perf/x86: Enable free running PEBS for REGS_USER/INTR
[linux/fpc-iii.git] / mm / huge_memory.c
blob269b5df58543e44d6a283c6268036f010aad37c2
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
42 * By default transparent hugepage support is disabled in order that avoid
43 * to risk increase the memory footprint of applications without a guaranteed
44 * benefit. When transparent hugepage support is enabled, is for all mappings,
45 * and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 static struct page *get_huge_zero_page(void)
67 struct page *zero_page;
68 retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 return READ_ONCE(huge_zero_page);
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 HPAGE_PMD_ORDER);
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 return NULL;
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
79 preempt_disable();
80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 preempt_enable();
82 __free_pages(zero_page, compound_order(zero_page));
83 goto retry;
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
89 return READ_ONCE(huge_zero_page);
92 static void put_huge_zero_page(void)
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
106 if (!get_huge_zero_page())
107 return NULL;
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
112 return READ_ONCE(huge_zero_page);
115 void mm_put_huge_zero_page(struct mm_struct *mm)
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
134 __free_pages(zero_page, compound_order(zero_page));
135 return HPAGE_PMD_NR;
138 return 0;
141 static struct shrinker huge_zero_page_shrinker = {
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
144 .seeks = DEFAULT_SEEKS,
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
159 static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
163 ssize_t ret = count;
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
180 if (ret > 0) {
181 int err = start_stop_khugepaged();
182 if (err)
183 ret = err;
185 return ret;
187 static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
203 unsigned long value;
204 int ret;
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
212 if (value)
213 set_bit(flag, &transparent_hugepage_flags);
214 else
215 clear_bit(flag, &transparent_hugepage_flags);
217 return count;
220 static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
234 static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
271 return count;
273 static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
279 return single_hugepage_flag_show(kobj, attr, buf,
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
285 return single_hugepage_flag_store(kobj, attr, buf, count,
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
296 static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
303 return single_hugepage_flag_show(kobj, attr, buf,
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
310 return single_hugepage_flag_store(kobj, attr, buf, count,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
313 static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
317 static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
320 &use_zero_page_attr.attr,
321 &hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 &shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327 #endif
328 NULL,
331 static const struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
337 int err;
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
341 pr_err("failed to create transparent hugepage kobject\n");
342 return -ENOMEM;
345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 if (err) {
347 pr_err("failed to register transparent hugepage group\n");
348 goto delete_obj;
351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 if (err) {
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group;
357 return 0;
359 remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
375 return 0;
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381 #endif /* CONFIG_SYSFS */
383 static int __init hugepage_init(void)
385 int err;
386 struct kobject *hugepage_kobj;
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
394 * hugepages can't be allocated by the buddy allocator
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
405 goto err_sysfs;
407 err = khugepaged_init();
408 if (err)
409 goto err_slab;
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 transparent_hugepage_flags = 0;
425 return 0;
428 err = start_stop_khugepaged();
429 if (err)
430 goto err_khugepaged;
432 return 0;
433 err_khugepaged:
434 unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 khugepaged_destroy();
439 err_slab:
440 hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 return err;
444 subsys_initcall(hugepage_init);
446 static int __init setup_transparent_hugepage(char *str)
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
470 out:
471 if (!ret)
472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 return ret;
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
484 static inline struct list_head *page_deferred_list(struct page *page)
487 * ->lru in the tail pages is occupied by compound_head.
488 * Let's use ->mapping + ->index in the second tail page as list_head.
490 return (struct list_head *)&page[2].mapping;
493 void prep_transhuge_page(struct page *page)
496 * we use page->mapping and page->indexlru in second tail page
497 * as list_head: assuming THP order >= 2
500 INIT_LIST_HEAD(page_deferred_list(page));
501 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 loff_t off, unsigned long flags, unsigned long size)
507 unsigned long addr;
508 loff_t off_end = off + len;
509 loff_t off_align = round_up(off, size);
510 unsigned long len_pad;
512 if (off_end <= off_align || (off_end - off_align) < size)
513 return 0;
515 len_pad = len + size;
516 if (len_pad < len || (off + len_pad) < off)
517 return 0;
519 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 off >> PAGE_SHIFT, flags);
521 if (IS_ERR_VALUE(addr))
522 return 0;
524 addr += (off - addr) & (size - 1);
525 return addr;
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 unsigned long len, unsigned long pgoff, unsigned long flags)
531 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
533 if (addr)
534 goto out;
535 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 goto out;
538 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 if (addr)
540 return addr;
542 out:
543 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548 gfp_t gfp)
550 struct vm_area_struct *vma = vmf->vma;
551 struct mem_cgroup *memcg;
552 pgtable_t pgtable;
553 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554 int ret = 0;
556 VM_BUG_ON_PAGE(!PageCompound(page), page);
558 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
559 put_page(page);
560 count_vm_event(THP_FAULT_FALLBACK);
561 return VM_FAULT_FALLBACK;
564 pgtable = pte_alloc_one(vma->vm_mm, haddr);
565 if (unlikely(!pgtable)) {
566 ret = VM_FAULT_OOM;
567 goto release;
570 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
572 * The memory barrier inside __SetPageUptodate makes sure that
573 * clear_huge_page writes become visible before the set_pmd_at()
574 * write.
576 __SetPageUptodate(page);
578 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579 if (unlikely(!pmd_none(*vmf->pmd))) {
580 goto unlock_release;
581 } else {
582 pmd_t entry;
584 ret = check_stable_address_space(vma->vm_mm);
585 if (ret)
586 goto unlock_release;
588 /* Deliver the page fault to userland */
589 if (userfaultfd_missing(vma)) {
590 int ret;
592 spin_unlock(vmf->ptl);
593 mem_cgroup_cancel_charge(page, memcg, true);
594 put_page(page);
595 pte_free(vma->vm_mm, pgtable);
596 ret = handle_userfault(vmf, VM_UFFD_MISSING);
597 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598 return ret;
601 entry = mk_huge_pmd(page, vma->vm_page_prot);
602 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
603 page_add_new_anon_rmap(page, vma, haddr, true);
604 mem_cgroup_commit_charge(page, memcg, false, true);
605 lru_cache_add_active_or_unevictable(page, vma);
606 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
608 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609 atomic_long_inc(&vma->vm_mm->nr_ptes);
610 spin_unlock(vmf->ptl);
611 count_vm_event(THP_FAULT_ALLOC);
614 return 0;
615 unlock_release:
616 spin_unlock(vmf->ptl);
617 release:
618 if (pgtable)
619 pte_free(vma->vm_mm, pgtable);
620 mem_cgroup_cancel_charge(page, memcg, true);
621 put_page(page);
622 return ret;
627 * always: directly stall for all thp allocations
628 * defer: wake kswapd and fail if not immediately available
629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630 * fail if not immediately available
631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632 * available
633 * never: never stall for any thp allocation
635 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
637 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
639 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
640 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 __GFP_KSWAPD_RECLAIM);
646 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
649 return GFP_TRANSHUGE_LIGHT;
652 /* Caller must hold page table lock. */
653 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
654 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
655 struct page *zero_page)
657 pmd_t entry;
658 if (!pmd_none(*pmd))
659 return false;
660 entry = mk_pmd(zero_page, vma->vm_page_prot);
661 entry = pmd_mkhuge(entry);
662 if (pgtable)
663 pgtable_trans_huge_deposit(mm, pmd, pgtable);
664 set_pmd_at(mm, haddr, pmd, entry);
665 atomic_long_inc(&mm->nr_ptes);
666 return true;
669 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
671 struct vm_area_struct *vma = vmf->vma;
672 gfp_t gfp;
673 struct page *page;
674 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
676 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
677 return VM_FAULT_FALLBACK;
678 if (unlikely(anon_vma_prepare(vma)))
679 return VM_FAULT_OOM;
680 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
681 return VM_FAULT_OOM;
682 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
683 !mm_forbids_zeropage(vma->vm_mm) &&
684 transparent_hugepage_use_zero_page()) {
685 pgtable_t pgtable;
686 struct page *zero_page;
687 bool set;
688 int ret;
689 pgtable = pte_alloc_one(vma->vm_mm, haddr);
690 if (unlikely(!pgtable))
691 return VM_FAULT_OOM;
692 zero_page = mm_get_huge_zero_page(vma->vm_mm);
693 if (unlikely(!zero_page)) {
694 pte_free(vma->vm_mm, pgtable);
695 count_vm_event(THP_FAULT_FALLBACK);
696 return VM_FAULT_FALLBACK;
698 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
699 ret = 0;
700 set = false;
701 if (pmd_none(*vmf->pmd)) {
702 ret = check_stable_address_space(vma->vm_mm);
703 if (ret) {
704 spin_unlock(vmf->ptl);
705 } else if (userfaultfd_missing(vma)) {
706 spin_unlock(vmf->ptl);
707 ret = handle_userfault(vmf, VM_UFFD_MISSING);
708 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709 } else {
710 set_huge_zero_page(pgtable, vma->vm_mm, vma,
711 haddr, vmf->pmd, zero_page);
712 spin_unlock(vmf->ptl);
713 set = true;
715 } else
716 spin_unlock(vmf->ptl);
717 if (!set)
718 pte_free(vma->vm_mm, pgtable);
719 return ret;
721 gfp = alloc_hugepage_direct_gfpmask(vma);
722 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
723 if (unlikely(!page)) {
724 count_vm_event(THP_FAULT_FALLBACK);
725 return VM_FAULT_FALLBACK;
727 prep_transhuge_page(page);
728 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
731 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
732 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733 pgtable_t pgtable)
735 struct mm_struct *mm = vma->vm_mm;
736 pmd_t entry;
737 spinlock_t *ptl;
739 ptl = pmd_lock(mm, pmd);
740 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741 if (pfn_t_devmap(pfn))
742 entry = pmd_mkdevmap(entry);
743 if (write) {
744 entry = pmd_mkyoung(pmd_mkdirty(entry));
745 entry = maybe_pmd_mkwrite(entry, vma);
748 if (pgtable) {
749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 atomic_long_inc(&mm->nr_ptes);
753 set_pmd_at(mm, addr, pmd, entry);
754 update_mmu_cache_pmd(vma, addr, pmd);
755 spin_unlock(ptl);
758 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
759 pmd_t *pmd, pfn_t pfn, bool write)
761 pgprot_t pgprot = vma->vm_page_prot;
762 pgtable_t pgtable = NULL;
764 * If we had pmd_special, we could avoid all these restrictions,
765 * but we need to be consistent with PTEs and architectures that
766 * can't support a 'special' bit.
