4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
105 * Helpers for converting nanosecond timing to jiffy resolution
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
113 * These are the 'tuning knobs' of the scheduler:
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
118 #define DEF_TIMESLICE (100 * HZ / 1000)
121 * single value that denotes runtime == period, ie unlimited time.
123 #define RUNTIME_INF ((u64)~0ULL)
125 static inline int rt_policy(int policy
)
127 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
132 static inline int task_has_rt_policy(struct task_struct
*p
)
134 return rt_policy(p
->policy
);
138 * This is the priority-queue data structure of the RT scheduling class:
140 struct rt_prio_array
{
141 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
142 struct list_head queue
[MAX_RT_PRIO
];
145 struct rt_bandwidth
{
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock
;
150 struct hrtimer rt_period_timer
;
153 static struct rt_bandwidth def_rt_bandwidth
;
155 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
157 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
159 struct rt_bandwidth
*rt_b
=
160 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
166 now
= hrtimer_cb_get_time(timer
);
167 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
172 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
175 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
179 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
181 rt_b
->rt_period
= ns_to_ktime(period
);
182 rt_b
->rt_runtime
= runtime
;
184 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
186 hrtimer_init(&rt_b
->rt_period_timer
,
187 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
188 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
191 static inline int rt_bandwidth_enabled(void)
193 return sysctl_sched_rt_runtime
>= 0;
196 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
200 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
203 if (hrtimer_active(&rt_b
->rt_period_timer
))
206 raw_spin_lock(&rt_b
->rt_runtime_lock
);
211 if (hrtimer_active(&rt_b
->rt_period_timer
))
214 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
215 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
217 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
218 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
219 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
220 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
221 HRTIMER_MODE_ABS_PINNED
, 0);
223 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
229 hrtimer_cancel(&rt_b
->rt_period_timer
);
234 * sched_domains_mutex serializes calls to init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
237 static DEFINE_MUTEX(sched_domains_mutex
);
239 #ifdef CONFIG_CGROUP_SCHED
241 #include <linux/cgroup.h>
245 static LIST_HEAD(task_groups
);
247 /* task group related information */
249 struct cgroup_subsys_state css
;
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity
**se
;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq
**cfs_rq
;
256 unsigned long shares
;
258 atomic_t load_weight
;
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity
**rt_se
;
263 struct rt_rq
**rt_rq
;
265 struct rt_bandwidth rt_bandwidth
;
269 struct list_head list
;
271 struct task_group
*parent
;
272 struct list_head siblings
;
273 struct list_head children
;
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup
*autogroup
;
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock
);
283 #ifdef CONFIG_FAIR_GROUP_SCHED
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
296 #define MAX_SHARES (1UL << 18)
298 static int root_task_group_load
= ROOT_TASK_GROUP_LOAD
;
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
304 struct task_group root_task_group
;
306 #endif /* CONFIG_CGROUP_SCHED */
308 /* CFS-related fields in a runqueue */
310 struct load_weight load
;
311 unsigned long nr_running
;
316 u64 min_vruntime_copy
;
319 struct rb_root tasks_timeline
;
320 struct rb_node
*rb_leftmost
;
322 struct list_head tasks
;
323 struct list_head
*balance_iterator
;
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
329 struct sched_entity
*curr
, *next
, *last
, *skip
;
331 #ifdef CONFIG_SCHED_DEBUG
332 unsigned int nr_spread_over
;
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
347 struct list_head leaf_cfs_rq_list
;
348 struct task_group
*tg
; /* group that "owns" this runqueue */
352 * the part of load.weight contributed by tasks
354 unsigned long task_weight
;
357 * h_load = weight * f(tg)
359 * Where f(tg) is the recursive weight fraction assigned to
362 unsigned long h_load
;
365 * Maintaining per-cpu shares distribution for group scheduling
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
373 u64 load_stamp
, load_last
, load_unacc_exec_time
;
375 unsigned long load_contribution
;
380 /* Real-Time classes' related field in a runqueue: */
382 struct rt_prio_array active
;
383 unsigned long rt_nr_running
;
384 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
386 int curr
; /* highest queued rt task prio */
388 int next
; /* next highest */
393 unsigned long rt_nr_migratory
;
394 unsigned long rt_nr_total
;
396 struct plist_head pushable_tasks
;
401 /* Nests inside the rq lock: */
402 raw_spinlock_t rt_runtime_lock
;
404 #ifdef CONFIG_RT_GROUP_SCHED
405 unsigned long rt_nr_boosted
;
408 struct list_head leaf_rt_rq_list
;
409 struct task_group
*tg
;
416 * We add the notion of a root-domain which will be used to define per-domain
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
419 * exclusive cpuset is created, we also create and attach a new root-domain
427 cpumask_var_t online
;
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
433 cpumask_var_t rto_mask
;
435 struct cpupri cpupri
;
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
442 static struct root_domain def_root_domain
;
444 #endif /* CONFIG_SMP */
447 * This is the main, per-CPU runqueue data structure.
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
461 unsigned long nr_running
;
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
464 unsigned long last_load_update_tick
;
467 unsigned char nohz_balance_kick
;
469 int skip_clock_update
;
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load
;
473 unsigned long nr_load_updates
;
479 #ifdef CONFIG_FAIR_GROUP_SCHED
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list
;
483 #ifdef CONFIG_RT_GROUP_SCHED
484 struct list_head leaf_rt_rq_list
;
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
493 unsigned long nr_uninterruptible
;
495 struct task_struct
*curr
, *idle
, *stop
;
496 unsigned long next_balance
;
497 struct mm_struct
*prev_mm
;
505 struct root_domain
*rd
;
506 struct sched_domain
*sd
;
508 unsigned long cpu_power
;
510 unsigned char idle_at_tick
;
511 /* For active balancing */
515 struct cpu_stop_work active_balance_work
;
516 /* cpu of this runqueue: */
520 unsigned long avg_load_per_task
;
528 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
532 /* calc_load related fields */
533 unsigned long calc_load_update
;
534 long calc_load_active
;
536 #ifdef CONFIG_SCHED_HRTICK
538 int hrtick_csd_pending
;
539 struct call_single_data hrtick_csd
;
541 struct hrtimer hrtick_timer
;
544 #ifdef CONFIG_SCHEDSTATS
546 struct sched_info rq_sched_info
;
547 unsigned long long rq_cpu_time
;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
550 /* sys_sched_yield() stats */
551 unsigned int yld_count
;
553 /* schedule() stats */
554 unsigned int sched_switch
;
555 unsigned int sched_count
;
556 unsigned int sched_goidle
;
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count
;
560 unsigned int ttwu_local
;
564 struct task_struct
*wake_list
;
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
571 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
573 static inline int cpu_of(struct rq
*rq
)
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_held() || \
585 lockdep_is_held(&sched_domains_mutex))
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
603 #ifdef CONFIG_CGROUP_SCHED
606 * Return the group to which this tasks belongs.
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
613 static inline struct task_group
*task_group(struct task_struct
*p
)
615 struct task_group
*tg
;
616 struct cgroup_subsys_state
*css
;
618 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
619 lockdep_is_held(&p
->pi_lock
));
620 tg
= container_of(css
, struct task_group
, css
);
622 return autogroup_task_group(p
, tg
);
625 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
630 p
->se
.parent
= task_group(p
)->se
[cpu
];
633 #ifdef CONFIG_RT_GROUP_SCHED
634 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
635 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
639 #else /* CONFIG_CGROUP_SCHED */
641 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
642 static inline struct task_group
*task_group(struct task_struct
*p
)
647 #endif /* CONFIG_CGROUP_SCHED */
649 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
651 static void update_rq_clock(struct rq
*rq
)
655 if (rq
->skip_clock_update
> 0)
658 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
660 update_rq_clock_task(rq
, delta
);
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
666 #ifdef CONFIG_SCHED_DEBUG
667 # define const_debug __read_mostly
669 # define const_debug static const
673 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
674 * @cpu: the processor in question.
676 * This interface allows printk to be called with the runqueue lock
677 * held and know whether or not it is OK to wake up the klogd.
679 int runqueue_is_locked(int cpu
)
681 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
685 * Debugging: various feature bits
688 #define SCHED_FEAT(name, enabled) \
689 __SCHED_FEAT_##name ,
692 #include "sched_features.h"
697 #define SCHED_FEAT(name, enabled) \
698 (1UL << __SCHED_FEAT_##name) * enabled |
700 const_debug
unsigned int sysctl_sched_features
=
701 #include "sched_features.h"
706 #ifdef CONFIG_SCHED_DEBUG
707 #define SCHED_FEAT(name, enabled) \
710 static __read_mostly
char *sched_feat_names
[] = {
711 #include "sched_features.h"
717 static int sched_feat_show(struct seq_file
*m
, void *v
)
721 for (i
= 0; sched_feat_names
[i
]; i
++) {
722 if (!(sysctl_sched_features
& (1UL << i
)))
724 seq_printf(m
, "%s ", sched_feat_names
[i
]);
732 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
733 size_t cnt
, loff_t
*ppos
)
743 if (copy_from_user(&buf
, ubuf
, cnt
))
749 if (strncmp(cmp
, "NO_", 3) == 0) {
754 for (i
= 0; sched_feat_names
[i
]; i
++) {
755 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
757 sysctl_sched_features
&= ~(1UL << i
);
759 sysctl_sched_features
|= (1UL << i
);
764 if (!sched_feat_names
[i
])
772 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
774 return single_open(filp
, sched_feat_show
, NULL
);
777 static const struct file_operations sched_feat_fops
= {
778 .open
= sched_feat_open
,
779 .write
= sched_feat_write
,
782 .release
= single_release
,
785 static __init
int sched_init_debug(void)
787 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
792 late_initcall(sched_init_debug
);
796 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
802 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
805 * period over which we average the RT time consumption, measured
810 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
813 * period over which we measure -rt task cpu usage in us.
816 unsigned int sysctl_sched_rt_period
= 1000000;
818 static __read_mostly
int scheduler_running
;
821 * part of the period that we allow rt tasks to run in us.
824 int sysctl_sched_rt_runtime
= 950000;
826 static inline u64
global_rt_period(void)
828 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
831 static inline u64
global_rt_runtime(void)
833 if (sysctl_sched_rt_runtime
< 0)
836 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
839 #ifndef prepare_arch_switch
840 # define prepare_arch_switch(next) do { } while (0)
842 #ifndef finish_arch_switch
843 # define finish_arch_switch(prev) do { } while (0)
846 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
848 return rq
->curr
== p
;
851 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
856 return task_current(rq
, p
);
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
865 * We can optimise this out completely for !SMP, because the
866 * SMP rebalancing from interrupt is the only thing that cares
873 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
884 #ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq
->lock
.owner
= current
;
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
893 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
895 raw_spin_unlock_irq(&rq
->lock
);
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
909 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 raw_spin_unlock_irq(&rq
->lock
);
912 raw_spin_unlock(&rq
->lock
);
916 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
920 * After ->on_cpu is cleared, the task can be moved to a different CPU.
921 * We must ensure this doesn't happen until the switch is completely
927 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
934 * __task_rq_lock - lock the rq @p resides on.
936 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
941 lockdep_assert_held(&p
->pi_lock
);
945 raw_spin_lock(&rq
->lock
);
946 if (likely(rq
== task_rq(p
)))
948 raw_spin_unlock(&rq
->lock
);
953 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
955 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
956 __acquires(p
->pi_lock
)
962 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
964 raw_spin_lock(&rq
->lock
);
965 if (likely(rq
== task_rq(p
)))
967 raw_spin_unlock(&rq
->lock
);
968 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
972 static void __task_rq_unlock(struct rq
*rq
)
975 raw_spin_unlock(&rq
->lock
);
979 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
981 __releases(p
->pi_lock
)
983 raw_spin_unlock(&rq
->lock
);
984 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
988 * this_rq_lock - lock this runqueue and disable interrupts.
990 static struct rq
*this_rq_lock(void)
997 raw_spin_lock(&rq
->lock
);
1002 #ifdef CONFIG_SCHED_HRTICK
1004 * Use HR-timers to deliver accurate preemption points.
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * - enabled by features
1017 * - hrtimer is actually high res
1019 static inline int hrtick_enabled(struct rq
*rq
)
1021 if (!sched_feat(HRTICK
))
1023 if (!cpu_active(cpu_of(rq
)))
1025 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1028 static void hrtick_clear(struct rq
*rq
)
1030 if (hrtimer_active(&rq
->hrtick_timer
))
1031 hrtimer_cancel(&rq
->hrtick_timer
);
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1038 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1040 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1042 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1044 raw_spin_lock(&rq
->lock
);
1045 update_rq_clock(rq
);
1046 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1047 raw_spin_unlock(&rq
->lock
);
1049 return HRTIMER_NORESTART
;
1054 * called from hardirq (IPI) context
1056 static void __hrtick_start(void *arg
)
1058 struct rq
*rq
= arg
;
1060 raw_spin_lock(&rq
->lock
);
1061 hrtimer_restart(&rq
->hrtick_timer
);
1062 rq
->hrtick_csd_pending
= 0;
1063 raw_spin_unlock(&rq
->lock
);
1067 * Called to set the hrtick timer state.
1069 * called with rq->lock held and irqs disabled
1071 static void hrtick_start(struct rq
*rq
, u64 delay
)
1073 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1074 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1076 hrtimer_set_expires(timer
, time
);
1078 if (rq
== this_rq()) {
1079 hrtimer_restart(timer
);
1080 } else if (!rq
->hrtick_csd_pending
) {
1081 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1082 rq
->hrtick_csd_pending
= 1;
1087 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1089 int cpu
= (int)(long)hcpu
;
1092 case CPU_UP_CANCELED
:
1093 case CPU_UP_CANCELED_FROZEN
:
1094 case CPU_DOWN_PREPARE
:
1095 case CPU_DOWN_PREPARE_FROZEN
:
1097 case CPU_DEAD_FROZEN
:
1098 hrtick_clear(cpu_rq(cpu
));
1105 static __init
void init_hrtick(void)
1107 hotcpu_notifier(hotplug_hrtick
, 0);
1111 * Called to set the hrtick timer state.
1113 * called with rq->lock held and irqs disabled
1115 static void hrtick_start(struct rq
*rq
, u64 delay
)
1117 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1118 HRTIMER_MODE_REL_PINNED
, 0);
1121 static inline void init_hrtick(void)
1124 #endif /* CONFIG_SMP */
1126 static void init_rq_hrtick(struct rq
*rq
)
1129 rq
->hrtick_csd_pending
= 0;
1131 rq
->hrtick_csd
.flags
= 0;
1132 rq
->hrtick_csd
.func
= __hrtick_start
;
1133 rq
->hrtick_csd
.info
= rq
;
1136 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1137 rq
->hrtick_timer
.function
= hrtick
;
1139 #else /* CONFIG_SCHED_HRTICK */
1140 static inline void hrtick_clear(struct rq
*rq
)
1144 static inline void init_rq_hrtick(struct rq
*rq
)
1148 static inline void init_hrtick(void)
1151 #endif /* CONFIG_SCHED_HRTICK */
1154 * resched_task - mark a task 'to be rescheduled now'.
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1162 #ifndef tsk_is_polling
1163 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1166 static void resched_task(struct task_struct
*p
)
1170 assert_raw_spin_locked(&task_rq(p
)->lock
);
1172 if (test_tsk_need_resched(p
))
1175 set_tsk_need_resched(p
);
1178 if (cpu
== smp_processor_id())
1181 /* NEED_RESCHED must be visible before we test polling */
1183 if (!tsk_is_polling(p
))
1184 smp_send_reschedule(cpu
);
1187 static void resched_cpu(int cpu
)
1189 struct rq
*rq
= cpu_rq(cpu
);
1190 unsigned long flags
;
1192 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1194 resched_task(cpu_curr(cpu
));
1195 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1200 * In the semi idle case, use the nearest busy cpu for migrating timers
1201 * from an idle cpu. This is good for power-savings.
1203 * We don't do similar optimization for completely idle system, as
1204 * selecting an idle cpu will add more delays to the timers than intended
1205 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1207 int get_nohz_timer_target(void)
1209 int cpu
= smp_processor_id();
1211 struct sched_domain
*sd
;
1214 for_each_domain(cpu
, sd
) {
1215 for_each_cpu(i
, sched_domain_span(sd
)) {
1227 * When add_timer_on() enqueues a timer into the timer wheel of an
1228 * idle CPU then this timer might expire before the next timer event
1229 * which is scheduled to wake up that CPU. In case of a completely
1230 * idle system the next event might even be infinite time into the
1231 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1232 * leaves the inner idle loop so the newly added timer is taken into
1233 * account when the CPU goes back to idle and evaluates the timer
1234 * wheel for the next timer event.
1236 void wake_up_idle_cpu(int cpu
)
1238 struct rq
*rq
= cpu_rq(cpu
);
1240 if (cpu
== smp_processor_id())
1244 * This is safe, as this function is called with the timer
1245 * wheel base lock of (cpu) held. When the CPU is on the way
1246 * to idle and has not yet set rq->curr to idle then it will
1247 * be serialized on the timer wheel base lock and take the new
1248 * timer into account automatically.
1250 if (rq
->curr
!= rq
->idle
)
1254 * We can set TIF_RESCHED on the idle task of the other CPU
1255 * lockless. The worst case is that the other CPU runs the
1256 * idle task through an additional NOOP schedule()
1258 set_tsk_need_resched(rq
->idle
);
1260 /* NEED_RESCHED must be visible before we test polling */
1262 if (!tsk_is_polling(rq
->idle
))
1263 smp_send_reschedule(cpu
);
1266 #endif /* CONFIG_NO_HZ */
1268 static u64
sched_avg_period(void)
1270 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1273 static void sched_avg_update(struct rq
*rq
)
1275 s64 period
= sched_avg_period();
1277 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1279 * Inline assembly required to prevent the compiler
1280 * optimising this loop into a divmod call.
1281 * See __iter_div_u64_rem() for another example of this.
1283 asm("" : "+rm" (rq
->age_stamp
));
1284 rq
->age_stamp
+= period
;
1289 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1291 rq
->rt_avg
+= rt_delta
;
1292 sched_avg_update(rq
);
1295 #else /* !CONFIG_SMP */
1296 static void resched_task(struct task_struct
*p
)
1298 assert_raw_spin_locked(&task_rq(p
)->lock
);
1299 set_tsk_need_resched(p
);
1302 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1306 static void sched_avg_update(struct rq
*rq
)
1309 #endif /* CONFIG_SMP */
1311 #if BITS_PER_LONG == 32
1312 # define WMULT_CONST (~0UL)
1314 # define WMULT_CONST (1UL << 32)
1317 #define WMULT_SHIFT 32
1320 * Shift right and round:
1322 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1325 * delta *= weight / lw
1327 static unsigned long
1328 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1329 struct load_weight
*lw
)
1333 tmp
= (u64
)delta_exec
* weight
;
1335 if (!lw
->inv_weight
) {
1336 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1339 lw
->inv_weight
= WMULT_CONST
/ lw
->weight
;
1343 * Check whether we'd overflow the 64-bit multiplication:
1345 if (unlikely(tmp
> WMULT_CONST
))
1346 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1349 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1351 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1354 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1360 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1366 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
1373 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1374 * of tasks with abnormal "nice" values across CPUs the contribution that
1375 * each task makes to its run queue's load is weighted according to its
1376 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1377 * scaled version of the new time slice allocation that they receive on time
1381 #define WEIGHT_IDLEPRIO 3
1382 #define WMULT_IDLEPRIO 1431655765
1385 * Nice levels are multiplicative, with a gentle 10% change for every
1386 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1387 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1388 * that remained on nice 0.
1390 * The "10% effect" is relative and cumulative: from _any_ nice level,
1391 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1392 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1393 * If a task goes up by ~10% and another task goes down by ~10% then
1394 * the relative distance between them is ~25%.)
1396 static const int prio_to_weight
[40] = {
1397 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1398 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1399 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1400 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1401 /* 0 */ 1024, 820, 655, 526, 423,
1402 /* 5 */ 335, 272, 215, 172, 137,
1403 /* 10 */ 110, 87, 70, 56, 45,
1404 /* 15 */ 36, 29, 23, 18, 15,
1408 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1410 * In cases where the weight does not change often, we can use the
1411 * precalculated inverse to speed up arithmetics by turning divisions
1412 * into multiplications:
1414 static const u32 prio_to_wmult
[40] = {
1415 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1416 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1417 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1418 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1419 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1420 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1421 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1422 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1425 /* Time spent by the tasks of the cpu accounting group executing in ... */
1426 enum cpuacct_stat_index
{
1427 CPUACCT_STAT_USER
, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1430 CPUACCT_STAT_NSTATS
,
1433 #ifdef CONFIG_CGROUP_CPUACCT
1434 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1435 static void cpuacct_update_stats(struct task_struct
*tsk
,
1436 enum cpuacct_stat_index idx
, cputime_t val
);
1438 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1439 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1440 enum cpuacct_stat_index idx
, cputime_t val
) {}
1443 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1445 update_load_add(&rq
->load
, load
);
1448 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1450 update_load_sub(&rq
->load
, load
);
1453 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1454 typedef int (*tg_visitor
)(struct task_group
*, void *);
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1460 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1462 struct task_group
*parent
, *child
;
1466 parent
= &root_task_group
;
1468 ret
= (*down
)(parent
, data
);
1471 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1478 ret
= (*up
)(parent
, data
);
1483 parent
= parent
->parent
;
1492 static int tg_nop(struct task_group
*tg
, void *data
)
1499 /* Used instead of source_load when we know the type == 0 */
1500 static unsigned long weighted_cpuload(const int cpu
)
1502 return cpu_rq(cpu
)->load
.weight
;
1506 * Return a low guess at the load of a migration-source cpu weighted
1507 * according to the scheduling class and "nice" value.
1509 * We want to under-estimate the load of migration sources, to
1510 * balance conservatively.
1512 static unsigned long source_load(int cpu
, int type
)
1514 struct rq
*rq
= cpu_rq(cpu
);
1515 unsigned long total
= weighted_cpuload(cpu
);
1517 if (type
== 0 || !sched_feat(LB_BIAS
))
1520 return min(rq
->cpu_load
[type
-1], total
);
1524 * Return a high guess at the load of a migration-target cpu weighted
1525 * according to the scheduling class and "nice" value.
