2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
24 #include <trace/events/block.h>
26 #include <linux/blk-mq.h>
29 #include "blk-mq-tag.h"
31 static DEFINE_MUTEX(all_q_mutex
);
32 static LIST_HEAD(all_q_list
);
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
37 * Check if any of the ctx's have pending work in this hardware queue
39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
43 for (i
= 0; i
< hctx
->ctx_map
.map_size
; i
++)
44 if (hctx
->ctx_map
.map
[i
].word
)
50 static inline struct blk_align_bitmap
*get_bm(struct blk_mq_hw_ctx
*hctx
,
51 struct blk_mq_ctx
*ctx
)
53 return &hctx
->ctx_map
.map
[ctx
->index_hw
/ hctx
->ctx_map
.bits_per_word
];
56 #define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60 * Mark this ctx as having pending work in this hardware queue
62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
63 struct blk_mq_ctx
*ctx
)
65 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
67 if (!test_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
))
68 set_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
72 struct blk_mq_ctx
*ctx
)
74 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
76 clear_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
79 static int blk_mq_queue_enter(struct request_queue
*q
)
83 __percpu_counter_add(&q
->mq_usage_counter
, 1, 1000000);
86 /* we have problems freezing the queue if it's initializing */
87 if (!blk_queue_dying(q
) &&
88 (!blk_queue_bypass(q
) || !blk_queue_init_done(q
)))
91 __percpu_counter_add(&q
->mq_usage_counter
, -1, 1000000);
93 spin_lock_irq(q
->queue_lock
);
94 ret
= wait_event_interruptible_lock_irq(q
->mq_freeze_wq
,
95 !blk_queue_bypass(q
) || blk_queue_dying(q
),
97 /* inc usage with lock hold to avoid freeze_queue runs here */
98 if (!ret
&& !blk_queue_dying(q
))
99 __percpu_counter_add(&q
->mq_usage_counter
, 1, 1000000);
100 else if (blk_queue_dying(q
))
102 spin_unlock_irq(q
->queue_lock
);
107 static void blk_mq_queue_exit(struct request_queue
*q
)
109 __percpu_counter_add(&q
->mq_usage_counter
, -1, 1000000);
112 static void __blk_mq_drain_queue(struct request_queue
*q
)
117 spin_lock_irq(q
->queue_lock
);
118 count
= percpu_counter_sum(&q
->mq_usage_counter
);
119 spin_unlock_irq(q
->queue_lock
);
123 blk_mq_run_queues(q
, false);
129 * Guarantee no request is in use, so we can change any data structure of
130 * the queue afterward.
132 static void blk_mq_freeze_queue(struct request_queue
*q
)
136 spin_lock_irq(q
->queue_lock
);
137 drain
= !q
->bypass_depth
++;
138 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
139 spin_unlock_irq(q
->queue_lock
);
142 __blk_mq_drain_queue(q
);
145 void blk_mq_drain_queue(struct request_queue
*q
)
147 __blk_mq_drain_queue(q
);
150 static void blk_mq_unfreeze_queue(struct request_queue
*q
)
154 spin_lock_irq(q
->queue_lock
);
155 if (!--q
->bypass_depth
) {
156 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
159 WARN_ON_ONCE(q
->bypass_depth
< 0);
160 spin_unlock_irq(q
->queue_lock
);
162 wake_up_all(&q
->mq_freeze_wq
);
165 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
167 return blk_mq_has_free_tags(hctx
->tags
);
169 EXPORT_SYMBOL(blk_mq_can_queue
);
171 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
172 struct request
*rq
, unsigned int rw_flags
)
174 if (blk_queue_io_stat(q
))
175 rw_flags
|= REQ_IO_STAT
;
177 INIT_LIST_HEAD(&rq
->queuelist
);
178 /* csd/requeue_work/fifo_time is initialized before use */
181 rq
->cmd_flags
|= rw_flags
;
182 /* do not touch atomic flags, it needs atomic ops against the timer */
184 INIT_HLIST_NODE(&rq
->hash
);
185 RB_CLEAR_NODE(&rq
->rb_node
);
188 rq
->start_time
= jiffies
;
189 #ifdef CONFIG_BLK_CGROUP
191 set_start_time_ns(rq
);
192 rq
->io_start_time_ns
= 0;
194 rq
->nr_phys_segments
= 0;
195 #if defined(CONFIG_BLK_DEV_INTEGRITY)
196 rq
->nr_integrity_segments
= 0;
199 /* tag was already set */
207 INIT_LIST_HEAD(&rq
->timeout_list
);
211 rq
->end_io_data
= NULL
;
214 ctx
->rq_dispatched
[rw_is_sync(rw_flags
)]++;
217 static struct request
*
218 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int rw
)
223 tag
= blk_mq_get_tag(data
);
224 if (tag
!= BLK_MQ_TAG_FAIL
) {
225 rq
= data
->hctx
->tags
->rqs
[tag
];
228 if (blk_mq_tag_busy(data
->hctx
)) {
229 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
230 atomic_inc(&data
->hctx
->nr_active
);
234 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, rw
);
241 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
, gfp_t gfp
,
244 struct blk_mq_ctx
*ctx
;
245 struct blk_mq_hw_ctx
*hctx
;
247 struct blk_mq_alloc_data alloc_data
;
249 if (blk_mq_queue_enter(q
))
252 ctx
= blk_mq_get_ctx(q
);
253 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
254 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
& ~__GFP_WAIT
,
255 reserved
, ctx
, hctx
);
257 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
258 if (!rq
&& (gfp
& __GFP_WAIT
)) {
259 __blk_mq_run_hw_queue(hctx
);
262 ctx
= blk_mq_get_ctx(q
);
263 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
264 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
, reserved
, ctx
,
266 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
267 ctx
= alloc_data
.ctx
;
272 EXPORT_SYMBOL(blk_mq_alloc_request
);
274 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
275 struct blk_mq_ctx
*ctx
, struct request
*rq
)
277 const int tag
= rq
->tag
;
278 struct request_queue
*q
= rq
->q
;
280 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
281 atomic_dec(&hctx
->nr_active
);
283 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
284 blk_mq_put_tag(hctx
, tag
, &ctx
->last_tag
);
285 blk_mq_queue_exit(q
);
288 void blk_mq_free_request(struct request
*rq
)
290 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
291 struct blk_mq_hw_ctx
*hctx
;
292 struct request_queue
*q
= rq
->q
;
294 ctx
->rq_completed
[rq_is_sync(rq
)]++;
296 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
297 __blk_mq_free_request(hctx
, ctx
, rq
);
301 * Clone all relevant state from a request that has been put on hold in
302 * the flush state machine into the preallocated flush request that hangs
303 * off the request queue.
