cfg80211: fix scan crash on single-band cards
[linux/fpc-iii.git] / net / sctp / associola.c
blob525f97c467e97e3e04a3d279431fc0bf08ff0d2f
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
8 * This file is part of the SCTP kernel implementation
10 * This module provides the abstraction for an SCTP association.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Ryan Layer <rmlayer@us.ibm.com>
45 * Kevin Gao <kevin.gao@intel.com>
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
69 /* Keep track of the new idr low so that we don't re-use association id
70 * numbers too fast. It is protected by they idr spin lock is in the
71 * range of 1 - INT_MAX.
73 static u32 idr_low = 1;
76 /* 1st Level Abstractions. */
78 /* Initialize a new association from provided memory. */
79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
80 const struct sctp_endpoint *ep,
81 const struct sock *sk,
82 sctp_scope_t scope,
83 gfp_t gfp)
85 struct sctp_sock *sp;
86 int i;
87 sctp_paramhdr_t *p;
88 int err;
90 /* Retrieve the SCTP per socket area. */
91 sp = sctp_sk((struct sock *)sk);
93 /* Discarding const is appropriate here. */
94 asoc->ep = (struct sctp_endpoint *)ep;
95 sctp_endpoint_hold(asoc->ep);
97 /* Hold the sock. */
98 asoc->base.sk = (struct sock *)sk;
99 sock_hold(asoc->base.sk);
101 /* Initialize the common base substructure. */
102 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
104 /* Initialize the object handling fields. */
105 atomic_set(&asoc->base.refcnt, 1);
106 asoc->base.dead = 0;
107 asoc->base.malloced = 0;
109 /* Initialize the bind addr area. */
110 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
112 asoc->state = SCTP_STATE_CLOSED;
114 /* Set these values from the socket values, a conversion between
115 * millsecons to seconds/microseconds must also be done.
117 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
118 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
119 * 1000;
120 asoc->frag_point = 0;
121 asoc->user_frag = sp->user_frag;
123 /* Set the association max_retrans and RTO values from the
124 * socket values.
126 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
127 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
128 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
129 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
131 asoc->overall_error_count = 0;
133 /* Initialize the association's heartbeat interval based on the
134 * sock configured value.
136 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
138 /* Initialize path max retrans value. */
139 asoc->pathmaxrxt = sp->pathmaxrxt;
141 /* Initialize default path MTU. */
142 asoc->pathmtu = sp->pathmtu;
144 /* Set association default SACK delay */
145 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
146 asoc->sackfreq = sp->sackfreq;
148 /* Set the association default flags controlling
149 * Heartbeat, SACK delay, and Path MTU Discovery.
151 asoc->param_flags = sp->param_flags;
153 /* Initialize the maximum mumber of new data packets that can be sent
154 * in a burst.
156 asoc->max_burst = sp->max_burst;
158 /* initialize association timers */
159 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
160 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
162 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
164 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
166 /* sctpimpguide Section 2.12.2
167 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
168 * recommended value of 5 times 'RTO.Max'.
170 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
171 = 5 * asoc->rto_max;
173 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
174 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
175 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
176 (unsigned long)sp->autoclose * HZ;
178 /* Initializes the timers */
179 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
180 setup_timer(&asoc->timers[i], sctp_timer_events[i],
181 (unsigned long)asoc);
183 /* Pull default initialization values from the sock options.
184 * Note: This assumes that the values have already been
185 * validated in the sock.
187 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
188 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
189 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
191 asoc->max_init_timeo =
192 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
194 /* Allocate storage for the ssnmap after the inbound and outbound
195 * streams have been negotiated during Init.
197 asoc->ssnmap = NULL;
199 /* Set the local window size for receive.
200 * This is also the rcvbuf space per association.
201 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
202 * 1500 bytes in one SCTP packet.
204 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
205 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
206 else
207 asoc->rwnd = sk->sk_rcvbuf/2;
209 asoc->a_rwnd = asoc->rwnd;
211 asoc->rwnd_over = 0;
212 asoc->rwnd_press = 0;
214 /* Use my own max window until I learn something better. */
215 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
217 /* Set the sndbuf size for transmit. */
218 asoc->sndbuf_used = 0;
220 /* Initialize the receive memory counter */
221 atomic_set(&asoc->rmem_alloc, 0);
223 init_waitqueue_head(&asoc->wait);
225 asoc->c.my_vtag = sctp_generate_tag(ep);
226 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
227 asoc->c.peer_vtag = 0;
228 asoc->c.my_ttag = 0;
229 asoc->c.peer_ttag = 0;
230 asoc->c.my_port = ep->base.bind_addr.port;
232 asoc->c.initial_tsn = sctp_generate_tsn(ep);
234 asoc->next_tsn = asoc->c.initial_tsn;
236 asoc->ctsn_ack_point = asoc->next_tsn - 1;
237 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
238 asoc->highest_sacked = asoc->ctsn_ack_point;
239 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
240 asoc->unack_data = 0;
242 /* ADDIP Section 4.1 Asconf Chunk Procedures
244 * When an endpoint has an ASCONF signaled change to be sent to the
245 * remote endpoint it should do the following:
246 * ...
247 * A2) a serial number should be assigned to the chunk. The serial
248 * number SHOULD be a monotonically increasing number. The serial
249 * numbers SHOULD be initialized at the start of the
250 * association to the same value as the initial TSN.
