw);
456 if (n < 0)
457 return ERR_PTR(n);
458 rpcrdma_push_mw(mw, &req->rl_registered);
460 iptr = xdr_encode_rdma_segment(iptr, mw);
462 dprintk("RPC: %5u %s: %u@0x%016llx:0x%08x (%s)\n",
463 rqst->rq_task->tk_pid, __func__,
464 mw->mw_length, (unsigned long long)mw->mw_offset,
465 mw->mw_handle, n < nsegs ? "more" : "last");
467 r_xprt->rx_stats.reply_chunk_count++;
468 r_xprt->rx_stats.total_rdma_request += seg->mr_len;
469 nchunks++;
470 seg += n;
471 nsegs -= n;
472 } while (nsegs);
474 /* Update count of segments in the Reply chunk */
475 *segcount = cpu_to_be32(nchunks);
477 return iptr;
480 /* Prepare the RPC-over-RDMA header SGE.
482 static bool
483 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
484 u32 len)
486 struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
487 struct ib_sge *sge = &req->rl_send_sge[0];
489 if (unlikely(!rpcrdma_regbuf_is_mapped(rb))) {
490 if (!__rpcrdma_dma_map_regbuf(ia, rb))
491 return false;
492 sge->addr = rdmab_addr(rb);
493 sge->lkey = rdmab_lkey(rb);
495 sge->length = len;
497 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr,
498 sge->length, DMA_TO_DEVICE);
499 req->rl_send_wr.num_sge++;
500 return true;
503 /* Prepare the Send SGEs. The head and tail iovec, and each entry
504 * in the page list, gets its own SGE.
506 static bool
507 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
508 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
510 unsigned int sge_no, page_base, len, remaining;
511 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
512 struct ib_device *device = ia->ri_device;
513 struct ib_sge *sge = req->rl_send_sge;
514 u32 lkey = ia->ri_pd->local_dma_lkey;
515 struct page *page, **ppages;
517 /* The head iovec is straightforward, as it is already
518 * DMA-mapped. Sync the content that has changed.
520 if (!rpcrdma_dma_map_regbuf(ia, rb))
521 return false;
522 sge_no = 1;
523 sge[sge_no].addr = rdmab_addr(rb);
524 sge[sge_no].length = xdr->head[0].iov_len;
525 sge[sge_no].lkey = rdmab_lkey(rb);
526 ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
527 sge[sge_no].length, DMA_TO_DEVICE);
529 /* If there is a Read chunk, the page list is being handled
530 * via explicit RDMA, and thus is skipped here. However, the
531 * tail iovec may include an XDR pad for the page list, as
532 * well as additional content, and may not reside in the
533 * same page as the head iovec.
535 if (rtype == rpcrdma_readch) {
536 len = xdr->tail[0].iov_len;
538 /* Do not include the tail if it is only an XDR pad */
539 if (len < 4)
540 goto out;
542 page = virt_to_page(xdr->tail[0].iov_base);
543 page_base = (unsigned long)xdr->tail[0].iov_base & ~PAGE_MASK;
545 /* If the content in the page list is an odd length,
546 * xdr_write_pages() has added a pad at the beginning
547 * of the tail iovec. Force the tail's non-pad content
548 * to land at the next XDR position in the Send message.
550 page_base += len & 3;
551 len -= len & 3;
552 goto map_tail;
555 /* If there is a page list present, temporarily DMA map
556 * and prepare an SGE for each page to be sent.
558 if (xdr->page_len) {
559 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
560 page_base = xdr->page_base & ~PAGE_MASK;
561 remaining = xdr->page_len;
562 while (remaining) {
563 sge_no++;
564 if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
565 goto out_mapping_overflow;
567 len = min_t(u32, PAGE_SIZE - page_base, remaining);
568 sge[sge_no].addr = ib_dma_map_page(device, *ppages,
569 page_base, len,
570 DMA_TO_DEVICE);
571 if (ib_dma_mapping_error(device, sge[sge_no].addr))
572 goto out_mapping_err;
573 sge[sge_no].length = len;
574 sge[sge_no].lkey = lkey;
576 req->rl_mapped_sges++;
577 ppages++;
578 remaining -= len;
579 page_base = 0;
583 /* The tail iovec is not always constructed in the same
584 * page where the head iovec resides (see, for example,
585 * gss_wrap_req_priv). To neatly accommodate that case,
586 * DMA map it separately.
