2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
27 * For _first_ page only:
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
48 #include <linux/module.h>
49 #include <linux/kernel.h>
50 #include <linux/sched.h>
51 #include <linux/bitops.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
58 #include <linux/cpumask.h>
59 #include <linux/cpu.h>
60 #include <linux/vmalloc.h>
61 #include <linux/hardirq.h>
62 #include <linux/spinlock.h>
63 #include <linux/types.h>
64 #include <linux/debugfs.h>
65 #include <linux/zsmalloc.h>
66 #include <linux/zpool.h>
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * as single (unsigned long) handle value.
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
93 * This is made more complicated by various memory models and PAE.
96 #ifndef MAX_PHYSMEM_BITS
97 #ifdef CONFIG_HIGHMEM64G
98 #define MAX_PHYSMEM_BITS 36
99 #else /* !CONFIG_HIGHMEM64G */
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
104 #define MAX_PHYSMEM_BITS BITS_PER_LONG
107 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
116 #define HANDLE_PIN_BIT 0
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
125 #define OBJ_ALLOCATED_TAG 1
126 #define OBJ_TAG_BITS 1
127 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
138 * On systems with 4K page size, this gives 255 size classes! There is a
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
150 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
153 * We do not maintain any list for completely empty or full pages
155 enum fullness_group
{
158 _ZS_NR_FULLNESS_GROUPS
,
172 struct zs_size_stat
{
173 unsigned long objs
[NR_ZS_STAT_TYPE
];
176 #ifdef CONFIG_ZSMALLOC_STAT
177 static struct dentry
*zs_stat_root
;
181 * number of size_classes
183 static int zs_size_classes
;
186 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
188 * n = number of allocated objects
189 * N = total number of objects zspage can store
190 * f = fullness_threshold_frac
192 * Similarly, we assign zspage to:
193 * ZS_ALMOST_FULL when n > N / f
194 * ZS_EMPTY when n == 0
195 * ZS_FULL when n == N
197 * (see: fix_fullness_group())
199 static const int fullness_threshold_frac
= 4;
203 struct page
*fullness_list
[_ZS_NR_FULLNESS_GROUPS
];
205 * Size of objects stored in this class. Must be multiple
211 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
212 int pages_per_zspage
;
213 struct zs_size_stat stats
;
215 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
220 * Placed within free objects to form a singly linked list.
221 * For every zspage, first_page->freelist gives head of this list.
223 * This must be power of 2 and less than or equal to ZS_ALIGN
228 * Position of next free chunk (encodes <PFN, obj_idx>)
229 * It's valid for non-allocated object
233 * Handle of allocated object.
235 unsigned long handle
;
242 struct size_class
**size_class
;
243 struct kmem_cache
*handle_cachep
;
245 gfp_t flags
; /* allocation flags used when growing pool */
246 atomic_long_t pages_allocated
;
248 struct zs_pool_stats stats
;
250 /* Compact classes */
251 struct shrinker shrinker
;
253 * To signify that register_shrinker() was successful
254 * and unregister_shrinker() will not Oops.
256 bool shrinker_enabled
;
257 #ifdef CONFIG_ZSMALLOC_STAT
258 struct dentry
*stat_dentry
;
263 * A zspage's class index and fullness group
264 * are encoded in its (first)page->mapping
266 #define CLASS_IDX_BITS 28
267 #define FULLNESS_BITS 4
268 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
269 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
271 struct mapping_area
{
272 #ifdef CONFIG_PGTABLE_MAPPING
273 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
275 char *vm_buf
; /* copy buffer for objects that span pages */
277 char *vm_addr
; /* address of kmap_atomic()'ed pages */
278 enum zs_mapmode vm_mm
; /* mapping mode */
282 static int create_handle_cache(struct zs_pool
*pool
)
284 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
286 return pool
->handle_cachep
? 0 : 1;
289 static void destroy_handle_cache(struct zs_pool
*pool
)
291 kmem_cache_destroy(pool
->handle_cachep
);
294 static unsigned long alloc_handle(struct zs_pool
*pool
)
296 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
297 pool
->flags
& ~__GFP_HIGHMEM
);
300 static void free_handle(struct zs_pool
*pool
, unsigned long handle
)
302 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
305 static void record_obj(unsigned long handle
, unsigned long obj
)
307 *(unsigned long *)handle
= obj
;
314 static void *zs_zpool_create(char *name
, gfp_t gfp
,
315 const struct zpool_ops
*zpool_ops
,
318 return zs_create_pool(name
, gfp
);
321 static void zs_zpool_destroy(void *pool
)
323 zs_destroy_pool(pool
);
326 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
327 unsigned long *handle
)
329 *handle
= zs_malloc(pool
, size
);
330 return *handle
? 0 : -1;
332 static void zs_zpool_free(void *pool
, unsigned long handle
)
334 zs_free(pool
, handle
);
337 static int zs_zpool_shrink(void *pool
, unsigned int pages
,
338 unsigned int *reclaimed
)
343 static void *zs_zpool_map(void *pool
, unsigned long handle
,
344 enum zpool_mapmode mm
)
346 enum zs_mapmode zs_mm
;
355 case ZPOOL_MM_RW
: /* fallthru */
361 return zs_map_object(pool
, handle
, zs_mm
);
363 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
365 zs_unmap_object(pool
, handle
);
368 static u64
zs_zpool_total_size(void *pool
)
370 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
373 static struct zpool_driver zs_zpool_driver
= {
375 .owner
= THIS_MODULE
,
376 .create
= zs_zpool_create
,
377 .destroy
= zs_zpool_destroy
,
378 .malloc
= zs_zpool_malloc
,
379 .free
= zs_zpool_free
,
380 .shrink
= zs_zpool_shrink
,
382 .unmap
= zs_zpool_unmap
,
383 .total_size
= zs_zpool_total_size
,
386 MODULE_ALIAS("zpool-zsmalloc");
387 #endif /* CONFIG_ZPOOL */
389 static unsigned int get_maxobj_per_zspage(int size
, int pages_per_zspage
)
391 return pages_per_zspage
* PAGE_SIZE
/ size
;
394 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
395 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
397 static int is_first_page(struct page
*page
)
399 return PagePrivate(page
);
402 static int is_last_page(struct page
*page
)
404 return PagePrivate2(page
);
407 static void get_zspage_mapping(struct page
*page
, unsigned int *class_idx
,
408 enum fullness_group
*fullness
)
411 BUG_ON(!is_first_page(page
));
413 m
= (unsigned long)page
->mapping
;
414 *fullness
= m
& FULLNESS_MASK
;
415 *class_idx
= (m
>> FULLNESS_BITS
) & CLASS_IDX_MASK
;
418 static void set_zspage_mapping(struct page
*page
, unsigned int class_idx
,
419 enum fullness_group fullness
)
422 BUG_ON(!is_first_page(page
));
424 m
= ((class_idx
& CLASS_IDX_MASK
) << FULLNESS_BITS
) |
425 (fullness
& FULLNESS_MASK
);
426 page
->mapping
= (struct address_space
*)m
;
430 * zsmalloc divides the pool into various size classes where each
431 * class maintains a list of zspages where each zspage is divided
432 * into equal sized chunks. Each allocation falls into one of these
433 * classes depending on its size. This function returns index of the
434 * size class which has chunk size big enough to hold the give size.