252 asoc->addip_serial = asoc->c.initial_tsn;
254 INIT_LIST_HEAD(&asoc->addip_chunk_list);
255 INIT_LIST_HEAD(&asoc->asconf_ack_list);
257 /* Make an empty list of remote transport addresses. */
258 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
259 asoc->peer.transport_count = 0;
261 /* RFC 2960 5.1 Normal Establishment of an Association
263 * After the reception of the first data chunk in an
264 * association the endpoint must immediately respond with a
265 * sack to acknowledge the data chunk. Subsequent
266 * acknowledgements should be done as described in Section
267 * 6.2.
269 * [We implement this by telling a new association that it
270 * already received one packet.]
272 asoc->peer.sack_needed = 1;
273 asoc->peer.sack_cnt = 0;
275 /* Assume that the peer will tell us if he recognizes ASCONF
276 * as part of INIT exchange.
277 * The sctp_addip_noauth option is there for backward compatibilty
278 * and will revert old behavior.
280 asoc->peer.asconf_capable = 0;
281 if (sctp_addip_noauth)
282 asoc->peer.asconf_capable = 1;
284 /* Create an input queue. */
285 sctp_inq_init(&asoc->base.inqueue);
286 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
288 /* Create an output queue. */
289 sctp_outq_init(asoc, &asoc->outqueue);
291 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
292 goto fail_init;
294 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
296 asoc->need_ecne = 0;
298 asoc->assoc_id = 0;
300 /* Assume that peer would support both address types unless we are
301 * told otherwise.
303 asoc->peer.ipv4_address = 1;
304 if (asoc->base.sk->sk_family == PF_INET6)
305 asoc->peer.ipv6_address = 1;
306 INIT_LIST_HEAD(&asoc->asocs);
308 asoc->autoclose = sp->autoclose;
310 asoc->default_stream = sp->default_stream;
311 asoc->default_ppid = sp->default_ppid;
312 asoc->default_flags = sp->default_flags;
313 asoc->default_context = sp->default_context;
314 asoc->default_timetolive = sp->default_timetolive;
315 asoc->default_rcv_context = sp->default_rcv_context;
317 /* AUTH related initializations */
318 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
319 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
320 if (err)
321 goto fail_init;
323 asoc->active_key_id = ep->active_key_id;
324 asoc->asoc_shared_key = NULL;
326 asoc->default_hmac_id = 0;
327 /* Save the hmacs and chunks list into this association */
328 if (ep->auth_hmacs_list)
329 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
330 ntohs(ep->auth_hmacs_list->param_hdr.length));
331 if (ep->auth_chunk_list)
332 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
333 ntohs(ep->auth_chunk_list->param_hdr.length));
335 /* Get the AUTH random number for this association */
336 p = (sctp_paramhdr_t *)asoc->c.auth_random;
337 p->type = SCTP_PARAM_RANDOM;
338 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
339 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
341 return asoc;
343 fail_init:
344 sctp_endpoint_put(asoc->ep);
345 sock_put(asoc->base.sk);
346 return NULL;
349 /* Allocate and initialize a new association */
350 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
351 const struct sock *sk,
352 sctp_scope_t scope,
353 gfp_t gfp)
355 struct sctp_association *asoc;
357 asoc = t_new(struct sctp_association, gfp);
358 if (!asoc)
359 goto fail;
361 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
362 goto fail_init;
364 asoc->base.malloced = 1;
365 SCTP_DBG_OBJCNT_INC(assoc);
366 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
368 return asoc;
370 fail_init:
371 kfree(asoc);
372 fail:
373 return NULL;
376 /* Free this association if possible. There may still be users, so
377 * the actual deallocation may be delayed.
379 void sctp_association_free(struct sctp_association *asoc)
381 struct sock *sk = asoc->base.sk;
382 struct sctp_transport *transport;
383 struct list_head *pos, *temp;
384 int i;
386 /* Only real associations count against the endpoint, so
387 * don't bother for if this is a temporary association.
389 if (!asoc->temp) {
390 list_del(&asoc->asocs);
392 /* Decrement the backlog value for a TCP-style listening
393 * socket.
395 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
396 sk->sk_ack_backlog--;
399 /* Mark as dead, so other users can know this structure is
400 * going away.
402 asoc->base.dead = 1;
404 /* Dispose of any data lying around in the outqueue. */
405 sctp_outq_free(&asoc->outqueue);
407 /* Dispose of any pending messages for the upper layer. */
408 sctp_ulpq_free(&asoc->ulpq);
410 /* Dispose of any pending chunks on the inqueue. */
411 sctp_inq_free(&asoc->base.inqueue);
413 sctp_tsnmap_free(&asoc->peer.tsn_map);
415 /* Free ssnmap storage. */
416 sctp_ssnmap_free(asoc->ssnmap);
418 /* Clean up the bound address list. */
419 sctp_bind_addr_free(&asoc->base.bind_addr);
421 /* Do we need to go through all of our timers and
422 * delete them? To be safe we will try to delete all, but we
423 * should be able to go through and make a guess based
424 * on our state.