588 if (xdr->tail[0].iov_len) {
589 page = virt_to_page(xdr->tail[0].iov_base);
590 page_base = (unsigned long)xdr->tail[0].iov_base & ~PAGE_MASK;
591 len = xdr->tail[0].iov_len;
593 map_tail:
594 sge_no++;
595 sge[sge_no].addr = ib_dma_map_page(device, page,
596 page_base, len,
597 DMA_TO_DEVICE);
598 if (ib_dma_mapping_error(device, sge[sge_no].addr))
599 goto out_mapping_err;
600 sge[sge_no].length = len;
601 sge[sge_no].lkey = lkey;
602 req->rl_mapped_sges++;
605 out:
606 req->rl_send_wr.num_sge = sge_no + 1;
607 return true;
609 out_mapping_overflow:
610 pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
611 return false;
613 out_mapping_err:
614 pr_err("rpcrdma: Send mapping error\n");
615 return false;
618 bool
619 rpcrdma_prepare_send_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
620 u32 hdrlen, struct xdr_buf *xdr,
621 enum rpcrdma_chunktype rtype)
623 req->rl_send_wr.num_sge = 0;
624 req->rl_mapped_sges = 0;
626 if (!rpcrdma_prepare_hdr_sge(ia, req, hdrlen))
627 goto out_map;
629 if (rtype != rpcrdma_areadch)
630 if (!rpcrdma_prepare_msg_sges(ia, req, xdr, rtype))
631 goto out_map;
633 return true;
635 out_map:
636 pr_err("rpcrdma: failed to DMA map a Send buffer\n");
637 return false;
640 void
641 rpcrdma_unmap_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
643 struct ib_device *device = ia->ri_device;
644 struct ib_sge *sge;
645 int count;
647 sge = &req->rl_send_sge[2];
648 for (count = req->rl_mapped_sges; count--; sge++)
649 ib_dma_unmap_page(device, sge->addr, sge->length,
650 DMA_TO_DEVICE);
651 req->rl_mapped_sges = 0;
655 * Marshal a request: the primary job of this routine is to choose
656 * the transfer modes. See comments below.
658 * Returns zero on success, otherwise a negative errno.
662 rpcrdma_marshal_req(struct rpc_rqst *rqst)
664 struct rpc_xprt *xprt = rqst->rq_xprt;
665 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
666 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
667 enum rpcrdma_chunktype rtype, wtype;
668 struct rpcrdma_msg *headerp;
669 bool ddp_allowed;
670 ssize_t hdrlen;
671 size_t rpclen;
672 __be32 *iptr;
674 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
675 if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
676 return rpcrdma_bc_marshal_reply(rqst);
677 #endif
679 headerp = rdmab_to_msg(req->rl_rdmabuf);
680 /* don't byte-swap XID, it's already done in request */
681 headerp->rm_xid = rqst->rq_xid;
682 headerp->rm_vers = rpcrdma_version;
683 headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
684 headerp->rm_type = rdma_msg;
686 /* When the ULP employs a GSS flavor that guarantees integrity
687 * or privacy, direct data placement of individual data items
688 * is not allowed.
690 ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
691 RPCAUTH_AUTH_DATATOUCH);
694 * Chunks needed for results?
696 * o If the expected result is under the inline threshold, all ops
697 * return as inline.
698 * o Large read ops return data as write chunk(s), header as
699 * inline.
700 * o Large non-read ops return as a single reply chunk.
702 if (rpcrdma_results_inline(r_xprt, rqst))
703 wtype = rpcrdma_noch;
704 else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
705 wtype = rpcrdma_writech;
706 else
707 wtype = rpcrdma_replych;
710 * Chunks needed for arguments?
712 * o If the total request is under the inline threshold, all ops
713 * are sent as inline.
714 * o Large write ops transmit data as read chunk(s), header as
715 * inline.
716 * o Large non-write ops are sent with the entire message as a
717 * single read chunk (protocol 0-position special case).
