1 // SPDX-License-Identifier: GPL-2.0-only
3 * mm/percpu-vm.c - vmalloc area based chunk allocation
5 * Copyright (C) 2010 SUSE Linux Products GmbH
6 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
8 * Chunks are mapped into vmalloc areas and populated page by page.
9 * This is the default chunk allocator.
12 static struct page
*pcpu_chunk_page(struct pcpu_chunk
*chunk
,
13 unsigned int cpu
, int page_idx
)
15 /* must not be used on pre-mapped chunk */
16 WARN_ON(chunk
->immutable
);
18 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk
, cpu
, page_idx
));
22 * pcpu_get_pages - get temp pages array
24 * Returns pointer to array of pointers to struct page which can be indexed
25 * with pcpu_page_idx(). Note that there is only one array and accesses
26 * should be serialized by pcpu_alloc_mutex.
29 * Pointer to temp pages array on success.
31 static struct page
**pcpu_get_pages(void)
33 static struct page
**pages
;
34 size_t pages_size
= pcpu_nr_units
* pcpu_unit_pages
* sizeof(pages
[0]);
36 lockdep_assert_held(&pcpu_alloc_mutex
);
39 pages
= pcpu_mem_zalloc(pages_size
, GFP_KERNEL
);
44 * pcpu_free_pages - free pages which were allocated for @chunk
45 * @chunk: chunk pages were allocated for
46 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
47 * @page_start: page index of the first page to be freed
48 * @page_end: page index of the last page to be freed + 1
50 * Free pages [@page_start and @page_end) in @pages for all units.
51 * The pages were allocated for @chunk.
53 static void pcpu_free_pages(struct pcpu_chunk
*chunk
,
54 struct page
**pages
, int page_start
, int page_end
)
59 for_each_possible_cpu(cpu
) {
60 for (i
= page_start
; i
< page_end
; i
++) {
61 struct page
*page
= pages
[pcpu_page_idx(cpu
, i
)];
70 * pcpu_alloc_pages - allocates pages for @chunk
71 * @chunk: target chunk
72 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
73 * @page_start: page index of the first page to be allocated
74 * @page_end: page index of the last page to be allocated + 1
75 * @gfp: allocation flags passed to the underlying allocator
77 * Allocate pages [@page_start,@page_end) into @pages for all units.
78 * The allocation is for @chunk. Percpu core doesn't care about the
79 * content of @pages and will pass it verbatim to pcpu_map_pages().
81 static int pcpu_alloc_pages(struct pcpu_chunk
*chunk
,
82 struct page
**pages
, int page_start
, int page_end
,
85 unsigned int cpu
, tcpu
;
90 for_each_possible_cpu(cpu
) {
91 for (i
= page_start
; i
< page_end
; i
++) {
92 struct page
**pagep
= &pages
[pcpu_page_idx(cpu
, i
)];
94 *pagep
= alloc_pages_node(cpu_to_node(cpu
), gfp
, 0);
102 while (--i
>= page_start
)
103 __free_page(pages
[pcpu_page_idx(cpu
, i
)]);
105 for_each_possible_cpu(tcpu
) {
108 for (i
= page_start
; i
< page_end
; i
++)
109 __free_page(pages
[pcpu_page_idx(tcpu
, i
)]);
115 * pcpu_pre_unmap_flush - flush cache prior to unmapping
116 * @chunk: chunk the regions to be flushed belongs to
117 * @page_start: page index of the first page to be flushed
118 * @page_end: page index of the last page to be flushed + 1
120 * Pages in [@page_start,@page_end) of @chunk are about to be
121 * unmapped. Flush cache. As each flushing trial can be very
122 * expensive, issue flush on the whole region at once rather than
123 * doing it for each cpu. This could be an overkill but is more
126 static void pcpu_pre_unmap_flush(struct pcpu_chunk
*chunk
,
127 int page_start
, int page_end
)
130 pcpu_chunk_addr(chunk
, pcpu_low_unit_cpu
, page_start
),
131 pcpu_chunk_addr(chunk
, pcpu_high_unit_cpu
, page_end
));
134 static void __pcpu_unmap_pages(unsigned long addr
, int nr_pages
)
136 unmap_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
);
140 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
141 * @chunk: chunk of interest
142 * @pages: pages array which can be used to pass information to free
143 * @page_start: page index of the first page to unmap
144 * @page_end: page index of the last page to unmap + 1
146 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
147 * Corresponding elements in @pages were cleared by the caller and can
148 * be used to carry information to pcpu_free_pages() which will be
149 * called after all unmaps are finished. The caller should call
150 * proper pre/post flush functions.
152 static void pcpu_unmap_pages(struct pcpu_chunk
*chunk
,
153 struct page
**pages
, int page_start
, int page_end
)
158 for_each_possible_cpu(cpu
) {
159 for (i
= page_start
; i
< page_end
; i
++) {
162 page
= pcpu_chunk_page(chunk
, cpu
, i
);
164 pages
[pcpu_page_idx(cpu
, i
)] = page
;
166 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
167 page_end
- page_start
);
172 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
173 * @chunk: pcpu_chunk the regions to be flushed belong to
174 * @page_start: page index of the first page to be flushed
175 * @page_end: page index of the last page to be flushed + 1
177 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
178 * TLB for the regions. This can be skipped if the area is to be
179 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
181 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
182 * for the whole region.