436 static int get_size_class_index(int size
)
440 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
441 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
442 ZS_SIZE_CLASS_DELTA
);
444 return min(zs_size_classes
- 1, idx
);
447 static inline void zs_stat_inc(struct size_class
*class,
448 enum zs_stat_type type
, unsigned long cnt
)
450 class->stats
.objs
[type
] += cnt
;
453 static inline void zs_stat_dec(struct size_class
*class,
454 enum zs_stat_type type
, unsigned long cnt
)
456 class->stats
.objs
[type
] -= cnt
;
459 static inline unsigned long zs_stat_get(struct size_class
*class,
460 enum zs_stat_type type
)
462 return class->stats
.objs
[type
];
465 #ifdef CONFIG_ZSMALLOC_STAT
467 static int __init
zs_stat_init(void)
469 if (!debugfs_initialized())
472 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
479 static void __exit
zs_stat_exit(void)
481 debugfs_remove_recursive(zs_stat_root
);
484 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
487 struct zs_pool
*pool
= s
->private;
488 struct size_class
*class;
490 unsigned long class_almost_full
, class_almost_empty
;
491 unsigned long obj_allocated
, obj_used
, pages_used
;
492 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
493 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
495 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
496 "class", "size", "almost_full", "almost_empty",
497 "obj_allocated", "obj_used", "pages_used",
500 for (i
= 0; i
< zs_size_classes
; i
++) {
501 class = pool
->size_class
[i
];
503 if (class->index
!= i
)
506 spin_lock(&class->lock
);
507 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
508 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
509 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
510 obj_used
= zs_stat_get(class, OBJ_USED
);
511 spin_unlock(&class->lock
);
513 objs_per_zspage
= get_maxobj_per_zspage(class->size
,
514 class->pages_per_zspage
);
515 pages_used
= obj_allocated
/ objs_per_zspage
*
516 class->pages_per_zspage
;
518 seq_printf(s
, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
519 i
, class->size
, class_almost_full
, class_almost_empty
,
520 obj_allocated
, obj_used
, pages_used
,
521 class->pages_per_zspage
);
523 total_class_almost_full
+= class_almost_full
;
524 total_class_almost_empty
+= class_almost_empty
;
525 total_objs
+= obj_allocated
;
526 total_used_objs
+= obj_used
;
527 total_pages
+= pages_used
;
531 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
532 "Total", "", total_class_almost_full
,
533 total_class_almost_empty
, total_objs
,
534 total_used_objs
, total_pages
);
539 static int zs_stats_size_open(struct inode
*inode
, struct file
*file
)
541 return single_open(file
, zs_stats_size_show
, inode
->i_private
);
544 static const struct file_operations zs_stat_size_ops
= {
545 .open
= zs_stats_size_open
,
548 .release
= single_release
,
551 static int zs_pool_stat_create(char *name
, struct zs_pool
*pool
)
553 struct dentry
*entry
;
558 entry
= debugfs_create_dir(name
, zs_stat_root
);
560 pr_warn("debugfs dir <%s> creation failed\n", name
);
563 pool
->stat_dentry
= entry
;
565 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
566 pool
->stat_dentry
, pool
, &zs_stat_size_ops
);
568 pr_warn("%s: debugfs file entry <%s> creation failed\n",
576 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
578 debugfs_remove_recursive(pool
->stat_dentry
);
581 #else /* CONFIG_ZSMALLOC_STAT */
582 static int __init
zs_stat_init(void)
587 static void __exit
zs_stat_exit(void)
591 static inline int zs_pool_stat_create(char *name
, struct zs_pool
*pool
)
596 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
603 * For each size class, zspages are divided into different groups
604 * depending on how "full" they are. This was done so that we could
605 * easily find empty or nearly empty zspages when we try to shrink
606 * the pool (not yet implemented). This function returns fullness
607 * status of the given page.
609 static enum fullness_group
get_fullness_group(struct page
*page
)
611 int inuse
, max_objects
;
612 enum fullness_group fg
;
613 BUG_ON(!is_first_page(page
));
616 max_objects
= page
->objects
;
620 else if (inuse
== max_objects
)
622 else if (inuse
<= 3 * max_objects
/ fullness_threshold_frac
)
623 fg
= ZS_ALMOST_EMPTY
;
631 * Each size class maintains various freelists and zspages are assigned
632 * to one of these freelists based on the number of live objects they
633 * have. This functions inserts the given zspage into the freelist
634 * identified by <class, fullness_group>.