305 * For a driver the flush request should be invisible, that's why we are
306 * impersonating the original request here.
308 void blk_mq_clone_flush_request(struct request
*flush_rq
,
309 struct request
*orig_rq
)
311 struct blk_mq_hw_ctx
*hctx
=
312 orig_rq
->q
->mq_ops
->map_queue(orig_rq
->q
, orig_rq
->mq_ctx
->cpu
);
314 flush_rq
->mq_ctx
= orig_rq
->mq_ctx
;
315 flush_rq
->tag
= orig_rq
->tag
;
316 memcpy(blk_mq_rq_to_pdu(flush_rq
), blk_mq_rq_to_pdu(orig_rq
),
320 inline void __blk_mq_end_io(struct request
*rq
, int error
)
322 blk_account_io_done(rq
);
325 rq
->end_io(rq
, error
);
327 if (unlikely(blk_bidi_rq(rq
)))
328 blk_mq_free_request(rq
->next_rq
);
329 blk_mq_free_request(rq
);
332 EXPORT_SYMBOL(__blk_mq_end_io
);
334 void blk_mq_end_io(struct request
*rq
, int error
)
336 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
338 __blk_mq_end_io(rq
, error
);
340 EXPORT_SYMBOL(blk_mq_end_io
);
342 static void __blk_mq_complete_request_remote(void *data
)
344 struct request
*rq
= data
;
346 rq
->q
->softirq_done_fn(rq
);
349 static void blk_mq_ipi_complete_request(struct request
*rq
)
351 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
355 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
356 rq
->q
->softirq_done_fn(rq
);
361 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
362 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
364 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
365 rq
->csd
.func
= __blk_mq_complete_request_remote
;
368 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
370 rq
->q
->softirq_done_fn(rq
);
375 void __blk_mq_complete_request(struct request
*rq
)
377 struct request_queue
*q
= rq
->q
;
379 if (!q
->softirq_done_fn
)
380 blk_mq_end_io(rq
, rq
->errors
);
382 blk_mq_ipi_complete_request(rq
);
386 * blk_mq_complete_request - end I/O on a request
387 * @rq: the request being processed
390 * Ends all I/O on a request. It does not handle partial completions.
391 * The actual completion happens out-of-order, through a IPI handler.
393 void blk_mq_complete_request(struct request
*rq
)
395 struct request_queue
*q
= rq
->q
;
397 if (unlikely(blk_should_fake_timeout(q
)))
399 if (!blk_mark_rq_complete(rq
))
400 __blk_mq_complete_request(rq
);
402 EXPORT_SYMBOL(blk_mq_complete_request
);
404 static void blk_mq_start_request(struct request
*rq
, bool last
)
406 struct request_queue
*q
= rq
->q
;
408 trace_block_rq_issue(q
, rq
);
410 rq
->resid_len
= blk_rq_bytes(rq
);
411 if (unlikely(blk_bidi_rq(rq
)))
412 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
417 * Mark us as started and clear complete. Complete might have been
418 * set if requeue raced with timeout, which then marked it as
419 * complete. So be sure to clear complete again when we start
420 * the request, otherwise we'll ignore the completion event.
422 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
423 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
424 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
425 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
427 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
429 * Make sure space for the drain appears. We know we can do
430 * this because max_hw_segments has been adjusted to be one
431 * fewer than the device can handle.
433 rq
->nr_phys_segments
++;
437 * Flag the last request in the series so that drivers know when IO
438 * should be kicked off, if they don't do it on a per-request basis.
440 * Note: the flag isn't the only condition drivers should do kick off.
441 * If drive is busy, the last request might not have the bit set.
444 rq
->cmd_flags
|= REQ_END
;
447 static void __blk_mq_requeue_request(struct request
*rq
)
449 struct request_queue
*q
= rq
->q
;
451 trace_block_rq_requeue(q
, rq
);
452 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
454 rq
->cmd_flags
&= ~REQ_END
;
456 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
457 rq
->nr_phys_segments
--;
460 void blk_mq_requeue_request(struct request
*rq
)
462 __blk_mq_requeue_request(rq
);
463 blk_clear_rq_complete(rq
);
465 BUG_ON(blk_queued_rq(rq
));
466 blk_mq_add_to_requeue_list(rq
, true);
468 EXPORT_SYMBOL(blk_mq_requeue_request
);
470 static void blk_mq_requeue_work(struct work_struct
*work
)
472 struct request_queue
*q
=
473 container_of(work
, struct request_queue
, requeue_work
);
475 struct request
*rq
, *next
;
478 spin_lock_irqsave(&q
->requeue_lock
, flags
);
479 list_splice_init(&q
->requeue_list
, &rq_list
);
480 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
482 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
483 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
486 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
487 list_del_init(&rq
->queuelist
);
488 blk_mq_insert_request(rq
, true, false, false);
491 while (!list_empty(&rq_list
)) {
492 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
493 list_del_init(&rq
->queuelist
);
494 blk_mq_insert_request(rq
, false, false, false);
497 blk_mq_run_queues(q
, false);
500 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
502 struct request_queue
*q
= rq
->q
;
506 * We abuse this flag that is otherwise used by the I/O scheduler to
507 * request head insertation from the workqueue.