1527 static unsigned long target_load(int cpu
, int type
)
1529 struct rq
*rq
= cpu_rq(cpu
);
1530 unsigned long total
= weighted_cpuload(cpu
);
1532 if (type
== 0 || !sched_feat(LB_BIAS
))
1535 return max(rq
->cpu_load
[type
-1], total
);
1538 static unsigned long power_of(int cpu
)
1540 return cpu_rq(cpu
)->cpu_power
;
1543 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1545 static unsigned long cpu_avg_load_per_task(int cpu
)
1547 struct rq
*rq
= cpu_rq(cpu
);
1548 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1551 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1553 rq
->avg_load_per_task
= 0;
1555 return rq
->avg_load_per_task
;
1558 #ifdef CONFIG_FAIR_GROUP_SCHED
1561 * Compute the cpu's hierarchical load factor for each task group.
1562 * This needs to be done in a top-down fashion because the load of a child
1563 * group is a fraction of its parents load.
1565 static int tg_load_down(struct task_group
*tg
, void *data
)
1568 long cpu
= (long)data
;
1571 load
= cpu_rq(cpu
)->load
.weight
;
1573 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1574 load
*= tg
->se
[cpu
]->load
.weight
;
1575 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1578 tg
->cfs_rq
[cpu
]->h_load
= load
;
1583 static void update_h_load(long cpu
)
1585 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1590 #ifdef CONFIG_PREEMPT
1592 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1595 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1596 * way at the expense of forcing extra atomic operations in all
1597 * invocations. This assures that the double_lock is acquired using the
1598 * same underlying policy as the spinlock_t on this architecture, which
1599 * reduces latency compared to the unfair variant below. However, it
1600 * also adds more overhead and therefore may reduce throughput.
1602 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1603 __releases(this_rq
->lock
)
1604 __acquires(busiest
->lock
)
1605 __acquires(this_rq
->lock
)
1607 raw_spin_unlock(&this_rq
->lock
);
1608 double_rq_lock(this_rq
, busiest
);
1615 * Unfair double_lock_balance: Optimizes throughput at the expense of
1616 * latency by eliminating extra atomic operations when the locks are
1617 * already in proper order on entry. This favors lower cpu-ids and will
1618 * grant the double lock to lower cpus over higher ids under contention,
1619 * regardless of entry order into the function.
1621 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1622 __releases(this_rq
->lock
)
1623 __acquires(busiest
->lock
)
1624 __acquires(this_rq
->lock
)
1628 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1629 if (busiest
< this_rq
) {
1630 raw_spin_unlock(&this_rq
->lock
);
1631 raw_spin_lock(&busiest
->lock
);
1632 raw_spin_lock_nested(&this_rq
->lock
,
1633 SINGLE_DEPTH_NESTING
);
1636 raw_spin_lock_nested(&busiest
->lock
,
1637 SINGLE_DEPTH_NESTING
);
1642 #endif /* CONFIG_PREEMPT */
1645 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1647 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1649 if (unlikely(!irqs_disabled())) {
1650 /* printk() doesn't work good under rq->lock */
1651 raw_spin_unlock(&this_rq
->lock
);
1655 return _double_lock_balance(this_rq
, busiest
);
1658 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1659 __releases(busiest
->lock
)
1661 raw_spin_unlock(&busiest
->lock
);
1662 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1666 * double_rq_lock - safely lock two runqueues
1668 * Note this does not disable interrupts like task_rq_lock,
1669 * you need to do so manually before calling.
1671 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1672 __acquires(rq1
->lock
)
1673 __acquires(rq2
->lock
)
1675 BUG_ON(!irqs_disabled());
1677 raw_spin_lock(&rq1
->lock
);
1678 __acquire(rq2
->lock
); /* Fake it out ;) */
1681 raw_spin_lock(&rq1
->lock
);
1682 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1684 raw_spin_lock(&rq2
->lock
);
1685 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1691 * double_rq_unlock - safely unlock two runqueues
1693 * Note this does not restore interrupts like task_rq_unlock,
1694 * you need to do so manually after calling.
1696 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1697 __releases(rq1
->lock
)
1698 __releases(rq2
->lock
)
1700 raw_spin_unlock(&rq1
->lock
);
1702 raw_spin_unlock(&rq2
->lock
);
1704 __release(rq2
->lock
);
1707 #else /* CONFIG_SMP */
1710 * double_rq_lock - safely lock two runqueues
1712 * Note this does not disable interrupts like task_rq_lock,
1713 * you need to do so manually before calling.
1715 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1716 __acquires(rq1
->lock
)
1717 __acquires(rq2
->lock
)
1719 BUG_ON(!irqs_disabled());
1721 raw_spin_lock(&rq1
->lock
);
1722 __acquire(rq2
->lock
); /* Fake it out ;) */
1726 * double_rq_unlock - safely unlock two runqueues
1728 * Note this does not restore interrupts like task_rq_unlock,
1729 * you need to do so manually after calling.
1731 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1732 __releases(rq1
->lock
)
1733 __releases(rq2
->lock
)
1736 raw_spin_unlock(&rq1
->lock
);
1737 __release(rq2
->lock
);
1742 static void calc_load_account_idle(struct rq
*this_rq
);
1743 static void update_sysctl(void);
1744 static int get_update_sysctl_factor(void);
1745 static void update_cpu_load(struct rq
*this_rq
);
1747 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1749 set_task_rq(p
, cpu
);
1752 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1753 * successfuly executed on another CPU. We must ensure that updates of
1754 * per-task data have been completed by this moment.
1757 task_thread_info(p
)->cpu
= cpu
;
1761 static const struct sched_class rt_sched_class
;
1763 #define sched_class_highest (&stop_sched_class)
1764 #define for_each_class(class) \
1765 for (class = sched_class_highest; class; class = class->next)
1767 #include "sched_stats.h"
1769 static void inc_nr_running(struct rq
*rq
)
1774 static void dec_nr_running(struct rq
*rq
)
1779 static void set_load_weight(struct task_struct
*p
)
1782 * SCHED_IDLE tasks get minimal weight:
1784 if (p
->policy
== SCHED_IDLE
) {
1785 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1786 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1790 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1791 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1794 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1796 update_rq_clock(rq
);
1797 sched_info_queued(p
);
1798 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1801 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1803 update_rq_clock(rq
);
1804 sched_info_dequeued(p
);
1805 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1809 * activate_task - move a task to the runqueue.
1811 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1813 if (task_contributes_to_load(p
))
1814 rq
->nr_uninterruptible
--;
1816 enqueue_task(rq
, p
, flags
);
1821 * deactivate_task - remove a task from the runqueue.
1823 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1825 if (task_contributes_to_load(p
))
1826 rq
->nr_uninterruptible
++;
1828 dequeue_task(rq
, p
, flags
);
1832 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1835 * There are no locks covering percpu hardirq/softirq time.
1836 * They are only modified in account_system_vtime, on corresponding CPU
1837 * with interrupts disabled. So, writes are safe.
1838 * They are read and saved off onto struct rq in update_rq_clock().
1839 * This may result in other CPU reading this CPU's irq time and can
1840 * race with irq/account_system_vtime on this CPU. We would either get old
1841 * or new value with a side effect of accounting a slice of irq time to wrong
1842 * task when irq is in progress while we read rq->clock. That is a worthy
1843 * compromise in place of having locks on each irq in account_system_time.
1845 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1846 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1848 static DEFINE_PER_CPU(u64
, irq_start_time
);
1849 static int sched_clock_irqtime
;
1851 void enable_sched_clock_irqtime(void)
1853 sched_clock_irqtime
= 1;
1856 void disable_sched_clock_irqtime(void)
1858 sched_clock_irqtime
= 0;
1861 #ifndef CONFIG_64BIT
1862 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
1864 static inline void irq_time_write_begin(void)
1866 __this_cpu_inc(irq_time_seq
.sequence
);
1870 static inline void irq_time_write_end(void)
1873 __this_cpu_inc(irq_time_seq
.sequence
);
1876 static inline u64
irq_time_read(int cpu
)
1882 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1883 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1884 per_cpu(cpu_hardirq_time
, cpu
);
1885 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1889 #else /* CONFIG_64BIT */
1890 static inline void irq_time_write_begin(void)
1894 static inline void irq_time_write_end(void)
1898 static inline u64
irq_time_read(int cpu
)
1900 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1902 #endif /* CONFIG_64BIT */
1905 * Called before incrementing preempt_count on {soft,}irq_enter
1906 * and before decrementing preempt_count on {soft,}irq_exit.
1908 void account_system_vtime(struct task_struct
*curr
)
1910 unsigned long flags
;
1914 if (!sched_clock_irqtime
)
1917 local_irq_save(flags
);
1919 cpu
= smp_processor_id();
1920 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
1921 __this_cpu_add(irq_start_time
, delta
);
1923 irq_time_write_begin();
1925 * We do not account for softirq time from ksoftirqd here.
1926 * We want to continue accounting softirq time to ksoftirqd thread
1927 * in that case, so as not to confuse scheduler with a special task
1928 * that do not consume any time, but still wants to run.
1930 if (hardirq_count())
1931 __this_cpu_add(cpu_hardirq_time
, delta
);
1932 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
1933 __this_cpu_add(cpu_softirq_time
, delta
);
1935 irq_time_write_end();
1936 local_irq_restore(flags
);
1938 EXPORT_SYMBOL_GPL(account_system_vtime
);
1940 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
1944 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
1947 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1948 * this case when a previous update_rq_clock() happened inside a
1949 * {soft,}irq region.
1951 * When this happens, we stop ->clock_task and only update the
1952 * prev_irq_time stamp to account for the part that fit, so that a next
1953 * update will consume the rest. This ensures ->clock_task is
1956 * It does however cause some slight miss-attribution of {soft,}irq
1957 * time, a more accurate solution would be to update the irq_time using
1958 * the current rq->clock timestamp, except that would require using
1961 if (irq_delta
> delta
)
1964 rq
->prev_irq_time
+= irq_delta
;
1966 rq
->clock_task
+= delta
;
1968 if (irq_delta
&& sched_feat(NONIRQ_POWER
))
1969 sched_rt_avg_update(rq
, irq_delta
);
1972 static int irqtime_account_hi_update(void)
1974 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
1975 unsigned long flags
;
1979 local_irq_save(flags
);
1980 latest_ns
= this_cpu_read(cpu_hardirq_time
);
1981 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->irq
))
1983 local_irq_restore(flags
);
1987 static int irqtime_account_si_update(void)
1989 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
1990 unsigned long flags
;
1994 local_irq_save(flags
);
1995 latest_ns
= this_cpu_read(cpu_softirq_time
);
1996 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->softirq
))
1998 local_irq_restore(flags
);
2002 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2004 #define sched_clock_irqtime (0)
2006 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
2008 rq
->clock_task
+= delta
;
2011 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2013 #include "sched_idletask.c"
2014 #include "sched_fair.c"
2015 #include "sched_rt.c"
2016 #include "sched_autogroup.c"
2017 #include "sched_stoptask.c"
2018 #ifdef CONFIG_SCHED_DEBUG
2019 # include "sched_debug.c"
2022 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2024 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2025 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2029 * Make it appear like a SCHED_FIFO task, its something
2030 * userspace knows about and won't get confused about.
2032 * Also, it will make PI more or less work without too
2033 * much confusion -- but then, stop work should not
2034 * rely on PI working anyway.
2036 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2038 stop
->sched_class
= &stop_sched_class
;
2041 cpu_rq(cpu
)->stop
= stop
;
2045 * Reset it back to a normal scheduling class so that
2046 * it can die in pieces.
2048 old_stop
->sched_class
= &rt_sched_class
;
2053 * __normal_prio - return the priority that is based on the static prio
2055 static inline int __normal_prio(struct task_struct
*p
)
2057 return p
->static_prio
;
2061 * Calculate the expected normal priority: i.e. priority
2062 * without taking RT-inheritance into account. Might be
2063 * boosted by interactivity modifiers. Changes upon fork,
2064 * setprio syscalls, and whenever the interactivity
2065 * estimator recalculates.
2067 static inline int normal_prio(struct task_struct
*p
)
2071 if (task_has_rt_policy(p
))
2072 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2074 prio
= __normal_prio(p
);
2079 * Calculate the current priority, i.e. the priority
2080 * taken into account by the scheduler. This value might
2081 * be boosted by RT tasks, or might be boosted by
2082 * interactivity modifiers. Will be RT if the task got
2083 * RT-boosted. If not then it returns p->normal_prio.
2085 static int effective_prio(struct task_struct
*p
)
2087 p
->normal_prio
= normal_prio(p
);
2089 * If we are RT tasks or we were boosted to RT priority,
2090 * keep the priority unchanged. Otherwise, update priority
2091 * to the normal priority:
2093 if (!rt_prio(p
->prio
))
2094 return p
->normal_prio
;
2099 * task_curr - is this task currently executing on a CPU?
2100 * @p: the task in question.
2102 inline int task_curr(const struct task_struct
*p
)
2104 return cpu_curr(task_cpu(p
)) == p
;
2107 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2108 const struct sched_class
*prev_class
,
2111 if (prev_class
!= p
->sched_class
) {
2112 if (prev_class
->switched_from
)
2113 prev_class
->switched_from(rq
, p
);
2114 p
->sched_class
->switched_to(rq
, p
);
2115 } else if (oldprio
!= p
->prio
)
2116 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
2119 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2121 const struct sched_class
*class;
2123 if (p
->sched_class
== rq
->curr
->sched_class
) {
2124 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2126 for_each_class(class) {
2127 if (class == rq
->curr
->sched_class
)
2129 if (class == p
->sched_class
) {
2130 resched_task(rq
->curr
);
2137 * A queue event has occurred, and we're going to schedule. In
2138 * this case, we can save a useless back to back clock update.
2140 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
2141 rq
->skip_clock_update
= 1;
2146 * Is this task likely cache-hot:
2149 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2153 if (p
->sched_class
!= &fair_sched_class
)
2156 if (unlikely(p
->policy
== SCHED_IDLE
))
2160 * Buddy candidates are cache hot:
2162 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2163 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2164 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2167 if (sysctl_sched_migration_cost
== -1)
2169 if (sysctl_sched_migration_cost
== 0)
2172 delta
= now
- p
->se
.exec_start
;
2174 return delta
< (s64
)sysctl_sched_migration_cost
;
2177 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2179 #ifdef CONFIG_SCHED_DEBUG
2181 * We should never call set_task_cpu() on a blocked task,
2182 * ttwu() will sort out the placement.
2184 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2185 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2187 #ifdef CONFIG_LOCKDEP
2188 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
2189 lockdep_is_held(&task_rq(p
)->lock
)));
2193 trace_sched_migrate_task(p
, new_cpu
);
2195 if (task_cpu(p
) != new_cpu
) {
2196 p
->se
.nr_migrations
++;
2197 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2200 __set_task_cpu(p
, new_cpu
);
2203 struct migration_arg
{
2204 struct task_struct
*task
;
2208 static int migration_cpu_stop(void *data
);
2211 * wait_task_inactive - wait for a thread to unschedule.
2213 * If @match_state is nonzero, it's the @p->state value just checked and
2214 * not expected to change. If it changes, i.e. @p might have woken up,
2215 * then return zero. When we succeed in waiting for @p to be off its CPU,
2216 * we return a positive number (its total switch count). If a second call
2217 * a short while later returns the same number, the caller can be sure that
2218 * @p has remained unscheduled the whole time.
2220 * The caller must ensure that the task *will* unschedule sometime soon,
2221 * else this function might spin for a *long* time. This function can't
2222 * be called with interrupts off, or it may introduce deadlock with
2223 * smp_call_function() if an IPI is sent by the same process we are
2224 * waiting to become inactive.
2226 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2228 unsigned long flags
;
2235 * We do the initial early heuristics without holding
2236 * any task-queue locks at all. We'll only try to get
2237 * the runqueue lock when things look like they will
2243 * If the task is actively running on another CPU
2244 * still, just relax and busy-wait without holding
2247 * NOTE! Since we don't hold any locks, it's not
2248 * even sure that "rq" stays as the right runqueue!
2249 * But we don't care, since "task_running()" will
2250 * return false if the runqueue has changed and p
2251 * is actually now running somewhere else!
2253 while (task_running(rq
, p
)) {
2254 if (match_state
&& unlikely(p
->state
!= match_state
))
2260 * Ok, time to look more closely! We need the rq
2261 * lock now, to be *sure*. If we're wrong, we'll
2262 * just go back and repeat.
2264 rq
= task_rq_lock(p
, &flags
);
2265 trace_sched_wait_task(p
);
2266 running
= task_running(rq
, p
);
2269 if (!match_state
|| p
->state
== match_state
)
2270 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2271 task_rq_unlock(rq
, p
, &flags
);
2274 * If it changed from the expected state, bail out now.
2276 if (unlikely(!ncsw
))
2280 * Was it really running after all now that we
2281 * checked with the proper locks actually held?
2283 * Oops. Go back and try again..
2285 if (unlikely(running
)) {
2291 * It's not enough that it's not actively running,
2292 * it must be off the runqueue _entirely_, and not
2295 * So if it was still runnable (but just not actively
2296 * running right now), it's preempted, and we should
2297 * yield - it could be a while.
2299 if (unlikely(on_rq
)) {
2300 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
2302 set_current_state(TASK_UNINTERRUPTIBLE
);
2303 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
2308 * Ahh, all good. It wasn't running, and it wasn't
2309 * runnable, which means that it will never become
2310 * running in the future either. We're all done!
2319 * kick_process - kick a running thread to enter/exit the kernel
2320 * @p: the to-be-kicked thread
2322 * Cause a process which is running on another CPU to enter
2323 * kernel-mode, without any delay. (to get signals handled.)
2325 * NOTE: this function doesn't have to take the runqueue lock,
2326 * because all it wants to ensure is that the remote task enters
2327 * the kernel. If the IPI races and the task has been migrated
2328 * to another CPU then no harm is done and the purpose has been
2331 void kick_process(struct task_struct
*p
)
2337 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2338 smp_send_reschedule(cpu
);
2341 EXPORT_SYMBOL_GPL(kick_process
);
2342 #endif /* CONFIG_SMP */
2346 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2348 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2351 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2353 /* Look for allowed, online CPU in same node. */
2354 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2355 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2358 /* Any allowed, online CPU? */
2359 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2360 if (dest_cpu
< nr_cpu_ids
)
2363 /* No more Mr. Nice Guy. */
2364 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2366 * Don't tell them about moving exiting tasks or
2367 * kernel threads (both mm NULL), since they never
2370 if (p
->mm
&& printk_ratelimit()) {
2371 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
2372 task_pid_nr(p
), p
->comm
, cpu
);
2379 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2382 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2384 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2387 * In order not to call set_task_cpu() on a blocking task we need
2388 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2391 * Since this is common to all placement strategies, this lives here.
2393 * [ this allows ->select_task() to simply return task_cpu(p) and
2394 * not worry about this generic constraint ]
2396 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2398 cpu
= select_fallback_rq(task_cpu(p
), p
);
2403 static void update_avg(u64
*avg
, u64 sample
)
2405 s64 diff
= sample
- *avg
;
2411 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
2413 #ifdef CONFIG_SCHEDSTATS
2414 struct rq
*rq
= this_rq();
2417 int this_cpu
= smp_processor_id();
2419 if (cpu
== this_cpu
) {
2420 schedstat_inc(rq
, ttwu_local
);
2421 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2423 struct sched_domain
*sd
;
2425 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2427 for_each_domain(this_cpu
, sd
) {
2428 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2429 schedstat_inc(sd
, ttwu_wake_remote
);
2435 #endif /* CONFIG_SMP */
2437 schedstat_inc(rq
, ttwu_count
);
2438 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2440 if (wake_flags
& WF_SYNC
)
2441 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2443 if (cpu
!= task_cpu(p
))
2444 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2446 #endif /* CONFIG_SCHEDSTATS */
2449 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
2451 activate_task(rq
, p
, en_flags
);
2454 /* if a worker is waking up, notify workqueue */
2455 if (p
->flags
& PF_WQ_WORKER
)
2456 wq_worker_waking_up(p
, cpu_of(rq
));
2460 * Mark the task runnable and perform wakeup-preemption.
2463 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2465 trace_sched_wakeup(p
, true);
2466 check_preempt_curr(rq
, p
, wake_flags
);
2468 p
->state
= TASK_RUNNING
;
2470 if (p
->sched_class
->task_woken
)
2471 p
->sched_class
->task_woken(rq
, p
);
2473 if (unlikely(rq
->idle_stamp
)) {
2474 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2475 u64 max
= 2*sysctl_sched_migration_cost
;
2480 update_avg(&rq
->avg_idle
, delta
);
2487 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2490 if (p
->sched_contributes_to_load
)
2491 rq
->nr_uninterruptible
--;
2494 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
2495 ttwu_do_wakeup(rq
, p
, wake_flags
);
2499 * Called in case the task @p isn't fully descheduled from its runqueue,
2500 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2501 * since all we need to do is flip p->state to TASK_RUNNING, since
2502 * the task is still ->on_rq.
2504 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
2509 rq
= __task_rq_lock(p
);
2511 ttwu_do_wakeup(rq
, p
, wake_flags
);
2514 __task_rq_unlock(rq
);
2520 static void sched_ttwu_pending(void)
2522 struct rq
*rq
= this_rq();
2523 struct task_struct
*list
= xchg(&rq
->wake_list
, NULL
);
2528 raw_spin_lock(&rq
->lock
);
2531 struct task_struct
*p
= list
;
2532 list
= list
->wake_entry
;
2533 ttwu_do_activate(rq
, p
, 0);
2536 raw_spin_unlock(&rq
->lock
);
2539 void scheduler_ipi(void)
2541 sched_ttwu_pending();
2544 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
2546 struct rq
*rq
= cpu_rq(cpu
);
2547 struct task_struct
*next
= rq
->wake_list
;
2550 struct task_struct
*old
= next
;
2552 p
->wake_entry
= next
;
2553 next
= cmpxchg(&rq
->wake_list
, old
, p
);
2559 smp_send_reschedule(cpu
);
2563 static void ttwu_queue(struct task_struct
*p
, int cpu
)
2565 struct rq
*rq
= cpu_rq(cpu
);
2567 #if defined(CONFIG_SMP)
2568 if (sched_feat(TTWU_QUEUE
) && cpu
!= smp_processor_id()) {
2569 ttwu_queue_remote(p
, cpu
);
2574 raw_spin_lock(&rq
->lock
);
2575 ttwu_do_activate(rq
, p
, 0);
2576 raw_spin_unlock(&rq
->lock
);
2580 * try_to_wake_up - wake up a thread
2581 * @p: the thread to be awakened
2582 * @state: the mask of task states that can be woken
2583 * @wake_flags: wake modifier flags (WF_*)
2585 * Put it on the run-queue if it's not already there. The "current"
2586 * thread is always on the run-queue (except when the actual
2587 * re-schedule is in progress), and as such you're allowed to do
2588 * the simpler "current->state = TASK_RUNNING" to mark yourself
2589 * runnable without the overhead of this.