184 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk
*chunk
,
185 int page_start
, int page_end
)
187 flush_tlb_kernel_range(
188 pcpu_chunk_addr(chunk
, pcpu_low_unit_cpu
, page_start
),
189 pcpu_chunk_addr(chunk
, pcpu_high_unit_cpu
, page_end
));
192 static int __pcpu_map_pages(unsigned long addr
, struct page
**pages
,
195 return map_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
,
200 * pcpu_map_pages - map pages into a pcpu_chunk
201 * @chunk: chunk of interest
202 * @pages: pages array containing pages to be mapped
203 * @page_start: page index of the first page to map
204 * @page_end: page index of the last page to map + 1
206 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
207 * caller is responsible for calling pcpu_post_map_flush() after all
208 * mappings are complete.
210 * This function is responsible for setting up whatever is necessary for
211 * reverse lookup (addr -> chunk).
213 static int pcpu_map_pages(struct pcpu_chunk
*chunk
,
214 struct page
**pages
, int page_start
, int page_end
)
216 unsigned int cpu
, tcpu
;
219 for_each_possible_cpu(cpu
) {
220 err
= __pcpu_map_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
221 &pages
[pcpu_page_idx(cpu
, page_start
)],
222 page_end
- page_start
);
226 for (i
= page_start
; i
< page_end
; i
++)
227 pcpu_set_page_chunk(pages
[pcpu_page_idx(cpu
, i
)],
232 for_each_possible_cpu(tcpu
) {
235 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, tcpu
, page_start
),
236 page_end
- page_start
);
238 pcpu_post_unmap_tlb_flush(chunk
, page_start
, page_end
);
243 * pcpu_post_map_flush - flush cache after mapping
244 * @chunk: pcpu_chunk the regions to be flushed belong to
245 * @page_start: page index of the first page to be flushed
246 * @page_end: page index of the last page to be flushed + 1
248 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
251 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
252 * for the whole region.
254 static void pcpu_post_map_flush(struct pcpu_chunk
*chunk
,
255 int page_start
, int page_end
)
258 pcpu_chunk_addr(chunk
, pcpu_low_unit_cpu
, page_start
),
259 pcpu_chunk_addr(chunk
, pcpu_high_unit_cpu
, page_end
));
263 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
264 * @chunk: chunk of interest
265 * @page_start: the start page
266 * @page_end: the end page
267 * @gfp: allocation flags passed to the underlying memory allocator
269 * For each cpu, populate and map pages [@page_start,@page_end) into
273 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
275 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
,
276 int page_start
, int page_end
, gfp_t gfp
)
280 pages
= pcpu_get_pages();
284 if (pcpu_alloc_pages(chunk
, pages
, page_start
, page_end
, gfp
))
287 if (pcpu_map_pages(chunk
, pages
, page_start
, page_end
)) {
288 pcpu_free_pages(chunk
, pages
, page_start
, page_end
);
291 pcpu_post_map_flush(chunk
, page_start
, page_end
);
297 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
298 * @chunk: chunk to depopulate
299 * @page_start: the start page
300 * @page_end: the end page
302 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
308 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
,
309 int page_start
, int page_end
)
314 * If control reaches here, there must have been at least one
315 * successful population attempt so the temp pages array must
318 pages
= pcpu_get_pages();
322 pcpu_pre_unmap_flush(chunk
, page_start
, page_end
);
324 pcpu_unmap_pages(chunk
, pages
, page_start
, page_end
);
326 /* no need to flush tlb, vmalloc will handle it lazily */
328 pcpu_free_pages(chunk
, pages
, page_start
, page_end
);
331 static struct pcpu_chunk
*pcpu_create_chunk(gfp_t gfp
)
333 struct pcpu_chunk
*chunk
;
334 struct vm_struct
**vms
;
336 chunk
= pcpu_alloc_chunk(gfp
);
340 vms
= pcpu_get_vm_areas(pcpu_group_offsets
, pcpu_group_sizes
,
341 pcpu_nr_groups
, pcpu_atom_size
);
343 pcpu_free_chunk(chunk
);
348 chunk
->base_addr
= vms
[0]->addr
- pcpu_group_offsets
[0];
350 pcpu_stats_chunk_alloc();
351 trace_percpu_create_chunk(chunk
->base_addr
);
356 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
)
361 pcpu_stats_chunk_dealloc();
362 trace_percpu_destroy_chunk(chunk
->base_addr
);
365 pcpu_free_vm_areas(chunk
->data
, pcpu_nr_groups
);
366 pcpu_free_chunk(chunk
);
369 static struct page
*pcpu_addr_to_page(void *addr
)
371 return vmalloc_to_page(addr
);
374 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
)
376 /* no extra restriction */