426 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
427 if (timer_pending(&asoc->timers[i]) &&
428 del_timer(&asoc->timers[i]))
429 sctp_association_put(asoc);
432 /* Free peer's cached cookie. */
433 kfree(asoc->peer.cookie);
434 kfree(asoc->peer.peer_random);
435 kfree(asoc->peer.peer_chunks);
436 kfree(asoc->peer.peer_hmacs);
438 /* Release the transport structures. */
439 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
440 transport = list_entry(pos, struct sctp_transport, transports);
441 list_del(pos);
442 sctp_transport_free(transport);
445 asoc->peer.transport_count = 0;
447 /* Free any cached ASCONF_ACK chunk. */
448 sctp_assoc_free_asconf_acks(asoc);
450 /* Free the ASCONF queue. */
451 sctp_assoc_free_asconf_queue(asoc);
453 /* Free any cached ASCONF chunk. */
454 if (asoc->addip_last_asconf)
455 sctp_chunk_free(asoc->addip_last_asconf);
457 /* AUTH - Free the endpoint shared keys */
458 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
460 /* AUTH - Free the association shared key */
461 sctp_auth_key_put(asoc->asoc_shared_key);
463 sctp_association_put(asoc);
466 /* Cleanup and free up an association. */
467 static void sctp_association_destroy(struct sctp_association *asoc)
469 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
471 sctp_endpoint_put(asoc->ep);
472 sock_put(asoc->base.sk);
474 if (asoc->assoc_id != 0) {
475 spin_lock_bh(&sctp_assocs_id_lock);
476 idr_remove(&sctp_assocs_id, asoc->assoc_id);
477 spin_unlock_bh(&sctp_assocs_id_lock);
480 WARN_ON(atomic_read(&asoc->rmem_alloc));
482 if (asoc->base.malloced) {
483 kfree(asoc);
484 SCTP_DBG_OBJCNT_DEC(assoc);
488 /* Change the primary destination address for the peer. */
489 void sctp_assoc_set_primary(struct sctp_association *asoc,
490 struct sctp_transport *transport)
492 int changeover = 0;
494 /* it's a changeover only if we already have a primary path
495 * that we are changing
497 if (asoc->peer.primary_path != NULL &&
498 asoc->peer.primary_path != transport)
499 changeover = 1 ;
501 asoc->peer.primary_path = transport;
503 /* Set a default msg_name for events. */
504 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
505 sizeof(union sctp_addr));
507 /* If the primary path is changing, assume that the
508 * user wants to use this new path.
510 if ((transport->state == SCTP_ACTIVE) ||
511 (transport->state == SCTP_UNKNOWN))
512 asoc->peer.active_path = transport;
515 * SFR-CACC algorithm:
516 * Upon the receipt of a request to change the primary
517 * destination address, on the data structure for the new
518 * primary destination, the sender MUST do the following:
520 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
521 * to this destination address earlier. The sender MUST set
522 * CYCLING_CHANGEOVER to indicate that this switch is a
523 * double switch to the same destination address.
525 * Really, only bother is we have data queued or outstanding on
526 * the association.
528 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
529 return;
531 if (transport->cacc.changeover_active)
532 transport->cacc.cycling_changeover = changeover;
534 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
535 * a changeover has occurred.
537 transport->cacc.changeover_active = changeover;
539 /* 3) The sender MUST store the next TSN to be sent in
540 * next_tsn_at_change.
542 transport->cacc.next_tsn_at_change = asoc->next_tsn;
545 /* Remove a transport from an association. */
546 void sctp_assoc_rm_peer(struct sctp_association *asoc,
547 struct sctp_transport *peer)
549 struct list_head *pos;
550 struct sctp_transport *transport;
552 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
553 " port: %d\n",
554 asoc,
555 (&peer->ipaddr),
556 ntohs(peer->ipaddr.v4.sin_port));
558 /* If we are to remove the current retran_path, update it
559 * to the next peer before removing this peer from the list.
561 if (asoc->peer.retran_path == peer)
562 sctp_assoc_update_retran_path(asoc);
564 /* Remove this peer from the list. */
565 list_del(&peer->transports);
567 /* Get the first transport of asoc. */
568 pos = asoc->peer.transport_addr_list.next;
569 transport = list_entry(pos, struct sctp_transport, transports);
571 /* Update any entries that match the peer to be deleted. */
572 if (asoc->peer.primary_path == peer)
573 sctp_assoc_set_primary(asoc, transport);
574 if (asoc->peer.active_path == peer)
575 asoc->peer.active_path = transport;
576 if (asoc->peer.retran_path == peer)
577 asoc->peer.retran_path = transport;
578 if (asoc->peer.last_data_from == peer)
579 asoc->peer.last_data_from = transport;
581 /* If we remove the transport an INIT was last sent to, set it to
582 * NULL. Combined with the update of the retran path above, this
583 * will cause the next INIT to be sent to the next available
584 * transport, maintaining the cycle.
586 if (asoc->init_last_sent_to == peer)
587 asoc->init_last_sent_to = NULL;
589 /* If we remove the transport an SHUTDOWN was last sent to, set it
590 * to NULL. Combined with the update of the retran path above, this
591 * will cause the next SHUTDOWN to be sent to the next available
592 * transport, maintaining the cycle.
594 if (asoc->shutdown_last_sent_to == peer)
595 asoc->shutdown_last_sent_to = NULL;
597 /* If we remove the transport an ASCONF was last sent to, set it to
598 * NULL.
600 if (asoc->addip_last_asconf &&
601 asoc->addip_last_asconf->transport == peer)
602 asoc->addip_last_asconf->transport = NULL;
604 /* If we have something on the transmitted list, we have to
605 * save it off. The best place is the active path.
607 if (!list_empty(&peer->transmitted)) {
608 struct sctp_transport *active = asoc->peer.active_path;
609 struct sctp_chunk *ch;
611 /* Reset the transport of each chunk on this list */
612 list_for_each_entry(ch, &peer->transmitted,
613 transmitted_list) {
614 ch->transport = NULL;
615 ch->rtt_in_progress = 0;
618 list_splice_tail_init(&peer->transmitted,
619 &active->transmitted);
621 /* Start a T3 timer here in case it wasn't running so
622 * that these migrated packets have a chance to get
623 * retrnasmitted.