768 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770 (VM_PFNMAP|VM_MIXEDMAP));
771 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
772 BUG_ON(!pfn_t_devmap(pfn));
774 if (addr < vma->vm_start || addr >= vma->vm_end)
775 return VM_FAULT_SIGBUS;
777 if (arch_needs_pgtable_deposit()) {
778 pgtable = pte_alloc_one(vma->vm_mm, addr);
779 if (!pgtable)
780 return VM_FAULT_OOM;
783 track_pfn_insert(vma, &pgprot, pfn);
785 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
786 return VM_FAULT_NOPAGE;
788 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
790 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
793 if (likely(vma->vm_flags & VM_WRITE))
794 pud = pud_mkwrite(pud);
795 return pud;
798 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
801 struct mm_struct *mm = vma->vm_mm;
802 pud_t entry;
803 spinlock_t *ptl;
805 ptl = pud_lock(mm, pud);
806 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807 if (pfn_t_devmap(pfn))
808 entry = pud_mkdevmap(entry);
809 if (write) {
810 entry = pud_mkyoung(pud_mkdirty(entry));
811 entry = maybe_pud_mkwrite(entry, vma);
813 set_pud_at(mm, addr, pud, entry);
814 update_mmu_cache_pud(vma, addr, pud);
815 spin_unlock(ptl);
818 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819 pud_t *pud, pfn_t pfn, bool write)
821 pgprot_t pgprot = vma->vm_page_prot;
823 * If we had pud_special, we could avoid all these restrictions,
824 * but we need to be consistent with PTEs and architectures that
825 * can't support a 'special' bit.
827 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829 (VM_PFNMAP|VM_MIXEDMAP));
830 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831 BUG_ON(!pfn_t_devmap(pfn));
833 if (addr < vma->vm_start || addr >= vma->vm_end)
834 return VM_FAULT_SIGBUS;
836 track_pfn_insert(vma, &pgprot, pfn);
838 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839 return VM_FAULT_NOPAGE;
841 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
844 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845 pmd_t *pmd)
847 pmd_t _pmd;
850 * We should set the dirty bit only for FOLL_WRITE but for now
851 * the dirty bit in the pmd is meaningless. And if the dirty
852 * bit will become meaningful and we'll only set it with
853 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
854 * set the young bit, instead of the current set_pmd_at.
856 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
857 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
858 pmd, _pmd, 1))
859 update_mmu_cache_pmd(vma, addr, pmd);
862 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
863 pmd_t *pmd, int flags)
865 unsigned long pfn = pmd_pfn(*pmd);
866 struct mm_struct *mm = vma->vm_mm;
867 struct dev_pagemap *pgmap;
868 struct page *page;
870 assert_spin_locked(pmd_lockptr(mm, pmd));
873 * When we COW a devmap PMD entry, we split it into PTEs, so we should
874 * not be in this function with `flags & FOLL_COW` set.
876 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
878 if (flags & FOLL_WRITE && !pmd_write(*pmd))
879 return NULL;
881 if (pmd_present(*pmd) && pmd_devmap(*pmd))
882 /* pass */;
883 else
884 return NULL;
886 if (flags & FOLL_TOUCH)
887 touch_pmd(vma, addr, pmd);
890 * device mapped pages can only be returned if the
891 * caller will manage the page reference count.
893 if (!(flags & FOLL_GET))
894 return ERR_PTR(-EEXIST);
896 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
897 pgmap = get_dev_pagemap(pfn, NULL);
898 if (!pgmap)
899 return ERR_PTR(-EFAULT);
900 page = pfn_to_page(pfn);
901 get_page(page);
902 put_dev_pagemap(pgmap);
904 return page;
907 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
908 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
909 struct vm_area_struct *vma)
911 spinlock_t *dst_ptl, *src_ptl;
912 struct page *src_page;
913 pmd_t pmd;
914 pgtable_t pgtable = NULL;
915 int ret = -ENOMEM;
917 /* Skip if can be re-fill on fault */
918 if (!vma_is_anonymous(vma))
919 return 0;
921 pgtable = pte_alloc_one(dst_mm, addr);
922 if (unlikely(!pgtable))
923 goto out;
925 dst_ptl = pmd_lock(dst_mm, dst_pmd);
926 src_ptl = pmd_lockptr(src_mm, src_pmd);
927 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
929 ret = -EAGAIN;
930 pmd = *src_pmd;
932 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
933 if (unlikely(is_swap_pmd(pmd))) {
934 swp_entry_t entry = pmd_to_swp_entry(pmd);
936 VM_BUG_ON(!is_pmd_migration_entry(pmd));
937 if (is_write_migration_entry(entry)) {
938 make_migration_entry_read(&entry);
939 pmd = swp_entry_to_pmd(entry);
940 if (pmd_swp_soft_dirty(*src_pmd))
941 pmd = pmd_swp_mksoft_dirty(pmd);
942 set_pmd_at(src_mm, addr, src_pmd, pmd);
944 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
945 ret = 0;
946 goto out_unlock;
948 #endif
950 if (unlikely(!pmd_trans_huge(pmd))) {
951 pte_free(dst_mm, pgtable);
952 goto out_unlock;
955 * When page table lock is held, the huge zero pmd should not be
956 * under splitting since we don't split the page itself, only pmd to
957 * a page table.
959 if (is_huge_zero_pmd(pmd)) {
960 struct page *zero_page;
962 * get_huge_zero_page() will never allocate a new page here,
963 * since we already have a zero page to copy. It just takes a
964 * reference.
966 zero_page = mm_get_huge_zero_page(dst_mm);
967 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
968 zero_page);
969 ret = 0;
970 goto out_unlock;
973 src_page = pmd_page(pmd);
974 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
975 get_page(src_page);
976 page_dup_rmap(src_page, true);
977 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
978 atomic_long_inc(&dst_mm->nr_ptes);
979 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
981 pmdp_set_wrprotect(src_mm, addr, src_pmd);
982 pmd = pmd_mkold(pmd_wrprotect(pmd));
983 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
985 ret = 0;
986 out_unlock:
987 spin_unlock(src_ptl);
988 spin_unlock(dst_ptl);
989 out:
990 return ret;
993 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
994 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
995 pud_t *pud)
997 pud_t _pud;
1000 * We should set the dirty bit only for FOLL_WRITE but for now
1001 * the dirty bit in the pud is meaningless. And if the dirty
1002 * bit will become meaningful and we'll only set it with
1003 * FOLL_WRITE, an atomic set_bit will be required on the pud to
1004 * set the young bit, instead of the current set_pud_at.
1006 _pud = pud_mkyoung(pud_mkdirty(*pud));
1007 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1008 pud, _pud, 1))
1009 update_mmu_cache_pud(vma, addr, pud);
1012 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1013 pud_t *pud, int flags)
1015 unsigned long pfn = pud_pfn(*pud);
1016 struct mm_struct *mm = vma->vm_mm;
1017 struct dev_pagemap *pgmap;
1018 struct page *page;
1020 assert_spin_locked(pud_lockptr(mm, pud));
1022 if (flags & FOLL_WRITE && !pud_write(*pud))
1023 return NULL;
1025 if (pud_present(*pud) && pud_devmap(*pud))
1026 /* pass */;
1027 else
1028 return NULL;
1030 if (flags & FOLL_TOUCH)
1031 touch_pud(vma, addr, pud);
1034 * device mapped pages can only be returned if the
1035 * caller will manage the page reference count.