636 static void insert_zspage(struct page
*page
, struct size_class
*class,
637 enum fullness_group fullness
)
641 BUG_ON(!is_first_page(page
));
643 if (fullness
>= _ZS_NR_FULLNESS_GROUPS
)
646 zs_stat_inc(class, fullness
== ZS_ALMOST_EMPTY
?
647 CLASS_ALMOST_EMPTY
: CLASS_ALMOST_FULL
, 1);
649 head
= &class->fullness_list
[fullness
];
656 * We want to see more ZS_FULL pages and less almost
657 * empty/full. Put pages with higher ->inuse first.
659 list_add_tail(&page
->lru
, &(*head
)->lru
);
660 if (page
->inuse
>= (*head
)->inuse
)
665 * This function removes the given zspage from the freelist identified
666 * by <class, fullness_group>.
668 static void remove_zspage(struct page
*page
, struct size_class
*class,
669 enum fullness_group fullness
)
673 BUG_ON(!is_first_page(page
));
675 if (fullness
>= _ZS_NR_FULLNESS_GROUPS
)
678 head
= &class->fullness_list
[fullness
];
680 if (list_empty(&(*head
)->lru
))
682 else if (*head
== page
)
683 *head
= (struct page
*)list_entry((*head
)->lru
.next
,
686 list_del_init(&page
->lru
);
687 zs_stat_dec(class, fullness
== ZS_ALMOST_EMPTY
?
688 CLASS_ALMOST_EMPTY
: CLASS_ALMOST_FULL
, 1);
692 * Each size class maintains zspages in different fullness groups depending
693 * on the number of live objects they contain. When allocating or freeing
694 * objects, the fullness status of the page can change, say, from ALMOST_FULL
695 * to ALMOST_EMPTY when freeing an object. This function checks if such
696 * a status change has occurred for the given page and accordingly moves the
697 * page from the freelist of the old fullness group to that of the new
700 static enum fullness_group
fix_fullness_group(struct size_class
*class,
704 enum fullness_group currfg
, newfg
;
706 BUG_ON(!is_first_page(page
));
708 get_zspage_mapping(page
, &class_idx
, &currfg
);
709 newfg
= get_fullness_group(page
);
713 remove_zspage(page
, class, currfg
);
714 insert_zspage(page
, class, newfg
);
715 set_zspage_mapping(page
, class_idx
, newfg
);
722 * We have to decide on how many pages to link together
723 * to form a zspage for each size class. This is important
724 * to reduce wastage due to unusable space left at end of
725 * each zspage which is given as:
726 * wastage = Zp % class_size
727 * usage = Zp - wastage
728 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
730 * For example, for size class of 3/8 * PAGE_SIZE, we should
731 * link together 3 PAGE_SIZE sized pages to form a zspage
732 * since then we can perfectly fit in 8 such objects.
734 static int get_pages_per_zspage(int class_size
)
736 int i
, max_usedpc
= 0;
737 /* zspage order which gives maximum used size per KB */
738 int max_usedpc_order
= 1;
740 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
744 zspage_size
= i
* PAGE_SIZE
;
745 waste
= zspage_size
% class_size
;
746 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
748 if (usedpc
> max_usedpc
) {
750 max_usedpc_order
= i
;
754 return max_usedpc_order
;
758 * A single 'zspage' is composed of many system pages which are
759 * linked together using fields in struct page. This function finds
760 * the first/head page, given any component page of a zspage.
762 static struct page
*get_first_page(struct page
*page
)
764 if (is_first_page(page
))
767 return page
->first_page
;
770 static struct page
*get_next_page(struct page
*page
)
774 if (is_last_page(page
))
776 else if (is_first_page(page
))
777 next
= (struct page
*)page_private(page
);
779 next
= list_entry(page
->lru
.next
, struct page
, lru
);
785 * Encode <page, obj_idx> as a single handle value.
786 * We use the least bit of handle for tagging.
788 static void *location_to_obj(struct page
*page
, unsigned long obj_idx
)
797 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
798 obj
|= ((obj_idx
) & OBJ_INDEX_MASK
);
799 obj
<<= OBJ_TAG_BITS
;
805 * Decode <page, obj_idx> pair from the given object handle. We adjust the
806 * decoded obj_idx back to its original value since it was adjusted in
809 static void obj_to_location(unsigned long obj
, struct page
**page
,
810 unsigned long *obj_idx
)
812 obj
>>= OBJ_TAG_BITS
;
813 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
814 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
817 static unsigned long handle_to_obj(unsigned long handle
)
819 return *(unsigned long *)handle
;
822 static unsigned long obj_to_head(struct size_class
*class, struct page
*page
,
826 VM_BUG_ON(!is_first_page(page
));
827 return *(unsigned long *)page_private(page
);
829 return *(unsigned long *)obj
;
832 static unsigned long obj_idx_to_offset(struct page
*page
,
833 unsigned long obj_idx
, int class_size
)
835 unsigned long off
= 0;
837 if (!is_first_page(page
))
840 return off
+ obj_idx
* class_size
;
843 static inline int trypin_tag(unsigned long handle
)
845 unsigned long *ptr
= (unsigned long *)handle
;
847 return !test_and_set_bit_lock(HANDLE_PIN_BIT
, ptr
);
850 static void pin_tag(unsigned long handle
)
852 while (!trypin_tag(handle
));
855 static void unpin_tag(unsigned long handle
)
857 unsigned long *ptr
= (unsigned long *)handle
;
859 clear_bit_unlock(HANDLE_PIN_BIT
, ptr
);
862 static void reset_page(struct page
*page
)
864 clear_bit(PG_private
, &page
->flags
);
865 clear_bit(PG_private_2
, &page
->flags
);
866 set_page_private(page
, 0);
867 page
->mapping
= NULL
;
868 page
->freelist
= NULL
;
869 page_mapcount_reset(page
);
872 static void free_zspage(struct page
*first_page
)
874 struct page
*nextp
, *tmp
, *head_extra
;
876 BUG_ON(!is_first_page(first_page
));
877 BUG_ON(first_page
->inuse
);
879 head_extra
= (struct page
*)page_private(first_page
);
881 reset_page(first_page
);
882 __free_page(first_page
);
884 /* zspage with only 1 system page */
888 list_for_each_entry_safe(nextp
, tmp
, &head_extra
->lru
, lru
) {
889 list_del(&nextp
->lru
);
893 reset_page(head_extra
);
894 __free_page(head_extra
);
897 /* Initialize a newly allocated zspage */
898 static void init_zspage(struct page
*first_page
, struct size_class
*class)
900 unsigned long off
= 0;
901 struct page
*page
= first_page
;
903 BUG_ON(!is_first_page(first_page
));
905 struct page
*next_page
;
906 struct link_free
*link
;
911 * page->index stores offset of first object starting
912 * in the page. For the first page, this is always 0,
913 * so we use first_page->index (aka ->freelist) to store
914 * head of corresponding zspage's freelist.