625 if (!timer_pending(&active->T3_rtx_timer))
626 if (!mod_timer(&active->T3_rtx_timer,
627 jiffies + active->rto))
628 sctp_transport_hold(active);
631 asoc->peer.transport_count--;
633 sctp_transport_free(peer);
636 /* Add a transport address to an association. */
637 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
638 const union sctp_addr *addr,
639 const gfp_t gfp,
640 const int peer_state)
642 struct sctp_transport *peer;
643 struct sctp_sock *sp;
644 unsigned short port;
646 sp = sctp_sk(asoc->base.sk);
648 /* AF_INET and AF_INET6 share common port field. */
649 port = ntohs(addr->v4.sin_port);
651 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
652 " port: %d state:%d\n",
653 asoc,
654 addr,
655 port,
656 peer_state);
658 /* Set the port if it has not been set yet. */
659 if (0 == asoc->peer.port)
660 asoc->peer.port = port;
662 /* Check to see if this is a duplicate. */
663 peer = sctp_assoc_lookup_paddr(asoc, addr);
664 if (peer) {
665 /* An UNKNOWN state is only set on transports added by
666 * user in sctp_connectx() call. Such transports should be
667 * considered CONFIRMED per RFC 4960, Section 5.4.
669 if (peer->state == SCTP_UNKNOWN) {
670 peer->state = SCTP_ACTIVE;
672 return peer;
675 peer = sctp_transport_new(addr, gfp);
676 if (!peer)
677 return NULL;
679 sctp_transport_set_owner(peer, asoc);
681 /* Initialize the peer's heartbeat interval based on the
682 * association configured value.
684 peer->hbinterval = asoc->hbinterval;
686 /* Set the path max_retrans. */
687 peer->pathmaxrxt = asoc->pathmaxrxt;
689 /* Initialize the peer's SACK delay timeout based on the
690 * association configured value.
692 peer->sackdelay = asoc->sackdelay;
693 peer->sackfreq = asoc->sackfreq;
695 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
696 * based on association setting.
698 peer->param_flags = asoc->param_flags;
700 sctp_transport_route(peer, NULL, sp);
702 /* Initialize the pmtu of the transport. */
703 if (peer->param_flags & SPP_PMTUD_DISABLE) {
704 if (asoc->pathmtu)
705 peer->pathmtu = asoc->pathmtu;
706 else
707 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
710 /* If this is the first transport addr on this association,
711 * initialize the association PMTU to the peer's PMTU.
712 * If not and the current association PMTU is higher than the new
713 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
715 if (asoc->pathmtu)
716 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
717 else
718 asoc->pathmtu = peer->pathmtu;
720 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
721 "%d\n", asoc, asoc->pathmtu);
722 peer->pmtu_pending = 0;
724 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
726 /* The asoc->peer.port might not be meaningful yet, but
727 * initialize the packet structure anyway.
729 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
730 asoc->peer.port);
732 /* 7.2.1 Slow-Start
734 * o The initial cwnd before DATA transmission or after a sufficiently
735 * long idle period MUST be set to
736 * min(4*MTU, max(2*MTU, 4380 bytes))
738 * o The initial value of ssthresh MAY be arbitrarily high
739 * (for example, implementations MAY use the size of the
740 * receiver advertised window).
742 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
744 /* At this point, we may not have the receiver's advertised window,
745 * so initialize ssthresh to the default value and it will be set
746 * later when we process the INIT.
748 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
750 peer->partial_bytes_acked = 0;
751 peer->flight_size = 0;
752 peer->burst_limited = 0;
754 /* Set the transport's RTO.initial value */
755 peer->rto = asoc->rto_initial;
757 /* Set the peer's active state. */
758 peer->state = peer_state;
760 /* Attach the remote transport to our asoc. */
761 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
762 asoc->peer.transport_count++;
764 /* If we do not yet have a primary path, set one. */
765 if (!asoc->peer.primary_path) {
766 sctp_assoc_set_primary(asoc, peer);
767 asoc->peer.retran_path = peer;
770 if (asoc->peer.active_path == asoc->peer.retran_path &&
771 peer->state != SCTP_UNCONFIRMED) {
772 asoc->peer.retran_path = peer;
775 return peer;
778 /* Delete a transport address from an association. */
779 void sctp_assoc_del_peer(struct sctp_association *asoc,
780 const union sctp_addr *addr)
782 struct list_head *pos;
783 struct list_head *temp;
784 struct sctp_transport *transport;
786 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
787 transport = list_entry(pos, struct sctp_transport, transports);
788 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
789 /* Do book keeping for removing the peer and free it. */
790 sctp_assoc_rm_peer(asoc, transport);
791 break;
796 /* Lookup a transport by address. */
797 struct sctp_transport *sctp_assoc_lookup_paddr(
798 const struct sctp_association *asoc,
799 const union sctp_addr *address)
801 struct sctp_transport *t;
803 /* Cycle through all transports searching for a peer address. */
805 list_for_each_entry(t, &asoc->peer.transport_addr_list,
806 transports) {
807 if (sctp_cmp_addr_exact(address, &t->ipaddr))
808 return t;
811 return NULL;
814 /* Remove all transports except a give one */
815 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
816 struct sctp_transport *primary)
818 struct sctp_transport *temp;
819 struct sctp_transport *t;
821 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
822 transports) {
823 /* if the current transport is not the primary one, delete it */
824 if (t != primary)
825 sctp_assoc_rm_peer(asoc, t);
829 /* Engage in transport control operations.