1037 if (!(flags & FOLL_GET))
1038 return ERR_PTR(-EEXIST);
1040 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1041 pgmap = get_dev_pagemap(pfn, NULL);
1042 if (!pgmap)
1043 return ERR_PTR(-EFAULT);
1044 page = pfn_to_page(pfn);
1045 get_page(page);
1046 put_dev_pagemap(pgmap);
1048 return page;
1051 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1052 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1053 struct vm_area_struct *vma)
1055 spinlock_t *dst_ptl, *src_ptl;
1056 pud_t pud;
1057 int ret;
1059 dst_ptl = pud_lock(dst_mm, dst_pud);
1060 src_ptl = pud_lockptr(src_mm, src_pud);
1061 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1063 ret = -EAGAIN;
1064 pud = *src_pud;
1065 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1066 goto out_unlock;
1069 * When page table lock is held, the huge zero pud should not be
1070 * under splitting since we don't split the page itself, only pud to
1071 * a page table.
1073 if (is_huge_zero_pud(pud)) {
1074 /* No huge zero pud yet */
1077 pudp_set_wrprotect(src_mm, addr, src_pud);
1078 pud = pud_mkold(pud_wrprotect(pud));
1079 set_pud_at(dst_mm, addr, dst_pud, pud);
1081 ret = 0;
1082 out_unlock:
1083 spin_unlock(src_ptl);
1084 spin_unlock(dst_ptl);
1085 return ret;
1088 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1090 pud_t entry;
1091 unsigned long haddr;
1092 bool write = vmf->flags & FAULT_FLAG_WRITE;
1094 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1095 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1096 goto unlock;
1098 entry = pud_mkyoung(orig_pud);
1099 if (write)
1100 entry = pud_mkdirty(entry);
1101 haddr = vmf->address & HPAGE_PUD_MASK;
1102 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1103 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1105 unlock:
1106 spin_unlock(vmf->ptl);
1108 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1110 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1112 pmd_t entry;
1113 unsigned long haddr;
1114 bool write = vmf->flags & FAULT_FLAG_WRITE;
1116 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1117 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1118 goto unlock;
1120 entry = pmd_mkyoung(orig_pmd);
1121 if (write)
1122 entry = pmd_mkdirty(entry);
1123 haddr = vmf->address & HPAGE_PMD_MASK;
1124 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1125 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1127 unlock:
1128 spin_unlock(vmf->ptl);
1131 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1132 struct page *page)
1134 struct vm_area_struct *vma = vmf->vma;
1135 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1136 struct mem_cgroup *memcg;
1137 pgtable_t pgtable;
1138 pmd_t _pmd;
1139 int ret = 0, i;
1140 struct page **pages;
1141 unsigned long mmun_start; /* For mmu_notifiers */
1142 unsigned long mmun_end; /* For mmu_notifiers */
1144 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1145 GFP_KERNEL);
1146 if (unlikely(!pages)) {
1147 ret |= VM_FAULT_OOM;
1148 goto out;
1151 for (i = 0; i < HPAGE_PMD_NR; i++) {
1152 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1153 vmf->address, page_to_nid(page));
1154 if (unlikely(!pages[i] ||
1155 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1156 GFP_KERNEL, &memcg, false))) {
1157 if (pages[i])
1158 put_page(pages[i]);
1159 while (--i >= 0) {
1160 memcg = (void *)page_private(pages[i]);
1161 set_page_private(pages[i], 0);
1162 mem_cgroup_cancel_charge(pages[i], memcg,
1163 false);
1164 put_page(pages[i]);
1166 kfree(pages);
1167 ret |= VM_FAULT_OOM;
1168 goto out;
1170 set_page_private(pages[i], (unsigned long)memcg);
1173 for (i = 0; i < HPAGE_PMD_NR; i++) {
1174 copy_user_highpage(pages[i], page + i,
1175 haddr + PAGE_SIZE * i, vma);
1176 __SetPageUptodate(pages[i]);
1177 cond_resched();
1180 mmun_start = haddr;
1181 mmun_end = haddr + HPAGE_PMD_SIZE;
1182 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1184 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1185 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1186 goto out_free_pages;
1187 VM_BUG_ON_PAGE(!PageHead(page), page);
1189 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1190 /* leave pmd empty until pte is filled */
1192 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1193 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1195 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1196 pte_t entry;
1197 entry = mk_pte(pages[i], vma->vm_page_prot);
1198 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1199 memcg = (void *)page_private(pages[i]);
1200 set_page_private(pages[i], 0);
1201 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1202 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1203 lru_cache_add_active_or_unevictable(pages[i], vma);
1204 vmf->pte = pte_offset_map(&_pmd, haddr);
1205 VM_BUG_ON(!pte_none(*vmf->pte));
1206 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1207 pte_unmap(vmf->pte);
1209 kfree(pages);
1211 smp_wmb(); /* make pte visible before pmd */
1212 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1213 page_remove_rmap(page, true);
1214 spin_unlock(vmf->ptl);
1216 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1218 ret |= VM_FAULT_WRITE;
1219 put_page(page);
1221 out:
1222 return ret;
1224 out_free_pages:
1225 spin_unlock(vmf->ptl);
1226 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1227 for (i = 0; i < HPAGE_PMD_NR; i++) {
1228 memcg = (void *)page_private(pages[i]);
1229 set_page_private(pages[i], 0);
1230 mem_cgroup_cancel_charge(pages[i], memcg, false);
1231 put_page(pages[i]);
1233 kfree(pages);
1234 goto out;
1237 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1239 struct vm_area_struct *vma = vmf->vma;
1240 struct page *page = NULL, *new_page;
1241 struct mem_cgroup *memcg;
1242 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1243 unsigned long mmun_start; /* For mmu_notifiers */
1244 unsigned long mmun_end; /* For mmu_notifiers */
1245 gfp_t huge_gfp; /* for allocation and charge */
1246 int ret = 0;
1248 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1249 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1250 if (is_huge_zero_pmd(orig_pmd))
1251 goto alloc;
1252 spin_lock(vmf->ptl);
1253 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1254 goto out_unlock;
1256 page = pmd_page(orig_pmd);
1257 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1259 * We can only reuse the page if nobody else maps the huge page or it's
1260 * part.
1262 if (!trylock_page(page)) {
1263 get_page(page);
1264 spin_unlock(vmf->ptl);
1265 lock_page(page);
1266 spin_lock(vmf->ptl);
1267 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1268 unlock_page(page);
1269 put_page(page);
1270 goto out_unlock;
1272 put_page(page);
1274 if (reuse_swap_page(page, NULL)) {
1275 pmd_t entry;
1276 entry = pmd_mkyoung(orig_pmd);
1277 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1278 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1279 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1280 ret |= VM_FAULT_WRITE;
1281 unlock_page(page);
1282 goto out_unlock;
1284 unlock_page(page);
1285 get_page(page);
1286 spin_unlock(vmf->ptl);
1287 alloc:
1288 if (transparent_hugepage_enabled(vma) &&
1289 !transparent_hugepage_debug_cow()) {
1290 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1291 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1292 } else
1293 new_page = NULL;
1295 if (likely(new_page)) {
1296 prep_transhuge_page(new_page);
1297 } else {
1298 if (!page) {
1299 split_huge_pmd(vma, vmf->pmd, vmf->address);
1300 ret |= VM_FAULT_FALLBACK;
1301 } else {
1302 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1303 if (ret & VM_FAULT_OOM) {
1304 split_huge_pmd(vma, vmf->pmd, vmf->address);
1305 ret |= VM_FAULT_FALLBACK;
1307 put_page(page);
1309 count_vm_event(THP_FAULT_FALLBACK);
1310 goto out;
1313 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1314 huge_gfp, &memcg, true))) {
1315 put_page(new_page);
1316 split_huge_pmd(vma, vmf->pmd, vmf->address);
1317 if (page)
1318 put_page(page);
1319 ret |= VM_FAULT_FALLBACK;
1320 count_vm_event(THP_FAULT_FALLBACK);
1321 goto out;
1324 count_vm_event(THP_FAULT_ALLOC);
1326 if (!page)
1327 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1328 else
1329 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1330 __SetPageUptodate(new_page);
1332 mmun_start = haddr;
1333 mmun_end = haddr + HPAGE_PMD_SIZE;
1334 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1336 spin_lock(vmf->ptl);
1337 if (page)
1338 put_page(page);
1339 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1340 spin_unlock(vmf->ptl);
1341 mem_cgroup_cancel_charge(new_page, memcg, true);
1342 put_page(new_page);
1343 goto out_mn;
1344 } else {
1345 pmd_t entry;
1346 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1347 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1348 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1349 page_add_new_anon_rmap(new_page, vma, haddr, true);
1350 mem_cgroup_commit_charge(new_page, memcg, false, true);
1351 lru_cache_add_active_or_unevictable(new_page, vma);
1352 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1353 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1354 if (!page) {
1355 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1356 } else {
1357 VM_BUG_ON_PAGE(!PageHead(page), page);
1358 page_remove_rmap(page, true);
1359 put_page(page);
1361 ret |= VM_FAULT_WRITE;
1363 spin_unlock(vmf->ptl);
1364 out_mn:
1365 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1366 out:
1367 return ret;
1368 out_unlock:
1369 spin_unlock(vmf->ptl);
1370 return ret;
1374 * FOLL_FORCE can write to even unwritable pmd's, but only
1375 * after we've gone through a COW cycle and they are dirty.