916 if (page
!= first_page
)
919 vaddr
= kmap_atomic(page
);
920 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
922 while ((off
+= class->size
) < PAGE_SIZE
) {
923 link
->next
= location_to_obj(page
, i
++);
924 link
+= class->size
/ sizeof(*link
);
928 * We now come to the last (full or partial) object on this
929 * page, which must point to the first object on the next
932 next_page
= get_next_page(page
);
933 link
->next
= location_to_obj(next_page
, 0);
934 kunmap_atomic(vaddr
);
941 * Allocate a zspage for the given size class
943 static struct page
*alloc_zspage(struct size_class
*class, gfp_t flags
)
946 struct page
*first_page
= NULL
, *uninitialized_var(prev_page
);
949 * Allocate individual pages and link them together as:
950 * 1. first page->private = first sub-page
951 * 2. all sub-pages are linked together using page->lru
952 * 3. each sub-page is linked to the first page using page->first_page
954 * For each size class, First/Head pages are linked together using
955 * page->lru. Also, we set PG_private to identify the first page
956 * (i.e. no other sub-page has this flag set) and PG_private_2 to
957 * identify the last page.
960 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
963 page
= alloc_page(flags
);
967 INIT_LIST_HEAD(&page
->lru
);
968 if (i
== 0) { /* first page */
969 SetPagePrivate(page
);
970 set_page_private(page
, 0);
972 first_page
->inuse
= 0;
975 set_page_private(first_page
, (unsigned long)page
);
977 page
->first_page
= first_page
;
979 list_add(&page
->lru
, &prev_page
->lru
);
980 if (i
== class->pages_per_zspage
- 1) /* last page */
981 SetPagePrivate2(page
);
985 init_zspage(first_page
, class);
987 first_page
->freelist
= location_to_obj(first_page
, 0);
988 /* Maximum number of objects we can store in this zspage */
989 first_page
->objects
= class->pages_per_zspage
* PAGE_SIZE
/ class->size
;
991 error
= 0; /* Success */
994 if (unlikely(error
) && first_page
) {
995 free_zspage(first_page
);
1002 static struct page
*find_get_zspage(struct size_class
*class)
1007 for (i
= 0; i
< _ZS_NR_FULLNESS_GROUPS
; i
++) {
1008 page
= class->fullness_list
[i
];
1016 #ifdef CONFIG_PGTABLE_MAPPING
1017 static inline int __zs_cpu_up(struct mapping_area
*area
)
1020 * Make sure we don't leak memory if a cpu UP notification
1021 * and zs_init() race and both call zs_cpu_up() on the same cpu
1025 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1031 static inline void __zs_cpu_down(struct mapping_area
*area
)
1034 free_vm_area(area
->vm
);
1038 static inline void *__zs_map_object(struct mapping_area
*area
,
1039 struct page
*pages
[2], int off
, int size
)
1041 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1042 area
->vm_addr
= area
->vm
->addr
;
1043 return area
->vm_addr
+ off
;
1046 static inline void __zs_unmap_object(struct mapping_area
*area
,
1047 struct page
*pages
[2], int off
, int size
)
1049 unsigned long addr
= (unsigned long)area
->vm_addr
;
1051 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1054 #else /* CONFIG_PGTABLE_MAPPING */
1056 static inline int __zs_cpu_up(struct mapping_area
*area
)
1059 * Make sure we don't leak memory if a cpu UP notification
1060 * and zs_init() race and both call zs_cpu_up() on the same cpu
1064 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1070 static inline void __zs_cpu_down(struct mapping_area
*area
)
1072 kfree(area
->vm_buf
);
1073 area
->vm_buf
= NULL
;
1076 static void *__zs_map_object(struct mapping_area
*area
,
1077 struct page
*pages
[2], int off
, int size
)
1081 char *buf
= area
->vm_buf
;
1083 /* disable page faults to match kmap_atomic() return conditions */
1084 pagefault_disable();
1086 /* no read fastpath */
1087 if (area
->vm_mm
== ZS_MM_WO
)
1090 sizes
[0] = PAGE_SIZE
- off
;
1091 sizes
[1] = size
- sizes
[0];
1093 /* copy object to per-cpu buffer */
1094 addr
= kmap_atomic(pages
[0]);
1095 memcpy(buf
, addr
+ off
, sizes
[0]);
1096 kunmap_atomic(addr
);
1097 addr
= kmap_atomic(pages
[1]);
1098 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1099 kunmap_atomic(addr
);
1101 return area
->vm_buf
;
1104 static void __zs_unmap_object(struct mapping_area
*area
,
1105 struct page
*pages
[2], int off
, int size
)
1111 /* no write fastpath */
1112 if (area
->vm_mm
== ZS_MM_RO
)
1117 buf
= buf
+ ZS_HANDLE_SIZE
;
1118 size
-= ZS_HANDLE_SIZE
;
1119 off
+= ZS_HANDLE_SIZE
;
1122 sizes
[0] = PAGE_SIZE
- off
;
1123 sizes
[1] = size
- sizes
[0];
1125 /* copy per-cpu buffer to object */
1126 addr
= kmap_atomic(pages
[0]);
1127 memcpy(addr
+ off
, buf
, sizes
[0]);
1128 kunmap_atomic(addr
);
1129 addr
= kmap_atomic(pages
[1]);
1130 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1131 kunmap_atomic(addr
);
1134 /* enable page faults to match kunmap_atomic() return conditions */
1138 #endif /* CONFIG_PGTABLE_MAPPING */
1140 static int zs_cpu_notifier(struct notifier_block
*nb
, unsigned long action
,
1143 int ret
, cpu
= (long)pcpu
;
1144 struct mapping_area
*area
;
1147 case CPU_UP_PREPARE
:
1148 area
= &per_cpu(zs_map_area
, cpu
);
1149 ret
= __zs_cpu_up(area
);