509 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
511 spin_lock_irqsave(&q
->requeue_lock
, flags
);
513 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
514 list_add(&rq
->queuelist
, &q
->requeue_list
);
516 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
518 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
520 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
522 void blk_mq_kick_requeue_list(struct request_queue
*q
)
524 kblockd_schedule_work(&q
->requeue_work
);
526 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
528 static inline bool is_flush_request(struct request
*rq
, unsigned int tag
)
530 return ((rq
->cmd_flags
& REQ_FLUSH_SEQ
) &&
531 rq
->q
->flush_rq
->tag
== tag
);
534 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
536 struct request
*rq
= tags
->rqs
[tag
];
538 if (!is_flush_request(rq
, tag
))
541 return rq
->q
->flush_rq
;
543 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
545 struct blk_mq_timeout_data
{
546 struct blk_mq_hw_ctx
*hctx
;
548 unsigned int *next_set
;
551 static void blk_mq_timeout_check(void *__data
, unsigned long *free_tags
)
553 struct blk_mq_timeout_data
*data
= __data
;
554 struct blk_mq_hw_ctx
*hctx
= data
->hctx
;
557 /* It may not be in flight yet (this is where
558 * the REQ_ATOMIC_STARTED flag comes in). The requests are
559 * statically allocated, so we know it's always safe to access the
560 * memory associated with a bit offset into ->rqs[].
566 tag
= find_next_zero_bit(free_tags
, hctx
->tags
->nr_tags
, tag
);
567 if (tag
>= hctx
->tags
->nr_tags
)
570 rq
= blk_mq_tag_to_rq(hctx
->tags
, tag
++);
571 if (rq
->q
!= hctx
->queue
)
573 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
576 blk_rq_check_expired(rq
, data
->next
, data
->next_set
);
580 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx
*hctx
,
582 unsigned int *next_set
)
584 struct blk_mq_timeout_data data
= {
587 .next_set
= next_set
,
591 * Ask the tagging code to iterate busy requests, so we can
592 * check them for timeout.
594 blk_mq_tag_busy_iter(hctx
->tags
, blk_mq_timeout_check
, &data
);
597 static enum blk_eh_timer_return
blk_mq_rq_timed_out(struct request
*rq
)
599 struct request_queue
*q
= rq
->q
;
602 * We know that complete is set at this point. If STARTED isn't set
603 * anymore, then the request isn't active and the "timeout" should
604 * just be ignored. This can happen due to the bitflag ordering.
605 * Timeout first checks if STARTED is set, and if it is, assumes
606 * the request is active. But if we race with completion, then
607 * we both flags will get cleared. So check here again, and ignore
608 * a timeout event with a request that isn't active.
610 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
611 return BLK_EH_NOT_HANDLED
;
613 if (!q
->mq_ops
->timeout
)
614 return BLK_EH_RESET_TIMER
;
616 return q
->mq_ops
->timeout(rq
);
619 static void blk_mq_rq_timer(unsigned long data
)
621 struct request_queue
*q
= (struct request_queue
*) data
;
622 struct blk_mq_hw_ctx
*hctx
;
623 unsigned long next
= 0;
626 queue_for_each_hw_ctx(q
, hctx
, i
) {
628 * If not software queues are currently mapped to this
629 * hardware queue, there's nothing to check
631 if (!hctx
->nr_ctx
|| !hctx
->tags
)
634 blk_mq_hw_ctx_check_timeout(hctx
, &next
, &next_set
);
638 next
= blk_rq_timeout(round_jiffies_up(next
));
639 mod_timer(&q
->timeout
, next
);
641 queue_for_each_hw_ctx(q
, hctx
, i
)
642 blk_mq_tag_idle(hctx
);
647 * Reverse check our software queue for entries that we could potentially
648 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
649 * too much time checking for merges.
651 static bool blk_mq_attempt_merge(struct request_queue
*q
,
652 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
657 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
663 if (!blk_rq_merge_ok(rq
, bio
))
666 el_ret
= blk_try_merge(rq
, bio
);
667 if (el_ret
== ELEVATOR_BACK_MERGE
) {
668 if (bio_attempt_back_merge(q
, rq
, bio
)) {
673 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
674 if (bio_attempt_front_merge(q
, rq
, bio
)) {
686 * Process software queues that have been marked busy, splicing them
687 * to the for-dispatch
689 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
691 struct blk_mq_ctx
*ctx
;
694 for (i
= 0; i
< hctx
->ctx_map
.map_size
; i
++) {
695 struct blk_align_bitmap
*bm
= &hctx
->ctx_map
.map
[i
];
696 unsigned int off
, bit
;
702 off
= i
* hctx
->ctx_map
.bits_per_word
;
704 bit
= find_next_bit(&bm
->word
, bm
->depth
, bit
);
705 if (bit
>= bm
->depth
)
708 ctx
= hctx
->ctxs
[bit
+ off
];
709 clear_bit(bit
, &bm
->word
);
710 spin_lock(&ctx
->lock
);
711 list_splice_tail_init(&ctx
->rq_list
, list
);
712 spin_unlock(&ctx
->lock
);
720 * Run this hardware queue, pulling any software queues mapped to it in.
721 * Note that this function currently has various problems around ordering
722 * of IO. In particular, we'd like FIFO behaviour on handling existing
723 * items on the hctx->dispatch list. Ignore that for now.
725 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
727 struct request_queue
*q
= hctx
->queue
;
732 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
));
734 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
740 * Touch any software queue that has pending entries.
742 flush_busy_ctxs(hctx
, &rq_list
);
745 * If we have previous entries on our dispatch list, grab them
746 * and stuff them at the front for more fair dispatch.
748 if (!list_empty_careful(&hctx
->dispatch
)) {
749 spin_lock(&hctx
->lock
);
750 if (!list_empty(&hctx
->dispatch
))
751 list_splice_init(&hctx
->dispatch
, &rq_list
);
752 spin_unlock(&hctx
->lock
);
756 * Now process all the entries, sending them to the driver.