1377 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1379 return pmd_write(pmd) ||
1380 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1383 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1384 unsigned long addr,
1385 pmd_t *pmd,
1386 unsigned int flags)
1388 struct mm_struct *mm = vma->vm_mm;
1389 struct page *page = NULL;
1391 assert_spin_locked(pmd_lockptr(mm, pmd));
1393 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1394 goto out;
1396 /* Avoid dumping huge zero page */
1397 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1398 return ERR_PTR(-EFAULT);
1400 /* Full NUMA hinting faults to serialise migration in fault paths */
1401 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1402 goto out;
1404 page = pmd_page(*pmd);
1405 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1406 if (flags & FOLL_TOUCH)
1407 touch_pmd(vma, addr, pmd);
1408 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1410 * We don't mlock() pte-mapped THPs. This way we can avoid
1411 * leaking mlocked pages into non-VM_LOCKED VMAs.
1413 * For anon THP:
1415 * In most cases the pmd is the only mapping of the page as we
1416 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1417 * writable private mappings in populate_vma_page_range().
1419 * The only scenario when we have the page shared here is if we
1420 * mlocking read-only mapping shared over fork(). We skip
1421 * mlocking such pages.
1423 * For file THP:
1425 * We can expect PageDoubleMap() to be stable under page lock:
1426 * for file pages we set it in page_add_file_rmap(), which
1427 * requires page to be locked.
1430 if (PageAnon(page) && compound_mapcount(page) != 1)
1431 goto skip_mlock;
1432 if (PageDoubleMap(page) || !page->mapping)
1433 goto skip_mlock;
1434 if (!trylock_page(page))
1435 goto skip_mlock;
1436 lru_add_drain();
1437 if (page->mapping && !PageDoubleMap(page))
1438 mlock_vma_page(page);
1439 unlock_page(page);
1441 skip_mlock:
1442 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1443 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1444 if (flags & FOLL_GET)
1445 get_page(page);
1447 out:
1448 return page;
1451 /* NUMA hinting page fault entry point for trans huge pmds */
1452 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1454 struct vm_area_struct *vma = vmf->vma;
1455 struct anon_vma *anon_vma = NULL;
1456 struct page *page;
1457 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1458 int page_nid = -1, this_nid = numa_node_id();
1459 int target_nid, last_cpupid = -1;
1460 bool page_locked;
1461 bool migrated = false;
1462 bool was_writable;
1463 int flags = 0;
1465 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1466 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1467 goto out_unlock;
1470 * If there are potential migrations, wait for completion and retry
1471 * without disrupting NUMA hinting information. Do not relock and
1472 * check_same as the page may no longer be mapped.
1474 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1475 page = pmd_page(*vmf->pmd);
1476 if (!get_page_unless_zero(page))
1477 goto out_unlock;
1478 spin_unlock(vmf->ptl);
1479 wait_on_page_locked(page);
1480 put_page(page);
1481 goto out;
1484 page = pmd_page(pmd);
1485 BUG_ON(is_huge_zero_page(page));
1486 page_nid = page_to_nid(page);
1487 last_cpupid = page_cpupid_last(page);
1488 count_vm_numa_event(NUMA_HINT_FAULTS);
1489 if (page_nid == this_nid) {
1490 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1491 flags |= TNF_FAULT_LOCAL;
1494 /* See similar comment in do_numa_page for explanation */
1495 if (!pmd_savedwrite(pmd))
1496 flags |= TNF_NO_GROUP;
1499 * Acquire the page lock to serialise THP migrations but avoid dropping
1500 * page_table_lock if at all possible
1502 page_locked = trylock_page(page);
1503 target_nid = mpol_misplaced(page, vma, haddr);
1504 if (target_nid == -1) {
1505 /* If the page was locked, there are no parallel migrations */
1506 if (page_locked)
1507 goto clear_pmdnuma;
1510 /* Migration could have started since the pmd_trans_migrating check */
1511 if (!page_locked) {
1512 page_nid = -1;
1513 if (!get_page_unless_zero(page))
1514 goto out_unlock;
1515 spin_unlock(vmf->ptl);
1516 wait_on_page_locked(page);
1517 put_page(page);
1518 goto out;
1522 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1523 * to serialises splits
1525 get_page(page);
1526 spin_unlock(vmf->ptl);
1527 anon_vma = page_lock_anon_vma_read(page);
1529 /* Confirm the PMD did not change while page_table_lock was released */
1530 spin_lock(vmf->ptl);
1531 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1532 unlock_page(page);
1533 put_page(page);
1534 page_nid = -1;
1535 goto out_unlock;
1538 /* Bail if we fail to protect against THP splits for any reason */
1539 if (unlikely(!anon_vma)) {
1540 put_page(page);
1541 page_nid = -1;
1542 goto clear_pmdnuma;
1546 * Since we took the NUMA fault, we must have observed the !accessible
1547 * bit. Make sure all other CPUs agree with that, to avoid them
1548 * modifying the page we're about to migrate.
1550 * Must be done under PTL such that we'll observe the relevant
1551 * inc_tlb_flush_pending().
1553 * We are not sure a pending tlb flush here is for a huge page
1554 * mapping or not. Hence use the tlb range variant
1556 if (mm_tlb_flush_pending(vma->vm_mm))
1557 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1560 * Migrate the THP to the requested node, returns with page unlocked
1561 * and access rights restored.
1563 spin_unlock(vmf->ptl);
1565 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1566 vmf->pmd, pmd, vmf->address, page, target_nid);
1567 if (migrated) {
1568 flags |= TNF_MIGRATED;
1569 page_nid = target_nid;
1570 } else
1571 flags |= TNF_MIGRATE_FAIL;
1573 goto out;
1574 clear_pmdnuma:
1575 BUG_ON(!PageLocked(page));
1576 was_writable = pmd_savedwrite(pmd);
1577 pmd = pmd_modify(pmd, vma->vm_page_prot);
1578 pmd = pmd_mkyoung(pmd);
1579 if (was_writable)
1580 pmd = pmd_mkwrite(pmd);
1581 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1582 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1583 unlock_page(page);
1584 out_unlock:
1585 spin_unlock(vmf->ptl);
1587 out:
1588 if (anon_vma)
1589 page_unlock_anon_vma_read(anon_vma);
1591 if (page_nid != -1)
1592 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1593 flags);
1595 return 0;
1599 * Return true if we do MADV_FREE successfully on entire pmd page.
1600 * Otherwise, return false.
1602 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1603 pmd_t *pmd, unsigned long addr, unsigned long next)
1605 spinlock_t *ptl;
1606 pmd_t orig_pmd;
1607 struct page *page;
1608 struct mm_struct *mm = tlb->mm;
1609 bool ret = false;
1611 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1613 ptl = pmd_trans_huge_lock(pmd, vma);
1614 if (!ptl)
1615 goto out_unlocked;
1617 orig_pmd = *pmd;
1618 if (is_huge_zero_pmd(orig_pmd))
1619 goto out;
1621 if (unlikely(!pmd_present(orig_pmd))) {
1622 VM_BUG_ON(thp_migration_supported() &&
1623 !is_pmd_migration_entry(orig_pmd));
1624 goto out;
1627 page = pmd_page(orig_pmd);
1629 * If other processes are mapping this page, we couldn't discard
1630 * the page unless they all do MADV_FREE so let's skip the page.
1632 if (page_mapcount(page) != 1)
1633 goto out;
1635 if (!trylock_page(page))
1636 goto out;
1639 * If user want to discard part-pages of THP, split it so MADV_FREE
1640 * will deactivate only them.
1642 if (next - addr != HPAGE_PMD_SIZE) {
1643 get_page(page);
1644 spin_unlock(ptl);
1645 split_huge_page(page);
1646 unlock_page(page);
1647 put_page(page);
1648 goto out_unlocked;
1651 if (PageDirty(page))
1652 ClearPageDirty(page);
1653 unlock_page(page);
1655 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1656 pmdp_invalidate(vma, addr, pmd);
1657 orig_pmd = pmd_mkold(orig_pmd);
1658 orig_pmd = pmd_mkclean(orig_pmd);
1660 set_pmd_at(mm, addr, pmd, orig_pmd);
1661 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1664 mark_page_lazyfree(page);
1665 ret = true;
1666 out:
1667 spin_unlock(ptl);
1668 out_unlocked:
1669 return ret;
1672 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1674 pgtable_t pgtable;
1676 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1677 pte_free(mm, pgtable);
1678 atomic_long_dec(&mm->nr_ptes);
1681 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1682 pmd_t *pmd, unsigned long addr)
1684 pmd_t orig_pmd;
1685 spinlock_t *ptl;
1687 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1689 ptl = __pmd_trans_huge_lock(pmd, vma);
1690 if (!ptl)
1691 return 0;
1693 * For architectures like ppc64 we look at deposited pgtable
1694 * when calling pmdp_huge_get_and_clear. So do the
1695 * pgtable_trans_huge_withdraw after finishing pmdp related
1696 * operations.