1151 return notifier_from_errno(ret
);
1154 case CPU_UP_CANCELED
:
1155 area
= &per_cpu(zs_map_area
, cpu
);
1156 __zs_cpu_down(area
);
1163 static struct notifier_block zs_cpu_nb
= {
1164 .notifier_call
= zs_cpu_notifier
1167 static int zs_register_cpu_notifier(void)
1169 int cpu
, uninitialized_var(ret
);
1171 cpu_notifier_register_begin();
1173 __register_cpu_notifier(&zs_cpu_nb
);
1174 for_each_online_cpu(cpu
) {
1175 ret
= zs_cpu_notifier(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
1176 if (notifier_to_errno(ret
))
1180 cpu_notifier_register_done();
1181 return notifier_to_errno(ret
);
1184 static void zs_unregister_cpu_notifier(void)
1188 cpu_notifier_register_begin();
1190 for_each_online_cpu(cpu
)
1191 zs_cpu_notifier(NULL
, CPU_DEAD
, (void *)(long)cpu
);
1192 __unregister_cpu_notifier(&zs_cpu_nb
);
1194 cpu_notifier_register_done();
1197 static void init_zs_size_classes(void)
1201 nr
= (ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) / ZS_SIZE_CLASS_DELTA
+ 1;
1202 if ((ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) % ZS_SIZE_CLASS_DELTA
)
1205 zs_size_classes
= nr
;
1208 static bool can_merge(struct size_class
*prev
, int size
, int pages_per_zspage
)
1210 if (prev
->pages_per_zspage
!= pages_per_zspage
)
1213 if (get_maxobj_per_zspage(prev
->size
, prev
->pages_per_zspage
)
1214 != get_maxobj_per_zspage(size
, pages_per_zspage
))
1220 static bool zspage_full(struct page
*page
)
1222 BUG_ON(!is_first_page(page
));
1224 return page
->inuse
== page
->objects
;
1227 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1229 return atomic_long_read(&pool
->pages_allocated
);
1231 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1234 * zs_map_object - get address of allocated object from handle.
1235 * @pool: pool from which the object was allocated
1236 * @handle: handle returned from zs_malloc
1238 * Before using an object allocated from zs_malloc, it must be mapped using
1239 * this function. When done with the object, it must be unmapped using
1242 * Only one object can be mapped per cpu at a time. There is no protection
1243 * against nested mappings.
1245 * This function returns with preemption and page faults disabled.
1247 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1251 unsigned long obj
, obj_idx
, off
;
1253 unsigned int class_idx
;
1254 enum fullness_group fg
;
1255 struct size_class
*class;
1256 struct mapping_area
*area
;
1257 struct page
*pages
[2];
1263 * Because we use per-cpu mapping areas shared among the
1264 * pools/users, we can't allow mapping in interrupt context
1265 * because it can corrupt another users mappings.
1267 BUG_ON(in_interrupt());
1269 /* From now on, migration cannot move the object */
1272 obj
= handle_to_obj(handle
);
1273 obj_to_location(obj
, &page
, &obj_idx
);
1274 get_zspage_mapping(get_first_page(page
), &class_idx
, &fg
);
1275 class = pool
->size_class
[class_idx
];
1276 off
= obj_idx_to_offset(page
, obj_idx
, class->size
);
1278 area
= &get_cpu_var(zs_map_area
);
1280 if (off
+ class->size
<= PAGE_SIZE
) {
1281 /* this object is contained entirely within a page */
1282 area
->vm_addr
= kmap_atomic(page
);
1283 ret
= area
->vm_addr
+ off
;
1287 /* this object spans two pages */
1289 pages
[1] = get_next_page(page
);
1292 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1295 ret
+= ZS_HANDLE_SIZE
;
1299 EXPORT_SYMBOL_GPL(zs_map_object
);
1301 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1304 unsigned long obj
, obj_idx
, off
;
1306 unsigned int class_idx
;
1307 enum fullness_group fg
;
1308 struct size_class
*class;
1309 struct mapping_area
*area
;
1313 obj
= handle_to_obj(handle
);
1314 obj_to_location(obj
, &page
, &obj_idx
);
1315 get_zspage_mapping(get_first_page(page
), &class_idx
, &fg
);
1316 class = pool
->size_class
[class_idx
];
1317 off
= obj_idx_to_offset(page
, obj_idx
, class->size
);
1319 area
= this_cpu_ptr(&zs_map_area
);
1320 if (off
+ class->size
<= PAGE_SIZE
)
1321 kunmap_atomic(area
->vm_addr
);
1323 struct page
*pages
[2];
1326 pages
[1] = get_next_page(page
);
1329 __zs_unmap_object(area
, pages
, off
, class->size
);
1331 put_cpu_var(zs_map_area
);
1334 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1336 static unsigned long obj_malloc(struct page
*first_page
,
1337 struct size_class
*class, unsigned long handle
)
1340 struct link_free
*link
;
1342 struct page
*m_page
;
1343 unsigned long m_objidx
, m_offset
;
1346 handle
|= OBJ_ALLOCATED_TAG
;
1347 obj
= (unsigned long)first_page
->freelist
;
1348 obj_to_location(obj
, &m_page
, &m_objidx
);
1349 m_offset
= obj_idx_to_offset(m_page
, m_objidx
, class->size
);
1351 vaddr
= kmap_atomic(m_page
);
1352 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1353 first_page
->freelist
= link
->next
;
1355 /* record handle in the header of allocated chunk */
1356 link
->handle
= handle
;
1358 /* record handle in first_page->private */
1359 set_page_private(first_page
, handle
);
1360 kunmap_atomic(vaddr
);
1361 first_page
->inuse
++;
1362 zs_stat_inc(class, OBJ_USED
, 1);
1369 * zs_malloc - Allocate block of given size from pool.