759 while (!list_empty(&rq_list
)) {
762 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
763 list_del_init(&rq
->queuelist
);
765 blk_mq_start_request(rq
, list_empty(&rq_list
));
767 ret
= q
->mq_ops
->queue_rq(hctx
, rq
);
769 case BLK_MQ_RQ_QUEUE_OK
:
772 case BLK_MQ_RQ_QUEUE_BUSY
:
773 list_add(&rq
->queuelist
, &rq_list
);
774 __blk_mq_requeue_request(rq
);
777 pr_err("blk-mq: bad return on queue: %d\n", ret
);
778 case BLK_MQ_RQ_QUEUE_ERROR
:
780 blk_mq_end_io(rq
, rq
->errors
);
784 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
789 hctx
->dispatched
[0]++;
790 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
791 hctx
->dispatched
[ilog2(queued
) + 1]++;
794 * Any items that need requeuing? Stuff them into hctx->dispatch,
795 * that is where we will continue on next queue run.
797 if (!list_empty(&rq_list
)) {
798 spin_lock(&hctx
->lock
);
799 list_splice(&rq_list
, &hctx
->dispatch
);
800 spin_unlock(&hctx
->lock
);
805 * It'd be great if the workqueue API had a way to pass
806 * in a mask and had some smarts for more clever placement.
807 * For now we just round-robin here, switching for every
808 * BLK_MQ_CPU_WORK_BATCH queued items.
810 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
812 int cpu
= hctx
->next_cpu
;
814 if (--hctx
->next_cpu_batch
<= 0) {
817 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
818 if (next_cpu
>= nr_cpu_ids
)
819 next_cpu
= cpumask_first(hctx
->cpumask
);
821 hctx
->next_cpu
= next_cpu
;
822 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
828 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
830 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
833 if (!async
&& cpumask_test_cpu(smp_processor_id(), hctx
->cpumask
))
834 __blk_mq_run_hw_queue(hctx
);
835 else if (hctx
->queue
->nr_hw_queues
== 1)
836 kblockd_schedule_delayed_work(&hctx
->run_work
, 0);
840 cpu
= blk_mq_hctx_next_cpu(hctx
);
841 kblockd_schedule_delayed_work_on(cpu
, &hctx
->run_work
, 0);
845 void blk_mq_run_queues(struct request_queue
*q
, bool async
)
847 struct blk_mq_hw_ctx
*hctx
;
850 queue_for_each_hw_ctx(q
, hctx
, i
) {
851 if ((!blk_mq_hctx_has_pending(hctx
) &&
852 list_empty_careful(&hctx
->dispatch
)) ||
853 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
857 blk_mq_run_hw_queue(hctx
, async
);
861 EXPORT_SYMBOL(blk_mq_run_queues
);
863 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
865 cancel_delayed_work(&hctx
->run_work
);
866 cancel_delayed_work(&hctx
->delay_work
);
867 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
869 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
871 void blk_mq_stop_hw_queues(struct request_queue
*q
)
873 struct blk_mq_hw_ctx
*hctx
;
876 queue_for_each_hw_ctx(q
, hctx
, i
)
877 blk_mq_stop_hw_queue(hctx
);
879 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
881 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
883 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
886 __blk_mq_run_hw_queue(hctx
);
889 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
891 void blk_mq_start_hw_queues(struct request_queue
*q
)
893 struct blk_mq_hw_ctx
*hctx
;
896 queue_for_each_hw_ctx(q
, hctx
, i
)
897 blk_mq_start_hw_queue(hctx
);
899 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
902 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
904 struct blk_mq_hw_ctx
*hctx
;
907 queue_for_each_hw_ctx(q
, hctx
, i
) {
908 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
911 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
913 blk_mq_run_hw_queue(hctx
, async
);
917 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
919 static void blk_mq_run_work_fn(struct work_struct
*work
)
921 struct blk_mq_hw_ctx
*hctx
;
923 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
925 __blk_mq_run_hw_queue(hctx
);
928 static void blk_mq_delay_work_fn(struct work_struct
*work
)
930 struct blk_mq_hw_ctx
*hctx
;
932 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
934 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
935 __blk_mq_run_hw_queue(hctx
);
938 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
940 unsigned long tmo
= msecs_to_jiffies(msecs
);
942 if (hctx
->queue
->nr_hw_queues
== 1)
943 kblockd_schedule_delayed_work(&hctx
->delay_work
, tmo
);
947 cpu
= blk_mq_hctx_next_cpu(hctx
);
948 kblockd_schedule_delayed_work_on(cpu
, &hctx
->delay_work
, tmo
);
951 EXPORT_SYMBOL(blk_mq_delay_queue
);
953 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
954 struct request
*rq
, bool at_head
)
956 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
958 trace_block_rq_insert(hctx
->queue
, rq
);
961 list_add(&rq
->queuelist
, &ctx
->rq_list
);
963 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
965 blk_mq_hctx_mark_pending(hctx
, ctx
);
968 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
971 struct request_queue
*q
= rq
->q
;
972 struct blk_mq_hw_ctx
*hctx
;
973 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
, *current_ctx
;
975 current_ctx
= blk_mq_get_ctx(q
);
976 if (!cpu_online(ctx
->cpu
))
977 rq
->mq_ctx
= ctx
= current_ctx
;
979 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
981 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
) &&
982 !(rq
->cmd_flags
& (REQ_FLUSH_SEQ
))) {
983 blk_insert_flush(rq
);
985 spin_lock(&ctx
->lock
);
986 __blk_mq_insert_request(hctx
, rq
, at_head
);
987 spin_unlock(&ctx
->lock
);
991 blk_mq_run_hw_queue(hctx
, async
);
993 blk_mq_put_ctx(current_ctx
);
996 static void blk_mq_insert_requests(struct request_queue
*q
,
997 struct blk_mq_ctx
*ctx
,
998 struct list_head
*list
,
1003 struct blk_mq_hw_ctx
*hctx
;
1004 struct blk_mq_ctx
*current_ctx
;
1006 trace_block_unplug(q
, depth
, !from_schedule
);
1008 current_ctx
= blk_mq_get_ctx(q
);
1010 if (!cpu_online(ctx
->cpu
))
1012 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1015 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1018 spin_lock(&ctx
->lock
);
1019 while (!list_empty(list
)) {
1022 rq
= list_first_entry(list
, struct request
, queuelist
);
1023 list_del_init(&rq
->queuelist
);
1025 __blk_mq_insert_request(hctx
, rq
, false);
1027 spin_unlock(&ctx
->lock
);
1029 blk_mq_run_hw_queue(hctx
, from_schedule
);
1030 blk_mq_put_ctx(current_ctx
);
1033 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1035 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1036 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1038 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1039 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1040 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1043 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1045 struct blk_mq_ctx
*this_ctx
;
1046 struct request_queue
*this_q
;
1049 LIST_HEAD(ctx_list
);
1052 list_splice_init(&plug
->mq_list
, &list
);
1054 list_sort(NULL
, &list
, plug_ctx_cmp
);
1060 while (!list_empty(&list
)) {
1061 rq
= list_entry_rq(list
.next
);
1062 list_del_init(&rq
->queuelist
);
1064 if (rq
->mq_ctx
!= this_ctx
) {
1066 blk_mq_insert_requests(this_q
, this_ctx
,
1071 this_ctx
= rq
->mq_ctx
;
1077 list_add_tail(&rq
->queuelist
, &ctx_list
);
1081 * If 'this_ctx' is set, we know we have entries to complete
1082 * on 'ctx_list'. Do those.