2591 * Returns %true if @p was woken up, %false if it was already running
2592 * or @state didn't match @p's state.
2595 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
2597 unsigned long flags
;
2598 int cpu
, success
= 0;
2601 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2602 if (!(p
->state
& state
))
2605 success
= 1; /* we're going to change ->state */
2608 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2613 * If the owning (remote) cpu is still in the middle of schedule() with
2614 * this task as prev, wait until its done referencing the task.
2617 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2619 * If called from interrupt context we could have landed in the
2620 * middle of schedule(), in this case we should take care not
2621 * to spin on ->on_cpu if p is current, since that would
2632 * Pairs with the smp_wmb() in finish_lock_switch().
2636 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2637 p
->state
= TASK_WAKING
;
2639 if (p
->sched_class
->task_waking
)
2640 p
->sched_class
->task_waking(p
);
2642 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2643 if (task_cpu(p
) != cpu
)
2644 set_task_cpu(p
, cpu
);
2645 #endif /* CONFIG_SMP */
2649 ttwu_stat(p
, cpu
, wake_flags
);
2651 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2657 * try_to_wake_up_local - try to wake up a local task with rq lock held
2658 * @p: the thread to be awakened
2660 * Put @p on the run-queue if it's not already there. The caller must
2661 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2664 static void try_to_wake_up_local(struct task_struct
*p
)
2666 struct rq
*rq
= task_rq(p
);
2668 BUG_ON(rq
!= this_rq());
2669 BUG_ON(p
== current
);
2670 lockdep_assert_held(&rq
->lock
);
2672 if (!raw_spin_trylock(&p
->pi_lock
)) {
2673 raw_spin_unlock(&rq
->lock
);
2674 raw_spin_lock(&p
->pi_lock
);
2675 raw_spin_lock(&rq
->lock
);
2678 if (!(p
->state
& TASK_NORMAL
))
2682 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2684 ttwu_do_wakeup(rq
, p
, 0);
2685 ttwu_stat(p
, smp_processor_id(), 0);
2687 raw_spin_unlock(&p
->pi_lock
);
2691 * wake_up_process - Wake up a specific process
2692 * @p: The process to be woken up.
2694 * Attempt to wake up the nominated process and move it to the set of runnable
2695 * processes. Returns 1 if the process was woken up, 0 if it was already
2698 * It may be assumed that this function implies a write memory barrier before
2699 * changing the task state if and only if any tasks are woken up.
2701 int wake_up_process(struct task_struct
*p
)
2703 return try_to_wake_up(p
, TASK_ALL
, 0);
2705 EXPORT_SYMBOL(wake_up_process
);
2707 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2709 return try_to_wake_up(p
, state
, 0);
2713 * Perform scheduler related setup for a newly forked process p.
2714 * p is forked by current.
2716 * __sched_fork() is basic setup used by init_idle() too:
2718 static void __sched_fork(struct task_struct
*p
)
2723 p
->se
.exec_start
= 0;
2724 p
->se
.sum_exec_runtime
= 0;
2725 p
->se
.prev_sum_exec_runtime
= 0;
2726 p
->se
.nr_migrations
= 0;
2728 INIT_LIST_HEAD(&p
->se
.group_node
);
2730 #ifdef CONFIG_SCHEDSTATS
2731 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2734 INIT_LIST_HEAD(&p
->rt
.run_list
);
2736 #ifdef CONFIG_PREEMPT_NOTIFIERS
2737 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2742 * fork()/clone()-time setup:
2744 void sched_fork(struct task_struct
*p
)
2746 unsigned long flags
;
2747 int cpu
= get_cpu();
2751 * We mark the process as running here. This guarantees that
2752 * nobody will actually run it, and a signal or other external
2753 * event cannot wake it up and insert it on the runqueue either.
2755 p
->state
= TASK_RUNNING
;
2758 * Revert to default priority/policy on fork if requested.
2760 if (unlikely(p
->sched_reset_on_fork
)) {
2761 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2762 p
->policy
= SCHED_NORMAL
;
2763 p
->normal_prio
= p
->static_prio
;
2766 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2767 p
->static_prio
= NICE_TO_PRIO(0);
2768 p
->normal_prio
= p
->static_prio
;
2773 * We don't need the reset flag anymore after the fork. It has
2774 * fulfilled its duty:
2776 p
->sched_reset_on_fork
= 0;
2780 * Make sure we do not leak PI boosting priority to the child.
2782 p
->prio
= current
->normal_prio
;
2784 if (!rt_prio(p
->prio
))
2785 p
->sched_class
= &fair_sched_class
;
2787 if (p
->sched_class
->task_fork
)
2788 p
->sched_class
->task_fork(p
);
2791 * The child is not yet in the pid-hash so no cgroup attach races,
2792 * and the cgroup is pinned to this child due to cgroup_fork()
2793 * is ran before sched_fork().
2795 * Silence PROVE_RCU.
2797 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2798 set_task_cpu(p
, cpu
);
2799 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2801 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2802 if (likely(sched_info_on()))
2803 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2805 #if defined(CONFIG_SMP)
2808 #ifdef CONFIG_PREEMPT
2809 /* Want to start with kernel preemption disabled. */
2810 task_thread_info(p
)->preempt_count
= 1;
2813 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2820 * wake_up_new_task - wake up a newly created task for the first time.
2822 * This function will do some initial scheduler statistics housekeeping
2823 * that must be done for every newly created context, then puts the task
2824 * on the runqueue and wakes it.
2826 void wake_up_new_task(struct task_struct
*p
)
2828 unsigned long flags
;
2831 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2834 * Fork balancing, do it here and not earlier because:
2835 * - cpus_allowed can change in the fork path
2836 * - any previously selected cpu might disappear through hotplug
2838 set_task_cpu(p
, select_task_rq(p
, SD_BALANCE_FORK
, 0));
2841 rq
= __task_rq_lock(p
);
2842 activate_task(rq
, p
, 0);
2844 trace_sched_wakeup_new(p
, true);
2845 check_preempt_curr(rq
, p
, WF_FORK
);
2847 if (p
->sched_class
->task_woken
)
2848 p
->sched_class
->task_woken(rq
, p
);
2850 task_rq_unlock(rq
, p
, &flags
);
2853 #ifdef CONFIG_PREEMPT_NOTIFIERS
2856 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2857 * @notifier: notifier struct to register
2859 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2861 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2863 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2866 * preempt_notifier_unregister - no longer interested in preemption notifications
2867 * @notifier: notifier struct to unregister
2869 * This is safe to call from within a preemption notifier.
2871 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2873 hlist_del(¬ifier
->link
);
2875 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2877 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2879 struct preempt_notifier
*notifier
;
2880 struct hlist_node
*node
;
2882 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2883 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2887 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2888 struct task_struct
*next
)
2890 struct preempt_notifier
*notifier
;
2891 struct hlist_node
*node
;
2893 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2894 notifier
->ops
->sched_out(notifier
, next
);
2897 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2899 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2904 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2905 struct task_struct
*next
)
2909 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2912 * prepare_task_switch - prepare to switch tasks
2913 * @rq: the runqueue preparing to switch
2914 * @prev: the current task that is being switched out
2915 * @next: the task we are going to switch to.
2917 * This is called with the rq lock held and interrupts off. It must
2918 * be paired with a subsequent finish_task_switch after the context
2921 * prepare_task_switch sets up locking and calls architecture specific
2925 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2926 struct task_struct
*next
)
2928 sched_info_switch(prev
, next
);
2929 perf_event_task_sched_out(prev
, next
);
2930 fire_sched_out_preempt_notifiers(prev
, next
);
2931 prepare_lock_switch(rq
, next
);
2932 prepare_arch_switch(next
);
2933 trace_sched_switch(prev
, next
);
2937 * finish_task_switch - clean up after a task-switch
2938 * @rq: runqueue associated with task-switch
2939 * @prev: the thread we just switched away from.
2941 * finish_task_switch must be called after the context switch, paired
2942 * with a prepare_task_switch call before the context switch.
2943 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2944 * and do any other architecture-specific cleanup actions.
2946 * Note that we may have delayed dropping an mm in context_switch(). If
2947 * so, we finish that here outside of the runqueue lock. (Doing it
2948 * with the lock held can cause deadlocks; see schedule() for
2951 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2952 __releases(rq
->lock
)
2954 struct mm_struct
*mm
= rq
->prev_mm
;
2960 * A task struct has one reference for the use as "current".
2961 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2962 * schedule one last time. The schedule call will never return, and
2963 * the scheduled task must drop that reference.
2964 * The test for TASK_DEAD must occur while the runqueue locks are
2965 * still held, otherwise prev could be scheduled on another cpu, die
2966 * there before we look at prev->state, and then the reference would
2968 * Manfred Spraul <manfred@colorfullife.com>
2970 prev_state
= prev
->state
;
2971 finish_arch_switch(prev
);
2972 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2973 local_irq_disable();
2974 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2975 perf_event_task_sched_in(current
);
2976 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2978 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2979 finish_lock_switch(rq
, prev
);
2981 fire_sched_in_preempt_notifiers(current
);
2984 if (unlikely(prev_state
== TASK_DEAD
)) {
2986 * Remove function-return probe instances associated with this
2987 * task and put them back on the free list.
2989 kprobe_flush_task(prev
);
2990 put_task_struct(prev
);
2996 /* assumes rq->lock is held */
2997 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2999 if (prev
->sched_class
->pre_schedule
)
3000 prev
->sched_class
->pre_schedule(rq
, prev
);
3003 /* rq->lock is NOT held, but preemption is disabled */
3004 static inline void post_schedule(struct rq
*rq
)
3006 if (rq
->post_schedule
) {
3007 unsigned long flags
;
3009 raw_spin_lock_irqsave(&rq
->lock
, flags
);
3010 if (rq
->curr
->sched_class
->post_schedule
)
3011 rq
->curr
->sched_class
->post_schedule(rq
);
3012 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
3014 rq
->post_schedule
= 0;
3020 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
3024 static inline void post_schedule(struct rq
*rq
)
3031 * schedule_tail - first thing a freshly forked thread must call.
3032 * @prev: the thread we just switched away from.
3034 asmlinkage
void schedule_tail(struct task_struct
*prev
)
3035 __releases(rq
->lock
)
3037 struct rq
*rq
= this_rq();
3039 finish_task_switch(rq
, prev
);
3042 * FIXME: do we need to worry about rq being invalidated by the
3047 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3048 /* In this case, finish_task_switch does not reenable preemption */
3051 if (current
->set_child_tid
)
3052 put_user(task_pid_vnr(current
), current
->set_child_tid
);
3056 * context_switch - switch to the new MM and the new
3057 * thread's register state.
3060 context_switch(struct rq
*rq
, struct task_struct
*prev
,
3061 struct task_struct
*next
)
3063 struct mm_struct
*mm
, *oldmm
;
3065 prepare_task_switch(rq
, prev
, next
);
3068 oldmm
= prev
->active_mm
;
3070 * For paravirt, this is coupled with an exit in switch_to to
3071 * combine the page table reload and the switch backend into
3074 arch_start_context_switch(prev
);
3077 next
->active_mm
= oldmm
;
3078 atomic_inc(&oldmm
->mm_count
);
3079 enter_lazy_tlb(oldmm
, next
);
3081 switch_mm(oldmm
, mm
, next
);
3084 prev
->active_mm
= NULL
;
3085 rq
->prev_mm
= oldmm
;
3088 * Since the runqueue lock will be released by the next
3089 * task (which is an invalid locking op but in the case
3090 * of the scheduler it's an obvious special-case), so we
3091 * do an early lockdep release here:
3093 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3094 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3097 /* Here we just switch the register state and the stack. */
3098 switch_to(prev
, next
, prev
);
3102 * this_rq must be evaluated again because prev may have moved
3103 * CPUs since it called schedule(), thus the 'rq' on its stack
3104 * frame will be invalid.
3106 finish_task_switch(this_rq(), prev
);
3110 * nr_running, nr_uninterruptible and nr_context_switches:
3112 * externally visible scheduler statistics: current number of runnable
3113 * threads, current number of uninterruptible-sleeping threads, total
3114 * number of context switches performed since bootup.
3116 unsigned long nr_running(void)
3118 unsigned long i
, sum
= 0;
3120 for_each_online_cpu(i
)
3121 sum
+= cpu_rq(i
)->nr_running
;
3126 unsigned long nr_uninterruptible(void)
3128 unsigned long i
, sum
= 0;
3130 for_each_possible_cpu(i
)
3131 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3134 * Since we read the counters lockless, it might be slightly
3135 * inaccurate. Do not allow it to go below zero though:
3137 if (unlikely((long)sum
< 0))
3143 unsigned long long nr_context_switches(void)
3146 unsigned long long sum
= 0;
3148 for_each_possible_cpu(i
)
3149 sum
+= cpu_rq(i
)->nr_switches
;
3154 unsigned long nr_iowait(void)
3156 unsigned long i
, sum
= 0;
3158 for_each_possible_cpu(i
)
3159 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3164 unsigned long nr_iowait_cpu(int cpu
)
3166 struct rq
*this = cpu_rq(cpu
);
3167 return atomic_read(&this->nr_iowait
);
3170 unsigned long this_cpu_load(void)
3172 struct rq
*this = this_rq();
3173 return this->cpu_load
[0];
3177 /* Variables and functions for calc_load */
3178 static atomic_long_t calc_load_tasks
;
3179 static unsigned long calc_load_update
;
3180 unsigned long avenrun
[3];
3181 EXPORT_SYMBOL(avenrun
);
3183 static long calc_load_fold_active(struct rq
*this_rq
)
3185 long nr_active
, delta
= 0;
3187 nr_active
= this_rq
->nr_running
;
3188 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3190 if (nr_active
!= this_rq
->calc_load_active
) {
3191 delta
= nr_active
- this_rq
->calc_load_active
;
3192 this_rq
->calc_load_active
= nr_active
;
3198 static unsigned long
3199 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3202 load
+= active
* (FIXED_1
- exp
);
3203 load
+= 1UL << (FSHIFT
- 1);
3204 return load
>> FSHIFT
;
3209 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3211 * When making the ILB scale, we should try to pull this in as well.
3213 static atomic_long_t calc_load_tasks_idle
;
3215 static void calc_load_account_idle(struct rq
*this_rq
)
3219 delta
= calc_load_fold_active(this_rq
);
3221 atomic_long_add(delta
, &calc_load_tasks_idle
);
3224 static long calc_load_fold_idle(void)
3229 * Its got a race, we don't care...
3231 if (atomic_long_read(&calc_load_tasks_idle
))
3232 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3238 * fixed_power_int - compute: x^n, in O(log n) time
3240 * @x: base of the power
3241 * @frac_bits: fractional bits of @x
3242 * @n: power to raise @x to.
3244 * By exploiting the relation between the definition of the natural power
3245 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3246 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3247 * (where: n_i \elem {0, 1}, the binary vector representing n),
3248 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3249 * of course trivially computable in O(log_2 n), the length of our binary
3252 static unsigned long
3253 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3255 unsigned long result
= 1UL << frac_bits
;
3260 result
+= 1UL << (frac_bits
- 1);
3261 result
>>= frac_bits
;
3267 x
+= 1UL << (frac_bits
- 1);
3275 * a1 = a0 * e + a * (1 - e)
3277 * a2 = a1 * e + a * (1 - e)
3278 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3279 * = a0 * e^2 + a * (1 - e) * (1 + e)
3281 * a3 = a2 * e + a * (1 - e)
3282 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3283 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3287 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3288 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3289 * = a0 * e^n + a * (1 - e^n)
3291 * [1] application of the geometric series:
3294 * S_n := \Sum x^i = -------------
3297 static unsigned long
3298 calc_load_n(unsigned long load
, unsigned long exp
,
3299 unsigned long active
, unsigned int n
)
3302 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3306 * NO_HZ can leave us missing all per-cpu ticks calling
3307 * calc_load_account_active(), but since an idle CPU folds its delta into
3308 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3309 * in the pending idle delta if our idle period crossed a load cycle boundary.
3311 * Once we've updated the global active value, we need to apply the exponential
3312 * weights adjusted to the number of cycles missed.
3314 static void calc_global_nohz(unsigned long ticks
)
3316 long delta
, active
, n
;
3318 if (time_before(jiffies
, calc_load_update
))
3322 * If we crossed a calc_load_update boundary, make sure to fold
3323 * any pending idle changes, the respective CPUs might have
3324 * missed the tick driven calc_load_account_active() update
3327 delta
= calc_load_fold_idle();
3329 atomic_long_add(delta
, &calc_load_tasks
);
3332 * If we were idle for multiple load cycles, apply them.
3334 if (ticks
>= LOAD_FREQ
) {
3335 n
= ticks
/ LOAD_FREQ
;
3337 active
= atomic_long_read(&calc_load_tasks
);
3338 active
= active
> 0 ? active
* FIXED_1
: 0;
3340 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3341 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3342 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3344 calc_load_update
+= n
* LOAD_FREQ
;
3348 * Its possible the remainder of the above division also crosses
3349 * a LOAD_FREQ period, the regular check in calc_global_load()
3350 * which comes after this will take care of that.
3352 * Consider us being 11 ticks before a cycle completion, and us
3353 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3354 * age us 4 cycles, and the test in calc_global_load() will
3355 * pick up the final one.
3359 static void calc_load_account_idle(struct rq
*this_rq
)
3363 static inline long calc_load_fold_idle(void)
3368 static void calc_global_nohz(unsigned long ticks
)
3374 * get_avenrun - get the load average array
3375 * @loads: pointer to dest load array
3376 * @offset: offset to add
3377 * @shift: shift count to shift the result left
3379 * These values are estimates at best, so no need for locking.
3381 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3383 loads
[0] = (avenrun
[0] + offset
) << shift
;
3384 loads
[1] = (avenrun
[1] + offset
) << shift
;
3385 loads
[2] = (avenrun
[2] + offset
) << shift
;
3389 * calc_load - update the avenrun load estimates 10 ticks after the
3390 * CPUs have updated calc_load_tasks.
3392 void calc_global_load(unsigned long ticks
)
3396 calc_global_nohz(ticks
);
3398 if (time_before(jiffies
, calc_load_update
+ 10))
3401 active
= atomic_long_read(&calc_load_tasks
);
3402 active
= active
> 0 ? active
* FIXED_1
: 0;
3404 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3405 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3406 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3408 calc_load_update
+= LOAD_FREQ
;
3412 * Called from update_cpu_load() to periodically update this CPU's
3415 static void calc_load_account_active(struct rq
*this_rq
)
3419 if (time_before(jiffies
, this_rq
->calc_load_update
))
3422 delta
= calc_load_fold_active(this_rq
);
3423 delta
+= calc_load_fold_idle();
3425 atomic_long_add(delta
, &calc_load_tasks
);
3427 this_rq
->calc_load_update
+= LOAD_FREQ
;
3431 * The exact cpuload at various idx values, calculated at every tick would be
3432 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3434 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3435 * on nth tick when cpu may be busy, then we have:
3436 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3437 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3439 * decay_load_missed() below does efficient calculation of
3440 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3441 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3443 * The calculation is approximated on a 128 point scale.
3444 * degrade_zero_ticks is the number of ticks after which load at any
3445 * particular idx is approximated to be zero.
3446 * degrade_factor is a precomputed table, a row for each load idx.
3447 * Each column corresponds to degradation factor for a power of two ticks,
3448 * based on 128 point scale.
3450 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3451 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3453 * With this power of 2 load factors, we can degrade the load n times
3454 * by looking at 1 bits in n and doing as many mult/shift instead of
3455 * n mult/shifts needed by the exact degradation.
3457 #define DEGRADE_SHIFT 7
3458 static const unsigned char
3459 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3460 static const unsigned char
3461 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3462 {0, 0, 0, 0, 0, 0, 0, 0},
3463 {64, 32, 8, 0, 0, 0, 0, 0},
3464 {96, 72, 40, 12, 1, 0, 0},
3465 {112, 98, 75, 43, 15, 1, 0},
3466 {120, 112, 98, 76, 45, 16, 2} };
3469 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3470 * would be when CPU is idle and so we just decay the old load without
3471 * adding any new load.
3473 static unsigned long
3474 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3478 if (!missed_updates
)
3481 if (missed_updates
>= degrade_zero_ticks
[idx
])
3485 return load
>> missed_updates
;
3487 while (missed_updates
) {
3488 if (missed_updates
% 2)
3489 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3491 missed_updates
>>= 1;
3498 * Update rq->cpu_load[] statistics. This function is usually called every
3499 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3500 * every tick. We fix it up based on jiffies.
3502 static void update_cpu_load(struct rq
*this_rq
)
3504 unsigned long this_load
= this_rq
->load
.weight
;
3505 unsigned long curr_jiffies
= jiffies
;
3506 unsigned long pending_updates
;
3509 this_rq
->nr_load_updates
++;
3511 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3512 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3515 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3516 this_rq
->last_load_update_tick
= curr_jiffies
;
3518 /* Update our load: */
3519 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3520 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3521 unsigned long old_load
, new_load
;
3523 /* scale is effectively 1 << i now, and >> i divides by scale */
3525 old_load
= this_rq
->cpu_load
[i
];
3526 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3527 new_load
= this_load
;
3529 * Round up the averaging division if load is increasing. This
3530 * prevents us from getting stuck on 9 if the load is 10, for
3533 if (new_load
> old_load
)
3534 new_load
+= scale
- 1;
3536 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3539 sched_avg_update(this_rq
);
3542 static void update_cpu_load_active(struct rq
*this_rq
)
3544 update_cpu_load(this_rq
);
3546 calc_load_account_active(this_rq
);
3552 * sched_exec - execve() is a valuable balancing opportunity, because at
3553 * this point the task has the smallest effective memory and cache footprint.
3555 void sched_exec(void)
3557 struct task_struct
*p
= current
;
3558 unsigned long flags
;
3561 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3562 dest_cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3563 if (dest_cpu
== smp_processor_id())
3566 if (likely(cpu_active(dest_cpu
))) {
3567 struct migration_arg arg
= { p
, dest_cpu
};
3569 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3570 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
3574 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3579 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3581 EXPORT_PER_CPU_SYMBOL(kstat
);
3584 * Return any ns on the sched_clock that have not yet been accounted in
3585 * @p in case that task is currently running.
3587 * Called with task_rq_lock() held on @rq.