1370 * @pool: pool to allocate from
1371 * @size: size of block to allocate
1373 * On success, handle to the allocated object is returned,
1375 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1377 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
)
1379 unsigned long handle
, obj
;
1380 struct size_class
*class;
1381 struct page
*first_page
;
1383 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1386 handle
= alloc_handle(pool
);
1390 /* extra space in chunk to keep the handle */
1391 size
+= ZS_HANDLE_SIZE
;
1392 class = pool
->size_class
[get_size_class_index(size
)];
1394 spin_lock(&class->lock
);
1395 first_page
= find_get_zspage(class);
1398 spin_unlock(&class->lock
);
1399 first_page
= alloc_zspage(class, pool
->flags
);
1400 if (unlikely(!first_page
)) {
1401 free_handle(pool
, handle
);
1405 set_zspage_mapping(first_page
, class->index
, ZS_EMPTY
);
1406 atomic_long_add(class->pages_per_zspage
,
1407 &pool
->pages_allocated
);
1409 spin_lock(&class->lock
);
1410 zs_stat_inc(class, OBJ_ALLOCATED
, get_maxobj_per_zspage(
1411 class->size
, class->pages_per_zspage
));
1414 obj
= obj_malloc(first_page
, class, handle
);
1415 /* Now move the zspage to another fullness group, if required */
1416 fix_fullness_group(class, first_page
);
1417 record_obj(handle
, obj
);
1418 spin_unlock(&class->lock
);
1422 EXPORT_SYMBOL_GPL(zs_malloc
);
1424 static void obj_free(struct zs_pool
*pool
, struct size_class
*class,
1427 struct link_free
*link
;
1428 struct page
*first_page
, *f_page
;
1429 unsigned long f_objidx
, f_offset
;
1432 enum fullness_group fullness
;
1436 obj
&= ~OBJ_ALLOCATED_TAG
;
1437 obj_to_location(obj
, &f_page
, &f_objidx
);
1438 first_page
= get_first_page(f_page
);
1440 get_zspage_mapping(first_page
, &class_idx
, &fullness
);
1441 f_offset
= obj_idx_to_offset(f_page
, f_objidx
, class->size
);
1443 vaddr
= kmap_atomic(f_page
);
1445 /* Insert this object in containing zspage's freelist */
1446 link
= (struct link_free
*)(vaddr
+ f_offset
);
1447 link
->next
= first_page
->freelist
;
1449 set_page_private(first_page
, 0);
1450 kunmap_atomic(vaddr
);
1451 first_page
->freelist
= (void *)obj
;
1452 first_page
->inuse
--;
1453 zs_stat_dec(class, OBJ_USED
, 1);
1456 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1458 struct page
*first_page
, *f_page
;
1459 unsigned long obj
, f_objidx
;
1461 struct size_class
*class;
1462 enum fullness_group fullness
;
1464 if (unlikely(!handle
))
1468 obj
= handle_to_obj(handle
);
1469 obj_to_location(obj
, &f_page
, &f_objidx
);
1470 first_page
= get_first_page(f_page
);
1472 get_zspage_mapping(first_page
, &class_idx
, &fullness
);
1473 class = pool
->size_class
[class_idx
];
1475 spin_lock(&class->lock
);
1476 obj_free(pool
, class, obj
);
1477 fullness
= fix_fullness_group(class, first_page
);
1478 if (fullness
== ZS_EMPTY
) {
1479 zs_stat_dec(class, OBJ_ALLOCATED
, get_maxobj_per_zspage(
1480 class->size
, class->pages_per_zspage
));
1481 atomic_long_sub(class->pages_per_zspage
,
1482 &pool
->pages_allocated
);
1483 free_zspage(first_page
);
1485 spin_unlock(&class->lock
);
1488 free_handle(pool
, handle
);
1490 EXPORT_SYMBOL_GPL(zs_free
);
1492 static void zs_object_copy(unsigned long dst
, unsigned long src
,
1493 struct size_class
*class)
1495 struct page
*s_page
, *d_page
;
1496 unsigned long s_objidx
, d_objidx
;
1497 unsigned long s_off
, d_off
;
1498 void *s_addr
, *d_addr
;
1499 int s_size
, d_size
, size
;
1502 s_size
= d_size
= class->size
;
1504 obj_to_location(src
, &s_page
, &s_objidx
);
1505 obj_to_location(dst
, &d_page
, &d_objidx
);
1507 s_off
= obj_idx_to_offset(s_page
, s_objidx
, class->size
);
1508 d_off
= obj_idx_to_offset(d_page
, d_objidx
, class->size
);
1510 if (s_off
+ class->size
> PAGE_SIZE
)
1511 s_size
= PAGE_SIZE
- s_off
;
1513 if (d_off
+ class->size
> PAGE_SIZE
)
1514 d_size
= PAGE_SIZE
- d_off
;
1516 s_addr
= kmap_atomic(s_page
);
1517 d_addr
= kmap_atomic(d_page
);
1520 size
= min(s_size
, d_size
);
1521 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1524 if (written
== class->size
)
1532 if (s_off
>= PAGE_SIZE
) {
1533 kunmap_atomic(d_addr
);
1534 kunmap_atomic(s_addr
);
1535 s_page
= get_next_page(s_page
);
1537 s_addr
= kmap_atomic(s_page
);
1538 d_addr