1085 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1090 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1092 init_request_from_bio(rq
, bio
);
1094 if (blk_do_io_stat(rq
))
1095 blk_account_io_start(rq
, 1);
1098 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1099 struct blk_mq_ctx
*ctx
,
1100 struct request
*rq
, struct bio
*bio
)
1102 struct request_queue
*q
= hctx
->queue
;
1104 if (!(hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
)) {
1105 blk_mq_bio_to_request(rq
, bio
);
1106 spin_lock(&ctx
->lock
);
1108 __blk_mq_insert_request(hctx
, rq
, false);
1109 spin_unlock(&ctx
->lock
);
1112 spin_lock(&ctx
->lock
);
1113 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1114 blk_mq_bio_to_request(rq
, bio
);
1118 spin_unlock(&ctx
->lock
);
1119 __blk_mq_free_request(hctx
, ctx
, rq
);
1124 struct blk_map_ctx
{
1125 struct blk_mq_hw_ctx
*hctx
;
1126 struct blk_mq_ctx
*ctx
;
1129 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1131 struct blk_map_ctx
*data
)
1133 struct blk_mq_hw_ctx
*hctx
;
1134 struct blk_mq_ctx
*ctx
;
1136 int rw
= bio_data_dir(bio
);
1137 struct blk_mq_alloc_data alloc_data
;
1139 if (unlikely(blk_mq_queue_enter(q
))) {
1140 bio_endio(bio
, -EIO
);
1144 ctx
= blk_mq_get_ctx(q
);
1145 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1147 if (rw_is_sync(bio
->bi_rw
))
1150 trace_block_getrq(q
, bio
, rw
);
1151 blk_mq_set_alloc_data(&alloc_data
, q
, GFP_ATOMIC
, false, ctx
,
1153 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1154 if (unlikely(!rq
)) {
1155 __blk_mq_run_hw_queue(hctx
);
1156 blk_mq_put_ctx(ctx
);
1157 trace_block_sleeprq(q
, bio
, rw
);
1159 ctx
= blk_mq_get_ctx(q
);
1160 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1161 blk_mq_set_alloc_data(&alloc_data
, q
,
1162 __GFP_WAIT
|GFP_ATOMIC
, false, ctx
, hctx
);
1163 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1164 ctx
= alloc_data
.ctx
;
1165 hctx
= alloc_data
.hctx
;
1175 * Multiple hardware queue variant. This will not use per-process plugs,
1176 * but will attempt to bypass the hctx queueing if we can go straight to
1177 * hardware for SYNC IO.
1179 static void blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1181 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1182 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1183 struct blk_map_ctx data
;
1186 blk_queue_bounce(q
, &bio
);
1188 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1189 bio_endio(bio
, -EIO
);
1193 rq
= blk_mq_map_request(q
, bio
, &data
);
1197 if (unlikely(is_flush_fua
)) {
1198 blk_mq_bio_to_request(rq
, bio
);
1199 blk_insert_flush(rq
);
1206 blk_mq_bio_to_request(rq
, bio
);
1207 blk_mq_start_request(rq
, true);
1210 * For OK queue, we are done. For error, kill it. Any other
1211 * error (busy), just add it to our list as we previously
1214 ret
= q
->mq_ops
->queue_rq(data
.hctx
, rq
);
1215 if (ret
== BLK_MQ_RQ_QUEUE_OK
)
1218 __blk_mq_requeue_request(rq
);
1220 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1222 blk_mq_end_io(rq
, rq
->errors
);
1228 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1230 * For a SYNC request, send it to the hardware immediately. For
1231 * an ASYNC request, just ensure that we run it later on. The
1232 * latter allows for merging opportunities and more efficient
1236 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1239 blk_mq_put_ctx(data
.ctx
);
1243 * Single hardware queue variant. This will attempt to use any per-process
1244 * plug for merging and IO deferral.
1246 static void blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1248 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1249 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1250 unsigned int use_plug
, request_count
= 0;
1251 struct blk_map_ctx data
;
1255 * If we have multiple hardware queues, just go directly to
1256 * one of those for sync IO.