3589 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3593 if (task_current(rq
, p
)) {
3594 update_rq_clock(rq
);
3595 ns
= rq
->clock_task
- p
->se
.exec_start
;
3603 unsigned long long task_delta_exec(struct task_struct
*p
)
3605 unsigned long flags
;
3609 rq
= task_rq_lock(p
, &flags
);
3610 ns
= do_task_delta_exec(p
, rq
);
3611 task_rq_unlock(rq
, p
, &flags
);
3617 * Return accounted runtime for the task.
3618 * In case the task is currently running, return the runtime plus current's
3619 * pending runtime that have not been accounted yet.
3621 unsigned long long task_sched_runtime(struct task_struct
*p
)
3623 unsigned long flags
;
3627 rq
= task_rq_lock(p
, &flags
);
3628 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3629 task_rq_unlock(rq
, p
, &flags
);
3635 * Return sum_exec_runtime for the thread group.
3636 * In case the task is currently running, return the sum plus current's
3637 * pending runtime that have not been accounted yet.
3639 * Note that the thread group might have other running tasks as well,
3640 * so the return value not includes other pending runtime that other
3641 * running tasks might have.
3643 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3645 struct task_cputime totals
;
3646 unsigned long flags
;
3650 rq
= task_rq_lock(p
, &flags
);
3651 thread_group_cputime(p
, &totals
);
3652 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3653 task_rq_unlock(rq
, p
, &flags
);
3659 * Account user cpu time to a process.
3660 * @p: the process that the cpu time gets accounted to
3661 * @cputime: the cpu time spent in user space since the last update
3662 * @cputime_scaled: cputime scaled by cpu frequency
3664 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3665 cputime_t cputime_scaled
)
3667 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3670 /* Add user time to process. */
3671 p
->utime
= cputime_add(p
->utime
, cputime
);
3672 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3673 account_group_user_time(p
, cputime
);
3675 /* Add user time to cpustat. */
3676 tmp
= cputime_to_cputime64(cputime
);
3677 if (TASK_NICE(p
) > 0)
3678 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3680 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3682 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3683 /* Account for user time used */
3684 acct_update_integrals(p
);
3688 * Account guest cpu time to a process.
3689 * @p: the process that the cpu time gets accounted to
3690 * @cputime: the cpu time spent in virtual machine since the last update
3691 * @cputime_scaled: cputime scaled by cpu frequency
3693 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3694 cputime_t cputime_scaled
)
3697 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3699 tmp
= cputime_to_cputime64(cputime
);
3701 /* Add guest time to process. */
3702 p
->utime
= cputime_add(p
->utime
, cputime
);
3703 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3704 account_group_user_time(p
, cputime
);
3705 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3707 /* Add guest time to cpustat. */
3708 if (TASK_NICE(p
) > 0) {
3709 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3710 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3712 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3713 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3718 * Account system cpu time to a process and desired cpustat field
3719 * @p: the process that the cpu time gets accounted to
3720 * @cputime: the cpu time spent in kernel space since the last update
3721 * @cputime_scaled: cputime scaled by cpu frequency
3722 * @target_cputime64: pointer to cpustat field that has to be updated
3725 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
3726 cputime_t cputime_scaled
, cputime64_t
*target_cputime64
)
3728 cputime64_t tmp
= cputime_to_cputime64(cputime
);
3730 /* Add system time to process. */
3731 p
->stime
= cputime_add(p
->stime
, cputime
);
3732 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3733 account_group_system_time(p
, cputime
);
3735 /* Add system time to cpustat. */
3736 *target_cputime64
= cputime64_add(*target_cputime64
, tmp
);
3737 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3739 /* Account for system time used */
3740 acct_update_integrals(p
);
3744 * Account system cpu time to a process.
3745 * @p: the process that the cpu time gets accounted to
3746 * @hardirq_offset: the offset to subtract from hardirq_count()
3747 * @cputime: the cpu time spent in kernel space since the last update
3748 * @cputime_scaled: cputime scaled by cpu frequency
3750 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3751 cputime_t cputime
, cputime_t cputime_scaled
)
3753 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3754 cputime64_t
*target_cputime64
;
3756 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3757 account_guest_time(p
, cputime
, cputime_scaled
);
3761 if (hardirq_count() - hardirq_offset
)
3762 target_cputime64
= &cpustat
->irq
;
3763 else if (in_serving_softirq())
3764 target_cputime64
= &cpustat
->softirq
;
3766 target_cputime64
= &cpustat
->system
;
3768 __account_system_time(p
, cputime
, cputime_scaled
, target_cputime64
);
3772 * Account for involuntary wait time.
3773 * @cputime: the cpu time spent in involuntary wait
3775 void account_steal_time(cputime_t cputime
)
3777 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3778 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3780 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3784 * Account for idle time.
3785 * @cputime: the cpu time spent in idle wait
3787 void account_idle_time(cputime_t cputime
)
3789 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3790 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3791 struct rq
*rq
= this_rq();
3793 if (atomic_read(&rq
->nr_iowait
) > 0)
3794 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3796 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3799 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3801 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3803 * Account a tick to a process and cpustat
3804 * @p: the process that the cpu time gets accounted to
3805 * @user_tick: is the tick from userspace
3806 * @rq: the pointer to rq
3808 * Tick demultiplexing follows the order
3809 * - pending hardirq update
3810 * - pending softirq update
3814 * - check for guest_time
3815 * - else account as system_time
3817 * Check for hardirq is done both for system and user time as there is
3818 * no timer going off while we are on hardirq and hence we may never get an
3819 * opportunity to update it solely in system time.
3820 * p->stime and friends are only updated on system time and not on irq
3821 * softirq as those do not count in task exec_runtime any more.
3823 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3826 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3827 cputime64_t tmp
= cputime_to_cputime64(cputime_one_jiffy
);
3828 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3830 if (irqtime_account_hi_update()) {
3831 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3832 } else if (irqtime_account_si_update()) {
3833 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3834 } else if (this_cpu_ksoftirqd() == p
) {
3836 * ksoftirqd time do not get accounted in cpu_softirq_time.
3837 * So, we have to handle it separately here.
3838 * Also, p->stime needs to be updated for ksoftirqd.
3840 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3842 } else if (user_tick
) {
3843 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3844 } else if (p
== rq
->idle
) {
3845 account_idle_time(cputime_one_jiffy
);
3846 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
3847 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3849 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3854 static void irqtime_account_idle_ticks(int ticks
)
3857 struct rq
*rq
= this_rq();
3859 for (i
= 0; i
< ticks
; i
++)
3860 irqtime_account_process_tick(current
, 0, rq
);
3862 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3863 static void irqtime_account_idle_ticks(int ticks
) {}
3864 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3866 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3869 * Account a single tick of cpu time.
3870 * @p: the process that the cpu time gets accounted to
3871 * @user_tick: indicates if the tick is a user or a system tick
3873 void account_process_tick(struct task_struct
*p
, int user_tick
)
3875 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3876 struct rq
*rq
= this_rq();
3878 if (sched_clock_irqtime
) {
3879 irqtime_account_process_tick(p
, user_tick
, rq
);
3884 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3885 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3886 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3889 account_idle_time(cputime_one_jiffy
);
3893 * Account multiple ticks of steal time.
3894 * @p: the process from which the cpu time has been stolen
3895 * @ticks: number of stolen ticks
3897 void account_steal_ticks(unsigned long ticks
)
3899 account_steal_time(jiffies_to_cputime(ticks
));
3903 * Account multiple ticks of idle time.
3904 * @ticks: number of stolen ticks
3906 void account_idle_ticks(unsigned long ticks
)
3909 if (sched_clock_irqtime
) {
3910 irqtime_account_idle_ticks(ticks
);
3914 account_idle_time(jiffies_to_cputime(ticks
));
3920 * Use precise platform statistics if available:
3922 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3923 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3929 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3931 struct task_cputime cputime
;
3933 thread_group_cputime(p
, &cputime
);
3935 *ut
= cputime
.utime
;
3936 *st
= cputime
.stime
;
3940 #ifndef nsecs_to_cputime
3941 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3944 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3946 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3949 * Use CFS's precise accounting:
3951 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3957 do_div(temp
, total
);
3958 utime
= (cputime_t
)temp
;
3963 * Compare with previous values, to keep monotonicity:
3965 p
->prev_utime
= max(p
->prev_utime
, utime
);
3966 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3968 *ut
= p
->prev_utime
;
3969 *st
= p
->prev_stime
;
3973 * Must be called with siglock held.
3975 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3977 struct signal_struct
*sig
= p
->signal
;
3978 struct task_cputime cputime
;
3979 cputime_t rtime
, utime
, total
;
3981 thread_group_cputime(p
, &cputime
);
3983 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3984 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3989 temp
*= cputime
.utime
;
3990 do_div(temp
, total
);
3991 utime
= (cputime_t
)temp
;
3995 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3996 sig
->prev_stime
= max(sig
->prev_stime
,
3997 cputime_sub(rtime
, sig
->prev_utime
));
3999 *ut
= sig
->prev_utime
;
4000 *st
= sig
->prev_stime
;
4005 * This function gets called by the timer code, with HZ frequency.
4006 * We call it with interrupts disabled.
4008 void scheduler_tick(void)
4010 int cpu
= smp_processor_id();
4011 struct rq
*rq
= cpu_rq(cpu
);
4012 struct task_struct
*curr
= rq
->curr
;
4016 raw_spin_lock(&rq
->lock
);
4017 update_rq_clock(rq
);
4018 update_cpu_load_active(rq
);
4019 curr
->sched_class
->task_tick(rq
, curr
, 0);
4020 raw_spin_unlock(&rq
->lock
);
4022 perf_event_task_tick();
4025 rq
->idle_at_tick
= idle_cpu(cpu
);
4026 trigger_load_balance(rq
, cpu
);
4030 notrace
unsigned long get_parent_ip(unsigned long addr
)
4032 if (in_lock_functions(addr
)) {
4033 addr
= CALLER_ADDR2
;
4034 if (in_lock_functions(addr
))
4035 addr
= CALLER_ADDR3
;
4040 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4041 defined(CONFIG_PREEMPT_TRACER))
4043 void __kprobes
add_preempt_count(int val
)
4045 #ifdef CONFIG_DEBUG_PREEMPT
4049 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4052 preempt_count() += val
;
4053 #ifdef CONFIG_DEBUG_PREEMPT
4055 * Spinlock count overflowing soon?
4057 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4060 if (preempt_count() == val
)
4061 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4063 EXPORT_SYMBOL(add_preempt_count
);
4065 void __kprobes
sub_preempt_count(int val
)
4067 #ifdef CONFIG_DEBUG_PREEMPT
4071 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4074 * Is the spinlock portion underflowing?
4076 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4077 !(preempt_count() & PREEMPT_MASK
)))
4081 if (preempt_count() == val
)
4082 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4083 preempt_count() -= val
;
4085 EXPORT_SYMBOL(sub_preempt_count
);
4090 * Print scheduling while atomic bug:
4092 static noinline
void __schedule_bug(struct task_struct
*prev
)
4094 struct pt_regs
*regs
= get_irq_regs();
4096 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4097 prev
->comm
, prev
->pid
, preempt_count());
4099 debug_show_held_locks(prev
);
4101 if (irqs_disabled())
4102 print_irqtrace_events(prev
);
4111 * Various schedule()-time debugging checks and statistics:
4113 static inline void schedule_debug(struct task_struct
*prev
)
4116 * Test if we are atomic. Since do_exit() needs to call into
4117 * schedule() atomically, we ignore that path for now.
4118 * Otherwise, whine if we are scheduling when we should not be.
4120 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4121 __schedule_bug(prev
);
4123 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4125 schedstat_inc(this_rq(), sched_count
);
4128 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4130 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
4131 update_rq_clock(rq
);
4132 prev
->sched_class
->put_prev_task(rq
, prev
);
4136 * Pick up the highest-prio task:
4138 static inline struct task_struct
*
4139 pick_next_task(struct rq
*rq
)
4141 const struct sched_class
*class;
4142 struct task_struct
*p
;
4145 * Optimization: we know that if all tasks are in
4146 * the fair class we can call that function directly:
4148 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4149 p
= fair_sched_class
.pick_next_task(rq
);
4154 for_each_class(class) {
4155 p
= class->pick_next_task(rq
);
4160 BUG(); /* the idle class will always have a runnable task */
4164 * schedule() is the main scheduler function.
4166 asmlinkage
void __sched
schedule(void)
4168 struct task_struct
*prev
, *next
;
4169 unsigned long *switch_count
;
4175 cpu
= smp_processor_id();
4177 rcu_note_context_switch(cpu
);
4180 schedule_debug(prev
);
4182 if (sched_feat(HRTICK
))
4185 raw_spin_lock_irq(&rq
->lock
);
4187 switch_count
= &prev
->nivcsw
;
4188 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4189 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
4190 prev
->state
= TASK_RUNNING
;
4192 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
4196 * If a worker went to sleep, notify and ask workqueue
4197 * whether it wants to wake up a task to maintain
4200 if (prev
->flags
& PF_WQ_WORKER
) {
4201 struct task_struct
*to_wakeup
;
4203 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
4205 try_to_wake_up_local(to_wakeup
);
4209 * If we are going to sleep and we have plugged IO
4210 * queued, make sure to submit it to avoid deadlocks.
4212 if (blk_needs_flush_plug(prev
)) {
4213 raw_spin_unlock(&rq
->lock
);
4214 blk_schedule_flush_plug(prev
);
4215 raw_spin_lock(&rq
->lock
);
4218 switch_count
= &prev
->nvcsw
;
4221 pre_schedule(rq
, prev
);
4223 if (unlikely(!rq
->nr_running
))
4224 idle_balance(cpu
, rq
);
4226 put_prev_task(rq
, prev
);
4227 next
= pick_next_task(rq
);
4228 clear_tsk_need_resched(prev
);
4229 rq
->skip_clock_update
= 0;
4231 if (likely(prev
!= next
)) {
4236 context_switch(rq
, prev
, next
); /* unlocks the rq */
4238 * The context switch have flipped the stack from under us
4239 * and restored the local variables which were saved when
4240 * this task called schedule() in the past. prev == current
4241 * is still correct, but it can be moved to another cpu/rq.
4243 cpu
= smp_processor_id();
4246 raw_spin_unlock_irq(&rq
->lock
);
4250 preempt_enable_no_resched();
4254 EXPORT_SYMBOL(schedule
);
4256 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4258 static inline bool owner_running(struct mutex
*lock
, struct task_struct
*owner
)
4263 if (lock
->owner
!= owner
)
4267 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4268 * lock->owner still matches owner, if that fails, owner might
4269 * point to free()d memory, if it still matches, the rcu_read_lock()
4270 * ensures the memory stays valid.
4274 ret
= owner
->on_cpu
;
4282 * Look out! "owner" is an entirely speculative pointer
4283 * access and not reliable.
4285 int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
4287 if (!sched_feat(OWNER_SPIN
))
4290 while (owner_running(lock
, owner
)) {
4294 arch_mutex_cpu_relax();
4298 * If the owner changed to another task there is likely
4299 * heavy contention, stop spinning.
4308 #ifdef CONFIG_PREEMPT
4310 * this is the entry point to schedule() from in-kernel preemption
4311 * off of preempt_enable. Kernel preemptions off return from interrupt
4312 * occur there and call schedule directly.
4314 asmlinkage
void __sched notrace
preempt_schedule(void)
4316 struct thread_info
*ti
= current_thread_info();
4319 * If there is a non-zero preempt_count or interrupts are disabled,
4320 * we do not want to preempt the current task. Just return..
4322 if (likely(ti
->preempt_count
|| irqs_disabled()))
4326 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4328 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4331 * Check again in case we missed a preemption opportunity
4332 * between schedule and now.
4335 } while (need_resched());
4337 EXPORT_SYMBOL(preempt_schedule
);
4340 * this is the entry point to schedule() from kernel preemption
4341 * off of irq context.
4342 * Note, that this is called and return with irqs disabled. This will
4343 * protect us against recursive calling from irq.
4345 asmlinkage
void __sched
preempt_schedule_irq(void)
4347 struct thread_info
*ti
= current_thread_info();
4349 /* Catch callers which need to be fixed */
4350 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4353 add_preempt_count(PREEMPT_ACTIVE
);
4356 local_irq_disable();
4357 sub_preempt_count(PREEMPT_ACTIVE
);
4360 * Check again in case we missed a preemption opportunity
4361 * between schedule and now.
4364 } while (need_resched());
4367 #endif /* CONFIG_PREEMPT */
4369 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4372 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4374 EXPORT_SYMBOL(default_wake_function
);
4377 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4378 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4379 * number) then we wake all the non-exclusive tasks and one exclusive task.
4381 * There are circumstances in which we can try to wake a task which has already
4382 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4383 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4385 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4386 int nr_exclusive
, int wake_flags
, void *key
)
4388 wait_queue_t
*curr
, *next
;
4390 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4391 unsigned flags
= curr
->flags
;
4393 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4394 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4400 * __wake_up - wake up threads blocked on a waitqueue.
4402 * @mode: which threads
4403 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4404 * @key: is directly passed to the wakeup function
4406 * It may be assumed that this function implies a write memory barrier before
4407 * changing the task state if and only if any tasks are woken up.
4409 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4410 int nr_exclusive
, void *key
)
4412 unsigned long flags
;
4414 spin_lock_irqsave(&q
->lock
, flags
);
4415 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4416 spin_unlock_irqrestore(&q
->lock
, flags
);
4418 EXPORT_SYMBOL(__wake_up
);
4421 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4423 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4425 __wake_up_common(q
, mode
, 1, 0, NULL
);
4427 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4429 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4431 __wake_up_common(q
, mode
, 1, 0, key
);
4433 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
4436 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4438 * @mode: which threads
4439 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4440 * @key: opaque value to be passed to wakeup targets
4442 * The sync wakeup differs that the waker knows that it will schedule
4443 * away soon, so while the target thread will be woken up, it will not
4444 * be migrated to another CPU - ie. the two threads are 'synchronized'
4445 * with each other. This can prevent needless bouncing between CPUs.
4447 * On UP it can prevent extra preemption.
4449 * It may be assumed that this function implies a write memory barrier before
4450 * changing the task state if and only if any tasks are woken up.
4452 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4453 int nr_exclusive
, void *key
)
4455 unsigned long flags
;
4456 int wake_flags
= WF_SYNC
;
4461 if (unlikely(!nr_exclusive
))
4464 spin_lock_irqsave(&q
->lock
, flags
);
4465 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4466 spin_unlock_irqrestore(&q
->lock
, flags
);
4468 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4471 * __wake_up_sync - see __wake_up_sync_key()
4473 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4475 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4477 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4480 * complete: - signals a single thread waiting on this completion
4481 * @x: holds the state of this particular completion
4483 * This will wake up a single thread waiting on this completion. Threads will be
4484 * awakened in the same order in which they were queued.
4486 * See also complete_all(), wait_for_completion() and related routines.
4488 * It may be assumed that this function implies a write memory barrier before
4489 * changing the task state if and only if any tasks are woken up.
4491 void complete(struct completion
*x
)
4493 unsigned long flags
;
4495 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4497 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4498 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4500 EXPORT_SYMBOL(complete
);
4503 * complete_all: - signals all threads waiting on this completion
4504 * @x: holds the state of this particular completion
4506 * This will wake up all threads waiting on this particular completion event.
4508 * It may be assumed that this function implies a write memory barrier before
4509 * changing the task state if and only if any tasks are woken up.
4511 void complete_all(struct completion
*x
)
4513 unsigned long flags
;
4515 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4516 x
->done
+= UINT_MAX
/2;
4517 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4518 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4520 EXPORT_SYMBOL(complete_all
);
4522 static inline long __sched
4523 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4526 DECLARE_WAITQUEUE(wait
, current
);
4528 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4530 if (signal_pending_state(state
, current
)) {
4531 timeout
= -ERESTARTSYS
;
4534 __set_current_state(state
);
4535 spin_unlock_irq(&x
->wait
.lock
);
4536 timeout
= schedule_timeout(timeout
);
4537 spin_lock_irq(&x
->wait
.lock
);
4538 } while (!x
->done
&& timeout
);
4539 __remove_wait_queue(&x
->wait
, &wait
);
4544 return timeout
?: 1;
4548 wait_for_common(struct completion
*x
, long timeout
, int state
)
4552 spin_lock_irq(&x
->wait
.lock
);
4553 timeout
= do_wait_for_common(x
, timeout
, state
);
4554 spin_unlock_irq(&x
->wait
.lock
);
4559 * wait_for_completion: - waits for completion of a task
4560 * @x: holds the state of this particular completion
4562 * This waits to be signaled for completion of a specific task. It is NOT
4563 * interruptible and there is no timeout.
4565 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4566 * and interrupt capability. Also see complete().
4568 void __sched
wait_for_completion(struct completion
*x
)
4570 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4572 EXPORT_SYMBOL(wait_for_completion
);
4575 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4576 * @x: holds the state of this particular completion
4577 * @timeout: timeout value in jiffies
4579 * This waits for either a completion of a specific task to be signaled or for a
4580 * specified timeout to expire. The timeout is in jiffies. It is not
4583 unsigned long __sched
4584 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4586 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4588 EXPORT_SYMBOL(wait_for_completion_timeout
);
4591 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4592 * @x: holds the state of this particular completion
4594 * This waits for completion of a specific task to be signaled. It is
4597 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4599 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4600 if (t
== -ERESTARTSYS
)
4604 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4607 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4608 * @x: holds the state of this particular completion
4609 * @timeout: timeout value in jiffies
4611 * This waits for either a completion of a specific task to be signaled or for a
4612 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4615 wait_for_completion_interruptible_timeout(struct completion
*x
,
4616 unsigned long timeout
)
4618 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4620 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4623 * wait_for_completion_killable: - waits for completion of a task (killable)
4624 * @x: holds the state of this particular completion
4626 * This waits to be signaled for completion of a specific task. It can be
4627 * interrupted by a kill signal.
4629 int __sched
wait_for_completion_killable(struct completion
*x
)
4631 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4632 if (t
== -ERESTARTSYS
)
4636 EXPORT_SYMBOL(wait_for_completion_killable
);
4639 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4640 * @x: holds the state of this particular completion
4641 * @timeout: timeout value in jiffies
4643 * This waits for either a completion of a specific task to be
4644 * signaled or for a specified timeout to expire. It can be
4645 * interrupted by a kill signal. The timeout is in jiffies.
4648 wait_for_completion_killable_timeout(struct completion
*x
,
4649 unsigned long timeout
)
4651 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4653 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4656 * try_wait_for_completion - try to decrement a completion without blocking
4657 * @x: completion structure
4659 * Returns: 0 if a decrement cannot be done without blocking
4660 * 1 if a decrement succeeded.