= kmap_atomic(d_page
);
1539 s_size
= class->size
- written
;
1543 if (d_off
>= PAGE_SIZE
) {
1544 kunmap_atomic(d_addr
);
1545 d_page
= get_next_page(d_page
);
1547 d_addr
= kmap_atomic(d_page
);
1548 d_size
= class->size
- written
;
1553 kunmap_atomic(d_addr
);
1554 kunmap_atomic(s_addr
);
1558 * Find alloced object in zspage from index object and
1561 static unsigned long find_alloced_obj(struct page
*page
, int index
,
1562 struct size_class
*class)
1566 unsigned long handle
= 0;
1567 void *addr
= kmap_atomic(page
);
1569 if (!is_first_page(page
))
1570 offset
= page
->index
;
1571 offset
+= class->size
* index
;
1573 while (offset
< PAGE_SIZE
) {
1574 head
= obj_to_head(class, page
, addr
+ offset
);
1575 if (head
& OBJ_ALLOCATED_TAG
) {
1576 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1577 if (trypin_tag(handle
))
1582 offset
+= class->size
;
1586 kunmap_atomic(addr
);
1590 struct zs_compact_control
{
1591 /* Source page for migration which could be a subpage of zspage. */
1592 struct page
*s_page
;
1593 /* Destination page for migration which should be a first page
1595 struct page
*d_page
;
1596 /* Starting object index within @s_page which used for live object
1597 * in the subpage. */
1601 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1602 struct zs_compact_control
*cc
)
1604 unsigned long used_obj
, free_obj
;
1605 unsigned long handle
;
1606 struct page
*s_page
= cc
->s_page
;
1607 struct page
*d_page
= cc
->d_page
;
1608 unsigned long index
= cc
->index
;
1612 handle
= find_alloced_obj(s_page
, index
, class);
1614 s_page
= get_next_page(s_page
);
1621 /* Stop if there is no more space */
1622 if (zspage_full(d_page
)) {
1628 used_obj
= handle_to_obj(handle
);
1629 free_obj
= obj_malloc(d_page
, class, handle
);
1630 zs_object_copy(free_obj
, used_obj
, class);
1632 record_obj(handle
, free_obj
);
1634 obj_free(pool
, class, used_obj
);
1637 /* Remember last position in this iteration */
1638 cc
->s_page
= s_page
;
1644 static struct page
*isolate_target_page(struct size_class
*class)
1649 for (i
= 0; i
< _ZS_NR_FULLNESS_GROUPS
; i
++) {
1650 page
= class->fullness_list
[i
];
1652 remove_zspage(page
, class, i
);
1661 * putback_zspage - add @first_page into right class's fullness list
1662 * @pool: target pool
1663 * @class: destination class
1664 * @first_page: target page
1666 * Return @fist_page's fullness_group
1668 static enum fullness_group
putback_zspage(struct zs_pool
*pool
,
1669 struct size_class
*class,
1670 struct page
*first_page
)
1672 enum fullness_group fullness
;
1674 BUG_ON(!is_first_page(first_page
));
1676 fullness
= get_fullness_group(first_page
);
1677 insert_zspage(first_page
, class, fullness
);
1678 set_zspage_mapping(first_page
, class->index
, fullness
);
1680 if (fullness
== ZS_EMPTY
) {
1681 zs_stat_dec(class, OBJ_ALLOCATED
, get_maxobj_per_zspage(
1682 class->size
, class->pages_per_zspage
));
1683 atomic_long_sub(class->pages_per_zspage
,
1684 &pool
->pages_allocated
);
1686 free_zspage(first_page
);
1692 static struct page
*isolate_source_page(struct size_class
*class)
1695 struct page
*page
= NULL
;
1697 for (i
= ZS_ALMOST_EMPTY
; i
>= ZS_ALMOST_FULL
; i
--) {
1698 page
= class->fullness_list
[i
];
1702 remove_zspage(page
, class, i
);
1711 * Based on the number of unused allocated objects calculate
1712 * and return the number of pages that we can free.
1714 static unsigned long zs_can_compact(struct size_class
*class)
1716 unsigned long obj_wasted
;
1718 obj_wasted
= zs_stat_get(class, OBJ_ALLOCATED
) -
1719 zs_stat_get(class, OBJ_USED
);
1721 obj_wasted
/= get_maxobj_per_zspage(class->size
,
1722 class->pages_per_zspage
);
1724 return obj_wasted
* class->pages_per_zspage
;
1727 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
1729 struct zs_compact_control cc
;
1730 struct page
*src_page
;
1731 struct page
*dst_page
= NULL
;
1733 spin_lock(&class->lock
);
1734 while ((src_page
= isolate_source_page(class))) {
1736 BUG_ON(!is_first_page(src_page
));
1738 if (!zs_can_compact(class))
1742 cc
.s_page
= src_page
;
1744 while ((dst_page
= isolate_target_page(class))) {
1745 cc
.d_page
= dst_page
;
1747 * If there is no more space in dst_page, resched
1748 * and see if anyone had allocated another zspage.