1698 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1699 tlb->fullmm);
1700 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1701 if (vma_is_dax(vma)) {
1702 if (arch_needs_pgtable_deposit())
1703 zap_deposited_table(tlb->mm, pmd);
1704 spin_unlock(ptl);
1705 if (is_huge_zero_pmd(orig_pmd))
1706 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1707 } else if (is_huge_zero_pmd(orig_pmd)) {
1708 zap_deposited_table(tlb->mm, pmd);
1709 spin_unlock(ptl);
1710 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1711 } else {
1712 struct page *page = NULL;
1713 int flush_needed = 1;
1715 if (pmd_present(orig_pmd)) {
1716 page = pmd_page(orig_pmd);
1717 page_remove_rmap(page, true);
1718 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1719 VM_BUG_ON_PAGE(!PageHead(page), page);
1720 } else if (thp_migration_supported()) {
1721 swp_entry_t entry;
1723 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1724 entry = pmd_to_swp_entry(orig_pmd);
1725 page = pfn_to_page(swp_offset(entry));
1726 flush_needed = 0;
1727 } else
1728 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1730 if (PageAnon(page)) {
1731 zap_deposited_table(tlb->mm, pmd);
1732 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1733 } else {
1734 if (arch_needs_pgtable_deposit())
1735 zap_deposited_table(tlb->mm, pmd);
1736 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1739 spin_unlock(ptl);
1740 if (flush_needed)
1741 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1743 return 1;
1746 #ifndef pmd_move_must_withdraw
1747 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1748 spinlock_t *old_pmd_ptl,
1749 struct vm_area_struct *vma)
1752 * With split pmd lock we also need to move preallocated
1753 * PTE page table if new_pmd is on different PMD page table.
1755 * We also don't deposit and withdraw tables for file pages.
1757 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1759 #endif
1761 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1763 #ifdef CONFIG_MEM_SOFT_DIRTY
1764 if (unlikely(is_pmd_migration_entry(pmd)))
1765 pmd = pmd_swp_mksoft_dirty(pmd);
1766 else if (pmd_present(pmd))
1767 pmd = pmd_mksoft_dirty(pmd);
1768 #endif
1769 return pmd;
1772 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1773 unsigned long new_addr, unsigned long old_end,
1774 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1776 spinlock_t *old_ptl, *new_ptl;
1777 pmd_t pmd;
1778 struct mm_struct *mm = vma->vm_mm;
1779 bool force_flush = false;
1781 if ((old_addr & ~HPAGE_PMD_MASK) ||
1782 (new_addr & ~HPAGE_PMD_MASK) ||
1783 old_end - old_addr < HPAGE_PMD_SIZE)
1784 return false;
1787 * The destination pmd shouldn't be established, free_pgtables()
1788 * should have release it.
1790 if (WARN_ON(!pmd_none(*new_pmd))) {
1791 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1792 return false;
1796 * We don't have to worry about the ordering of src and dst
1797 * ptlocks because exclusive mmap_sem prevents deadlock.
1799 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1800 if (old_ptl) {
1801 new_ptl = pmd_lockptr(mm, new_pmd);
1802 if (new_ptl != old_ptl)
1803 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1804 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1805 if (pmd_present(pmd) && pmd_dirty(pmd))
1806 force_flush = true;
1807 VM_BUG_ON(!pmd_none(*new_pmd));
1809 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1810 pgtable_t pgtable;
1811 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1812 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1814 pmd = move_soft_dirty_pmd(pmd);
1815 set_pmd_at(mm, new_addr, new_pmd, pmd);
1816 if (new_ptl != old_ptl)
1817 spin_unlock(new_ptl);
1818 if (force_flush)
1819 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1820 else
1821 *need_flush = true;
1822 spin_unlock(old_ptl);
1823 return true;
1825 return false;
1829 * Returns
1830 * - 0 if PMD could not be locked
1831 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1832 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1834 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1835 unsigned long addr, pgprot_t newprot, int prot_numa)
1837 struct mm_struct *mm = vma->vm_mm;
1838 spinlock_t *ptl;
1839 pmd_t entry;
1840 bool preserve_write;
1841 int ret;
1843 ptl = __pmd_trans_huge_lock(pmd, vma);
1844 if (!ptl)
1845 return 0;
1847 preserve_write = prot_numa && pmd_write(*pmd);
1848 ret = 1;
1850 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1851 if (is_swap_pmd(*pmd)) {
1852 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1854 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1855 if (is_write_migration_entry(entry)) {
1856 pmd_t newpmd;
1858 * A protection check is difficult so
1859 * just be safe and disable write
1861 make_migration_entry_read(&entry);
1862 newpmd = swp_entry_to_pmd(entry);
1863 if (pmd_swp_soft_dirty(*pmd))
1864 newpmd = pmd_swp_mksoft_dirty(newpmd);
1865 set_pmd_at(mm, addr, pmd, newpmd);
1867 goto unlock;
1869 #endif
1872 * Avoid trapping faults against the zero page. The read-only
1873 * data is likely to be read-cached on the local CPU and
1874 * local/remote hits to the zero page are not interesting.
1876 if (prot_numa && is_huge_zero_pmd(*pmd))
1877 goto unlock;
1879 if (prot_numa && pmd_protnone(*pmd))
1880 goto unlock;
1883 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1884 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1885 * which is also under down_read(mmap_sem):
1887 * CPU0: CPU1:
1888 * change_huge_pmd(prot_numa=1)
1889 * pmdp_huge_get_and_clear_notify()
1890 * madvise_dontneed()
1891 * zap_pmd_range()
1892 * pmd_trans_huge(*pmd) == 0 (without ptl)
1893 * // skip the pmd
1894 * set_pmd_at();
1895 * // pmd is re-established
1897 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1898 * which may break userspace.
1900 * pmdp_invalidate() is required to make sure we don't miss
1901 * dirty/young flags set by hardware.
1903 entry = *pmd;
1904 pmdp_invalidate(vma, addr, pmd);
1907 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1908 * corrupt them.
1910 if (pmd_dirty(*pmd))
1911 entry = pmd_mkdirty(entry);
1912 if (pmd_young(*pmd))
1913 entry = pmd_mkyoung(entry);
1915 entry = pmd_modify(entry, newprot);
1916 if (preserve_write)
1917 entry = pmd_mk_savedwrite(entry);
1918 ret = HPAGE_PMD_NR;
1919 set_pmd_at(mm, addr, pmd, entry);
1920 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1921 unlock:
1922 spin_unlock(ptl);
1923 return ret;
1927 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1929 * Note that if it returns page table lock pointer, this routine returns without
1930 * unlocking page table lock. So callers must unlock it.
1932 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1934 spinlock_t *ptl;
1935 ptl = pmd_lock(vma->vm_mm, pmd);
1936 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1937 pmd_devmap(*pmd)))
1938 return ptl;
1939 spin_unlock(ptl);
1940 return NULL;
1944 * Returns true if a given pud maps a thp, false otherwise.
1946 * Note that if it returns true, this routine returns without unlocking page
1947 * table lock. So callers must unlock it.
1949 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1951 spinlock_t *ptl;
1953 ptl = pud_lock(vma->vm_mm, pud);
1954 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1955 return ptl;
1956 spin_unlock(ptl);
1957 return NULL;
1960 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1961 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1962 pud_t *pud, unsigned long addr)
1964 pud_t orig_pud;
1965 spinlock_t *ptl;
1967 ptl = __pud_trans_huge_lock(pud, vma);
1968 if (!ptl)
1969 return 0;
1971 * For architectures like ppc64 we look at deposited pgtable
1972 * when calling pudp_huge_get_and_clear. So do the
1973 * pgtable_trans_huge_withdraw after finishing pudp related
1974 * operations.