4662 * If a completion is being used as a counting completion,
4663 * attempt to decrement the counter without blocking. This
4664 * enables us to avoid waiting if the resource the completion
4665 * is protecting is not available.
4667 bool try_wait_for_completion(struct completion
*x
)
4669 unsigned long flags
;
4672 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4677 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4680 EXPORT_SYMBOL(try_wait_for_completion
);
4683 * completion_done - Test to see if a completion has any waiters
4684 * @x: completion structure
4686 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4687 * 1 if there are no waiters.
4690 bool completion_done(struct completion
*x
)
4692 unsigned long flags
;
4695 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4698 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4701 EXPORT_SYMBOL(completion_done
);
4704 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4706 unsigned long flags
;
4709 init_waitqueue_entry(&wait
, current
);
4711 __set_current_state(state
);
4713 spin_lock_irqsave(&q
->lock
, flags
);
4714 __add_wait_queue(q
, &wait
);
4715 spin_unlock(&q
->lock
);
4716 timeout
= schedule_timeout(timeout
);
4717 spin_lock_irq(&q
->lock
);
4718 __remove_wait_queue(q
, &wait
);
4719 spin_unlock_irqrestore(&q
->lock
, flags
);
4724 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4726 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4728 EXPORT_SYMBOL(interruptible_sleep_on
);
4731 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4733 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4735 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4737 void __sched
sleep_on(wait_queue_head_t
*q
)
4739 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4741 EXPORT_SYMBOL(sleep_on
);
4743 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4745 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4747 EXPORT_SYMBOL(sleep_on_timeout
);
4749 #ifdef CONFIG_RT_MUTEXES
4752 * rt_mutex_setprio - set the current priority of a task
4754 * @prio: prio value (kernel-internal form)
4756 * This function changes the 'effective' priority of a task. It does
4757 * not touch ->normal_prio like __setscheduler().
4759 * Used by the rt_mutex code to implement priority inheritance logic.
4761 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4763 int oldprio
, on_rq
, running
;
4765 const struct sched_class
*prev_class
;
4767 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4769 rq
= __task_rq_lock(p
);
4771 trace_sched_pi_setprio(p
, prio
);
4773 prev_class
= p
->sched_class
;
4775 running
= task_current(rq
, p
);
4777 dequeue_task(rq
, p
, 0);
4779 p
->sched_class
->put_prev_task(rq
, p
);
4782 p
->sched_class
= &rt_sched_class
;
4784 p
->sched_class
= &fair_sched_class
;
4789 p
->sched_class
->set_curr_task(rq
);
4791 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4793 check_class_changed(rq
, p
, prev_class
, oldprio
);
4794 __task_rq_unlock(rq
);
4799 void set_user_nice(struct task_struct
*p
, long nice
)
4801 int old_prio
, delta
, on_rq
;
4802 unsigned long flags
;
4805 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4808 * We have to be careful, if called from sys_setpriority(),
4809 * the task might be in the middle of scheduling on another CPU.
4811 rq
= task_rq_lock(p
, &flags
);
4813 * The RT priorities are set via sched_setscheduler(), but we still
4814 * allow the 'normal' nice value to be set - but as expected
4815 * it wont have any effect on scheduling until the task is
4816 * SCHED_FIFO/SCHED_RR:
4818 if (task_has_rt_policy(p
)) {
4819 p
->static_prio
= NICE_TO_PRIO(nice
);
4824 dequeue_task(rq
, p
, 0);
4826 p
->static_prio
= NICE_TO_PRIO(nice
);
4829 p
->prio
= effective_prio(p
);
4830 delta
= p
->prio
- old_prio
;
4833 enqueue_task(rq
, p
, 0);
4835 * If the task increased its priority or is running and
4836 * lowered its priority, then reschedule its CPU:
4838 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4839 resched_task(rq
->curr
);
4842 task_rq_unlock(rq
, p
, &flags
);
4844 EXPORT_SYMBOL(set_user_nice
);
4847 * can_nice - check if a task can reduce its nice value
4851 int can_nice(const struct task_struct
*p
, const int nice
)
4853 /* convert nice value [19,-20] to rlimit style value [1,40] */
4854 int nice_rlim
= 20 - nice
;
4856 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4857 capable(CAP_SYS_NICE
));
4860 #ifdef __ARCH_WANT_SYS_NICE
4863 * sys_nice - change the priority of the current process.
4864 * @increment: priority increment
4866 * sys_setpriority is a more generic, but much slower function that
4867 * does similar things.
4869 SYSCALL_DEFINE1(nice
, int, increment
)
4874 * Setpriority might change our priority at the same moment.
4875 * We don't have to worry. Conceptually one call occurs first
4876 * and we have a single winner.
4878 if (increment
< -40)
4883 nice
= TASK_NICE(current
) + increment
;
4889 if (increment
< 0 && !can_nice(current
, nice
))
4892 retval
= security_task_setnice(current
, nice
);
4896 set_user_nice(current
, nice
);
4903 * task_prio - return the priority value of a given task.
4904 * @p: the task in question.
4906 * This is the priority value as seen by users in /proc.
4907 * RT tasks are offset by -200. Normal tasks are centered
4908 * around 0, value goes from -16 to +15.
4910 int task_prio(const struct task_struct
*p
)
4912 return p
->prio
- MAX_RT_PRIO
;
4916 * task_nice - return the nice value of a given task.
4917 * @p: the task in question.
4919 int task_nice(const struct task_struct
*p
)
4921 return TASK_NICE(p
);
4923 EXPORT_SYMBOL(task_nice
);
4926 * idle_cpu - is a given cpu idle currently?
4927 * @cpu: the processor in question.
4929 int idle_cpu(int cpu
)
4931 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4935 * idle_task - return the idle task for a given cpu.
4936 * @cpu: the processor in question.
4938 struct task_struct
*idle_task(int cpu
)
4940 return cpu_rq(cpu
)->idle
;
4944 * find_process_by_pid - find a process with a matching PID value.
4945 * @pid: the pid in question.
4947 static struct task_struct
*find_process_by_pid(pid_t pid
)
4949 return pid
? find_task_by_vpid(pid
) : current
;
4952 /* Actually do priority change: must hold rq lock. */
4954 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4957 p
->rt_priority
= prio
;
4958 p
->normal_prio
= normal_prio(p
);
4959 /* we are holding p->pi_lock already */
4960 p
->prio
= rt_mutex_getprio(p
);
4961 if (rt_prio(p
->prio
))
4962 p
->sched_class
= &rt_sched_class
;
4964 p
->sched_class
= &fair_sched_class
;
4969 * check the target process has a UID that matches the current process's
4971 static bool check_same_owner(struct task_struct
*p
)
4973 const struct cred
*cred
= current_cred(), *pcred
;
4977 pcred
= __task_cred(p
);
4978 if (cred
->user
->user_ns
== pcred
->user
->user_ns
)
4979 match
= (cred
->euid
== pcred
->euid
||
4980 cred
->euid
== pcred
->uid
);
4987 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4988 const struct sched_param
*param
, bool user
)
4990 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4991 unsigned long flags
;
4992 const struct sched_class
*prev_class
;
4996 /* may grab non-irq protected spin_locks */
4997 BUG_ON(in_interrupt());
4999 /* double check policy once rq lock held */
5001 reset_on_fork
= p
->sched_reset_on_fork
;
5002 policy
= oldpolicy
= p
->policy
;
5004 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
5005 policy
&= ~SCHED_RESET_ON_FORK
;
5007 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5008 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5009 policy
!= SCHED_IDLE
)
5014 * Valid priorities for SCHED_FIFO and SCHED_RR are
5015 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5016 * SCHED_BATCH and SCHED_IDLE is 0.
5018 if (param
->sched_priority
< 0 ||
5019 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5020 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5022 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5026 * Allow unprivileged RT tasks to decrease priority:
5028 if (user
&& !capable(CAP_SYS_NICE
)) {
5029 if (rt_policy(policy
)) {
5030 unsigned long rlim_rtprio
=
5031 task_rlimit(p
, RLIMIT_RTPRIO
);
5033 /* can't set/change the rt policy */
5034 if (policy
!= p
->policy
&& !rlim_rtprio
)
5037 /* can't increase priority */
5038 if (param
->sched_priority
> p
->rt_priority
&&
5039 param
->sched_priority
> rlim_rtprio
)
5044 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5045 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5047 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
5048 if (!can_nice(p
, TASK_NICE(p
)))
5052 /* can't change other user's priorities */
5053 if (!check_same_owner(p
))
5056 /* Normal users shall not reset the sched_reset_on_fork flag */
5057 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
5062 retval
= security_task_setscheduler(p
);
5068 * make sure no PI-waiters arrive (or leave) while we are
5069 * changing the priority of the task:
5071 * To be able to change p->policy safely, the appropriate
5072 * runqueue lock must be held.
5074 rq
= task_rq_lock(p
, &flags
);
5077 * Changing the policy of the stop threads its a very bad idea
5079 if (p
== rq
->stop
) {
5080 task_rq_unlock(rq
, p
, &flags
);
5085 * If not changing anything there's no need to proceed further:
5087 if (unlikely(policy
== p
->policy
&& (!rt_policy(policy
) ||
5088 param
->sched_priority
== p
->rt_priority
))) {
5090 __task_rq_unlock(rq
);
5091 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5095 #ifdef CONFIG_RT_GROUP_SCHED
5098 * Do not allow realtime tasks into groups that have no runtime
5101 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5102 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
5103 !task_group_is_autogroup(task_group(p
))) {
5104 task_rq_unlock(rq
, p
, &flags
);
5110 /* recheck policy now with rq lock held */
5111 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5112 policy
= oldpolicy
= -1;
5113 task_rq_unlock(rq
, p
, &flags
);
5117 running
= task_current(rq
, p
);
5119 deactivate_task(rq
, p
, 0);
5121 p
->sched_class
->put_prev_task(rq
, p
);
5123 p
->sched_reset_on_fork
= reset_on_fork
;
5126 prev_class
= p
->sched_class
;
5127 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5130 p
->sched_class
->set_curr_task(rq
);
5132 activate_task(rq
, p
, 0);
5134 check_class_changed(rq
, p
, prev_class
, oldprio
);
5135 task_rq_unlock(rq
, p
, &flags
);
5137 rt_mutex_adjust_pi(p
);
5143 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5144 * @p: the task in question.
5145 * @policy: new policy.
5146 * @param: structure containing the new RT priority.
5148 * NOTE that the task may be already dead.
5150 int sched_setscheduler(struct task_struct
*p
, int policy
,
5151 const struct sched_param
*param
)
5153 return __sched_setscheduler(p
, policy
, param
, true);
5155 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5158 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5159 * @p: the task in question.
5160 * @policy: new policy.
5161 * @param: structure containing the new RT priority.
5163 * Just like sched_setscheduler, only don't bother checking if the
5164 * current context has permission. For example, this is needed in
5165 * stop_machine(): we create temporary high priority worker threads,
5166 * but our caller might not have that capability.
5168 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5169 const struct sched_param
*param
)
5171 return __sched_setscheduler(p
, policy
, param
, false);
5175 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5177 struct sched_param lparam
;
5178 struct task_struct
*p
;
5181 if (!param
|| pid
< 0)
5183 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5188 p
= find_process_by_pid(pid
);
5190 retval
= sched_setscheduler(p
, policy
, &lparam
);
5197 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5198 * @pid: the pid in question.
5199 * @policy: new policy.
5200 * @param: structure containing the new RT priority.
5202 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5203 struct sched_param __user
*, param
)
5205 /* negative values for policy are not valid */
5209 return do_sched_setscheduler(pid
, policy
, param
);
5213 * sys_sched_setparam - set/change the RT priority of a thread
5214 * @pid: the pid in question.
5215 * @param: structure containing the new RT priority.
5217 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5219 return do_sched_setscheduler(pid
, -1, param
);
5223 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5224 * @pid: the pid in question.
5226 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5228 struct task_struct
*p
;
5236 p
= find_process_by_pid(pid
);
5238 retval
= security_task_getscheduler(p
);
5241 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5248 * sys_sched_getparam - get the RT priority of a thread
5249 * @pid: the pid in question.
5250 * @param: structure containing the RT priority.
5252 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5254 struct sched_param lp
;
5255 struct task_struct
*p
;
5258 if (!param
|| pid
< 0)
5262 p
= find_process_by_pid(pid
);
5267 retval
= security_task_getscheduler(p
);
5271 lp
.sched_priority
= p
->rt_priority
;
5275 * This one might sleep, we cannot do it with a spinlock held ...
5277 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5286 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5288 cpumask_var_t cpus_allowed
, new_mask
;
5289 struct task_struct
*p
;
5295 p
= find_process_by_pid(pid
);
5302 /* Prevent p going away */
5306 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5310 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5312 goto out_free_cpus_allowed
;
5315 if (!check_same_owner(p
) && !task_ns_capable(p
, CAP_SYS_NICE
))
5318 retval
= security_task_setscheduler(p
);
5322 cpuset_cpus_allowed(p
, cpus_allowed
);
5323 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5325 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5328 cpuset_cpus_allowed(p
, cpus_allowed
);
5329 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5331 * We must have raced with a concurrent cpuset
5332 * update. Just reset the cpus_allowed to the
5333 * cpuset's cpus_allowed
5335 cpumask_copy(new_mask
, cpus_allowed
);
5340 free_cpumask_var(new_mask
);
5341 out_free_cpus_allowed
:
5342 free_cpumask_var(cpus_allowed
);
5349 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5350 struct cpumask
*new_mask
)
5352 if (len
< cpumask_size())
5353 cpumask_clear(new_mask
);
5354 else if (len
> cpumask_size())
5355 len
= cpumask_size();
5357 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5361 * sys_sched_setaffinity - set the cpu affinity of a process
5362 * @pid: pid of the process
5363 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5364 * @user_mask_ptr: user-space pointer to the new cpu mask
5366 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5367 unsigned long __user
*, user_mask_ptr
)
5369 cpumask_var_t new_mask
;
5372 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5375 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5377 retval
= sched_setaffinity(pid
, new_mask
);
5378 free_cpumask_var(new_mask
);
5382 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5384 struct task_struct
*p
;
5385 unsigned long flags
;
5392 p
= find_process_by_pid(pid
);
5396 retval
= security_task_getscheduler(p
);
5400 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
5401 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5402 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5412 * sys_sched_getaffinity - get the cpu affinity of a process
5413 * @pid: pid of the process
5414 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5415 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5417 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5418 unsigned long __user
*, user_mask_ptr
)
5423 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5425 if (len
& (sizeof(unsigned long)-1))
5428 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5431 ret
= sched_getaffinity(pid
, mask
);
5433 size_t retlen
= min_t(size_t, len
, cpumask_size());
5435 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5440 free_cpumask_var(mask
);
5446 * sys_sched_yield - yield the current processor to other threads.
5448 * This function yields the current CPU to other tasks. If there are no
5449 * other threads running on this CPU then this function will return.
5451 SYSCALL_DEFINE0(sched_yield
)
5453 struct rq
*rq
= this_rq_lock();
5455 schedstat_inc(rq
, yld_count
);
5456 current
->sched_class
->yield_task(rq
);
5459 * Since we are going to call schedule() anyway, there's
5460 * no need to preempt or enable interrupts:
5462 __release(rq
->lock
);
5463 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5464 do_raw_spin_unlock(&rq
->lock
);
5465 preempt_enable_no_resched();
5472 static inline int should_resched(void)
5474 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5477 static void __cond_resched(void)
5479 add_preempt_count(PREEMPT_ACTIVE
);
5481 sub_preempt_count(PREEMPT_ACTIVE
);
5484 int __sched
_cond_resched(void)
5486 if (should_resched()) {
5492 EXPORT_SYMBOL(_cond_resched
);
5495 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5496 * call schedule, and on return reacquire the lock.
5498 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5499 * operations here to prevent schedule() from being called twice (once via
5500 * spin_unlock(), once by hand).
5502 int __cond_resched_lock(spinlock_t
*lock
)
5504 int resched
= should_resched();
5507 lockdep_assert_held(lock
);
5509 if (spin_needbreak(lock
) || resched
) {
5520 EXPORT_SYMBOL(__cond_resched_lock
);
5522 int __sched
__cond_resched_softirq(void)
5524 BUG_ON(!in_softirq());
5526 if (should_resched()) {
5534 EXPORT_SYMBOL(__cond_resched_softirq
);
5537 * yield - yield the current processor to other threads.
5539 * This is a shortcut for kernel-space yielding - it marks the
5540 * thread runnable and calls sys_sched_yield().
5542 void __sched
yield(void)
5544 set_current_state(TASK_RUNNING
);
5547 EXPORT_SYMBOL(yield
);
5550 * yield_to - yield the current processor to another thread in
5551 * your thread group, or accelerate that thread toward the
5552 * processor it's on.
5554 * @preempt: whether task preemption is allowed or not
5556 * It's the caller's job to ensure that the target task struct
5557 * can't go away on us before we can do any checks.
5559 * Returns true if we indeed boosted the target task.
5561 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
5563 struct task_struct
*curr
= current
;
5564 struct rq
*rq
, *p_rq
;
5565 unsigned long flags
;
5568 local_irq_save(flags
);
5573 double_rq_lock(rq
, p_rq
);
5574 while (task_rq(p
) != p_rq
) {
5575 double_rq_unlock(rq
, p_rq
);
5579 if (!curr
->sched_class
->yield_to_task
)
5582 if (curr
->sched_class
!= p
->sched_class
)
5585 if (task_running(p_rq
, p
) || p
->state
)
5588 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5590 schedstat_inc(rq
, yld_count
);
5592 * Make p's CPU reschedule; pick_next_entity takes care of
5595 if (preempt
&& rq
!= p_rq
)
5596 resched_task(p_rq
->curr
);
5600 double_rq_unlock(rq
, p_rq
);
5601 local_irq_restore(flags
);
5608 EXPORT_SYMBOL_GPL(yield_to
);
5611 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5612 * that process accounting knows that this is a task in IO wait state.
5614 void __sched
io_schedule(void)
5616 struct rq
*rq
= raw_rq();
5618 delayacct_blkio_start();
5619 atomic_inc(&rq
->nr_iowait
);
5620 blk_flush_plug(current
);
5621 current
->in_iowait
= 1;
5623 current
->in_iowait
= 0;
5624 atomic_dec(&rq
->nr_iowait
);
5625 delayacct_blkio_end();
5627 EXPORT_SYMBOL(io_schedule
);
5629 long __sched
io_schedule_timeout(long timeout
)
5631 struct rq
*rq
= raw_rq();
5634 delayacct_blkio_start();
5635 atomic_inc(&rq
->nr_iowait
);
5636 blk_flush_plug(current
);
5637 current
->in_iowait
= 1;
5638 ret
= schedule_timeout(timeout
);
5639 current
->in_iowait
= 0;
5640 atomic_dec(&rq
->nr_iowait
);
5641 delayacct_blkio_end();
5646 * sys_sched_get_priority_max - return maximum RT priority.
5647 * @policy: scheduling class.
5649 * this syscall returns the maximum rt_priority that can be used
5650 * by a given scheduling class.
5652 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5659 ret
= MAX_USER_RT_PRIO
-1;
5671 * sys_sched_get_priority_min - return minimum RT priority.
5672 * @policy: scheduling class.
5674 * this syscall returns the minimum rt_priority that can be used
5675 * by a given scheduling class.
5677 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5695 * sys_sched_rr_get_interval - return the default timeslice of a process.
5696 * @pid: pid of the process.
5697 * @interval: userspace pointer to the timeslice value.
5699 * this syscall writes the default timeslice value of a given process
5700 * into the user-space timespec buffer. A value of '0' means infinity.
5702 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5703 struct timespec __user
*, interval
)
5705 struct task_struct
*p
;
5706 unsigned int time_slice
;
5707 unsigned long flags
;
5717 p
= find_process_by_pid(pid
);
5721 retval
= security_task_getscheduler(p
);
5725 rq
= task_rq_lock(p
, &flags
);
5726 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5727 task_rq_unlock(rq
, p
, &flags
);
5730 jiffies_to_timespec(time_slice
, &t
);
5731 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5739 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5741 void sched_show_task(struct task_struct
*p
)
5743 unsigned long free
= 0;
5746 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5747 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
5748 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5749 #if BITS_PER_LONG == 32
5750 if (state
== TASK_RUNNING
)
5751 printk(KERN_CONT
" running ");
5753 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5755 if (state
== TASK_RUNNING
)
5756 printk(KERN_CONT
" running task ");
5758 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5760 #ifdef CONFIG_DEBUG_STACK_USAGE
5761 free
= stack_not_used(p
);
5763 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5764 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5765 (unsigned long)task_thread_info(p
)->flags
);
5767 show_stack(p
, NULL
);
5770 void show_state_filter(unsigned long state_filter
)
5772 struct task_struct
*g
, *p
;
5774 #if BITS_PER_LONG == 32
5776 " task PC stack pid father\n");
5779 " task PC stack pid father\n");
5781 read_lock(&tasklist_lock
);
5782 do_each_thread(g
, p
) {
5784 * reset the NMI-timeout, listing all files on a slow
5785 * console might take a lot of time:
5787 touch_nmi_watchdog();
5788 if (!state_filter
|| (p
->state
& state_filter
))
5790 } while_each_thread(g
, p
);
5792 touch_all_softlockup_watchdogs();
5794 #ifdef CONFIG_SCHED_DEBUG
5795 sysrq_sched_debug_show();
5797 read_unlock(&tasklist_lock
);
5799 * Only show locks if all tasks are dumped:
5802 debug_show_all_locks();
5805 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5807 idle
->sched_class
= &idle_sched_class
;
5811 * init_idle - set up an idle thread for a given CPU
5812 * @idle: task in question
5813 * @cpu: cpu the idle task belongs to
5815 * NOTE: this function does not set the idle thread's NEED_RESCHED
5816 * flag, to make booting more robust.
5818 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5820 struct rq
*rq
= cpu_rq(cpu
);
5821 unsigned long flags
;
5823 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5826 idle
->state
= TASK_RUNNING
;
5827 idle
->se
.exec_start
= sched_clock();
5829 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5831 * We're having a chicken and egg problem, even though we are
5832 * holding rq->lock, the cpu isn't yet set to this cpu so the
5833 * lockdep check in task_group() will fail.
5835 * Similar case to sched_fork(). / Alternatively we could
5836 * use task_rq_lock() here and obtain the other rq->lock.