1258 use_plug
= !is_flush_fua
&& !is_sync
;
1260 blk_queue_bounce(q
, &bio
);
1262 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1263 bio_endio(bio
, -EIO
);
1267 if (use_plug
&& !blk_queue_nomerges(q
) &&
1268 blk_attempt_plug_merge(q
, bio
, &request_count
))
1271 rq
= blk_mq_map_request(q
, bio
, &data
);
1275 if (unlikely(is_flush_fua
)) {
1276 blk_mq_bio_to_request(rq
, bio
);
1277 blk_insert_flush(rq
);
1282 * A task plug currently exists. Since this is completely lockless,
1283 * utilize that to temporarily store requests until the task is
1284 * either done or scheduled away.
1287 struct blk_plug
*plug
= current
->plug
;
1290 blk_mq_bio_to_request(rq
, bio
);
1291 if (list_empty(&plug
->mq_list
))
1292 trace_block_plug(q
);
1293 else if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1294 blk_flush_plug_list(plug
, false);
1295 trace_block_plug(q
);
1297 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1298 blk_mq_put_ctx(data
.ctx
);
1303 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1305 * For a SYNC request, send it to the hardware immediately. For
1306 * an ASYNC request, just ensure that we run it later on. The
1307 * latter allows for merging opportunities and more efficient
1311 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1314 blk_mq_put_ctx(data
.ctx
);
1318 * Default mapping to a software queue, since we use one per CPU.
1320 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1322 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1324 EXPORT_SYMBOL(blk_mq_map_queue
);
1326 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1327 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1331 if (tags
->rqs
&& set
->ops
->exit_request
) {
1334 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1337 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1342 while (!list_empty(&tags
->page_list
)) {
1343 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1344 list_del_init(&page
->lru
);
1345 __free_pages(page
, page
->private);
1350 blk_mq_free_tags(tags
);
1353 static size_t order_to_size(unsigned int order
)
1355 return (size_t)PAGE_SIZE
<< order
;
1358 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1359 unsigned int hctx_idx
)
1361 struct blk_mq_tags
*tags
;
1362 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1363 size_t rq_size
, left
;
1365 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1370 INIT_LIST_HEAD(&tags
->page_list
);
1372 tags
->rqs
= kmalloc_node(set
->queue_depth
* sizeof(struct request
*),
1373 GFP_KERNEL
, set
->numa_node
);
1375 blk_mq_free_tags(tags
);
1380 * rq_size is the size of the request plus driver payload, rounded
1381 * to the cacheline size
1383 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1385 left
= rq_size
* set
->queue_depth
;
1387 for (i
= 0; i
< set
->queue_depth
; ) {
1388 int this_order
= max_order
;
1393 while (left
< order_to_size(this_order
- 1) && this_order
)
1397 page
= alloc_pages_node(set
->numa_node
, GFP_KERNEL
,
1403 if (order_to_size(this_order
) < rq_size
)
1410 page
->private = this_order
;
1411 list_add_tail(&page
->lru
, &tags
->page_list
);
1413 p
= page_address(page
);
1414 entries_per_page
= order_to_size(this_order
) / rq_size
;
1415 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1416 left
-= to_do
* rq_size
;
1417 for (j
= 0; j
< to_do
; j
++) {
1419 if (set
->ops
->init_request
) {
1420 if (set
->ops
->init_request(set
->driver_data
,
1421 tags
->rqs
[i
], hctx_idx
, i
,
1434 pr_warn("%s: failed to allocate requests\n", __func__
);
1435 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1439 static void blk_mq_free_bitmap(struct blk_mq_ctxmap
*bitmap
)
1444 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap
*bitmap
, int node
)
1446 unsigned int bpw
= 8, total
, num_maps
, i
;
1448 bitmap
->bits_per_word
= bpw
;
1450 num_maps
= ALIGN(nr_cpu_ids
, bpw
) / bpw
;
1451 bitmap
->map
= kzalloc_node(num_maps
* sizeof(struct blk_align_bitmap
),
1456 bitmap
->map_size
= num_maps
;
1459 for (i
= 0; i
< num_maps
; i
++) {
1460 bitmap
->map
[i
].depth
= min(total
, bitmap
->bits_per_word
);
1461 total
-= bitmap
->map
[i
].depth
;
1467 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1469 struct request_queue
*q
= hctx
->queue
;
1470 struct blk_mq_ctx
*ctx
;
1474 * Move ctx entries to new CPU, if this one is going away.
