cfg80211: fix scan crash on single-band cards
[linux/fpc-iii.git] / arch / cris / arch-v32 / kernel / time.c
blobbb978ede89852ef06bc7d41f6520cb9bb20769b5
1 /*
2 * linux/arch/cris/arch-v32/kernel/time.c
4 * Copyright (C) 2003-2010 Axis Communications AB
6 */
8 #include <linux/timex.h>
9 #include <linux/time.h>
10 #include <linux/clocksource.h>
11 #include <linux/interrupt.h>
12 #include <linux/swap.h>
13 #include <linux/sched.h>
14 #include <linux/init.h>
15 #include <linux/threads.h>
16 #include <linux/cpufreq.h>
17 #include <asm/types.h>
18 #include <asm/signal.h>
19 #include <asm/io.h>
20 #include <asm/delay.h>
21 #include <asm/rtc.h>
22 #include <asm/irq.h>
23 #include <asm/irq_regs.h>
25 #include <hwregs/reg_map.h>
26 #include <hwregs/reg_rdwr.h>
27 #include <hwregs/timer_defs.h>
28 #include <hwregs/intr_vect_defs.h>
29 #ifdef CONFIG_CRIS_MACH_ARTPEC3
30 #include <hwregs/clkgen_defs.h>
31 #endif
33 /* Watchdog defines */
34 #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
35 #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
36 /* Number of 763 counts before watchdog bites */
37 #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
39 /* Register the continuos readonly timer available in FS and ARTPEC-3. */
40 static cycle_t read_cont_rotime(struct clocksource *cs)
42 return (u32)REG_RD(timer, regi_timer0, r_time);
45 static struct clocksource cont_rotime = {
46 .name = "crisv32_rotime",
47 .rating = 300,
48 .read = read_cont_rotime,
49 .mask = CLOCKSOURCE_MASK(32),
50 .shift = 10,
51 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
54 static int __init etrax_init_cont_rotime(void)
56 cont_rotime.mult = clocksource_khz2mult(100000, cont_rotime.shift);
57 clocksource_register(&cont_rotime);
58 return 0;
60 arch_initcall(etrax_init_cont_rotime);
63 unsigned long timer_regs[NR_CPUS] =
65 regi_timer0,
66 #ifdef CONFIG_SMP
67 regi_timer2
68 #endif
71 extern int set_rtc_mmss(unsigned long nowtime);
72 extern int have_rtc;
74 #ifdef CONFIG_CPU_FREQ
75 static int
76 cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
77 void *data);
79 static struct notifier_block cris_time_freq_notifier_block = {
80 .notifier_call = cris_time_freq_notifier,
82 #endif
84 unsigned long get_ns_in_jiffie(void)
86 reg_timer_r_tmr0_data data;
87 unsigned long ns;
89 data = REG_RD(timer, regi_timer0, r_tmr0_data);
90 ns = (TIMER0_DIV - data) * 10;
91 return ns;
95 /* From timer MDS describing the hardware watchdog:
96 * 4.3.1 Watchdog Operation
97 * The watchdog timer is an 8-bit timer with a configurable start value.
98 * Once started the watchdog counts downwards with a frequency of 763 Hz
99 * (100/131072 MHz). When the watchdog counts down to 1, it generates an
100 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
101 * chip.
103 /* This gives us 1.3 ms to do something useful when the NMI comes */
105 /* Right now, starting the watchdog is the same as resetting it */
106 #define start_watchdog reset_watchdog
108 #if defined(CONFIG_ETRAX_WATCHDOG)
109 static short int watchdog_key = 42; /* arbitrary 7 bit number */
110 #endif
112 /* Number of pages to consider "out of memory". It is normal that the memory
113 * is used though, so set this really low. */
114 #define WATCHDOG_MIN_FREE_PAGES 8
116 void reset_watchdog(void)
118 #if defined(CONFIG_ETRAX_WATCHDOG)
119 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
121 /* Only keep watchdog happy as long as we have memory left! */
122 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
123 /* Reset the watchdog with the inverse of the old key */
124 /* Invert key, which is 7 bits */
125 watchdog_key ^= ETRAX_WD_KEY_MASK;
126 wd_ctrl.cnt = ETRAX_WD_CNT;
127 wd_ctrl.cmd = regk_timer_start;
128 wd_ctrl.key = watchdog_key;
129 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
131 #endif
134 /* stop the watchdog - we still need the correct key */
136 void stop_watchdog(void)
138 #if defined(CONFIG_ETRAX_WATCHDOG)
139 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
140 watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
141 wd_ctrl.cnt = ETRAX_WD_CNT;
142 wd_ctrl.cmd = regk_timer_stop;
143 wd_ctrl.key = watchdog_key;
144 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
145 #endif
148 extern void show_registers(struct pt_regs *regs);
150 void handle_watchdog_bite(struct pt_regs *regs)
152 #if defined(CONFIG_ETRAX_WATCHDOG)
153 extern int cause_of_death;
155 oops_in_progress = 1;
156 printk(KERN_WARNING "Watchdog bite\n");
158 /* Check if forced restart or unexpected watchdog */
159 if (cause_of_death == 0xbedead) {
160 #ifdef CONFIG_CRIS_MACH_ARTPEC3
161 /* There is a bug in Artpec-3 (voodoo TR 78) that requires
162 * us to go to lower frequency for the reset to be reliable
164 reg_clkgen_rw_clk_ctrl ctrl =
165 REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
166 ctrl.pll = 0;
167 REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
168 #endif
169 while(1);
172 /* Unexpected watchdog, stop the watchdog and dump registers. */
173 stop_watchdog();
174 printk(KERN_WARNING "Oops: bitten by watchdog\n");
175 show_registers(regs);
176 oops_in_progress = 0;
177 #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
178 reset_watchdog();
179 #endif
180 while(1) /* nothing */;
181 #endif
185 * timer_interrupt() needs to keep up the real-time clock,
186 * as well as call the "xtime_update()" routine every clocktick.