719 * This assumes that the upper layer does not present a request
720 * that both has a data payload, and whose non-data arguments
721 * by themselves are larger than the inline threshold.
723 if (rpcrdma_args_inline(r_xprt, rqst)) {
724 rtype = rpcrdma_noch;
725 rpclen = rqst->rq_snd_buf.len;
726 } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
727 rtype = rpcrdma_readch;
728 rpclen = rqst->rq_snd_buf.head[0].iov_len +
729 rqst->rq_snd_buf.tail[0].iov_len;
730 } else {
731 r_xprt->rx_stats.nomsg_call_count++;
732 headerp->rm_type = htonl(RDMA_NOMSG);
733 rtype = rpcrdma_areadch;
734 rpclen = 0;
737 /* This implementation supports the following combinations
738 * of chunk lists in one RPC-over-RDMA Call message:
740 * - Read list
741 * - Write list
742 * - Reply chunk
743 * - Read list + Reply chunk
745 * It might not yet support the following combinations:
747 * - Read list + Write list
749 * It does not support the following combinations:
751 * - Write list + Reply chunk
752 * - Read list + Write list + Reply chunk
754 * This implementation supports only a single chunk in each
755 * Read or Write list. Thus for example the client cannot
756 * send a Call message with a Position Zero Read chunk and a
757 * regular Read chunk at the same time.
759 iptr = headerp->rm_body.rm_chunks;
760 iptr = rpcrdma_encode_read_list(r_xprt, req, rqst, iptr, rtype);
761 if (IS_ERR(iptr))
762 goto out_err;
763 iptr = rpcrdma_encode_write_list(r_xprt, req, rqst, iptr, wtype);
764 if (IS_ERR(iptr))
765 goto out_err;
766 iptr = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, iptr, wtype);
767 if (IS_ERR(iptr))
768 goto out_err;
769 hdrlen = (unsigned char *)iptr - (unsigned char *)headerp;
771 dprintk("RPC: %5u %s: %s/%s: hdrlen %zd rpclen %zd\n",
772 rqst->rq_task->tk_pid, __func__,
773 transfertypes[rtype], transfertypes[wtype],
774 hdrlen, rpclen);
776 if (!rpcrdma_prepare_send_sges(&r_xprt->rx_ia, req, hdrlen,
777 &rqst->rq_snd_buf, rtype)) {
778 iptr = ERR_PTR(-EIO);
779 goto out_err;
781 return 0;
783 out_err:
784 if (PTR_ERR(iptr) != -ENOBUFS) {
785 pr_err("rpcrdma: rpcrdma_marshal_req failed, status %ld\n",
786 PTR_ERR(iptr));
787 r_xprt->rx_stats.failed_marshal_count++;
789 return PTR_ERR(iptr);
793 * Chase down a received write or reply chunklist to get length
794 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
796 static int
797 rpcrdma_count_chunks(struct rpcrdma_rep *rep, int wrchunk, __be32 **iptrp)
799 unsigned int i, total_len;
800 struct rpcrdma_write_chunk *cur_wchunk;
801 char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
803 i = be32_to_cpu(**iptrp);
804 cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
805 total_len = 0;
806 while (i--) {
807 struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
808 ifdebug(FACILITY) {
809 u64 off;
810 xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
811 dprintk("RPC: %s: chunk %d@0x%016llx:0x%08x\n",
812 __func__,
813 be32_to_cpu(seg->rs_length),
814 (unsigned long long)off,
815 be32_to_cpu(seg->rs_handle));
817 total_len += be32_to_cpu(seg->rs_length);
818 ++cur_wchunk;
820 /* check and adjust for properly terminated write chunk */
821 if (wrchunk) {
822 __be32 *w = (__be32 *) cur_wchunk;
823 if (*w++ != xdr_zero)
824 return -1;
825 cur_wchunk = (struct rpcrdma_write_chunk *) w;
827 if ((char *)cur_wchunk > base + rep->rr_len)
828 return -1;
830 *iptrp = (__be32 *) cur_wchunk;
831 return total_len;
835 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
836 * @rqst: controlling RPC request
837 * @srcp: points to RPC message payload in receive buffer
838 * @copy_len: remaining length of receive buffer content
839 * @pad: Write chunk pad bytes needed (zero for pure inline)
841 * The upper layer has set the maximum number of bytes it can
842 * receive in each component of rq_rcv_buf. These values are set in
843 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
845 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
846 * many cases this function simply updates iov_base pointers in
847 * rq_rcv_buf to point directly to the received reply data, to
848 * avoid copying reply data.
