Linux 3.16-rc2
[linux/fpc-iii.git] / arch / ia64 / kernel / topology.c
blobf295f9abba4b04772679a6ff232a2f1387572c27
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
8 * contiguous memory.
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <asm/mmzone.h>
27 #include <asm/numa.h>
28 #include <asm/cpu.h>
30 static struct ia64_cpu *sysfs_cpus;
32 void arch_fix_phys_package_id(int num, u32 slot)
34 #ifdef CONFIG_SMP
35 if (cpu_data(num)->socket_id == -1)
36 cpu_data(num)->socket_id = slot;
37 #endif
39 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
42 #ifdef CONFIG_HOTPLUG_CPU
43 int __ref arch_register_cpu(int num)
45 #ifdef CONFIG_ACPI
47 * If CPEI can be re-targeted or if this is not
48 * CPEI target, then it is hotpluggable
50 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
51 sysfs_cpus[num].cpu.hotpluggable = 1;
52 map_cpu_to_node(num, node_cpuid[num].nid);
53 #endif
54 return register_cpu(&sysfs_cpus[num].cpu, num);
56 EXPORT_SYMBOL(arch_register_cpu);
58 void __ref arch_unregister_cpu(int num)
60 unregister_cpu(&sysfs_cpus[num].cpu);
61 #ifdef CONFIG_ACPI
62 unmap_cpu_from_node(num, cpu_to_node(num));
63 #endif
65 EXPORT_SYMBOL(arch_unregister_cpu);
66 #else
67 static int __init arch_register_cpu(int num)
69 return register_cpu(&sysfs_cpus[num].cpu, num);
71 #endif /*CONFIG_HOTPLUG_CPU*/
74 static int __init topology_init(void)
76 int i, err = 0;
78 #ifdef CONFIG_NUMA
80 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
82 for_each_online_node(i) {
83 if ((err = register_one_node(i)))
84 goto out;
86 #endif
88 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
89 if (!sysfs_cpus)
90 panic("kzalloc in topology_init failed - NR_CPUS too big?");
92 for_each_present_cpu(i) {
93 if((err = arch_register_cpu(i)))
94 goto out;
96 out:
97 return err;
100 subsys_initcall(topology_init);
104 * Export cpu cache information through sysfs
108 * A bunch of string array to get pretty printing
110 static const char *cache_types[] = {
111 "", /* not used */
112 "Instruction",
113 "Data",
114 "Unified" /* unified */
117 static const char *cache_mattrib[]={
118 "WriteThrough",
119 "WriteBack",
120 "", /* reserved */
121 "" /* reserved */
124 struct cache_info {
125 pal_cache_config_info_t cci;
126 cpumask_t shared_cpu_map;
127 int level;
128 int type;
129 struct kobject kobj;
132 struct cpu_cache_info {
133 struct cache_info *cache_leaves;
134 int num_cache_leaves;
135 struct kobject kobj;
138 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
139 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
141 #ifdef CONFIG_SMP
142 static void cache_shared_cpu_map_setup(unsigned int cpu,
143 struct cache_info * this_leaf)
145 pal_cache_shared_info_t csi;
146 int num_shared, i = 0;
147 unsigned int j;
149 if (cpu_data(cpu)->threads_per_core <= 1 &&
150 cpu_data(cpu)->cores_per_socket <= 1) {
151 cpu_set(cpu, this_leaf->shared_cpu_map);
152 return;
155 if (ia64_pal_cache_shared_info(this_leaf->level,
156 this_leaf->type,
158 &csi) != PAL_STATUS_SUCCESS)
159 return;
161 num_shared = (int) csi.num_shared;
162 do {
163 for_each_possible_cpu(j)
164 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
165 && cpu_data(j)->core_id == csi.log1_cid
166 && cpu_data(j)->thread_id == csi.log1_tid)
167 cpu_set(j, this_leaf->shared_cpu_map);
169 i++;
170 } while (i < num_shared &&
171 ia64_pal_cache_shared_info(this_leaf->level,
172 this_leaf->type,
174 &csi) == PAL_STATUS_SUCCESS);
176 #else
177 static void cache_shared_cpu_map_setup(unsigned int cpu,
178 struct cache_info * this_leaf)
180 cpu_set(cpu, this_leaf->shared_cpu_map);
181 return;
183 #endif
185 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
186 char *buf)
188 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
191 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
192 char *buf)