5841 __set_task_cpu(idle
, cpu
);
5844 rq
->curr
= rq
->idle
= idle
;
5845 #if defined(CONFIG_SMP)
5848 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5850 /* Set the preempt count _outside_ the spinlocks! */
5851 task_thread_info(idle
)->preempt_count
= 0;
5854 * The idle tasks have their own, simple scheduling class:
5856 idle
->sched_class
= &idle_sched_class
;
5857 ftrace_graph_init_idle_task(idle
, cpu
);
5861 * In a system that switches off the HZ timer nohz_cpu_mask
5862 * indicates which cpus entered this state. This is used
5863 * in the rcu update to wait only for active cpus. For system
5864 * which do not switch off the HZ timer nohz_cpu_mask should
5865 * always be CPU_BITS_NONE.
5867 cpumask_var_t nohz_cpu_mask
;
5870 * Increase the granularity value when there are more CPUs,
5871 * because with more CPUs the 'effective latency' as visible
5872 * to users decreases. But the relationship is not linear,
5873 * so pick a second-best guess by going with the log2 of the
5876 * This idea comes from the SD scheduler of Con Kolivas:
5878 static int get_update_sysctl_factor(void)
5880 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5881 unsigned int factor
;
5883 switch (sysctl_sched_tunable_scaling
) {
5884 case SCHED_TUNABLESCALING_NONE
:
5887 case SCHED_TUNABLESCALING_LINEAR
:
5890 case SCHED_TUNABLESCALING_LOG
:
5892 factor
= 1 + ilog2(cpus
);
5899 static void update_sysctl(void)
5901 unsigned int factor
= get_update_sysctl_factor();
5903 #define SET_SYSCTL(name) \
5904 (sysctl_##name = (factor) * normalized_sysctl_##name)
5905 SET_SYSCTL(sched_min_granularity
);
5906 SET_SYSCTL(sched_latency
);
5907 SET_SYSCTL(sched_wakeup_granularity
);
5911 static inline void sched_init_granularity(void)
5918 * This is how migration works:
5920 * 1) we invoke migration_cpu_stop() on the target CPU using
5922 * 2) stopper starts to run (implicitly forcing the migrated thread
5924 * 3) it checks whether the migrated task is still in the wrong runqueue.
5925 * 4) if it's in the wrong runqueue then the migration thread removes
5926 * it and puts it into the right queue.
5927 * 5) stopper completes and stop_one_cpu() returns and the migration
5932 * Change a given task's CPU affinity. Migrate the thread to a
5933 * proper CPU and schedule it away if the CPU it's executing on
5934 * is removed from the allowed bitmask.
5936 * NOTE: the caller must have a valid reference to the task, the
5937 * task must not exit() & deallocate itself prematurely. The
5938 * call is not atomic; no spinlocks may be held.
5940 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5942 unsigned long flags
;
5944 unsigned int dest_cpu
;
5947 rq
= task_rq_lock(p
, &flags
);
5949 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
5952 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5957 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
)) {
5962 if (p
->sched_class
->set_cpus_allowed
)
5963 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5965 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5966 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5969 /* Can the task run on the task's current CPU? If so, we're done */
5970 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5973 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5975 struct migration_arg arg
= { p
, dest_cpu
};
5976 /* Need help from migration thread: drop lock and wait. */
5977 task_rq_unlock(rq
, p
, &flags
);
5978 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5979 tlb_migrate_finish(p
->mm
);
5983 task_rq_unlock(rq
, p
, &flags
);
5987 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5990 * Move (not current) task off this cpu, onto dest cpu. We're doing
5991 * this because either it can't run here any more (set_cpus_allowed()
5992 * away from this CPU, or CPU going down), or because we're
5993 * attempting to rebalance this task on exec (sched_exec).
5995 * So we race with normal scheduler movements, but that's OK, as long
5996 * as the task is no longer on this CPU.
5998 * Returns non-zero if task was successfully migrated.
6000 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6002 struct rq
*rq_dest
, *rq_src
;
6005 if (unlikely(!cpu_active(dest_cpu
)))
6008 rq_src
= cpu_rq(src_cpu
);
6009 rq_dest
= cpu_rq(dest_cpu
);
6011 raw_spin_lock(&p
->pi_lock
);
6012 double_rq_lock(rq_src
, rq_dest
);
6013 /* Already moved. */
6014 if (task_cpu(p
) != src_cpu
)
6016 /* Affinity changed (again). */
6017 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6021 * If we're not on a rq, the next wake-up will ensure we're
6025 deactivate_task(rq_src
, p
, 0);
6026 set_task_cpu(p
, dest_cpu
);
6027 activate_task(rq_dest
, p
, 0);
6028 check_preempt_curr(rq_dest
, p
, 0);
6033 double_rq_unlock(rq_src
, rq_dest
);
6034 raw_spin_unlock(&p
->pi_lock
);
6039 * migration_cpu_stop - this will be executed by a highprio stopper thread
6040 * and performs thread migration by bumping thread off CPU then
6041 * 'pushing' onto another runqueue.
6043 static int migration_cpu_stop(void *data
)
6045 struct migration_arg
*arg
= data
;
6048 * The original target cpu might have gone down and we might
6049 * be on another cpu but it doesn't matter.
6051 local_irq_disable();
6052 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
6057 #ifdef CONFIG_HOTPLUG_CPU
6060 * Ensures that the idle task is using init_mm right before its cpu goes
6063 void idle_task_exit(void)
6065 struct mm_struct
*mm
= current
->active_mm
;
6067 BUG_ON(cpu_online(smp_processor_id()));
6070 switch_mm(mm
, &init_mm
, current
);
6075 * While a dead CPU has no uninterruptible tasks queued at this point,
6076 * it might still have a nonzero ->nr_uninterruptible counter, because
6077 * for performance reasons the counter is not stricly tracking tasks to
6078 * their home CPUs. So we just add the counter to another CPU's counter,
6079 * to keep the global sum constant after CPU-down:
6081 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6083 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
6085 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6086 rq_src
->nr_uninterruptible
= 0;
6090 * remove the tasks which were accounted by rq from calc_load_tasks.
6092 static void calc_global_load_remove(struct rq
*rq
)
6094 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
6095 rq
->calc_load_active
= 0;
6099 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6100 * try_to_wake_up()->select_task_rq().
6102 * Called with rq->lock held even though we'er in stop_machine() and
6103 * there's no concurrency possible, we hold the required locks anyway
6104 * because of lock validation efforts.
6106 static void migrate_tasks(unsigned int dead_cpu
)
6108 struct rq
*rq
= cpu_rq(dead_cpu
);
6109 struct task_struct
*next
, *stop
= rq
->stop
;
6113 * Fudge the rq selection such that the below task selection loop
6114 * doesn't get stuck on the currently eligible stop task.
6116 * We're currently inside stop_machine() and the rq is either stuck
6117 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6118 * either way we should never end up calling schedule() until we're
6125 * There's this thread running, bail when that's the only
6128 if (rq
->nr_running
== 1)
6131 next
= pick_next_task(rq
);
6133 next
->sched_class
->put_prev_task(rq
, next
);
6135 /* Find suitable destination for @next, with force if needed. */
6136 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
6137 raw_spin_unlock(&rq
->lock
);
6139 __migrate_task(next
, dead_cpu
, dest_cpu
);
6141 raw_spin_lock(&rq
->lock
);
6147 #endif /* CONFIG_HOTPLUG_CPU */
6149 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6151 static struct ctl_table sd_ctl_dir
[] = {
6153 .procname
= "sched_domain",
6159 static struct ctl_table sd_ctl_root
[] = {
6161 .procname
= "kernel",
6163 .child
= sd_ctl_dir
,
6168 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6170 struct ctl_table
*entry
=
6171 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6176 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6178 struct ctl_table
*entry
;
6181 * In the intermediate directories, both the child directory and
6182 * procname are dynamically allocated and could fail but the mode
6183 * will always be set. In the lowest directory the names are
6184 * static strings and all have proc handlers.
6186 for (entry
= *tablep
; entry
->mode
; entry
++) {
6188 sd_free_ctl_entry(&entry
->child
);
6189 if (entry
->proc_handler
== NULL
)
6190 kfree(entry
->procname
);
6198 set_table_entry(struct ctl_table
*entry
,
6199 const char *procname
, void *data
, int maxlen
,
6200 mode_t mode
, proc_handler
*proc_handler
)
6202 entry
->procname
= procname
;
6204 entry
->maxlen
= maxlen
;
6206 entry
->proc_handler
= proc_handler
;
6209 static struct ctl_table
*
6210 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6212 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6217 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6218 sizeof(long), 0644, proc_doulongvec_minmax
);
6219 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6220 sizeof(long), 0644, proc_doulongvec_minmax
);
6221 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6222 sizeof(int), 0644, proc_dointvec_minmax
);
6223 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6224 sizeof(int), 0644, proc_dointvec_minmax
);
6225 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6226 sizeof(int), 0644, proc_dointvec_minmax
);
6227 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6228 sizeof(int), 0644, proc_dointvec_minmax
);
6229 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6230 sizeof(int), 0644, proc_dointvec_minmax
);
6231 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6232 sizeof(int), 0644, proc_dointvec_minmax
);
6233 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6234 sizeof(int), 0644, proc_dointvec_minmax
);
6235 set_table_entry(&table
[9], "cache_nice_tries",
6236 &sd
->cache_nice_tries
,
6237 sizeof(int), 0644, proc_dointvec_minmax
);
6238 set_table_entry(&table
[10], "flags", &sd
->flags
,
6239 sizeof(int), 0644, proc_dointvec_minmax
);
6240 set_table_entry(&table
[11], "name", sd
->name
,
6241 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6242 /* &table[12] is terminator */
6247 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6249 struct ctl_table
*entry
, *table
;
6250 struct sched_domain
*sd
;
6251 int domain_num
= 0, i
;
6254 for_each_domain(cpu
, sd
)
6256 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6261 for_each_domain(cpu
, sd
) {
6262 snprintf(buf
, 32, "domain%d", i
);
6263 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6265 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6272 static struct ctl_table_header
*sd_sysctl_header
;
6273 static void register_sched_domain_sysctl(void)
6275 int i
, cpu_num
= num_possible_cpus();
6276 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6279 WARN_ON(sd_ctl_dir
[0].child
);
6280 sd_ctl_dir
[0].child
= entry
;
6285 for_each_possible_cpu(i
) {
6286 snprintf(buf
, 32, "cpu%d", i
);
6287 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6289 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6293 WARN_ON(sd_sysctl_header
);
6294 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6297 /* may be called multiple times per register */
6298 static void unregister_sched_domain_sysctl(void)
6300 if (sd_sysctl_header
)
6301 unregister_sysctl_table(sd_sysctl_header
);
6302 sd_sysctl_header
= NULL
;
6303 if (sd_ctl_dir
[0].child
)
6304 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6307 static void register_sched_domain_sysctl(void)
6310 static void unregister_sched_domain_sysctl(void)
6315 static void set_rq_online(struct rq
*rq
)
6318 const struct sched_class
*class;
6320 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6323 for_each_class(class) {
6324 if (class->rq_online
)
6325 class->rq_online(rq
);
6330 static void set_rq_offline(struct rq
*rq
)
6333 const struct sched_class
*class;
6335 for_each_class(class) {
6336 if (class->rq_offline
)
6337 class->rq_offline(rq
);
6340 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6346 * migration_call - callback that gets triggered when a CPU is added.
6347 * Here we can start up the necessary migration thread for the new CPU.
6349 static int __cpuinit
6350 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6352 int cpu
= (long)hcpu
;
6353 unsigned long flags
;
6354 struct rq
*rq
= cpu_rq(cpu
);
6356 switch (action
& ~CPU_TASKS_FROZEN
) {
6358 case CPU_UP_PREPARE
:
6359 rq
->calc_load_update
= calc_load_update
;
6363 /* Update our root-domain */
6364 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6366 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6370 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6373 #ifdef CONFIG_HOTPLUG_CPU
6375 sched_ttwu_pending();
6376 /* Update our root-domain */
6377 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6379 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6383 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
6384 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6386 migrate_nr_uninterruptible(rq
);
6387 calc_global_load_remove(rq
);
6392 update_max_interval();
6398 * Register at high priority so that task migration (migrate_all_tasks)
6399 * happens before everything else. This has to be lower priority than
6400 * the notifier in the perf_event subsystem, though.
6402 static struct notifier_block __cpuinitdata migration_notifier
= {
6403 .notifier_call
= migration_call
,
6404 .priority
= CPU_PRI_MIGRATION
,
6407 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6408 unsigned long action
, void *hcpu
)
6410 switch (action
& ~CPU_TASKS_FROZEN
) {
6412 case CPU_DOWN_FAILED
:
6413 set_cpu_active((long)hcpu
, true);
6420 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6421 unsigned long action
, void *hcpu
)
6423 switch (action
& ~CPU_TASKS_FROZEN
) {
6424 case CPU_DOWN_PREPARE
:
6425 set_cpu_active((long)hcpu
, false);
6432 static int __init
migration_init(void)
6434 void *cpu
= (void *)(long)smp_processor_id();
6437 /* Initialize migration for the boot CPU */
6438 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6439 BUG_ON(err
== NOTIFY_BAD
);
6440 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6441 register_cpu_notifier(&migration_notifier
);
6443 /* Register cpu active notifiers */
6444 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6445 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6449 early_initcall(migration_init
);
6454 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
6456 #ifdef CONFIG_SCHED_DEBUG
6458 static __read_mostly
int sched_domain_debug_enabled
;
6460 static int __init
sched_domain_debug_setup(char *str
)
6462 sched_domain_debug_enabled
= 1;
6466 early_param("sched_debug", sched_domain_debug_setup
);
6468 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6469 struct cpumask
*groupmask
)
6471 struct sched_group
*group
= sd
->groups
;
6474 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6475 cpumask_clear(groupmask
);
6477 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6479 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6480 printk("does not load-balance\n");
6482 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6487 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6489 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6490 printk(KERN_ERR
"ERROR: domain->span does not contain "
6493 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6494 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6498 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6502 printk(KERN_ERR
"ERROR: group is NULL\n");
6506 if (!group
->cpu_power
) {
6507 printk(KERN_CONT
"\n");
6508 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6513 if (!cpumask_weight(sched_group_cpus(group
))) {
6514 printk(KERN_CONT
"\n");
6515 printk(KERN_ERR
"ERROR: empty group\n");
6519 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6520 printk(KERN_CONT
"\n");
6521 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6525 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6527 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6529 printk(KERN_CONT
" %s", str
);
6530 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
6531 printk(KERN_CONT
" (cpu_power = %d)",
6535 group
= group
->next
;
6536 } while (group
!= sd
->groups
);
6537 printk(KERN_CONT
"\n");
6539 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6540 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6543 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6544 printk(KERN_ERR
"ERROR: parent span is not a superset "
6545 "of domain->span\n");
6549 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6553 if (!sched_domain_debug_enabled
)
6557 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6561 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6564 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
6572 #else /* !CONFIG_SCHED_DEBUG */
6573 # define sched_domain_debug(sd, cpu) do { } while (0)
6574 #endif /* CONFIG_SCHED_DEBUG */
6576 static int sd_degenerate(struct sched_domain
*sd
)
6578 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6581 /* Following flags need at least 2 groups */
6582 if (sd
->flags
& (SD_LOAD_BALANCE
|
6583 SD_BALANCE_NEWIDLE
|
6587 SD_SHARE_PKG_RESOURCES
)) {
6588 if (sd
->groups
!= sd
->groups
->next
)
6592 /* Following flags don't use groups */
6593 if (sd
->flags
& (SD_WAKE_AFFINE
))
6600 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6602 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6604 if (sd_degenerate(parent
))
6607 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6610 /* Flags needing groups don't count if only 1 group in parent */
6611 if (parent
->groups
== parent
->groups
->next
) {
6612 pflags
&= ~(SD_LOAD_BALANCE
|
6613 SD_BALANCE_NEWIDLE
|
6617 SD_SHARE_PKG_RESOURCES
);
6618 if (nr_node_ids
== 1)
6619 pflags
&= ~SD_SERIALIZE
;
6621 if (~cflags
& pflags
)
6627 static void free_rootdomain(struct rcu_head
*rcu
)
6629 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
6631 cpupri_cleanup(&rd
->cpupri
);
6632 free_cpumask_var(rd
->rto_mask
);
6633 free_cpumask_var(rd
->online
);
6634 free_cpumask_var(rd
->span
);
6638 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6640 struct root_domain
*old_rd
= NULL
;
6641 unsigned long flags
;
6643 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6648 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6651 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6654 * If we dont want to free the old_rt yet then
6655 * set old_rd to NULL to skip the freeing later
6658 if (!atomic_dec_and_test(&old_rd
->refcount
))
6662 atomic_inc(&rd
->refcount
);
6665 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6666 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6669 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6672 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
6675 static int init_rootdomain(struct root_domain
*rd
)
6677 memset(rd
, 0, sizeof(*rd
));
6679 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6681 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6683 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6686 if (cpupri_init(&rd
->cpupri
) != 0)
6691 free_cpumask_var(rd
->rto_mask
);
6693 free_cpumask_var(rd
->online
);
6695 free_cpumask_var(rd
->span
);
6700 static void init_defrootdomain(void)
6702 init_rootdomain(&def_root_domain
);
6704 atomic_set(&def_root_domain
.refcount
, 1);
6707 static struct root_domain
*alloc_rootdomain(void)
6709 struct root_domain
*rd
;
6711 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6715 if (init_rootdomain(rd
) != 0) {
6723 static void free_sched_domain(struct rcu_head
*rcu
)
6725 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
6726 if (atomic_dec_and_test(&sd
->groups
->ref
))
6731 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
6733 call_rcu(&sd
->rcu
, free_sched_domain
);
6736 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
6738 for (; sd
; sd
= sd
->parent
)
6739 destroy_sched_domain(sd
, cpu
);
6743 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6744 * hold the hotplug lock.
6747 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6749 struct rq
*rq
= cpu_rq(cpu
);
6750 struct sched_domain
*tmp
;
6752 /* Remove the sched domains which do not contribute to scheduling. */
6753 for (tmp
= sd
; tmp
; ) {
6754 struct sched_domain
*parent
= tmp
->parent
;
6758 if (sd_parent_degenerate(tmp
, parent
)) {
6759 tmp
->parent
= parent
->parent
;
6761 parent
->parent
->child
= tmp
;
6762 destroy_sched_domain(parent
, cpu
);
6767 if (sd
&& sd_degenerate(sd
)) {
6770 destroy_sched_domain(tmp
, cpu
);
6775 sched_domain_debug(sd
, cpu
);
6777 rq_attach_root(rq
, rd
);
6779 rcu_assign_pointer(rq
->sd
, sd
);
6780 destroy_sched_domains(tmp
, cpu
);
6783 /* cpus with isolated domains */
6784 static cpumask_var_t cpu_isolated_map
;
6786 /* Setup the mask of cpus configured for isolated domains */
6787 static int __init
isolated_cpu_setup(char *str
)
6789 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6790 cpulist_parse(str
, cpu_isolated_map
);
6794 __setup("isolcpus=", isolated_cpu_setup
);
6796 #define SD_NODES_PER_DOMAIN 16
6801 * find_next_best_node - find the next node to include in a sched_domain
6802 * @node: node whose sched_domain we're building
6803 * @used_nodes: nodes already in the sched_domain
6805 * Find the next node to include in a given scheduling domain. Simply
6806 * finds the closest node not already in the @used_nodes map.
6808 * Should use nodemask_t.
6810 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6812 int i
, n
, val
, min_val
, best_node
= -1;
6816 for (i
= 0; i
< nr_node_ids
; i
++) {
6817 /* Start at @node */
6818 n
= (node
+ i
) % nr_node_ids
;
6820 if (!nr_cpus_node(n
))
6823 /* Skip already used nodes */
6824 if (node_isset(n
, *used_nodes
))
6827 /* Simple min distance search */
6828 val
= node_distance(node
, n
);
6830 if (val
< min_val
) {
6836 if (best_node
!= -1)
6837 node_set(best_node
, *used_nodes
);
6842 * sched_domain_node_span - get a cpumask for a node's sched_domain
6843 * @node: node whose cpumask we're constructing
6844 * @span: resulting cpumask
6846 * Given a node, construct a good cpumask for its sched_domain to span. It
6847 * should be one that prevents unnecessary balancing, but also spreads tasks
6850 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6852 nodemask_t used_nodes
;
6855 cpumask_clear(span
);
6856 nodes_clear(used_nodes
);
6858 cpumask_or(span
, span
, cpumask_of_node(node
));
6859 node_set(node
, used_nodes
);
6861 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6862 int next_node
= find_next_best_node(node
, &used_nodes
);
6865 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6869 static const struct cpumask
*cpu_node_mask(int cpu
)
6871 lockdep_assert_held(&sched_domains_mutex
);
6873 sched_domain_node_span(cpu_to_node(cpu
), sched_domains_tmpmask
);
6875 return sched_domains_tmpmask
;
6878 static const struct cpumask
*cpu_allnodes_mask(int cpu
)
6880 return cpu_possible_mask
;
6882 #endif /* CONFIG_NUMA */
6884 static const struct cpumask
*cpu_cpu_mask(int cpu
)
6886 return cpumask_of_node(cpu_to_node(cpu
));
6889 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6892 struct sched_domain
**__percpu sd
;
6893 struct sched_group
**__percpu sg
;
6897 struct sched_domain
** __percpu sd
;
6898 struct root_domain
*rd
;
6908 struct sched_domain_topology_level
;
6910 typedef struct sched_domain
*(*sched_domain_init_f
)(struct sched_domain_topology_level
*tl
, int cpu
);
6911 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
6913 struct sched_domain_topology_level
{
6914 sched_domain_init_f init
;
6915 sched_domain_mask_f mask
;
6916 struct sd_data data
;
6920 * Assumes the sched_domain tree is fully constructed
6922 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
6924 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
6925 struct sched_domain
*child
= sd
->child
;
6928 cpu
= cpumask_first(sched_domain_span(child
));
6931 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
6937 * build_sched_groups takes the cpumask we wish to span, and a pointer
6938 * to a function which identifies what group(along with sched group) a CPU
6939 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6940 * (due to the fact that we keep track of groups covered with a struct cpumask).
6942 * build_sched_groups will build a circular linked list of the groups
6943 * covered by the given span, and will set each group's ->cpumask correctly,
6944 * and ->cpu_power to 0.