830 * Mark the transport up or down and send a notification to the user.
831 * Select and update the new active and retran paths.
833 void sctp_assoc_control_transport(struct sctp_association *asoc,
834 struct sctp_transport *transport,
835 sctp_transport_cmd_t command,
836 sctp_sn_error_t error)
838 struct sctp_transport *t = NULL;
839 struct sctp_transport *first;
840 struct sctp_transport *second;
841 struct sctp_ulpevent *event;
842 struct sockaddr_storage addr;
843 int spc_state = 0;
845 /* Record the transition on the transport. */
846 switch (command) {
847 case SCTP_TRANSPORT_UP:
848 /* If we are moving from UNCONFIRMED state due
849 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
850 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
852 if (SCTP_UNCONFIRMED == transport->state &&
853 SCTP_HEARTBEAT_SUCCESS == error)
854 spc_state = SCTP_ADDR_CONFIRMED;
855 else
856 spc_state = SCTP_ADDR_AVAILABLE;
857 transport->state = SCTP_ACTIVE;
858 break;
860 case SCTP_TRANSPORT_DOWN:
861 /* If the transport was never confirmed, do not transition it
862 * to inactive state. Also, release the cached route since
863 * there may be a better route next time.
865 if (transport->state != SCTP_UNCONFIRMED)
866 transport->state = SCTP_INACTIVE;
867 else {
868 dst_release(transport->dst);
869 transport->dst = NULL;
872 spc_state = SCTP_ADDR_UNREACHABLE;
873 break;
875 default:
876 return;
879 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
880 * user.
882 memset(&addr, 0, sizeof(struct sockaddr_storage));
883 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
884 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
885 0, spc_state, error, GFP_ATOMIC);
886 if (event)
887 sctp_ulpq_tail_event(&asoc->ulpq, event);
889 /* Select new active and retran paths. */
891 /* Look for the two most recently used active transports.
893 * This code produces the wrong ordering whenever jiffies
894 * rolls over, but we still get usable transports, so we don't
895 * worry about it.
897 first = NULL; second = NULL;
899 list_for_each_entry(t, &asoc->peer.transport_addr_list,
900 transports) {
902 if ((t->state == SCTP_INACTIVE) ||
903 (t->state == SCTP_UNCONFIRMED))
904 continue;
905 if (!first || t->last_time_heard > first->last_time_heard) {
906 second = first;
907 first = t;
909 if (!second || t->last_time_heard > second->last_time_heard)
910 second = t;
913 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
915 * By default, an endpoint should always transmit to the
916 * primary path, unless the SCTP user explicitly specifies the
917 * destination transport address (and possibly source
918 * transport address) to use.
920 * [If the primary is active but not most recent, bump the most
921 * recently used transport.]
923 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
924 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
925 first != asoc->peer.primary_path) {
926 second = first;
927 first = asoc->peer.primary_path;
930 /* If we failed to find a usable transport, just camp on the
931 * primary, even if it is inactive.
933 if (!first) {
934 first = asoc->peer.primary_path;
935 second = asoc->peer.primary_path;
938 /* Set the active and retran transports. */
939 asoc->peer.active_path = first;
940 asoc->peer.retran_path = second;
943 /* Hold a reference to an association. */
944 void sctp_association_hold(struct sctp_association *asoc)
946 atomic_inc(&asoc->base.refcnt);
949 /* Release a reference to an association and cleanup
950 * if there are no more references.
952 void sctp_association_put(struct sctp_association *asoc)
954 if (atomic_dec_and_test(&asoc->base.refcnt))
955 sctp_association_destroy(asoc);
958 /* Allocate the next TSN, Transmission Sequence Number, for the given
959 * association.
961 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
963 /* From Section 1.6 Serial Number Arithmetic:
964 * Transmission Sequence Numbers wrap around when they reach
965 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
966 * after transmitting TSN = 2*32 - 1 is TSN = 0.
968 __u32 retval = asoc->next_tsn;
969 asoc->next_tsn++;
970 asoc->unack_data++;
972 return retval;
975 /* Compare two addresses to see if they match. Wildcard addresses
976 * only match themselves.
978 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
979 const union sctp_addr *ss2)
981 struct sctp_af *af;
983 af = sctp_get_af_specific(ss1->sa.sa_family);
984 if (unlikely(!af))
985 return 0;
987 return af->cmp_addr(ss1, ss2);
990 /* Return an ecne chunk to get prepended to a packet.
991 * Note: We are sly and return a shared, prealloced chunk. FIXME:
992 * No we don't, but we could/should.
994 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
996 struct sctp_chunk *chunk;
998 /* Send ECNE if needed.
999 * Not being able to allocate a chunk here is not deadly.
1001 if (asoc->need_ecne)
1002 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1003 else
1004 chunk = NULL;
1006 return chunk;
1010 * Find which transport this TSN was sent on.
1012 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1013 __u32 tsn)
1015 struct sctp_transport *active;
1016 struct sctp_transport *match;
1017 struct sctp_transport *transport;
1018 struct sctp_chunk *chunk;
1019 __be32 key = htonl(tsn);
1021 match = NULL;
1024 * FIXME: In general, find a more efficient data structure for
1025 * searching.
1029 * The general strategy is to search each transport's transmitted
1030 * list. Return which transport this TSN lives on.
1032 * Let's be hopeful and check the active_path first.
1033 * Another optimization would be to know if there is only one
1034 * outbound path and not have to look for the TSN at all.