850 * Returns the count of bytes which had to be memcopied.
852 static unsigned long
853 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
855 unsigned long fixup_copy_count;
856 int i, npages, curlen;
857 char *destp;
858 struct page **ppages;
859 int page_base;
861 /* The head iovec is redirected to the RPC reply message
862 * in the receive buffer, to avoid a memcopy.
864 rqst->rq_rcv_buf.head[0].iov_base = srcp;
865 rqst->rq_private_buf.head[0].iov_base = srcp;
867 /* The contents of the receive buffer that follow
868 * head.iov_len bytes are copied into the page list.
870 curlen = rqst->rq_rcv_buf.head[0].iov_len;
871 if (curlen > copy_len)
872 curlen = copy_len;
873 dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
874 __func__, srcp, copy_len, curlen);
875 srcp += curlen;
876 copy_len -= curlen;
878 page_base = rqst->rq_rcv_buf.page_base;
879 ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
880 page_base &= ~PAGE_MASK;
881 fixup_copy_count = 0;
882 if (copy_len && rqst->rq_rcv_buf.page_len) {
883 int pagelist_len;
885 pagelist_len = rqst->rq_rcv_buf.page_len;
886 if (pagelist_len > copy_len)
887 pagelist_len = copy_len;
888 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
889 for (i = 0; i < npages; i++) {
890 curlen = PAGE_SIZE - page_base;
891 if (curlen > pagelist_len)
892 curlen = pagelist_len;
894 dprintk("RPC: %s: page %d"
895 " srcp 0x%p len %d curlen %d\n",
896 __func__, i, srcp, copy_len, curlen);
897 destp = kmap_atomic(ppages[i]);
898 memcpy(destp + page_base, srcp, curlen);
899 flush_dcache_page(ppages[i]);
900 kunmap_atomic(destp);
901 srcp += curlen;
902 copy_len -= curlen;
903 fixup_copy_count += curlen;
904 pagelist_len -= curlen;
905 if (!pagelist_len)
906 break;
907 page_base = 0;
910 /* Implicit padding for the last segment in a Write
911 * chunk is inserted inline at the front of the tail
912 * iovec. The upper layer ignores the content of
913 * the pad. Simply ensure inline content in the tail
914 * that follows the Write chunk is properly aligned.
916 if (pad)
917 srcp -= pad;
920 /* The tail iovec is redirected to the remaining data
921 * in the receive buffer, to avoid a memcopy.
923 if (copy_len || pad) {
924 rqst->rq_rcv_buf.tail[0].iov_base = srcp;
925 rqst->rq_private_buf.tail[0].iov_base = srcp;
928 return fixup_copy_count;
931 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
932 /* By convention, backchannel calls arrive via rdma_msg type
933 * messages, and never populate the chunk lists. This makes
934 * the RPC/RDMA header small and fixed in size, so it is
935 * straightforward to check the RPC header's direction field.
937 static bool
938 rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
940 __be32 *p = (__be32 *)headerp;
942 if (headerp->rm_type != rdma_msg)
943 return false;
944 if (headerp->rm_body.rm_chunks[0] != xdr_zero)
945 return false;
946 if (headerp->rm_body.rm_chunks[1] != xdr_zero)
947 return false;
948 if (headerp->rm_body.rm_chunks[2] != xdr_zero)
949 return false;
951 /* sanity */
952 if (p[7] != headerp->rm_xid)
953 return false;
954 /* call direction */
955 if (p[8] != cpu_to_be32(RPC_CALL))
956 return false;
958 return true;
960 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
962 /* Process received RPC/RDMA messages.
964 * Errors must result in the RPC task either being awakened, or
965 * allowed to timeout, to discover the errors at that time.