188 extern void cris_do_profile(struct pt_regs *regs);
190 static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
192 struct pt_regs *regs = get_irq_regs();
193 int cpu = smp_processor_id();
194 reg_timer_r_masked_intr masked_intr;
195 reg_timer_rw_ack_intr ack_intr = { 0 };
197 /* Check if the timer interrupt is for us (a tmr0 int) */
198 masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
199 if (!masked_intr.tmr0)
200 return IRQ_NONE;
202 /* Acknowledge the timer irq. */
203 ack_intr.tmr0 = 1;
204 REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
206 /* Reset watchdog otherwise it resets us! */
207 reset_watchdog();
209 /* Update statistics. */
210 update_process_times(user_mode(regs));
212 cris_do_profile(regs); /* Save profiling information */
214 /* The master CPU is responsible for the time keeping. */
215 if (cpu != 0)
216 return IRQ_HANDLED;
218 /* Call the real timer interrupt handler */
219 xtime_update(1);
220 return IRQ_HANDLED;
223 /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
224 * It needs to be IRQF_DISABLED to make the jiffies update work properly.
226 static struct irqaction irq_timer = {
227 .handler = timer_interrupt,
228 .flags = IRQF_SHARED | IRQF_DISABLED,
229 .name = "timer"
232 void __init cris_timer_init(void)
234 int cpu = smp_processor_id();
235 reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
236 reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
237 reg_timer_rw_intr_mask timer_intr_mask;
239 /* Setup the etrax timers.
240 * Base frequency is 100MHz, divider 1000000 -> 100 HZ
241 * We use timer0, so timer1 is free.
242 * The trig timer is used by the fasttimer API if enabled.
245 tmr0_ctrl.op = regk_timer_ld;
246 tmr0_ctrl.freq = regk_timer_f100;
247 REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
248 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
249 tmr0_ctrl.op = regk_timer_run;
250 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
252 /* Enable the timer irq. */
253 timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
254 timer_intr_mask.tmr0 = 1;
255 REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
258 void __init time_init(void)
260 reg_intr_vect_rw_mask intr_mask;
262 /* Probe for the RTC and read it if it exists.
263 * Before the RTC can be probed the loops_per_usec variable needs
264 * to be initialized to make usleep work. A better value for
265 * loops_per_usec is calculated by the kernel later once the
266 * clock has started.
268 loops_per_usec = 50;
270 if(RTC_INIT() < 0)
271 have_rtc = 0;
272 else
273 have_rtc = 1;
275 /* Start CPU local timer. */
276 cris_timer_init();
278 /* Enable the timer irq in global config. */
279 intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
280 intr_mask.timer0 = 1;
281 REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
283 /* Now actually register the timer irq handler that calls
284 * timer_interrupt(). */
285 setup_irq(TIMER0_INTR_VECT, &irq_timer);
287 /* Enable watchdog if we should use one. */
289 #if defined(CONFIG_ETRAX_WATCHDOG)
290 printk(KERN_INFO "Enabling watchdog...\n");
291 start_watchdog();
293 /* If we use the hardware watchdog, we want to trap it as an NMI
294 * and dump registers before it resets us. For this to happen, we
295 * must set the "m" NMI enable flag (which once set, is unset only
296 * when an NMI is taken). */
298 unsigned long flags;
299 local_save_flags(flags);
300 flags |= (1<<30); /* NMI M flag is at bit 30 */
301 local_irq_restore(flags);
303 #endif
305 #ifdef CONFIG_CPU_FREQ
306 cpufreq_register_notifier(&cris_time_freq_notifier_block,
307 CPUFREQ_TRANSITION_NOTIFIER);
308 #endif
311 #ifdef CONFIG_CPU_FREQ
312 static int
313 cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
314 void *data)
316 struct cpufreq_freqs *freqs = data;
317 if (val == CPUFREQ_POSTCHANGE) {
318 reg_timer_r_tmr0_data data;
319 reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
320 do {
321 data = REG_RD(timer, timer_regs[freqs->cpu],
322 r_tmr0_data);
323 } while (data > 20);
324 REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
326 return 0;
328 #endif