1476 ctx
= __blk_mq_get_ctx(q
, cpu
);
1478 spin_lock(&ctx
->lock
);
1479 if (!list_empty(&ctx
->rq_list
)) {
1480 list_splice_init(&ctx
->rq_list
, &tmp
);
1481 blk_mq_hctx_clear_pending(hctx
, ctx
);
1483 spin_unlock(&ctx
->lock
);
1485 if (list_empty(&tmp
))
1488 ctx
= blk_mq_get_ctx(q
);
1489 spin_lock(&ctx
->lock
);
1491 while (!list_empty(&tmp
)) {
1494 rq
= list_first_entry(&tmp
, struct request
, queuelist
);
1496 list_move_tail(&rq
->queuelist
, &ctx
->rq_list
);
1499 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1500 blk_mq_hctx_mark_pending(hctx
, ctx
);
1502 spin_unlock(&ctx
->lock
);
1504 blk_mq_run_hw_queue(hctx
, true);
1505 blk_mq_put_ctx(ctx
);
1509 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1511 struct request_queue
*q
= hctx
->queue
;
1512 struct blk_mq_tag_set
*set
= q
->tag_set
;
1514 if (set
->tags
[hctx
->queue_num
])
1517 set
->tags
[hctx
->queue_num
] = blk_mq_init_rq_map(set
, hctx
->queue_num
);
1518 if (!set
->tags
[hctx
->queue_num
])
1521 hctx
->tags
= set
->tags
[hctx
->queue_num
];
1525 static int blk_mq_hctx_notify(void *data
, unsigned long action
,
1528 struct blk_mq_hw_ctx
*hctx
= data
;
1530 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
1531 return blk_mq_hctx_cpu_offline(hctx
, cpu
);
1532 else if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
)
1533 return blk_mq_hctx_cpu_online(hctx
, cpu
);
1538 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1539 struct blk_mq_tag_set
*set
, int nr_queue
)
1541 struct blk_mq_hw_ctx
*hctx
;
1544 queue_for_each_hw_ctx(q
, hctx
, i
) {
1548 blk_mq_tag_idle(hctx
);
1550 if (set
->ops
->exit_hctx
)
1551 set
->ops
->exit_hctx(hctx
, i
);
1553 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1555 blk_mq_free_bitmap(&hctx
->ctx_map
);
1560 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1561 struct blk_mq_tag_set
*set
)
1563 struct blk_mq_hw_ctx
*hctx
;
1566 queue_for_each_hw_ctx(q
, hctx
, i
) {
1567 free_cpumask_var(hctx
->cpumask
);
1572 static int blk_mq_init_hw_queues(struct request_queue
*q
,
1573 struct blk_mq_tag_set
*set
)
1575 struct blk_mq_hw_ctx
*hctx
;
1579 * Initialize hardware queues
1581 queue_for_each_hw_ctx(q
, hctx
, i
) {
1584 node
= hctx
->numa_node
;
1585 if (node
== NUMA_NO_NODE
)
1586 node
= hctx
->numa_node
= set
->numa_node
;
1588 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1589 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1590 spin_lock_init(&hctx
->lock
);
1591 INIT_LIST_HEAD(&hctx
->dispatch
);
1593 hctx
->queue_num
= i
;
1594 hctx
->flags
= set
->flags
;
1595 hctx
->cmd_size
= set
->cmd_size
;
1597 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1598 blk_mq_hctx_notify
, hctx
);
1599 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1601 hctx
->tags
= set
->tags
[i
];
1604 * Allocate space for all possible cpus to avoid allocation in
1607 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1612 if (blk_mq_alloc_bitmap(&hctx
->ctx_map
, node
))
1617 if (set
->ops
->init_hctx
&&
1618 set
->ops
->init_hctx(hctx
, set
->driver_data
, i
))
1622 if (i
== q
->nr_hw_queues
)
1628 blk_mq_exit_hw_queues(q
, set
, i
);
1633 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1634 unsigned int nr_hw_queues
)
1638 for_each_possible_cpu(i
) {
1639 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1640 struct blk_mq_hw_ctx
*hctx
;
1642 memset(__ctx
, 0, sizeof(*__ctx
));
1644 spin_lock_init(&__ctx
->lock
);
1645 INIT_LIST_HEAD(&__ctx
->rq_list
);
1648 /* If the cpu isn't online, the cpu is mapped to first hctx */
1652 hctx
= q
->mq_ops
->map_queue(q
, i
);
1653 cpumask_set_cpu(i
, hctx
->cpumask
);
1657 * Set local node, IFF we have more than one hw queue. If
1658 * not, we remain on the home node of the device
1660 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1661 hctx
->numa_node
= cpu_to_node(i
);
1665 static void blk_mq_map_swqueue(struct request_queue
*q
)
1668 struct blk_mq_hw_ctx
*hctx
;
1669 struct blk_mq_ctx
*ctx
;
1671 queue_for_each_hw_ctx(q
, hctx
, i
) {
1672 cpumask_clear(hctx
->cpumask
);
1677 * Map software to hardware queues
1679 queue_for_each_ctx(q
, ctx
, i
) {
1680 /* If the cpu isn't online, the cpu is mapped to first hctx */
1684 hctx
= q
->mq_ops
->map_queue(q
, i
);
1685 cpumask_set_cpu(i
, hctx
->cpumask
);
1686 ctx
->index_hw
= hctx
->nr_ctx
;
1687 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1690 queue_for_each_hw_ctx(q
, hctx
, i
) {
1692 * If not software queues are mapped to this hardware queue,
1693 * disable it and free the request entries
1695 if (!hctx
->nr_ctx
) {
1696 struct blk_mq_tag_set
*set
= q
->tag_set
;
1699 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1700 set
->tags
[i
] = NULL
;
1707 * Initialize batch roundrobin counts
1709 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1710 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1714 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
)
1716 struct blk_mq_hw_ctx
*hctx
;
1717 struct request_queue
*q
;
1721 if (set
->tag_list
.next
== set
->tag_list
.prev
)
1726 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1727 blk_mq_freeze_queue(q
);
1729 queue_for_each_hw_ctx(q
, hctx
, i
) {
1731 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1733 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1735 blk_mq_unfreeze_queue(q
);
1739 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1741 struct blk_mq_tag_set
*set
= q
->tag_set
;
1743 blk_mq_freeze_queue(q
);
1745 mutex_lock(&set
->tag_list_lock
);
1746 list_del_init(&q
->tag_set_list
);
1747 blk_mq_update_tag_set_depth(set
);
1748 mutex_unlock(&set
->tag_list_lock
);
1750 blk_mq_unfreeze_queue(q
);
1753 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1754 struct request_queue
*q
)
1758 mutex_lock(&set
->tag_list_lock
);
1759 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1760 blk_mq_update_tag_set_depth(set
);
1761 mutex_unlock(&set
->tag_list_lock
);
1764 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1766 struct blk_mq_hw_ctx
**hctxs
;
1767 struct blk_mq_ctx __percpu
*ctx
;
1768 struct request_queue
*q
;
1772 ctx
= alloc_percpu(struct blk_mq_ctx
);
1774 return ERR_PTR(-ENOMEM
);
1776 hctxs
= kmalloc_node(set
->nr_hw_queues
* sizeof(*hctxs
), GFP_KERNEL
,
1782 map
= blk_mq_make_queue_map(set
);
1786 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1787 int node
= blk_mq_hw_queue_to_node(map
, i
);
1789 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
1794 if (!zalloc_cpumask_var(&hctxs
[i
]->cpumask
, GFP_KERNEL
))
1797 atomic_set(&hctxs
[i
]->nr_active
, 0);
1798 hctxs
[i
]->numa_node
= node
;
1799 hctxs
[i
]->queue_num
= i
;
1802 q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1806 if (percpu_counter_init(&q
->mq_usage_counter
, 0))
1809 setup_timer(&q
->timeout
, blk_mq_rq_timer
, (unsigned long) q
);
1810 blk_queue_rq_timeout(q
, 30000);
1812 q
->nr_queues
= nr_cpu_ids
;
1813 q
->nr_hw_queues
= set
->nr_hw_queues
;
1817 q
->queue_hw_ctx
= hctxs
;
1819 q
->mq_ops
= set
->ops
;
1820 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
1822 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
1823 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
1825 q
->sg_reserved_size
= INT_MAX
;
1827 INIT_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
1828 INIT_LIST_HEAD(&q
->requeue_list
);
1829 spin_lock_init(&q
->requeue_lock
);
1831 if (q
->nr_hw_queues
> 1)
1832 blk_queue_make_request(q
, blk_mq_make_request
);
1834 blk_queue_make_request(q
, blk_sq_make_request
);
1836 blk_queue_rq_timed_out(q
, blk_mq_rq_timed_out
);
1838 blk_queue_rq_timeout(q
, set
->timeout
);
1841 * Do this after blk_queue_make_request() overrides it...