1976 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1977 tlb->fullmm);
1978 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1979 if (vma_is_dax(vma)) {
1980 spin_unlock(ptl);
1981 /* No zero page support yet */
1982 } else {
1983 /* No support for anonymous PUD pages yet */
1984 BUG();
1986 return 1;
1989 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1990 unsigned long haddr)
1992 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1993 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1994 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1995 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1997 count_vm_event(THP_SPLIT_PUD);
1999 pudp_huge_clear_flush_notify(vma, haddr, pud);
2002 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2003 unsigned long address)
2005 spinlock_t *ptl;
2006 struct mm_struct *mm = vma->vm_mm;
2007 unsigned long haddr = address & HPAGE_PUD_MASK;
2009 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2010 ptl = pud_lock(mm, pud);
2011 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2012 goto out;
2013 __split_huge_pud_locked(vma, pud, haddr);
2015 out:
2016 spin_unlock(ptl);
2017 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
2019 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2021 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2022 unsigned long haddr, pmd_t *pmd)
2024 struct mm_struct *mm = vma->vm_mm;
2025 pgtable_t pgtable;
2026 pmd_t _pmd;
2027 int i;
2029 /* leave pmd empty until pte is filled */
2030 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2032 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2033 pmd_populate(mm, &_pmd, pgtable);
2035 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2036 pte_t *pte, entry;
2037 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2038 entry = pte_mkspecial(entry);
2039 pte = pte_offset_map(&_pmd, haddr);
2040 VM_BUG_ON(!pte_none(*pte));
2041 set_pte_at(mm, haddr, pte, entry);
2042 pte_unmap(pte);
2044 smp_wmb(); /* make pte visible before pmd */
2045 pmd_populate(mm, pmd, pgtable);
2048 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2049 unsigned long haddr, bool freeze)
2051 struct mm_struct *mm = vma->vm_mm;
2052 struct page *page;
2053 pgtable_t pgtable;
2054 pmd_t _pmd;
2055 bool young, write, dirty, soft_dirty, pmd_migration = false;
2056 unsigned long addr;
2057 int i;
2059 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2060 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2061 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2062 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2063 && !pmd_devmap(*pmd));
2065 count_vm_event(THP_SPLIT_PMD);
2067 if (!vma_is_anonymous(vma)) {
2068 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2070 * We are going to unmap this huge page. So
2071 * just go ahead and zap it
2073 if (arch_needs_pgtable_deposit())
2074 zap_deposited_table(mm, pmd);
2075 if (vma_is_dax(vma))
2076 return;
2077 page = pmd_page(_pmd);
2078 if (!PageReferenced(page) && pmd_young(_pmd))
2079 SetPageReferenced(page);
2080 page_remove_rmap(page, true);
2081 put_page(page);
2082 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2083 return;
2084 } else if (is_huge_zero_pmd(*pmd)) {
2085 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2088 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2089 pmd_migration = is_pmd_migration_entry(*pmd);
2090 if (pmd_migration) {
2091 swp_entry_t entry;
2093 entry = pmd_to_swp_entry(*pmd);
2094 page = pfn_to_page(swp_offset(entry));
2095 } else
2096 #endif
2097 page = pmd_page(*pmd);
2098 VM_BUG_ON_PAGE(!page_count(page), page);
2099 page_ref_add(page, HPAGE_PMD_NR - 1);
2100 write = pmd_write(*pmd);
2101 young = pmd_young(*pmd);
2102 dirty = pmd_dirty(*pmd);
2103 soft_dirty = pmd_soft_dirty(*pmd);
2105 pmdp_huge_split_prepare(vma, haddr, pmd);
2106 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2107 pmd_populate(mm, &_pmd, pgtable);
2109 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2110 pte_t entry, *pte;
2112 * Note that NUMA hinting access restrictions are not
2113 * transferred to avoid any possibility of altering
2114 * permissions across VMAs.
2116 if (freeze || pmd_migration) {
2117 swp_entry_t swp_entry;
2118 swp_entry = make_migration_entry(page + i, write);
2119 entry = swp_entry_to_pte(swp_entry);
2120 if (soft_dirty)
2121 entry = pte_swp_mksoft_dirty(entry);
2122 } else {
2123 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2124 entry = maybe_mkwrite(entry, vma);
2125 if (!write)
2126 entry = pte_wrprotect(entry);
2127 if (!young)
2128 entry = pte_mkold(entry);
2129 if (soft_dirty)
2130 entry = pte_mksoft_dirty(entry);
2132 if (dirty)
2133 SetPageDirty(page + i);
2134 pte = pte_offset_map(&_pmd, addr);
2135 BUG_ON(!pte_none(*pte));
2136 set_pte_at(mm, addr, pte, entry);
2137 atomic_inc(&page[i]._mapcount);
2138 pte_unmap(pte);
2142 * Set PG_double_map before dropping compound_mapcount to avoid
2143 * false-negative page_mapped().
2145 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2146 for (i = 0; i < HPAGE_PMD_NR; i++)
2147 atomic_inc(&page[i]._mapcount);
2150 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2151 /* Last compound_mapcount is gone. */
2152 __dec_node_page_state(page, NR_ANON_THPS);
2153 if (TestClearPageDoubleMap(page)) {
2154 /* No need in mapcount reference anymore */
2155 for (i = 0; i < HPAGE_PMD_NR; i++)
2156 atomic_dec(&page[i]._mapcount);
2160 smp_wmb(); /* make pte visible before pmd */
2162 * Up to this point the pmd is present and huge and userland has the
2163 * whole access to the hugepage during the split (which happens in
2164 * place). If we overwrite the pmd with the not-huge version pointing
2165 * to the pte here (which of course we could if all CPUs were bug
2166 * free), userland could trigger a small page size TLB miss on the
2167 * small sized TLB while the hugepage TLB entry is still established in
2168 * the huge TLB. Some CPU doesn't like that.
2169 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2170 * 383 on page 93. Intel should be safe but is also warns that it's
2171 * only safe if the permission and cache attributes of the two entries
2172 * loaded in the two TLB is identical (which should be the case here).
2173 * But it is generally safer to never allow small and huge TLB entries
2174 * for the same virtual address to be loaded simultaneously. So instead
2175 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2176 * current pmd notpresent (atomically because here the pmd_trans_huge
2177 * and pmd_trans_splitting must remain set at all times on the pmd
2178 * until the split is complete for this pmd), then we flush the SMP TLB
2179 * and finally we write the non-huge version of the pmd entry with
2180 * pmd_populate.
2182 pmdp_invalidate(vma, haddr, pmd);
2183 pmd_populate(mm, pmd, pgtable);
2185 if (freeze) {
2186 for (i = 0; i < HPAGE_PMD_NR; i++) {
2187 page_remove_rmap(page + i, false);
2188 put_page(page + i);
2193 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2194 unsigned long address, bool freeze, struct page *page)
2196 spinlock_t *ptl;
2197 struct mm_struct *mm = vma->vm_mm;
2198 unsigned long haddr = address & HPAGE_PMD_MASK;
2200 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2201 ptl = pmd_lock(mm, pmd);
2204 * If caller asks to setup a migration entries, we need a page to check
2205 * pmd against. Otherwise we can end up replacing wrong page.
2207 VM_BUG_ON(freeze && !page);
2208 if (page && page != pmd_page(*pmd))
2209 goto out;
2211 if (pmd_trans_huge(*pmd)) {
2212 page = pmd_page(*pmd);
2213 if (PageMlocked(page))
2214 clear_page_mlock(page);
2215 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2216 goto out;
2217 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2218 out:
2219 spin_unlock(ptl);
2220 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2223 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2224 bool freeze, struct page *page)
2226 pgd_t *pgd;
2227 p4d_t *p4d;
2228 pud_t *pud;
2229 pmd_t *pmd;
2231 pgd = pgd_offset(vma->vm_mm, address);
2232 if (!pgd_present(*pgd))
2233 return;
2235 p4d = p4d_offset(pgd, address);
2236 if (!p4d_present(*p4d))
2237 return;
2239 pud = pud_offset(p4d, address);
2240 if (!pud_present(*pud))
2241 return;
2243 pmd = pmd_offset(pud, address);
2245 __split_huge_pmd(vma, pmd, address, freeze, page);
2248 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2249 unsigned long start,
2250 unsigned long end,
2251 long adjust_next)
2254 * If the new start address isn't hpage aligned and it could
2255 * previously contain an hugepage: check if we need to split
2256 * an huge pmd.
2258 if (start & ~HPAGE_PMD_MASK &&
2259 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2260 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2261 split_huge_pmd_address(vma, start, false, NULL);
2264 * If the new end address isn't hpage aligned and it could
2265 * previously contain an hugepage: check if we need to split
2266 * an huge pmd.
2268 if (end & ~HPAGE_PMD_MASK &&
2269 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2270 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2271 split_huge_pmd_address(vma, end, false, NULL);
2274 * If we're also updating the vma->vm_next->vm_start, if the new
2275 * vm_next->vm_start isn't page aligned and it could previously
2276 * contain an hugepage: check if we need to split an huge pmd.