6947 build_sched_groups(struct sched_domain
*sd
)
6949 struct sched_group
*first
= NULL
, *last
= NULL
;
6950 struct sd_data
*sdd
= sd
->private;
6951 const struct cpumask
*span
= sched_domain_span(sd
);
6952 struct cpumask
*covered
;
6955 lockdep_assert_held(&sched_domains_mutex
);
6956 covered
= sched_domains_tmpmask
;
6958 cpumask_clear(covered
);
6960 for_each_cpu(i
, span
) {
6961 struct sched_group
*sg
;
6962 int group
= get_group(i
, sdd
, &sg
);
6965 if (cpumask_test_cpu(i
, covered
))
6968 cpumask_clear(sched_group_cpus(sg
));
6971 for_each_cpu(j
, span
) {
6972 if (get_group(j
, sdd
, NULL
) != group
)
6975 cpumask_set_cpu(j
, covered
);
6976 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6989 * Initialize sched groups cpu_power.
6991 * cpu_power indicates the capacity of sched group, which is used while
6992 * distributing the load between different sched groups in a sched domain.
6993 * Typically cpu_power for all the groups in a sched domain will be same unless
6994 * there are asymmetries in the topology. If there are asymmetries, group
6995 * having more cpu_power will pickup more load compared to the group having
6998 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7000 WARN_ON(!sd
|| !sd
->groups
);
7002 if (cpu
!= group_first_cpu(sd
->groups
))
7005 sd
->groups
->group_weight
= cpumask_weight(sched_group_cpus(sd
->groups
));
7007 update_group_power(sd
, cpu
);
7011 * Initializers for schedule domains
7012 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7015 #ifdef CONFIG_SCHED_DEBUG
7016 # define SD_INIT_NAME(sd, type) sd->name = #type
7018 # define SD_INIT_NAME(sd, type) do { } while (0)
7021 #define SD_INIT_FUNC(type) \
7022 static noinline struct sched_domain * \
7023 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7025 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7026 *sd = SD_##type##_INIT; \
7027 SD_INIT_NAME(sd, type); \
7028 sd->private = &tl->data; \
7034 SD_INIT_FUNC(ALLNODES
)
7037 #ifdef CONFIG_SCHED_SMT
7038 SD_INIT_FUNC(SIBLING
)
7040 #ifdef CONFIG_SCHED_MC
7043 #ifdef CONFIG_SCHED_BOOK
7047 static int default_relax_domain_level
= -1;
7048 int sched_domain_level_max
;
7050 static int __init
setup_relax_domain_level(char *str
)
7054 val
= simple_strtoul(str
, NULL
, 0);
7055 if (val
< sched_domain_level_max
)
7056 default_relax_domain_level
= val
;
7060 __setup("relax_domain_level=", setup_relax_domain_level
);
7062 static void set_domain_attribute(struct sched_domain
*sd
,
7063 struct sched_domain_attr
*attr
)
7067 if (!attr
|| attr
->relax_domain_level
< 0) {
7068 if (default_relax_domain_level
< 0)
7071 request
= default_relax_domain_level
;
7073 request
= attr
->relax_domain_level
;
7074 if (request
< sd
->level
) {
7075 /* turn off idle balance on this domain */
7076 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7078 /* turn on idle balance on this domain */
7079 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7083 static void __sdt_free(const struct cpumask
*cpu_map
);
7084 static int __sdt_alloc(const struct cpumask
*cpu_map
);
7086 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7087 const struct cpumask
*cpu_map
)
7091 if (!atomic_read(&d
->rd
->refcount
))
7092 free_rootdomain(&d
->rd
->rcu
); /* fall through */
7094 free_percpu(d
->sd
); /* fall through */
7096 __sdt_free(cpu_map
); /* fall through */
7102 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7103 const struct cpumask
*cpu_map
)
7105 memset(d
, 0, sizeof(*d
));
7107 if (__sdt_alloc(cpu_map
))
7108 return sa_sd_storage
;
7109 d
->sd
= alloc_percpu(struct sched_domain
*);
7111 return sa_sd_storage
;
7112 d
->rd
= alloc_rootdomain();
7115 return sa_rootdomain
;
7119 * NULL the sd_data elements we've used to build the sched_domain and
7120 * sched_group structure so that the subsequent __free_domain_allocs()
7121 * will not free the data we're using.
7123 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
7125 struct sd_data
*sdd
= sd
->private;
7126 struct sched_group
*sg
= sd
->groups
;
7128 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
7129 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
7131 if (cpu
== cpumask_first(sched_group_cpus(sg
))) {
7132 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sg
, cpu
) != sg
);
7133 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
7137 #ifdef CONFIG_SCHED_SMT
7138 static const struct cpumask
*cpu_smt_mask(int cpu
)
7140 return topology_thread_cpumask(cpu
);
7145 * Topology list, bottom-up.
7147 static struct sched_domain_topology_level default_topology
[] = {
7148 #ifdef CONFIG_SCHED_SMT
7149 { sd_init_SIBLING
, cpu_smt_mask
, },
7151 #ifdef CONFIG_SCHED_MC
7152 { sd_init_MC
, cpu_coregroup_mask
, },
7154 #ifdef CONFIG_SCHED_BOOK
7155 { sd_init_BOOK
, cpu_book_mask
, },
7157 { sd_init_CPU
, cpu_cpu_mask
, },
7159 { sd_init_NODE
, cpu_node_mask
, },
7160 { sd_init_ALLNODES
, cpu_allnodes_mask
, },
7165 static struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
7167 static int __sdt_alloc(const struct cpumask
*cpu_map
)
7169 struct sched_domain_topology_level
*tl
;
7172 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7173 struct sd_data
*sdd
= &tl
->data
;
7175 sdd
->sd
= alloc_percpu(struct sched_domain
*);
7179 sdd
->sg
= alloc_percpu(struct sched_group
*);
7183 for_each_cpu(j
, cpu_map
) {
7184 struct sched_domain
*sd
;
7185 struct sched_group
*sg
;
7187 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
7188 GFP_KERNEL
, cpu_to_node(j
));
7192 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
7194 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7195 GFP_KERNEL
, cpu_to_node(j
));
7199 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
7206 static void __sdt_free(const struct cpumask
*cpu_map
)
7208 struct sched_domain_topology_level
*tl
;
7211 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7212 struct sd_data
*sdd
= &tl
->data
;
7214 for_each_cpu(j
, cpu_map
) {
7215 kfree(*per_cpu_ptr(sdd
->sd
, j
));
7216 kfree(*per_cpu_ptr(sdd
->sg
, j
));
7218 free_percpu(sdd
->sd
);
7219 free_percpu(sdd
->sg
);
7223 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
7224 struct s_data
*d
, const struct cpumask
*cpu_map
,
7225 struct sched_domain_attr
*attr
, struct sched_domain
*child
,
7228 struct sched_domain
*sd
= tl
->init(tl
, cpu
);
7232 set_domain_attribute(sd
, attr
);
7233 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
7235 sd
->level
= child
->level
+ 1;
7236 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
7245 * Build sched domains for a given set of cpus and attach the sched domains
7246 * to the individual cpus
7248 static int build_sched_domains(const struct cpumask
*cpu_map
,
7249 struct sched_domain_attr
*attr
)
7251 enum s_alloc alloc_state
= sa_none
;
7252 struct sched_domain
*sd
;
7254 int i
, ret
= -ENOMEM
;
7256 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7257 if (alloc_state
!= sa_rootdomain
)
7260 /* Set up domains for cpus specified by the cpu_map. */
7261 for_each_cpu(i
, cpu_map
) {
7262 struct sched_domain_topology_level
*tl
;
7265 for (tl
= sched_domain_topology
; tl
->init
; tl
++)
7266 sd
= build_sched_domain(tl
, &d
, cpu_map
, attr
, sd
, i
);
7271 *per_cpu_ptr(d
.sd
, i
) = sd
;
7274 /* Build the groups for the domains */
7275 for_each_cpu(i
, cpu_map
) {
7276 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7277 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
7278 get_group(i
, sd
->private, &sd
->groups
);
7279 atomic_inc(&sd
->groups
->ref
);
7281 if (i
!= cpumask_first(sched_domain_span(sd
)))
7284 build_sched_groups(sd
);
7288 /* Calculate CPU power for physical packages and nodes */
7289 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
7290 if (!cpumask_test_cpu(i
, cpu_map
))
7293 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7294 claim_allocations(i
, sd
);
7295 init_sched_groups_power(i
, sd
);
7299 /* Attach the domains */
7301 for_each_cpu(i
, cpu_map
) {
7302 sd
= *per_cpu_ptr(d
.sd
, i
);
7303 cpu_attach_domain(sd
, d
.rd
, i
);
7309 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7313 static cpumask_var_t
*doms_cur
; /* current sched domains */
7314 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7315 static struct sched_domain_attr
*dattr_cur
;
7316 /* attribues of custom domains in 'doms_cur' */
7319 * Special case: If a kmalloc of a doms_cur partition (array of
7320 * cpumask) fails, then fallback to a single sched domain,
7321 * as determined by the single cpumask fallback_doms.
7323 static cpumask_var_t fallback_doms
;
7326 * arch_update_cpu_topology lets virtualized architectures update the
7327 * cpu core maps. It is supposed to return 1 if the topology changed
7328 * or 0 if it stayed the same.
7330 int __attribute__((weak
)) arch_update_cpu_topology(void)
7335 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7338 cpumask_var_t
*doms
;
7340 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7343 for (i
= 0; i
< ndoms
; i
++) {
7344 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7345 free_sched_domains(doms
, i
);
7352 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7355 for (i
= 0; i
< ndoms
; i
++)
7356 free_cpumask_var(doms
[i
]);
7361 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7362 * For now this just excludes isolated cpus, but could be used to
7363 * exclude other special cases in the future.
7365 static int init_sched_domains(const struct cpumask
*cpu_map
)
7369 arch_update_cpu_topology();
7371 doms_cur
= alloc_sched_domains(ndoms_cur
);
7373 doms_cur
= &fallback_doms
;
7374 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7376 err
= build_sched_domains(doms_cur
[0], NULL
);
7377 register_sched_domain_sysctl();
7383 * Detach sched domains from a group of cpus specified in cpu_map
7384 * These cpus will now be attached to the NULL domain
7386 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7391 for_each_cpu(i
, cpu_map
)
7392 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7396 /* handle null as "default" */
7397 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7398 struct sched_domain_attr
*new, int idx_new
)
7400 struct sched_domain_attr tmp
;
7407 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7408 new ? (new + idx_new
) : &tmp
,
7409 sizeof(struct sched_domain_attr
));
7413 * Partition sched domains as specified by the 'ndoms_new'
7414 * cpumasks in the array doms_new[] of cpumasks. This compares
7415 * doms_new[] to the current sched domain partitioning, doms_cur[].
7416 * It destroys each deleted domain and builds each new domain.
7418 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7419 * The masks don't intersect (don't overlap.) We should setup one
7420 * sched domain for each mask. CPUs not in any of the cpumasks will
7421 * not be load balanced. If the same cpumask appears both in the
7422 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7425 * The passed in 'doms_new' should be allocated using
7426 * alloc_sched_domains. This routine takes ownership of it and will
7427 * free_sched_domains it when done with it. If the caller failed the
7428 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7429 * and partition_sched_domains() will fallback to the single partition
7430 * 'fallback_doms', it also forces the domains to be rebuilt.
7432 * If doms_new == NULL it will be replaced with cpu_online_mask.
7433 * ndoms_new == 0 is a special case for destroying existing domains,
7434 * and it will not create the default domain.
7436 * Call with hotplug lock held
7438 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7439 struct sched_domain_attr
*dattr_new
)
7444 mutex_lock(&sched_domains_mutex
);
7446 /* always unregister in case we don't destroy any domains */
7447 unregister_sched_domain_sysctl();
7449 /* Let architecture update cpu core mappings. */
7450 new_topology
= arch_update_cpu_topology();
7452 n
= doms_new
? ndoms_new
: 0;
7454 /* Destroy deleted domains */
7455 for (i
= 0; i
< ndoms_cur
; i
++) {
7456 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7457 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7458 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7461 /* no match - a current sched domain not in new doms_new[] */
7462 detach_destroy_domains(doms_cur
[i
]);
7467 if (doms_new
== NULL
) {
7469 doms_new
= &fallback_doms
;
7470 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7471 WARN_ON_ONCE(dattr_new
);
7474 /* Build new domains */
7475 for (i
= 0; i
< ndoms_new
; i
++) {
7476 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7477 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7478 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7481 /* no match - add a new doms_new */
7482 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
7487 /* Remember the new sched domains */
7488 if (doms_cur
!= &fallback_doms
)
7489 free_sched_domains(doms_cur
, ndoms_cur
);
7490 kfree(dattr_cur
); /* kfree(NULL) is safe */
7491 doms_cur
= doms_new
;
7492 dattr_cur
= dattr_new
;
7493 ndoms_cur
= ndoms_new
;
7495 register_sched_domain_sysctl();
7497 mutex_unlock(&sched_domains_mutex
);
7500 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7501 static void reinit_sched_domains(void)
7505 /* Destroy domains first to force the rebuild */
7506 partition_sched_domains(0, NULL
, NULL
);
7508 rebuild_sched_domains();
7512 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7514 unsigned int level
= 0;
7516 if (sscanf(buf
, "%u", &level
) != 1)
7520 * level is always be positive so don't check for
7521 * level < POWERSAVINGS_BALANCE_NONE which is 0
7522 * What happens on 0 or 1 byte write,
7523 * need to check for count as well?
7526 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7530 sched_smt_power_savings
= level
;
7532 sched_mc_power_savings
= level
;
7534 reinit_sched_domains();
7539 #ifdef CONFIG_SCHED_MC
7540 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7541 struct sysdev_class_attribute
*attr
,
7544 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7546 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7547 struct sysdev_class_attribute
*attr
,
7548 const char *buf
, size_t count
)
7550 return sched_power_savings_store(buf
, count
, 0);
7552 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7553 sched_mc_power_savings_show
,
7554 sched_mc_power_savings_store
);
7557 #ifdef CONFIG_SCHED_SMT
7558 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7559 struct sysdev_class_attribute
*attr
,
7562 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7564 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7565 struct sysdev_class_attribute
*attr
,
7566 const char *buf
, size_t count
)
7568 return sched_power_savings_store(buf
, count
, 1);
7570 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7571 sched_smt_power_savings_show
,
7572 sched_smt_power_savings_store
);
7575 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7579 #ifdef CONFIG_SCHED_SMT
7581 err
= sysfs_create_file(&cls
->kset
.kobj
,
7582 &attr_sched_smt_power_savings
.attr
);
7584 #ifdef CONFIG_SCHED_MC
7585 if (!err
&& mc_capable())
7586 err
= sysfs_create_file(&cls
->kset
.kobj
,
7587 &attr_sched_mc_power_savings
.attr
);
7591 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7594 * Update cpusets according to cpu_active mask. If cpusets are
7595 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7596 * around partition_sched_domains().
7598 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7601 switch (action
& ~CPU_TASKS_FROZEN
) {
7603 case CPU_DOWN_FAILED
:
7604 cpuset_update_active_cpus();
7611 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7614 switch (action
& ~CPU_TASKS_FROZEN
) {
7615 case CPU_DOWN_PREPARE
:
7616 cpuset_update_active_cpus();
7623 static int update_runtime(struct notifier_block
*nfb
,
7624 unsigned long action
, void *hcpu
)
7626 int cpu
= (int)(long)hcpu
;
7629 case CPU_DOWN_PREPARE
:
7630 case CPU_DOWN_PREPARE_FROZEN
:
7631 disable_runtime(cpu_rq(cpu
));
7634 case CPU_DOWN_FAILED
:
7635 case CPU_DOWN_FAILED_FROZEN
:
7637 case CPU_ONLINE_FROZEN
:
7638 enable_runtime(cpu_rq(cpu
));
7646 void __init
sched_init_smp(void)
7648 cpumask_var_t non_isolated_cpus
;
7650 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7651 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7654 mutex_lock(&sched_domains_mutex
);
7655 init_sched_domains(cpu_active_mask
);
7656 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7657 if (cpumask_empty(non_isolated_cpus
))
7658 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7659 mutex_unlock(&sched_domains_mutex
);
7662 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7663 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7665 /* RT runtime code needs to handle some hotplug events */
7666 hotcpu_notifier(update_runtime
, 0);
7670 /* Move init over to a non-isolated CPU */
7671 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7673 sched_init_granularity();
7674 free_cpumask_var(non_isolated_cpus
);
7676 init_sched_rt_class();
7679 void __init
sched_init_smp(void)
7681 sched_init_granularity();
7683 #endif /* CONFIG_SMP */
7685 const_debug
unsigned int sysctl_timer_migration
= 1;
7687 int in_sched_functions(unsigned long addr
)
7689 return in_lock_functions(addr
) ||
7690 (addr
>= (unsigned long)__sched_text_start
7691 && addr
< (unsigned long)__sched_text_end
);
7694 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7696 cfs_rq
->tasks_timeline
= RB_ROOT
;
7697 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7698 #ifdef CONFIG_FAIR_GROUP_SCHED
7700 /* allow initial update_cfs_load() to truncate */
7702 cfs_rq
->load_stamp
= 1;
7705 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7708 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7710 struct rt_prio_array
*array
;
7713 array
= &rt_rq
->active
;
7714 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7715 INIT_LIST_HEAD(array
->queue
+ i
);
7716 __clear_bit(i
, array
->bitmap
);
7718 /* delimiter for bitsearch: */
7719 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7721 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7722 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7724 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7728 rt_rq
->rt_nr_migratory
= 0;
7729 rt_rq
->overloaded
= 0;
7730 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7734 rt_rq
->rt_throttled
= 0;
7735 rt_rq
->rt_runtime
= 0;
7736 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7738 #ifdef CONFIG_RT_GROUP_SCHED
7739 rt_rq
->rt_nr_boosted
= 0;
7744 #ifdef CONFIG_FAIR_GROUP_SCHED
7745 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7746 struct sched_entity
*se
, int cpu
,
7747 struct sched_entity
*parent
)
7749 struct rq
*rq
= cpu_rq(cpu
);
7750 tg
->cfs_rq
[cpu
] = cfs_rq
;
7751 init_cfs_rq(cfs_rq
, rq
);
7755 /* se could be NULL for root_task_group */
7760 se
->cfs_rq
= &rq
->cfs
;
7762 se
->cfs_rq
= parent
->my_q
;
7765 update_load_set(&se
->load
, 0);
7766 se
->parent
= parent
;
7770 #ifdef CONFIG_RT_GROUP_SCHED
7771 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7772 struct sched_rt_entity
*rt_se
, int cpu
,
7773 struct sched_rt_entity
*parent
)
7775 struct rq
*rq
= cpu_rq(cpu
);
7777 tg
->rt_rq
[cpu
] = rt_rq
;
7778 init_rt_rq(rt_rq
, rq
);
7780 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7782 tg
->rt_se
[cpu
] = rt_se
;
7787 rt_se
->rt_rq
= &rq
->rt
;
7789 rt_se
->rt_rq
= parent
->my_q
;
7791 rt_se
->my_q
= rt_rq
;
7792 rt_se
->parent
= parent
;
7793 INIT_LIST_HEAD(&rt_se
->run_list
);
7797 void __init
sched_init(void)
7800 unsigned long alloc_size
= 0, ptr
;
7802 #ifdef CONFIG_FAIR_GROUP_SCHED
7803 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7805 #ifdef CONFIG_RT_GROUP_SCHED
7806 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7808 #ifdef CONFIG_CPUMASK_OFFSTACK
7809 alloc_size
+= num_possible_cpus() * cpumask_size();
7812 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7814 #ifdef CONFIG_FAIR_GROUP_SCHED
7815 root_task_group
.se
= (struct sched_entity
**)ptr
;
7816 ptr
+= nr_cpu_ids
* sizeof(void **);
7818 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7819 ptr
+= nr_cpu_ids
* sizeof(void **);
7821 #endif /* CONFIG_FAIR_GROUP_SCHED */
7822 #ifdef CONFIG_RT_GROUP_SCHED
7823 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7824 ptr
+= nr_cpu_ids
* sizeof(void **);
7826 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7827 ptr
+= nr_cpu_ids
* sizeof(void **);
7829 #endif /* CONFIG_RT_GROUP_SCHED */
7830 #ifdef CONFIG_CPUMASK_OFFSTACK
7831 for_each_possible_cpu(i
) {
7832 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7833 ptr
+= cpumask_size();
7835 #endif /* CONFIG_CPUMASK_OFFSTACK */
7839 init_defrootdomain();
7842 init_rt_bandwidth(&def_rt_bandwidth
,
7843 global_rt_period(), global_rt_runtime());
7845 #ifdef CONFIG_RT_GROUP_SCHED
7846 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7847 global_rt_period(), global_rt_runtime());
7848 #endif /* CONFIG_RT_GROUP_SCHED */
7850 #ifdef CONFIG_CGROUP_SCHED
7851 list_add(&root_task_group
.list
, &task_groups
);
7852 INIT_LIST_HEAD(&root_task_group
.children
);
7853 autogroup_init(&init_task
);
7854 #endif /* CONFIG_CGROUP_SCHED */
7856 for_each_possible_cpu(i
) {
7860 raw_spin_lock_init(&rq
->lock
);
7862 rq
->calc_load_active
= 0;
7863 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7864 init_cfs_rq(&rq
->cfs
, rq
);
7865 init_rt_rq(&rq
->rt
, rq
);
7866 #ifdef CONFIG_FAIR_GROUP_SCHED
7867 root_task_group
.shares
= root_task_group_load
;
7868 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7870 * How much cpu bandwidth does root_task_group get?
7872 * In case of task-groups formed thr' the cgroup filesystem, it
7873 * gets 100% of the cpu resources in the system. This overall
7874 * system cpu resource is divided among the tasks of
7875 * root_task_group and its child task-groups in a fair manner,
7876 * based on each entity's (task or task-group's) weight
7877 * (se->load.weight).
7879 * In other words, if root_task_group has 10 tasks of weight
7880 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7881 * then A0's share of the cpu resource is:
7883 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7885 * We achieve this by letting root_task_group's tasks sit
7886 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7888 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
7889 #endif /* CONFIG_FAIR_GROUP_SCHED */
7891 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7892 #ifdef CONFIG_RT_GROUP_SCHED
7893 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7894 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
7897 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7898 rq
->cpu_load
[j
] = 0;
7900 rq
->last_load_update_tick
= jiffies
;
7905 rq
->cpu_power
= SCHED_LOAD_SCALE
;
7906 rq
->post_schedule
= 0;
7907 rq
->active_balance
= 0;
7908 rq
->next_balance
= jiffies
;
7913 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7914 rq_attach_root(rq
, &def_root_domain
);
7916 rq
->nohz_balance_kick
= 0;
7917 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
7921 atomic_set(&rq
->nr_iowait
, 0);
7924 set_load_weight(&init_task
);
7926 #ifdef CONFIG_PREEMPT_NOTIFIERS
7927 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7931 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
7934 #ifdef CONFIG_RT_MUTEXES
7935 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7939 * The boot idle thread does lazy MMU switching as well:
7941 atomic_inc(&init_mm
.mm_count
);
7942 enter_lazy_tlb(&init_mm
, current
);
7945 * Make us the idle thread. Technically, schedule() should not be
7946 * called from this thread, however somewhere below it might be,
7947 * but because we are the idle thread, we just pick up running again
7948 * when this runqueue becomes "idle".