1038 active = asoc->peer.active_path;
1040 list_for_each_entry(chunk, &active->transmitted,
1041 transmitted_list) {
1043 if (key == chunk->subh.data_hdr->tsn) {
1044 match = active;
1045 goto out;
1049 /* If not found, go search all the other transports. */
1050 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1051 transports) {
1053 if (transport == active)
1054 break;
1055 list_for_each_entry(chunk, &transport->transmitted,
1056 transmitted_list) {
1057 if (key == chunk->subh.data_hdr->tsn) {
1058 match = transport;
1059 goto out;
1063 out:
1064 return match;
1067 /* Is this the association we are looking for? */
1068 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1069 const union sctp_addr *laddr,
1070 const union sctp_addr *paddr)
1072 struct sctp_transport *transport;
1074 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1075 (htons(asoc->peer.port) == paddr->v4.sin_port)) {
1076 transport = sctp_assoc_lookup_paddr(asoc, paddr);
1077 if (!transport)
1078 goto out;
1080 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1081 sctp_sk(asoc->base.sk)))
1082 goto out;
1084 transport = NULL;
1086 out:
1087 return transport;
1090 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1091 static void sctp_assoc_bh_rcv(struct work_struct *work)
1093 struct sctp_association *asoc =
1094 container_of(work, struct sctp_association,
1095 base.inqueue.immediate);
1096 struct sctp_endpoint *ep;
1097 struct sctp_chunk *chunk;
1098 struct sctp_inq *inqueue;
1099 int state;
1100 sctp_subtype_t subtype;
1101 int error = 0;
1103 /* The association should be held so we should be safe. */
1104 ep = asoc->ep;
1106 inqueue = &asoc->base.inqueue;
1107 sctp_association_hold(asoc);
1108 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1109 state = asoc->state;
1110 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1112 /* SCTP-AUTH, Section 6.3:
1113 * The receiver has a list of chunk types which it expects
1114 * to be received only after an AUTH-chunk. This list has
1115 * been sent to the peer during the association setup. It
1116 * MUST silently discard these chunks if they are not placed
1117 * after an AUTH chunk in the packet.
1119 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1120 continue;
1122 /* Remember where the last DATA chunk came from so we
1123 * know where to send the SACK.
1125 if (sctp_chunk_is_data(chunk))
1126 asoc->peer.last_data_from = chunk->transport;
1127 else
1128 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
1130 if (chunk->transport)
1131 chunk->transport->last_time_heard = jiffies;
1133 /* Run through the state machine. */
1134 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1135 state, ep, asoc, chunk, GFP_ATOMIC);
1137 /* Check to see if the association is freed in response to
1138 * the incoming chunk. If so, get out of the while loop.
1140 if (asoc->base.dead)
1141 break;
1143 /* If there is an error on chunk, discard this packet. */
1144 if (error && chunk)
1145 chunk->pdiscard = 1;
1147 sctp_association_put(asoc);
1150 /* This routine moves an association from its old sk to a new sk. */
1151 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1153 struct sctp_sock *newsp = sctp_sk(newsk);
1154 struct sock *oldsk = assoc->base.sk;
1156 /* Delete the association from the old endpoint's list of
1157 * associations.
1159 list_del_init(&assoc->asocs);
1161 /* Decrement the backlog value for a TCP-style socket. */
1162 if (sctp_style(oldsk, TCP))
1163 oldsk->sk_ack_backlog--;
1165 /* Release references to the old endpoint and the sock. */
1166 sctp_endpoint_put(assoc->ep);
1167 sock_put(assoc->base.sk);
1169 /* Get a reference to the new endpoint. */
1170 assoc->ep = newsp->ep;
1171 sctp_endpoint_hold(assoc->ep);
1173 /* Get a reference to the new sock. */
1174 assoc->base.sk = newsk;
1175 sock_hold(assoc->base.sk);
1177 /* Add the association to the new endpoint's list of associations. */
1178 sctp_endpoint_add_asoc(newsp->ep, assoc);
1181 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1182 void sctp_assoc_update(struct sctp_association *asoc,
1183 struct sctp_association *new)
1185 struct sctp_transport *trans;
1186 struct list_head *pos, *temp;
1188 /* Copy in new parameters of peer. */
1189 asoc->c = new->c;
1190 asoc->peer.rwnd = new->peer.rwnd;
1191 asoc->peer.sack_needed = new->peer.sack_needed;
1192 asoc->peer.i = new->peer.i;
1193 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1194 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1196 /* Remove any peer addresses not present in the new association. */
1197 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1198 trans = list_entry(pos, struct sctp_transport, transports);
1199 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1200 sctp_assoc_rm_peer(asoc, trans);
1201 continue;
1204 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1205 sctp_transport_reset(trans);
1208 /* If the case is A (association restart), use
1209 * initial_tsn as next_tsn. If the case is B, use
1210 * current next_tsn in case data sent to peer
1211 * has been discarded and needs retransmission.
1213 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1214 asoc->next_tsn = new->next_tsn;
1215 asoc->ctsn_ack_point = new->ctsn_ack_point;
1216 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1218 /* Reinitialize SSN for both local streams
1219 * and peer's streams.
1221 sctp_ssnmap_clear(asoc->ssnmap);
1223 /* Flush the ULP reassembly and ordered queue.
1224 * Any data there will now be stale and will
1225 * cause problems.
1227 sctp_ulpq_flush(&asoc->ulpq);
1229 /* reset the overall association error count so
1230 * that the restarted association doesn't get torn
1231 * down on the next retransmission timer.