2278 if (adjust_next > 0) {
2279 struct vm_area_struct *next = vma->vm_next;
2280 unsigned long nstart = next->vm_start;
2281 nstart += adjust_next << PAGE_SHIFT;
2282 if (nstart & ~HPAGE_PMD_MASK &&
2283 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2284 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2285 split_huge_pmd_address(next, nstart, false, NULL);
2289 static void freeze_page(struct page *page)
2291 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2292 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2293 bool unmap_success;
2295 VM_BUG_ON_PAGE(!PageHead(page), page);
2297 if (PageAnon(page))
2298 ttu_flags |= TTU_SPLIT_FREEZE;
2300 unmap_success = try_to_unmap(page, ttu_flags);
2301 VM_BUG_ON_PAGE(!unmap_success, page);
2304 static void unfreeze_page(struct page *page)
2306 int i;
2307 if (PageTransHuge(page)) {
2308 remove_migration_ptes(page, page, true);
2309 } else {
2310 for (i = 0; i < HPAGE_PMD_NR; i++)
2311 remove_migration_ptes(page + i, page + i, true);
2315 static void __split_huge_page_tail(struct page *head, int tail,
2316 struct lruvec *lruvec, struct list_head *list)
2318 struct page *page_tail = head + tail;
2320 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2321 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2324 * tail_page->_refcount is zero and not changing from under us. But
2325 * get_page_unless_zero() may be running from under us on the
2326 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2327 * atomic_add(), we would then run atomic_set() concurrently with
2328 * get_page_unless_zero(), and atomic_set() is implemented in C not
2329 * using locked ops. spin_unlock on x86 sometime uses locked ops
2330 * because of PPro errata 66, 92, so unless somebody can guarantee
2331 * atomic_set() here would be safe on all archs (and not only on x86),
2332 * it's safer to use atomic_inc()/atomic_add().
2334 if (PageAnon(head) && !PageSwapCache(head)) {
2335 page_ref_inc(page_tail);
2336 } else {
2337 /* Additional pin to radix tree */
2338 page_ref_add(page_tail, 2);
2341 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2342 page_tail->flags |= (head->flags &
2343 ((1L << PG_referenced) |
2344 (1L << PG_swapbacked) |
2345 (1L << PG_swapcache) |
2346 (1L << PG_mlocked) |
2347 (1L << PG_uptodate) |
2348 (1L << PG_active) |
2349 (1L << PG_locked) |
2350 (1L << PG_unevictable) |
2351 (1L << PG_dirty)));
2354 * After clearing PageTail the gup refcount can be released.
2355 * Page flags also must be visible before we make the page non-compound.
2357 smp_wmb();
2359 clear_compound_head(page_tail);
2361 if (page_is_young(head))
2362 set_page_young(page_tail);
2363 if (page_is_idle(head))
2364 set_page_idle(page_tail);
2366 /* ->mapping in first tail page is compound_mapcount */
2367 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2368 page_tail);
2369 page_tail->mapping = head->mapping;
2371 page_tail->index = head->index + tail;
2372 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2373 lru_add_page_tail(head, page_tail, lruvec, list);
2376 static void __split_huge_page(struct page *page, struct list_head *list,
2377 unsigned long flags)
2379 struct page *head = compound_head(page);
2380 struct zone *zone = page_zone(head);
2381 struct lruvec *lruvec;
2382 pgoff_t end = -1;
2383 int i;
2385 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2387 /* complete memcg works before add pages to LRU */
2388 mem_cgroup_split_huge_fixup(head);
2390 if (!PageAnon(page))
2391 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2393 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2394 __split_huge_page_tail(head, i, lruvec, list);
2395 /* Some pages can be beyond i_size: drop them from page cache */
2396 if (head[i].index >= end) {
2397 __ClearPageDirty(head + i);
2398 __delete_from_page_cache(head + i, NULL);
2399 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2400 shmem_uncharge(head->mapping->host, 1);
2401 put_page(head + i);
2405 ClearPageCompound(head);
2406 /* See comment in __split_huge_page_tail() */
2407 if (PageAnon(head)) {
2408 /* Additional pin to radix tree of swap cache */
2409 if (PageSwapCache(head))
2410 page_ref_add(head, 2);
2411 else
2412 page_ref_inc(head);
2413 } else {
2414 /* Additional pin to radix tree */
2415 page_ref_add(head, 2);
2416 spin_unlock(&head->mapping->tree_lock);
2419 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2421 unfreeze_page(head);
2423 for (i = 0; i < HPAGE_PMD_NR; i++) {
2424 struct page *subpage = head + i;
2425 if (subpage == page)
2426 continue;
2427 unlock_page(subpage);
2430 * Subpages may be freed if there wasn't any mapping
2431 * like if add_to_swap() is running on a lru page that
2432 * had its mapping zapped. And freeing these pages
2433 * requires taking the lru_lock so we do the put_page
2434 * of the tail pages after the split is complete.
2436 put_page(subpage);
2440 int total_mapcount(struct page *page)
2442 int i, compound, ret;
2444 VM_BUG_ON_PAGE(PageTail(page), page);
2446 if (likely(!PageCompound(page)))
2447 return atomic_read(&page->_mapcount) + 1;
2449 compound = compound_mapcount(page);
2450 if (PageHuge(page))
2451 return compound;
2452 ret = compound;
2453 for (i = 0; i < HPAGE_PMD_NR; i++)
2454 ret += atomic_read(&page[i]._mapcount) + 1;
2455 /* File pages has compound_mapcount included in _mapcount */
2456 if (!PageAnon(page))
2457 return ret - compound * HPAGE_PMD_NR;
2458 if (PageDoubleMap(page))
2459 ret -= HPAGE_PMD_NR;
2460 return ret;
2464 * This calculates accurately how many mappings a transparent hugepage
2465 * has (unlike page_mapcount() which isn't fully accurate). This full
2466 * accuracy is primarily needed to know if copy-on-write faults can
2467 * reuse the page and change the mapping to read-write instead of
2468 * copying them. At the same time this returns the total_mapcount too.
2470 * The function returns the highest mapcount any one of the subpages
2471 * has. If the return value is one, even if different processes are
2472 * mapping different subpages of the transparent hugepage, they can
2473 * all reuse it, because each process is reusing a different subpage.
2475 * The total_mapcount is instead counting all virtual mappings of the
2476 * subpages. If the total_mapcount is equal to "one", it tells the
2477 * caller all mappings belong to the same "mm" and in turn the
2478 * anon_vma of the transparent hugepage can become the vma->anon_vma
2479 * local one as no other process may be mapping any of the subpages.
2481 * It would be more accurate to replace page_mapcount() with
2482 * page_trans_huge_mapcount(), however we only use
2483 * page_trans_huge_mapcount() in the copy-on-write faults where we
2484 * need full accuracy to avoid breaking page pinning, because
2485 * page_trans_huge_mapcount() is slower than page_mapcount().
2487 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2489 int i, ret, _total_mapcount, mapcount;
2491 /* hugetlbfs shouldn't call it */
2492 VM_BUG_ON_PAGE(PageHuge(page), page);
2494 if (likely(!PageTransCompound(page))) {
2495 mapcount = atomic_read(&page->_mapcount) + 1;
2496 if (total_mapcount)
2497 *total_mapcount = mapcount;
2498 return mapcount;
2501 page = compound_head(page);
2503 _total_mapcount = ret = 0;
2504 for (i = 0; i < HPAGE_PMD_NR; i++) {
2505 mapcount = atomic_read(&page[i]._mapcount) + 1;
2506 ret = max(ret, mapcount);
2507 _total_mapcount += mapcount;
2509 if (PageDoubleMap(page)) {
2510 ret -= 1;
2511 _total_mapcount -= HPAGE_PMD_NR;
2513 mapcount = compound_mapcount(page);
2514 ret += mapcount;
2515 _total_mapcount += mapcount;
2516 if (total_mapcount)
2517 *total_mapcount = _total_mapcount;
2518 return ret;
2521 /* Racy check whether the huge page can be split */
2522 bool can_split_huge_page(struct page *page, int *pextra_pins)
2524 int extra_pins;
2526 /* Additional pins from radix tree */
2527 if (PageAnon(page))
2528 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2529 else
2530 extra_pins = HPAGE_PMD_NR;
2531 if (pextra_pins)
2532 *pextra_pins = extra_pins;
2533 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2537 * This function splits huge page into normal pages. @page can point to any
2538 * subpage of huge page to split. Split doesn't change the position of @page.
2540 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2541 * The huge page must be locked.
2543 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2545 * Both head page and tail pages will inherit mapping, flags, and so on from
2546 * the hugepage.
2548 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2549 * they are not mapped.
2551 * Returns 0 if the hugepage is split successfully.
2552 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2553 * us.
2555 int split_huge_page_to_list(struct page *page, struct list_head *list)
2557 struct page *head = compound_head(page);
2558 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2559 struct anon_vma *anon_vma = NULL;
2560 struct address_space *mapping = NULL;
2561 int count, mapcount, extra_pins, ret;
2562 bool mlocked;
2563 unsigned long flags;
2565 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2566 VM_BUG_ON_PAGE(!PageLocked(page), page);
2567 VM_BUG_ON_PAGE(!PageCompound(page), page);
2569 if (PageWriteback(page))
2570 return -EBUSY;
2572 if (PageAnon(head)) {
2574 * The caller does not necessarily hold an mmap_sem that would
2575 * prevent the anon_vma disappearing so we first we take a
2576 * reference to it and then lock the anon_vma for write. This
2577 * is similar to page_lock_anon_vma_read except the write lock
2578 * is taken to serialise against parallel split or collapse
2579 * operations.