967 void
968 rpcrdma_reply_handler(struct work_struct *work)
970 struct rpcrdma_rep *rep =
971 container_of(work, struct rpcrdma_rep, rr_work);
972 struct rpcrdma_msg *headerp;
973 struct rpcrdma_req *req;
974 struct rpc_rqst *rqst;
975 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
976 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
977 __be32 *iptr;
978 int rdmalen, status, rmerr;
979 unsigned long cwnd;
981 dprintk("RPC: %s: incoming rep %p\n", __func__, rep);
983 if (rep->rr_len == RPCRDMA_BAD_LEN)
984 goto out_badstatus;
985 if (rep->rr_len < RPCRDMA_HDRLEN_ERR)
986 goto out_shortreply;
988 headerp = rdmab_to_msg(rep->rr_rdmabuf);
989 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
990 if (rpcrdma_is_bcall(headerp))
991 goto out_bcall;
992 #endif
994 /* Match incoming rpcrdma_rep to an rpcrdma_req to
995 * get context for handling any incoming chunks.
997 spin_lock_bh(&xprt->transport_lock);
998 rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
999 if (!rqst)
1000 goto out_nomatch;
1002 req = rpcr_to_rdmar(rqst);
1003 if (req->rl_reply)
1004 goto out_duplicate;
1006 /* Sanity checking has passed. We are now committed
1007 * to complete this transaction.
1009 list_del_init(&rqst->rq_list);
1010 spin_unlock_bh(&xprt->transport_lock);
1011 dprintk("RPC: %s: reply %p completes request %p (xid 0x%08x)\n",
1012 __func__, rep, req, be32_to_cpu(headerp->rm_xid));
1014 /* from here on, the reply is no longer an orphan */
1015 req->rl_reply = rep;
1016 xprt->reestablish_timeout = 0;
1018 if (headerp->rm_vers != rpcrdma_version)
1019 goto out_badversion;
1021 /* check for expected message types */
1022 /* The order of some of these tests is important. */
1023 switch (headerp->rm_type) {
1024 case rdma_msg:
1025 /* never expect read chunks */
1026 /* never expect reply chunks (two ways to check) */
1027 /* never expect write chunks without having offered RDMA */
1028 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
1029 (headerp->rm_body.rm_chunks[1] == xdr_zero &&
1030 headerp->rm_body.rm_chunks[2] != xdr_zero) ||
1031 (headerp->rm_body.rm_chunks[1] != xdr_zero &&
1032 list_empty(&req->rl_registered)))
1033 goto badheader;
1034 if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
1035 /* count any expected write chunks in read reply */
1036 /* start at write chunk array count */
1037 iptr = &headerp->rm_body.rm_chunks[2];
1038 rdmalen = rpcrdma_count_chunks(rep, 1, &iptr);
1039 /* check for validity, and no reply chunk after */
1040 if (rdmalen < 0 || *iptr++ != xdr_zero)
1041 goto badheader;
1042 rep->rr_len -=
1043 ((unsigned char *)iptr - (unsigned char *)headerp);
1044 status = rep->rr_len + rdmalen;
1045 r_xprt->rx_stats.total_rdma_reply += rdmalen;
1046 /* special case - last chunk may omit padding */
1047 if (rdmalen &= 3) {
1048 rdmalen = 4 - rdmalen;
1049 status += rdmalen;
1051 } else {
1052 /* else ordinary inline */
1053 rdmalen = 0;
1054 iptr = (__be32 *)((unsigned char *)headerp +
1055 RPCRDMA_HDRLEN_MIN);
1056 rep->rr_len -= RPCRDMA_HDRLEN_MIN;
1057 status = rep->rr_len;
1060 r_xprt->rx_stats.fixup_copy_count +=
1061 rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len,
1062 rdmalen);
1063 break;
1065 case rdma_nomsg:
1066 /* never expect read or write chunks, always reply chunks */
1067 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
1068 headerp->rm_body.rm_chunks[1] != xdr_zero ||
1069 headerp->rm_body.rm_chunks[2] != xdr_one ||
1070 list_empty(&req->rl_registered))
1071 goto badheader;
1072 iptr = (__be32 *)((unsigned char *)headerp +
1073 RPCRDMA_HDRLEN_MIN);
1074 rdmalen = rpcrdma_count_chunks(rep, 0, &iptr);
1075 if (rdmalen < 0)
1076 goto badheader;
1077 r_xprt->rx_stats.total_rdma_reply += rdmalen;
1078 /* Reply chunk buffer already is the reply vector - no fixup. */
1079 status = rdmalen;
1080 break;
1082 case rdma_error:
1083 goto out_rdmaerr;
1085 badheader:
1086 default:
1087 dprintk("RPC: %5u %s: invalid rpcrdma reply (type %u)\n",
1088 rqst->rq_task->tk_pid, __func__,
1089 be32_to_cpu(headerp->rm_type));
1090 status = -EIO;
1091 r_xprt->rx_stats.bad_reply_count++;
1092 break;
1095 out:
1096 /* Invalidate and flush the data payloads before waking the
1097 * waiting application. This guarantees the memory region is
1098 * properly fenced from the server before the application
1099 * accesses the data. It also ensures proper send flow
1100 * control: waking the next RPC waits until this RPC has
1101 * relinquished all its Send Queue entries.