1233 asoc->overall_error_count = 0;
1235 } else {
1236 /* Add any peer addresses from the new association. */
1237 list_for_each_entry(trans, &new->peer.transport_addr_list,
1238 transports) {
1239 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1240 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1241 GFP_ATOMIC, trans->state);
1244 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1245 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1246 if (!asoc->ssnmap) {
1247 /* Move the ssnmap. */
1248 asoc->ssnmap = new->ssnmap;
1249 new->ssnmap = NULL;
1252 if (!asoc->assoc_id) {
1253 /* get a new association id since we don't have one
1254 * yet.
1256 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1260 /* SCTP-AUTH: Save the peer parameters from the new assocaitions
1261 * and also move the association shared keys over
1263 kfree(asoc->peer.peer_random);
1264 asoc->peer.peer_random = new->peer.peer_random;
1265 new->peer.peer_random = NULL;
1267 kfree(asoc->peer.peer_chunks);
1268 asoc->peer.peer_chunks = new->peer.peer_chunks;
1269 new->peer.peer_chunks = NULL;
1271 kfree(asoc->peer.peer_hmacs);
1272 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1273 new->peer.peer_hmacs = NULL;
1275 sctp_auth_key_put(asoc->asoc_shared_key);
1276 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1279 /* Update the retran path for sending a retransmitted packet.
1280 * Round-robin through the active transports, else round-robin
1281 * through the inactive transports as this is the next best thing
1282 * we can try.
1284 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1286 struct sctp_transport *t, *next;
1287 struct list_head *head = &asoc->peer.transport_addr_list;
1288 struct list_head *pos;
1290 if (asoc->peer.transport_count == 1)
1291 return;
1293 /* Find the next transport in a round-robin fashion. */
1294 t = asoc->peer.retran_path;
1295 pos = &t->transports;
1296 next = NULL;
1298 while (1) {
1299 /* Skip the head. */
1300 if (pos->next == head)
1301 pos = head->next;
1302 else
1303 pos = pos->next;
1305 t = list_entry(pos, struct sctp_transport, transports);
1307 /* We have exhausted the list, but didn't find any
1308 * other active transports. If so, use the next
1309 * transport.
1311 if (t == asoc->peer.retran_path) {
1312 t = next;
1313 break;
1316 /* Try to find an active transport. */
1318 if ((t->state == SCTP_ACTIVE) ||
1319 (t->state == SCTP_UNKNOWN)) {
1320 break;
1321 } else {
1322 /* Keep track of the next transport in case
1323 * we don't find any active transport.
1325 if (t->state != SCTP_UNCONFIRMED && !next)
1326 next = t;
1330 if (t)
1331 asoc->peer.retran_path = t;
1332 else
1333 t = asoc->peer.retran_path;
1335 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1336 " %p addr: ",
1337 " port: %d\n",
1338 asoc,
1339 (&t->ipaddr),
1340 ntohs(t->ipaddr.v4.sin_port));
1343 /* Choose the transport for sending retransmit packet. */
1344 struct sctp_transport *sctp_assoc_choose_alter_transport(
1345 struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1347 /* If this is the first time packet is sent, use the active path,
1348 * else use the retran path. If the last packet was sent over the
1349 * retran path, update the retran path and use it.
1351 if (!last_sent_to)
1352 return asoc->peer.active_path;
1353 else {
1354 if (last_sent_to == asoc->peer.retran_path)
1355 sctp_assoc_update_retran_path(asoc);
1356 return asoc->peer.retran_path;
1360 /* Update the association's pmtu and frag_point by going through all the
1361 * transports. This routine is called when a transport's PMTU has changed.
1363 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1365 struct sctp_transport *t;
1366 __u32 pmtu = 0;
1368 if (!asoc)
1369 return;
1371 /* Get the lowest pmtu of all the transports. */
1372 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1373 transports) {
1374 if (t->pmtu_pending && t->dst) {
1375 sctp_transport_update_pmtu(t, dst_mtu(t->dst));
1376 t->pmtu_pending = 0;
1378 if (!pmtu || (t->pathmtu < pmtu))
1379 pmtu = t->pathmtu;
1382 if (pmtu) {
1383 asoc->pathmtu = pmtu;
1384 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1387 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1388 __func__, asoc, asoc->pathmtu, asoc->frag_point);
1391 /* Should we send a SACK to update our peer? */
1392 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1394 switch (asoc->state) {
1395 case SCTP_STATE_ESTABLISHED:
1396 case SCTP_STATE_SHUTDOWN_PENDING:
1397 case SCTP_STATE_SHUTDOWN_RECEIVED:
1398 case SCTP_STATE_SHUTDOWN_SENT:
1399 if ((asoc->rwnd > asoc->a_rwnd) &&
1400 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1401 (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift),
1402 asoc->pathmtu)))
1403 return 1;
1404 break;
1405 default:
1406 break;
1408 return 0;
1411 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1412 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1414 struct sctp_chunk *sack;
1415 struct timer_list *timer;
1417 if (asoc->rwnd_over) {
1418 if (asoc->rwnd_over >= len) {
1419 asoc->rwnd_over -= len;
1420 } else {
1421 asoc->rwnd += (len - asoc->rwnd_over);
1422 asoc->rwnd_over = 0;
1424 } else {
1425 asoc->rwnd += len;
1428 /* If we had window pressure, start recovering it
1429 * once our rwnd had reached the accumulated pressure
1430 * threshold. The idea is to recover slowly, but up
1431 * to the initial advertised window.