2581 anon_vma = page_get_anon_vma(head);
2582 if (!anon_vma) {
2583 ret = -EBUSY;
2584 goto out;
2586 mapping = NULL;
2587 anon_vma_lock_write(anon_vma);
2588 } else {
2589 mapping = head->mapping;
2591 /* Truncated ? */
2592 if (!mapping) {
2593 ret = -EBUSY;
2594 goto out;
2597 anon_vma = NULL;
2598 i_mmap_lock_read(mapping);
2602 * Racy check if we can split the page, before freeze_page() will
2603 * split PMDs
2605 if (!can_split_huge_page(head, &extra_pins)) {
2606 ret = -EBUSY;
2607 goto out_unlock;
2610 mlocked = PageMlocked(page);
2611 freeze_page(head);
2612 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2614 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2615 if (mlocked)
2616 lru_add_drain();
2618 /* prevent PageLRU to go away from under us, and freeze lru stats */
2619 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2621 if (mapping) {
2622 void **pslot;
2624 spin_lock(&mapping->tree_lock);
2625 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2626 page_index(head));
2628 * Check if the head page is present in radix tree.
2629 * We assume all tail are present too, if head is there.
2631 if (radix_tree_deref_slot_protected(pslot,
2632 &mapping->tree_lock) != head)
2633 goto fail;
2636 /* Prevent deferred_split_scan() touching ->_refcount */
2637 spin_lock(&pgdata->split_queue_lock);
2638 count = page_count(head);
2639 mapcount = total_mapcount(head);
2640 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2641 if (!list_empty(page_deferred_list(head))) {
2642 pgdata->split_queue_len--;
2643 list_del(page_deferred_list(head));
2645 if (mapping)
2646 __dec_node_page_state(page, NR_SHMEM_THPS);
2647 spin_unlock(&pgdata->split_queue_lock);
2648 __split_huge_page(page, list, flags);
2649 if (PageSwapCache(head)) {
2650 swp_entry_t entry = { .val = page_private(head) };
2652 ret = split_swap_cluster(entry);
2653 } else
2654 ret = 0;
2655 } else {
2656 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2657 pr_alert("total_mapcount: %u, page_count(): %u\n",
2658 mapcount, count);
2659 if (PageTail(page))
2660 dump_page(head, NULL);
2661 dump_page(page, "total_mapcount(head) > 0");
2662 BUG();
2664 spin_unlock(&pgdata->split_queue_lock);
2665 fail: if (mapping)
2666 spin_unlock(&mapping->tree_lock);
2667 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2668 unfreeze_page(head);
2669 ret = -EBUSY;
2672 out_unlock:
2673 if (anon_vma) {
2674 anon_vma_unlock_write(anon_vma);
2675 put_anon_vma(anon_vma);
2677 if (mapping)
2678 i_mmap_unlock_read(mapping);
2679 out:
2680 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2681 return ret;
2684 void free_transhuge_page(struct page *page)
2686 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2687 unsigned long flags;
2689 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2690 if (!list_empty(page_deferred_list(page))) {
2691 pgdata->split_queue_len--;
2692 list_del(page_deferred_list(page));
2694 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2695 free_compound_page(page);
2698 void deferred_split_huge_page(struct page *page)
2700 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2701 unsigned long flags;
2703 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2705 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2706 if (list_empty(page_deferred_list(page))) {
2707 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2708 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2709 pgdata->split_queue_len++;
2711 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2714 static unsigned long deferred_split_count(struct shrinker *shrink,
2715 struct shrink_control *sc)
2717 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2718 return ACCESS_ONCE(pgdata->split_queue_len);
2721 static unsigned long deferred_split_scan(struct shrinker *shrink,
2722 struct shrink_control *sc)
2724 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2725 unsigned long flags;
2726 LIST_HEAD(list), *pos, *next;
2727 struct page *page;
2728 int split = 0;
2730 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2731 /* Take pin on all head pages to avoid freeing them under us */
2732 list_for_each_safe(pos, next, &pgdata->split_queue) {
2733 page = list_entry((void *)pos, struct page, mapping);
2734 page = compound_head(page);
2735 if (get_page_unless_zero(page)) {
2736 list_move(page_deferred_list(page), &list);
2737 } else {
2738 /* We lost race with put_compound_page() */
2739 list_del_init(page_deferred_list(page));
2740 pgdata->split_queue_len--;
2742 if (!--sc->nr_to_scan)
2743 break;
2745 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2747 list_for_each_safe(pos, next, &list) {
2748 page = list_entry((void *)pos, struct page, mapping);
2749 lock_page(page);
2750 /* split_huge_page() removes page from list on success */
2751 if (!split_huge_page(page))
2752 split++;
2753 unlock_page(page);
2754 put_page(page);
2757 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2758 list_splice_tail(&list, &pgdata->split_queue);
2759 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2762 * Stop shrinker if we didn't split any page, but the queue is empty.
2763 * This can happen if pages were freed under us.
2765 if (!split && list_empty(&pgdata->split_queue))
2766 return SHRINK_STOP;
2767 return split;
2770 static struct shrinker deferred_split_shrinker = {
2771 .count_objects = deferred_split_count,
2772 .scan_objects = deferred_split_scan,
2773 .seeks = DEFAULT_SEEKS,
2774 .flags = SHRINKER_NUMA_AWARE,
2777 #ifdef CONFIG_DEBUG_FS
2778 static int split_huge_pages_set(void *data, u64 val)
2780 struct zone *zone;
2781 struct page *page;
2782 unsigned long pfn, max_zone_pfn;
2783 unsigned long total = 0, split = 0;
2785 if (val != 1)
2786 return -EINVAL;
2788 for_each_populated_zone(zone) {
2789 max_zone_pfn = zone_end_pfn(zone);
2790 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2791 if (!pfn_valid(pfn))
2792 continue;
2794 page = pfn_to_page(pfn);
2795 if (!get_page_unless_zero(page))
2796 continue;
2798 if (zone != page_zone(page))
2799 goto next;
2801 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2802 goto next;
2804 total++;
2805 lock_page(page);
2806 if (!split_huge_page(page))
2807 split++;
2808 unlock_page(page);
2809 next:
2810 put_page(page);
2814 pr_info("%lu of %lu THP split\n", split, total);
2816 return 0;
2818 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2819 "%llu\n");
2821 static int __init split_huge_pages_debugfs(void)
2823 void *ret;
2825 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2826 &split_huge_pages_fops);
2827 if (!ret)
2828 pr_warn("Failed to create split_huge_pages in debugfs");
2829 return 0;
2831 late_initcall(split_huge_pages_debugfs);
2832 #endif
2834 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2835 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2836 struct page *page)
2838 struct vm_area_struct *vma = pvmw->vma;
2839 struct mm_struct *mm = vma->vm_mm;
2840 unsigned long address = pvmw->address;
2841 pmd_t pmdval;
2842 swp_entry_t entry;
2843 pmd_t pmdswp;
2845 if (!(pvmw->pmd && !pvmw->pte))
2846 return;
2848 mmu_notifier_invalidate_range_start(mm, address,
2849 address + HPAGE_PMD_SIZE);
2851 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2852 pmdval = *pvmw->pmd;
2853 pmdp_invalidate(vma, address, pvmw->pmd);
2854 if (pmd_dirty(pmdval))
2855 set_page_dirty(page);
2856 entry = make_migration_entry(page, pmd_write(pmdval));
2857 pmdswp = swp_entry_to_pmd(entry);
2858 if (pmd_soft_dirty(pmdval))
2859 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2860 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2861 page_remove_rmap(page, true);
2862 put_page(page);
2864 mmu_notifier_invalidate_range_end(mm, address,
2865 address + HPAGE_PMD_SIZE);
2868 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2870 struct vm_area_struct *vma = pvmw->vma;
2871 struct mm_struct *mm = vma->vm_mm;
2872 unsigned long address = pvmw->address;
2873 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2874 pmd_t pmde;
2875 swp_entry_t entry;
2877 if (!(pvmw->pmd && !pvmw->pte))
2878 return;
2880 entry = pmd_to_swp_entry(*pvmw->pmd);
2881 get_page(new);
2882 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2883 if (pmd_swp_soft_dirty(*pvmw->pmd))
2884 pmde = pmd_mksoft_dirty(pmde);
2885 if (is_write_migration_entry(entry))
2886 pmde = maybe_pmd_mkwrite(pmde, vma);
2888 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2889 page_add_anon_rmap(new, vma, mmun_start, true);
2890 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2891 if (vma->vm_flags & VM_LOCKED)
2892 mlock_vma_page(new);
2893 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2895 #endif