1103 if (!list_empty(&req->rl_registered))
1104 r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req);
1106 spin_lock_bh(&xprt->transport_lock);
1107 cwnd = xprt->cwnd;
1108 xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
1109 if (xprt->cwnd > cwnd)
1110 xprt_release_rqst_cong(rqst->rq_task);
1112 xprt_complete_rqst(rqst->rq_task, status);
1113 spin_unlock_bh(&xprt->transport_lock);
1114 dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
1115 __func__, xprt, rqst, status);
1116 return;
1118 out_badstatus:
1119 rpcrdma_recv_buffer_put(rep);
1120 if (r_xprt->rx_ep.rep_connected == 1) {
1121 r_xprt->rx_ep.rep_connected = -EIO;
1122 rpcrdma_conn_func(&r_xprt->rx_ep);
1124 return;
1126 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1127 out_bcall:
1128 rpcrdma_bc_receive_call(r_xprt, rep);
1129 return;
1130 #endif
1132 /* If the incoming reply terminated a pending RPC, the next
1133 * RPC call will post a replacement receive buffer as it is
1134 * being marshaled.
1136 out_badversion:
1137 dprintk("RPC: %s: invalid version %d\n",
1138 __func__, be32_to_cpu(headerp->rm_vers));
1139 status = -EIO;
1140 r_xprt->rx_stats.bad_reply_count++;
1141 goto out;
1143 out_rdmaerr:
1144 rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err);
1145 switch (rmerr) {
1146 case ERR_VERS:
1147 pr_err("%s: server reports header version error (%u-%u)\n",
1148 __func__,
1149 be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low),
1150 be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high));
1151 break;
1152 case ERR_CHUNK:
1153 pr_err("%s: server reports header decoding error\n",
1154 __func__);
1155 break;
1156 default:
1157 pr_err("%s: server reports unknown error %d\n",
1158 __func__, rmerr);
1160 status = -EREMOTEIO;
1161 r_xprt->rx_stats.bad_reply_count++;
1162 goto out;
1164 /* If no pending RPC transaction was matched, post a replacement
1165 * receive buffer before returning.
1167 out_shortreply:
1168 dprintk("RPC: %s: short/invalid reply\n", __func__);
1169 goto repost;
1171 out_nomatch:
1172 spin_unlock_bh(&xprt->transport_lock);
1173 dprintk("RPC: %s: no match for incoming xid 0x%08x len %d\n",
1174 __func__, be32_to_cpu(headerp->rm_xid),
1175 rep->rr_len);
1176 goto repost;
1178 out_duplicate:
1179 spin_unlock_bh(&xprt->transport_lock);
1180 dprintk("RPC: %s: "
1181 "duplicate reply %p to RPC request %p: xid 0x%08x\n",
1182 __func__, rep, req, be32_to_cpu(headerp->rm_xid));
1184 repost:
1185 r_xprt->rx_stats.bad_reply_count++;
1186 if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
1187 rpcrdma_recv_buffer_put(rep);