1750 if (!migrate_zspage(pool
, class, &cc
))
1753 putback_zspage(pool
, class, dst_page
);
1756 /* Stop if we couldn't find slot */
1757 if (dst_page
== NULL
)
1760 putback_zspage(pool
, class, dst_page
);
1761 if (putback_zspage(pool
, class, src_page
) == ZS_EMPTY
)
1762 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
1763 spin_unlock(&class->lock
);
1765 spin_lock(&class->lock
);
1769 putback_zspage(pool
, class, src_page
);
1771 spin_unlock(&class->lock
);
1774 unsigned long zs_compact(struct zs_pool
*pool
)
1777 struct size_class
*class;
1779 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
1780 class = pool
->size_class
[i
];
1783 if (class->index
!= i
)
1785 __zs_compact(pool
, class);
1788 return pool
->stats
.pages_compacted
;
1790 EXPORT_SYMBOL_GPL(zs_compact
);
1792 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
1794 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
1796 EXPORT_SYMBOL_GPL(zs_pool_stats
);
1798 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
1799 struct shrink_control
*sc
)
1801 unsigned long pages_freed
;
1802 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
1805 pages_freed
= pool
->stats
.pages_compacted
;
1807 * Compact classes and calculate compaction delta.
1808 * Can run concurrently with a manually triggered
1809 * (by user) compaction.
1811 pages_freed
= zs_compact(pool
) - pages_freed
;
1813 return pages_freed
? pages_freed
: SHRINK_STOP
;
1816 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
1817 struct shrink_control
*sc
)
1820 struct size_class
*class;
1821 unsigned long pages_to_free
= 0;
1822 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
1825 if (!pool
->shrinker_enabled
)
1828 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
1829 class = pool
->size_class
[i
];
1832 if (class->index
!= i
)
1835 pages_to_free
+= zs_can_compact(class);
1838 return pages_to_free
;
1841 static void zs_unregister_shrinker(struct zs_pool
*pool
)
1843 if (pool
->shrinker_enabled
) {
1844 unregister_shrinker(&pool
->shrinker
);
1845 pool
->shrinker_enabled
= false;
1849 static int zs_register_shrinker(struct zs_pool
*pool
)
1851 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
1852 pool
->shrinker
.count_objects
= zs_shrinker_count
;
1853 pool
->shrinker
.batch
= 0;
1854 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
1856 return register_shrinker(&pool
->shrinker
);
1860 * zs_create_pool - Creates an allocation pool to work from.
1861 * @flags: allocation flags used to allocate pool metadata
1863 * This function must be called before anything when using
1864 * the zsmalloc allocator.
1866 * On success, a pointer to the newly created pool is returned,
1869 struct zs_pool
*zs_create_pool(char *name
, gfp_t flags
)
1872 struct zs_pool
*pool
;
1873 struct size_class
*prev_class
= NULL
;
1875 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
1879 pool
->size_class
= kcalloc(zs_size_classes
, sizeof(struct size_class
*),
1881 if (!pool
->size_class
) {
1886 pool
->name
= kstrdup(name
, GFP_KERNEL
);
1890 if (create_handle_cache(pool
))
1894 * Iterate reversly, because, size of size_class that we want to use
1895 * for merging should be larger or equal to current size.
1897 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
1899 int pages_per_zspage
;
1900 struct size_class
*class;
1902 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
1903 if (size
> ZS_MAX_ALLOC_SIZE
)
1904 size
= ZS_MAX_ALLOC_SIZE
;
1905 pages_per_zspage
= get_pages_per_zspage(size
);
1908 * size_class is used for normal zsmalloc operation such
1909 * as alloc/free for that size. Although it is natural that we
1910 * have one size_class for each size, there is a chance that we
1911 * can get more memory utilization if we use one size_class for
1912 * many different sizes whose size_class have same
1913 * characteristics. So, we makes size_class point to
1914 * previous size_class if possible.
1917 if (can_merge(prev_class
, size
, pages_per_zspage
)) {
1918 pool
->size_class
[i
] = prev_class
;
1923 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
1929 class->pages_per_zspage
= pages_per_zspage
;
1930 if (pages_per_zspage
== 1 &&
1931 get_maxobj_per_zspage(size
, pages_per_zspage
) == 1)
1933 spin_lock_init(&class->lock
);
1934 pool
->size_class
[i
] = class;
1939 pool
->flags
= flags
;
1941 if (zs_pool_stat_create(name
, pool
))
1945 * Not critical, we still can use the pool
1946 * and user can trigger compaction manually.
1948 if (zs_register_shrinker(pool
) == 0)
1949 pool
->shrinker_enabled
= true;
1953 zs_destroy_pool(pool
);
1956 EXPORT_SYMBOL_GPL(zs_create_pool
);
1958 void zs_destroy_pool(struct zs_pool
*pool
)
1962 zs_unregister_shrinker(pool
);
1963 zs_pool_stat_destroy(pool
);
1965 for (i
= 0; i
< zs_size_classes
; i
++) {
1967 struct size_class
*class = pool
->size_class
[i
];
1972 if (class->index
!= i
)
1975 for (fg
= 0; fg
< _ZS_NR_FULLNESS_GROUPS
; fg
++) {
1976 if (class->fullness_list
[fg
]) {
1977 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1984 destroy_handle_cache(pool
);
1985 kfree(pool
->size_class
);
1989 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
1991 static int __init
zs_init(void)
1993 int ret
= zs_register_cpu_notifier();
1998 init_zs_size_classes();
2001 zpool_register_driver(&zs_zpool_driver
);
2004 ret
= zs_stat_init();
2006 pr_err("zs stat initialization failed\n");
2013 zpool_unregister_driver(&zs_zpool_driver
);
2016 zs_unregister_cpu_notifier();
2021 static void __exit
zs_exit(void)
2024 zpool_unregister_driver(&zs_zpool_driver
);
2026 zs_unregister_cpu_notifier();
2031 module_init(zs_init
);
2032 module_exit(zs_exit
);
2034 MODULE_LICENSE("Dual BSD/GPL");
2035 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");