1843 q
->nr_requests
= set
->queue_depth
;
1845 if (set
->ops
->complete
)
1846 blk_queue_softirq_done(q
, set
->ops
->complete
);
1848 blk_mq_init_flush(q
);
1849 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
1851 q
->flush_rq
= kzalloc(round_up(sizeof(struct request
) +
1852 set
->cmd_size
, cache_line_size()),
1857 if (blk_mq_init_hw_queues(q
, set
))
1860 mutex_lock(&all_q_mutex
);
1861 list_add_tail(&q
->all_q_node
, &all_q_list
);
1862 mutex_unlock(&all_q_mutex
);
1864 blk_mq_add_queue_tag_set(set
, q
);
1866 blk_mq_map_swqueue(q
);
1873 blk_cleanup_queue(q
);
1876 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1879 free_cpumask_var(hctxs
[i
]->cpumask
);
1886 return ERR_PTR(-ENOMEM
);
1888 EXPORT_SYMBOL(blk_mq_init_queue
);
1890 void blk_mq_free_queue(struct request_queue
*q
)
1892 struct blk_mq_tag_set
*set
= q
->tag_set
;
1894 blk_mq_del_queue_tag_set(q
);
1896 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
1897 blk_mq_free_hw_queues(q
, set
);
1899 percpu_counter_destroy(&q
->mq_usage_counter
);
1901 free_percpu(q
->queue_ctx
);
1902 kfree(q
->queue_hw_ctx
);
1905 q
->queue_ctx
= NULL
;
1906 q
->queue_hw_ctx
= NULL
;
1909 mutex_lock(&all_q_mutex
);
1910 list_del_init(&q
->all_q_node
);
1911 mutex_unlock(&all_q_mutex
);
1914 /* Basically redo blk_mq_init_queue with queue frozen */
1915 static void blk_mq_queue_reinit(struct request_queue
*q
)
1917 blk_mq_freeze_queue(q
);
1919 blk_mq_sysfs_unregister(q
);
1921 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
);
1924 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1925 * we should change hctx numa_node according to new topology (this
1926 * involves free and re-allocate memory, worthy doing?)
1929 blk_mq_map_swqueue(q
);
1931 blk_mq_sysfs_register(q
);
1933 blk_mq_unfreeze_queue(q
);
1936 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
1937 unsigned long action
, void *hcpu
)
1939 struct request_queue
*q
;
1942 * Before new mappings are established, hotadded cpu might already
1943 * start handling requests. This doesn't break anything as we map
1944 * offline CPUs to first hardware queue. We will re-init the queue
1945 * below to get optimal settings.
1947 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
&&
1948 action
!= CPU_ONLINE
&& action
!= CPU_ONLINE_FROZEN
)
1951 mutex_lock(&all_q_mutex
);
1952 list_for_each_entry(q
, &all_q_list
, all_q_node
)
1953 blk_mq_queue_reinit(q
);
1954 mutex_unlock(&all_q_mutex
);
1959 * Alloc a tag set to be associated with one or more request queues.
1960 * May fail with EINVAL for various error conditions. May adjust the
1961 * requested depth down, if if it too large. In that case, the set
1962 * value will be stored in set->queue_depth.
1964 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
1968 if (!set
->nr_hw_queues
)
1970 if (!set
->queue_depth
)
1972 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
1975 if (!set
->nr_hw_queues
|| !set
->ops
->queue_rq
|| !set
->ops
->map_queue
)
1978 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
1979 pr_info("blk-mq: reduced tag depth to %u\n",
1981 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
1984 set
->tags
= kmalloc_node(set
->nr_hw_queues
*
1985 sizeof(struct blk_mq_tags
*),
1986 GFP_KERNEL
, set
->numa_node
);
1990 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1991 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
1996 mutex_init(&set
->tag_list_lock
);
1997 INIT_LIST_HEAD(&set
->tag_list
);
2003 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2007 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2009 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2013 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2015 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2020 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2022 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2024 struct blk_mq_tag_set
*set
= q
->tag_set
;
2025 struct blk_mq_hw_ctx
*hctx
;
2028 if (!set
|| nr
> set
->queue_depth
)
2032 queue_for_each_hw_ctx(q
, hctx
, i
) {
2033 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2039 q
->nr_requests
= nr
;
2044 void blk_mq_disable_hotplug(void)
2046 mutex_lock(&all_q_mutex
);
2049 void blk_mq_enable_hotplug(void)
2051 mutex_unlock(&all_q_mutex
);
2054 static int __init
blk_mq_init(void)
2058 /* Must be called after percpu_counter_hotcpu_callback() */
2059 hotcpu_notifier(blk_mq_queue_reinit_notify
, -10);
2063 subsys_initcall(blk_mq_init
);