7950 init_idle(current
, smp_processor_id());
7952 calc_load_update
= jiffies
+ LOAD_FREQ
;
7955 * During early bootup we pretend to be a normal task:
7957 current
->sched_class
= &fair_sched_class
;
7959 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7960 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
7962 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
7964 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
7965 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
7966 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
7967 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
7968 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
7970 /* May be allocated at isolcpus cmdline parse time */
7971 if (cpu_isolated_map
== NULL
)
7972 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7975 scheduler_running
= 1;
7978 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7979 static inline int preempt_count_equals(int preempt_offset
)
7981 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7983 return (nested
== preempt_offset
);
7986 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7989 static unsigned long prev_jiffy
; /* ratelimiting */
7991 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
7992 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7994 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7996 prev_jiffy
= jiffies
;
7999 "BUG: sleeping function called from invalid context at %s:%d\n",
8002 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8003 in_atomic(), irqs_disabled(),
8004 current
->pid
, current
->comm
);
8006 debug_show_held_locks(current
);
8007 if (irqs_disabled())
8008 print_irqtrace_events(current
);
8012 EXPORT_SYMBOL(__might_sleep
);
8015 #ifdef CONFIG_MAGIC_SYSRQ
8016 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8018 const struct sched_class
*prev_class
= p
->sched_class
;
8019 int old_prio
= p
->prio
;
8024 deactivate_task(rq
, p
, 0);
8025 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8027 activate_task(rq
, p
, 0);
8028 resched_task(rq
->curr
);
8031 check_class_changed(rq
, p
, prev_class
, old_prio
);
8034 void normalize_rt_tasks(void)
8036 struct task_struct
*g
, *p
;
8037 unsigned long flags
;
8040 read_lock_irqsave(&tasklist_lock
, flags
);
8041 do_each_thread(g
, p
) {
8043 * Only normalize user tasks:
8048 p
->se
.exec_start
= 0;
8049 #ifdef CONFIG_SCHEDSTATS
8050 p
->se
.statistics
.wait_start
= 0;
8051 p
->se
.statistics
.sleep_start
= 0;
8052 p
->se
.statistics
.block_start
= 0;
8057 * Renice negative nice level userspace
8060 if (TASK_NICE(p
) < 0 && p
->mm
)
8061 set_user_nice(p
, 0);
8065 raw_spin_lock(&p
->pi_lock
);
8066 rq
= __task_rq_lock(p
);
8068 normalize_task(rq
, p
);
8070 __task_rq_unlock(rq
);
8071 raw_spin_unlock(&p
->pi_lock
);
8072 } while_each_thread(g
, p
);
8074 read_unlock_irqrestore(&tasklist_lock
, flags
);
8077 #endif /* CONFIG_MAGIC_SYSRQ */
8079 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8081 * These functions are only useful for the IA64 MCA handling, or kdb.
8083 * They can only be called when the whole system has been
8084 * stopped - every CPU needs to be quiescent, and no scheduling
8085 * activity can take place. Using them for anything else would
8086 * be a serious bug, and as a result, they aren't even visible
8087 * under any other configuration.
8091 * curr_task - return the current task for a given cpu.
8092 * @cpu: the processor in question.
8094 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8096 struct task_struct
*curr_task(int cpu
)
8098 return cpu_curr(cpu
);
8101 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8105 * set_curr_task - set the current task for a given cpu.
8106 * @cpu: the processor in question.
8107 * @p: the task pointer to set.
8109 * Description: This function must only be used when non-maskable interrupts
8110 * are serviced on a separate stack. It allows the architecture to switch the
8111 * notion of the current task on a cpu in a non-blocking manner. This function
8112 * must be called with all CPU's synchronized, and interrupts disabled, the
8113 * and caller must save the original value of the current task (see
8114 * curr_task() above) and restore that value before reenabling interrupts and
8115 * re-starting the system.
8117 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8119 void set_curr_task(int cpu
, struct task_struct
*p
)
8126 #ifdef CONFIG_FAIR_GROUP_SCHED
8127 static void free_fair_sched_group(struct task_group
*tg
)
8131 for_each_possible_cpu(i
) {
8133 kfree(tg
->cfs_rq
[i
]);
8143 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8145 struct cfs_rq
*cfs_rq
;
8146 struct sched_entity
*se
;
8149 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8152 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8156 tg
->shares
= NICE_0_LOAD
;
8158 for_each_possible_cpu(i
) {
8159 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8160 GFP_KERNEL
, cpu_to_node(i
));
8164 se
= kzalloc_node(sizeof(struct sched_entity
),
8165 GFP_KERNEL
, cpu_to_node(i
));
8169 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8180 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8182 struct rq
*rq
= cpu_rq(cpu
);
8183 unsigned long flags
;
8186 * Only empty task groups can be destroyed; so we can speculatively
8187 * check on_list without danger of it being re-added.
8189 if (!tg
->cfs_rq
[cpu
]->on_list
)
8192 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8193 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8194 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8196 #else /* !CONFG_FAIR_GROUP_SCHED */
8197 static inline void free_fair_sched_group(struct task_group
*tg
)
8202 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8207 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8210 #endif /* CONFIG_FAIR_GROUP_SCHED */
8212 #ifdef CONFIG_RT_GROUP_SCHED
8213 static void free_rt_sched_group(struct task_group
*tg
)
8217 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8219 for_each_possible_cpu(i
) {
8221 kfree(tg
->rt_rq
[i
]);
8223 kfree(tg
->rt_se
[i
]);
8231 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8233 struct rt_rq
*rt_rq
;
8234 struct sched_rt_entity
*rt_se
;
8237 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8240 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8244 init_rt_bandwidth(&tg
->rt_bandwidth
,
8245 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8247 for_each_possible_cpu(i
) {
8248 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8249 GFP_KERNEL
, cpu_to_node(i
));
8253 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8254 GFP_KERNEL
, cpu_to_node(i
));
8258 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
8268 #else /* !CONFIG_RT_GROUP_SCHED */
8269 static inline void free_rt_sched_group(struct task_group
*tg
)
8274 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8278 #endif /* CONFIG_RT_GROUP_SCHED */
8280 #ifdef CONFIG_CGROUP_SCHED
8281 static void free_sched_group(struct task_group
*tg
)
8283 free_fair_sched_group(tg
);
8284 free_rt_sched_group(tg
);
8289 /* allocate runqueue etc for a new task group */
8290 struct task_group
*sched_create_group(struct task_group
*parent
)
8292 struct task_group
*tg
;
8293 unsigned long flags
;
8295 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8297 return ERR_PTR(-ENOMEM
);
8299 if (!alloc_fair_sched_group(tg
, parent
))
8302 if (!alloc_rt_sched_group(tg
, parent
))
8305 spin_lock_irqsave(&task_group_lock
, flags
);
8306 list_add_rcu(&tg
->list
, &task_groups
);
8308 WARN_ON(!parent
); /* root should already exist */
8310 tg
->parent
= parent
;
8311 INIT_LIST_HEAD(&tg
->children
);
8312 list_add_rcu(&tg
->siblings
, &parent
->children
);
8313 spin_unlock_irqrestore(&task_group_lock
, flags
);
8318 free_sched_group(tg
);
8319 return ERR_PTR(-ENOMEM
);
8322 /* rcu callback to free various structures associated with a task group */
8323 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8325 /* now it should be safe to free those cfs_rqs */
8326 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8329 /* Destroy runqueue etc associated with a task group */
8330 void sched_destroy_group(struct task_group
*tg
)
8332 unsigned long flags
;
8335 /* end participation in shares distribution */
8336 for_each_possible_cpu(i
)
8337 unregister_fair_sched_group(tg
, i
);
8339 spin_lock_irqsave(&task_group_lock
, flags
);
8340 list_del_rcu(&tg
->list
);
8341 list_del_rcu(&tg
->siblings
);
8342 spin_unlock_irqrestore(&task_group_lock
, flags
);
8344 /* wait for possible concurrent references to cfs_rqs complete */
8345 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8348 /* change task's runqueue when it moves between groups.
8349 * The caller of this function should have put the task in its new group
8350 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8351 * reflect its new group.
8353 void sched_move_task(struct task_struct
*tsk
)
8356 unsigned long flags
;
8359 rq
= task_rq_lock(tsk
, &flags
);
8361 running
= task_current(rq
, tsk
);
8365 dequeue_task(rq
, tsk
, 0);
8366 if (unlikely(running
))
8367 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8369 #ifdef CONFIG_FAIR_GROUP_SCHED
8370 if (tsk
->sched_class
->task_move_group
)
8371 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
8374 set_task_rq(tsk
, task_cpu(tsk
));
8376 if (unlikely(running
))
8377 tsk
->sched_class
->set_curr_task(rq
);
8379 enqueue_task(rq
, tsk
, 0);
8381 task_rq_unlock(rq
, tsk
, &flags
);
8383 #endif /* CONFIG_CGROUP_SCHED */
8385 #ifdef CONFIG_FAIR_GROUP_SCHED
8386 static DEFINE_MUTEX(shares_mutex
);
8388 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8391 unsigned long flags
;
8394 * We can't change the weight of the root cgroup.
8399 if (shares
< MIN_SHARES
)
8400 shares
= MIN_SHARES
;
8401 else if (shares
> MAX_SHARES
)
8402 shares
= MAX_SHARES
;
8404 mutex_lock(&shares_mutex
);
8405 if (tg
->shares
== shares
)
8408 tg
->shares
= shares
;
8409 for_each_possible_cpu(i
) {
8410 struct rq
*rq
= cpu_rq(i
);
8411 struct sched_entity
*se
;
8414 /* Propagate contribution to hierarchy */
8415 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8416 for_each_sched_entity(se
)
8417 update_cfs_shares(group_cfs_rq(se
));
8418 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8422 mutex_unlock(&shares_mutex
);
8426 unsigned long sched_group_shares(struct task_group
*tg
)
8432 #ifdef CONFIG_RT_GROUP_SCHED
8434 * Ensure that the real time constraints are schedulable.
8436 static DEFINE_MUTEX(rt_constraints_mutex
);
8438 static unsigned long to_ratio(u64 period
, u64 runtime
)
8440 if (runtime
== RUNTIME_INF
)
8443 return div64_u64(runtime
<< 20, period
);
8446 /* Must be called with tasklist_lock held */
8447 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8449 struct task_struct
*g
, *p
;
8451 do_each_thread(g
, p
) {
8452 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8454 } while_each_thread(g
, p
);
8459 struct rt_schedulable_data
{
8460 struct task_group
*tg
;
8465 static int tg_schedulable(struct task_group
*tg
, void *data
)
8467 struct rt_schedulable_data
*d
= data
;
8468 struct task_group
*child
;
8469 unsigned long total
, sum
= 0;
8470 u64 period
, runtime
;
8472 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8473 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8476 period
= d
->rt_period
;
8477 runtime
= d
->rt_runtime
;
8481 * Cannot have more runtime than the period.
8483 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8487 * Ensure we don't starve existing RT tasks.
8489 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8492 total
= to_ratio(period
, runtime
);
8495 * Nobody can have more than the global setting allows.
8497 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8501 * The sum of our children's runtime should not exceed our own.
8503 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8504 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8505 runtime
= child
->rt_bandwidth
.rt_runtime
;
8507 if (child
== d
->tg
) {
8508 period
= d
->rt_period
;
8509 runtime
= d
->rt_runtime
;
8512 sum
+= to_ratio(period
, runtime
);
8521 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8523 struct rt_schedulable_data data
= {
8525 .rt_period
= period
,
8526 .rt_runtime
= runtime
,
8529 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8532 static int tg_set_bandwidth(struct task_group
*tg
,
8533 u64 rt_period
, u64 rt_runtime
)
8537 mutex_lock(&rt_constraints_mutex
);
8538 read_lock(&tasklist_lock
);
8539 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8543 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8544 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8545 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8547 for_each_possible_cpu(i
) {
8548 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8550 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8551 rt_rq
->rt_runtime
= rt_runtime
;
8552 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8554 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8556 read_unlock(&tasklist_lock
);
8557 mutex_unlock(&rt_constraints_mutex
);
8562 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8564 u64 rt_runtime
, rt_period
;
8566 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8567 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8568 if (rt_runtime_us
< 0)
8569 rt_runtime
= RUNTIME_INF
;
8571 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8574 long sched_group_rt_runtime(struct task_group
*tg
)
8578 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8581 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8582 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8583 return rt_runtime_us
;
8586 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8588 u64 rt_runtime
, rt_period
;
8590 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8591 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8596 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8599 long sched_group_rt_period(struct task_group
*tg
)
8603 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8604 do_div(rt_period_us
, NSEC_PER_USEC
);
8605 return rt_period_us
;
8608 static int sched_rt_global_constraints(void)
8610 u64 runtime
, period
;
8613 if (sysctl_sched_rt_period
<= 0)
8616 runtime
= global_rt_runtime();
8617 period
= global_rt_period();
8620 * Sanity check on the sysctl variables.
8622 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8625 mutex_lock(&rt_constraints_mutex
);
8626 read_lock(&tasklist_lock
);
8627 ret
= __rt_schedulable(NULL
, 0, 0);
8628 read_unlock(&tasklist_lock
);
8629 mutex_unlock(&rt_constraints_mutex
);
8634 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8636 /* Don't accept realtime tasks when there is no way for them to run */
8637 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8643 #else /* !CONFIG_RT_GROUP_SCHED */
8644 static int sched_rt_global_constraints(void)
8646 unsigned long flags
;
8649 if (sysctl_sched_rt_period
<= 0)
8653 * There's always some RT tasks in the root group
8654 * -- migration, kstopmachine etc..
8656 if (sysctl_sched_rt_runtime
== 0)
8659 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8660 for_each_possible_cpu(i
) {
8661 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8663 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8664 rt_rq
->rt_runtime
= global_rt_runtime();
8665 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8667 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8671 #endif /* CONFIG_RT_GROUP_SCHED */
8673 int sched_rt_handler(struct ctl_table
*table
, int write
,
8674 void __user
*buffer
, size_t *lenp
,
8678 int old_period
, old_runtime
;
8679 static DEFINE_MUTEX(mutex
);
8682 old_period
= sysctl_sched_rt_period
;
8683 old_runtime
= sysctl_sched_rt_runtime
;
8685 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8687 if (!ret
&& write
) {
8688 ret
= sched_rt_global_constraints();
8690 sysctl_sched_rt_period
= old_period
;
8691 sysctl_sched_rt_runtime
= old_runtime
;
8693 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8694 def_rt_bandwidth
.rt_period
=
8695 ns_to_ktime(global_rt_period());
8698 mutex_unlock(&mutex
);
8703 #ifdef CONFIG_CGROUP_SCHED
8705 /* return corresponding task_group object of a cgroup */
8706 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8708 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8709 struct task_group
, css
);
8712 static struct cgroup_subsys_state
*
8713 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8715 struct task_group
*tg
, *parent
;
8717 if (!cgrp
->parent
) {
8718 /* This is early initialization for the top cgroup */
8719 return &root_task_group
.css
;
8722 parent
= cgroup_tg(cgrp
->parent
);
8723 tg
= sched_create_group(parent
);
8725 return ERR_PTR(-ENOMEM
);
8731 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8733 struct task_group
*tg
= cgroup_tg(cgrp
);
8735 sched_destroy_group(tg
);
8739 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8741 #ifdef CONFIG_RT_GROUP_SCHED
8742 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8745 /* We don't support RT-tasks being in separate groups */
8746 if (tsk
->sched_class
!= &fair_sched_class
)
8753 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8754 struct task_struct
*tsk
, bool threadgroup
)
8756 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8760 struct task_struct
*c
;
8762 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8763 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8775 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8776 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8779 sched_move_task(tsk
);
8781 struct task_struct
*c
;
8783 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8791 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8792 struct cgroup
*old_cgrp
, struct task_struct
*task
)
8795 * cgroup_exit() is called in the copy_process() failure path.
8796 * Ignore this case since the task hasn't ran yet, this avoids
8797 * trying to poke a half freed task state from generic code.
8799 if (!(task
->flags
& PF_EXITING
))
8802 sched_move_task(task
);
8805 #ifdef CONFIG_FAIR_GROUP_SCHED
8806 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8809 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8812 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8814 struct task_group
*tg
= cgroup_tg(cgrp
);
8816 return (u64
) tg
->shares
;
8818 #endif /* CONFIG_FAIR_GROUP_SCHED */
8820 #ifdef CONFIG_RT_GROUP_SCHED
8821 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8824 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8827 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8829 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8832 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8835 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8838 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8840 return sched_group_rt_period(cgroup_tg(cgrp
));
8842 #endif /* CONFIG_RT_GROUP_SCHED */
8844 static struct cftype cpu_files
[] = {
8845 #ifdef CONFIG_FAIR_GROUP_SCHED
8848 .read_u64
= cpu_shares_read_u64
,
8849 .write_u64
= cpu_shares_write_u64
,
8852 #ifdef CONFIG_RT_GROUP_SCHED
8854 .name
= "rt_runtime_us",
8855 .read_s64
= cpu_rt_runtime_read
,
8856 .write_s64
= cpu_rt_runtime_write
,
8859 .name
= "rt_period_us",
8860 .read_u64
= cpu_rt_period_read_uint
,
8861 .write_u64
= cpu_rt_period_write_uint
,
8866 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8868 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8871 struct cgroup_subsys cpu_cgroup_subsys
= {
8873 .create
= cpu_cgroup_create
,
8874 .destroy
= cpu_cgroup_destroy
,
8875 .can_attach
= cpu_cgroup_can_attach
,
8876 .attach
= cpu_cgroup_attach
,
8877 .exit
= cpu_cgroup_exit
,
8878 .populate
= cpu_cgroup_populate
,
8879 .subsys_id
= cpu_cgroup_subsys_id
,
8883 #endif /* CONFIG_CGROUP_SCHED */
8885 #ifdef CONFIG_CGROUP_CPUACCT
8888 * CPU accounting code for task groups.
8890 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8891 * (balbir@in.ibm.com).
8894 /* track cpu usage of a group of tasks and its child groups */
8896 struct cgroup_subsys_state css
;
8897 /* cpuusage holds pointer to a u64-type object on every cpu */
8898 u64 __percpu
*cpuusage
;
8899 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8900 struct cpuacct
*parent
;
8903 struct cgroup_subsys cpuacct_subsys
;
8905 /* return cpu accounting group corresponding to this container */
8906 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8908 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8909 struct cpuacct
, css
);
8912 /* return cpu accounting group to which this task belongs */
8913 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8915 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8916 struct cpuacct
, css
);
8919 /* create a new cpu accounting group */
8920 static struct cgroup_subsys_state
*cpuacct_create(
8921 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8923 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8929 ca
->cpuusage
= alloc_percpu(u64
);
8933 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8934 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
8935 goto out_free_counters
;
8938 ca
->parent
= cgroup_ca(cgrp
->parent
);
8944 percpu_counter_destroy(&ca
->cpustat
[i
]);
8945 free_percpu(ca
->cpuusage
);
8949 return ERR_PTR(-ENOMEM
);
8952 /* destroy an existing cpu accounting group */
8954 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8956 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8959 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8960 percpu_counter_destroy(&ca
->cpustat
[i
]);
8961 free_percpu(ca
->cpuusage
);
8965 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8967 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8970 #ifndef CONFIG_64BIT
8972 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8974 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8976 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8984 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8986 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8988 #ifndef CONFIG_64BIT
8990 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8992 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8994 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9000 /* return total cpu usage (in nanoseconds) of a group */
9001 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9003 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9004 u64 totalcpuusage
= 0;
9007 for_each_present_cpu(i
)
9008 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9010 return totalcpuusage
;
9013 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9016 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9025 for_each_present_cpu(i
)
9026 cpuacct_cpuusage_write(ca
, i
, 0);
9032 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9035 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9039 for_each_present_cpu(i
) {
9040 percpu
= cpuacct_cpuusage_read(ca
, i
);
9041 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9043 seq_printf(m
, "\n");
9047 static const char *cpuacct_stat_desc
[] = {
9048 [CPUACCT_STAT_USER
] = "user",
9049 [CPUACCT_STAT_SYSTEM
] = "system",
9052 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9053 struct cgroup_map_cb
*cb
)
9055 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9058 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9059 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9060 val
= cputime64_to_clock_t(val
);
9061 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9066 static struct cftype files
[] = {
9069 .read_u64
= cpuusage_read
,
9070 .write_u64
= cpuusage_write
,
9073 .name
= "usage_percpu",
9074 .read_seq_string
= cpuacct_percpu_seq_read
,
9078 .read_map
= cpuacct_stats_show
,
9082 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9084 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9088 * charge this task's execution time to its accounting group.
9090 * called with rq->lock held.
9092 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9097 if (unlikely(!cpuacct_subsys
.active
))
9100 cpu
= task_cpu(tsk
);
9106 for (; ca
; ca
= ca
->parent
) {
9107 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9108 *cpuusage
+= cputime
;
9115 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9116 * in cputime_t units. As a result, cpuacct_update_stats calls
9117 * percpu_counter_add with values large enough to always overflow the
9118 * per cpu batch limit causing bad SMP scalability.
9120 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9121 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9122 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9125 #define CPUACCT_BATCH \
9126 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9128 #define CPUACCT_BATCH 0
9132 * Charge the system/user time to the task's accounting group.
9134 static void cpuacct_update_stats(struct task_struct
*tsk
,
9135 enum cpuacct_stat_index idx
, cputime_t val
)
9138 int batch
= CPUACCT_BATCH
;
9140 if (unlikely(!cpuacct_subsys
.active
))
9147 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9153 struct cgroup_subsys cpuacct_subsys
= {
9155 .create
= cpuacct_create
,
9156 .destroy
= cpuacct_destroy
,
9157 .populate
= cpuacct_populate
,
9158 .subsys_id
= cpuacct_subsys_id
,
9160 #endif /* CONFIG_CGROUP_CPUACCT */