1433 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1434 int change = min(asoc->pathmtu, asoc->rwnd_press);
1435 asoc->rwnd += change;
1436 asoc->rwnd_press -= change;
1439 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1440 "- %u\n", __func__, asoc, len, asoc->rwnd,
1441 asoc->rwnd_over, asoc->a_rwnd);
1443 /* Send a window update SACK if the rwnd has increased by at least the
1444 * minimum of the association's PMTU and half of the receive buffer.
1445 * The algorithm used is similar to the one described in
1446 * Section 4.2.3.3 of RFC 1122.
1448 if (sctp_peer_needs_update(asoc)) {
1449 asoc->a_rwnd = asoc->rwnd;
1450 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1451 "rwnd: %u a_rwnd: %u\n", __func__,
1452 asoc, asoc->rwnd, asoc->a_rwnd);
1453 sack = sctp_make_sack(asoc);
1454 if (!sack)
1455 return;
1457 asoc->peer.sack_needed = 0;
1459 sctp_outq_tail(&asoc->outqueue, sack);
1461 /* Stop the SACK timer. */
1462 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1463 if (timer_pending(timer) && del_timer(timer))
1464 sctp_association_put(asoc);
1468 /* Decrease asoc's rwnd by len. */
1469 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1471 int rx_count;
1472 int over = 0;
1474 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1475 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1477 if (asoc->ep->rcvbuf_policy)
1478 rx_count = atomic_read(&asoc->rmem_alloc);
1479 else
1480 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1482 /* If we've reached or overflowed our receive buffer, announce
1483 * a 0 rwnd if rwnd would still be positive. Store the
1484 * the pottential pressure overflow so that the window can be restored
1485 * back to original value.
1487 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1488 over = 1;
1490 if (asoc->rwnd >= len) {
1491 asoc->rwnd -= len;
1492 if (over) {
1493 asoc->rwnd_press += asoc->rwnd;
1494 asoc->rwnd = 0;
1496 } else {
1497 asoc->rwnd_over = len - asoc->rwnd;
1498 asoc->rwnd = 0;
1500 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1501 __func__, asoc, len, asoc->rwnd,
1502 asoc->rwnd_over, asoc->rwnd_press);
1505 /* Build the bind address list for the association based on info from the
1506 * local endpoint and the remote peer.
1508 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1509 sctp_scope_t scope, gfp_t gfp)
1511 int flags;
1513 /* Use scoping rules to determine the subset of addresses from
1514 * the endpoint.
1516 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1517 if (asoc->peer.ipv4_address)
1518 flags |= SCTP_ADDR4_PEERSUPP;
1519 if (asoc->peer.ipv6_address)
1520 flags |= SCTP_ADDR6_PEERSUPP;
1522 return sctp_bind_addr_copy(&asoc->base.bind_addr,
1523 &asoc->ep->base.bind_addr,
1524 scope, gfp, flags);
1527 /* Build the association's bind address list from the cookie. */
1528 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1529 struct sctp_cookie *cookie,
1530 gfp_t gfp)
1532 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1533 int var_size3 = cookie->raw_addr_list_len;
1534 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1536 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1537 asoc->ep->base.bind_addr.port, gfp);
1540 /* Lookup laddr in the bind address list of an association. */
1541 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1542 const union sctp_addr *laddr)
1544 int found = 0;
1546 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1547 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1548 sctp_sk(asoc->base.sk)))
1549 found = 1;
1551 return found;
1554 /* Set an association id for a given association */
1555 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1557 int assoc_id;
1558 int error = 0;
1560 /* If the id is already assigned, keep it. */
1561 if (asoc->assoc_id)
1562 return error;
1563 retry:
1564 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1565 return -ENOMEM;
1567 spin_lock_bh(&sctp_assocs_id_lock);
1568 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1569 idr_low, &assoc_id);
1570 if (!error) {
1571 idr_low = assoc_id + 1;
1572 if (idr_low == INT_MAX)
1573 idr_low = 1;
1575 spin_unlock_bh(&sctp_assocs_id_lock);
1576 if (error == -EAGAIN)
1577 goto retry;
1578 else if (error)
1579 return error;
1581 asoc->assoc_id = (sctp_assoc_t) assoc_id;
1582 return error;
1585 /* Free the ASCONF queue */
1586 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1588 struct sctp_chunk *asconf;
1589 struct sctp_chunk *tmp;
1591 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1592 list_del_init(&asconf->list);
1593 sctp_chunk_free(asconf);
1597 /* Free asconf_ack cache */
1598 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1600 struct sctp_chunk *ack;
1601 struct sctp_chunk *tmp;
1603 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1604 transmitted_list) {
1605 list_del_init(&ack->transmitted_list);
1606 sctp_chunk_free(ack);
1610 /* Clean up the ASCONF_ACK queue */
1611 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1613 struct sctp_chunk *ack;
1614 struct sctp_chunk *tmp;
1616 /* We can remove all the entries from the queue up to
1617 * the "Peer-Sequence-Number".
1619 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1620 transmitted_list) {
1621 if (ack->subh.addip_hdr->serial ==
1622 htonl(asoc->peer.addip_serial))
1623 break;
1625 list_del_init(&ack->transmitted_list);
1626 sctp_chunk_free(ack);
1630 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1631 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1632 const struct sctp_association *asoc,
1633 __be32 serial)
1635 struct sctp_chunk *ack;
1637 /* Walk through the list of cached ASCONF-ACKs and find the
1638 * ack chunk whose serial number matches that of the request.
1640 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1641 if (ack->subh.addip_hdr->serial == serial) {
1642 sctp_chunk_hold(ack);
1643 return ack;
1647 return NULL;