194 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
197 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
199 return sprintf(buf,
200 "%s\n",
201 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
204 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
206 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
209 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
211 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
212 number_of_sets /= this_leaf->cci.pcci_assoc;
213 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
215 return sprintf(buf, "%u\n", number_of_sets);
218 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
220 ssize_t len;
221 cpumask_t shared_cpu_map;
223 cpumask_and(&shared_cpu_map,
224 &this_leaf->shared_cpu_map, cpu_online_mask);
225 len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
226 len += sprintf(buf+len, "\n");
227 return len;
230 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
232 int type = this_leaf->type + this_leaf->cci.pcci_unified;
233 return sprintf(buf, "%s\n", cache_types[type]);
236 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
238 return sprintf(buf, "%u\n", this_leaf->level);
241 struct cache_attr {
242 struct attribute attr;
243 ssize_t (*show)(struct cache_info *, char *);
244 ssize_t (*store)(struct cache_info *, const char *, size_t count);
247 #ifdef define_one_ro
248 #undef define_one_ro
249 #endif
250 #define define_one_ro(_name) \
251 static struct cache_attr _name = \
252 __ATTR(_name, 0444, show_##_name, NULL)
254 define_one_ro(level);
255 define_one_ro(type);
256 define_one_ro(coherency_line_size);
257 define_one_ro(ways_of_associativity);
258 define_one_ro(size);
259 define_one_ro(number_of_sets);
260 define_one_ro(shared_cpu_map);
261 define_one_ro(attributes);
263 static struct attribute * cache_default_attrs[] = {
264 &type.attr,
265 &level.attr,
266 &coherency_line_size.attr,
267 &ways_of_associativity.attr,
268 &attributes.attr,
269 &size.attr,
270 &number_of_sets.attr,
271 &shared_cpu_map.attr,
272 NULL
275 #define to_object(k) container_of(k, struct cache_info, kobj)
276 #define to_attr(a) container_of(a, struct cache_attr, attr)
278 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
280 struct cache_attr *fattr = to_attr(attr);
281 struct cache_info *this_leaf = to_object(kobj);
282 ssize_t ret;
284 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
285 return ret;
288 static const struct sysfs_ops cache_sysfs_ops = {
289 .show = ia64_cache_show
292 static struct kobj_type cache_ktype = {
293 .sysfs_ops = &cache_sysfs_ops,
294 .default_attrs = cache_default_attrs,
297 static struct kobj_type cache_ktype_percpu_entry = {
298 .sysfs_ops = &cache_sysfs_ops,
301 static void cpu_cache_sysfs_exit(unsigned int cpu)
303 kfree(all_cpu_cache_info[cpu].cache_leaves);
304 all_cpu_cache_info[cpu].cache_leaves = NULL;
305 all_cpu_cache_info[cpu].num_cache_leaves = 0;
306 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
307 return;
310 static int cpu_cache_sysfs_init(unsigned int cpu)
312 unsigned long i, levels, unique_caches;
313 pal_cache_config_info_t cci;
314 int j;
315 long status;
316 struct cache_info *this_cache;
317 int num_cache_leaves = 0;
319 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
320 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
321 return -1;
324 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
325 GFP_KERNEL);
326 if (this_cache == NULL)
327 return -ENOMEM;
329 for (i=0; i < levels; i++) {
330 for (j=2; j >0 ; j--) {
331 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
332 PAL_STATUS_SUCCESS)
333 continue;
335 this_cache[num_cache_leaves].cci = cci;
336 this_cache[num_cache_leaves].level = i + 1;
337 this_cache[num_cache_leaves].type = j;
339 cache_shared_cpu_map_setup(cpu,
340 &this_cache[num_cache_leaves]);
341 num_cache_leaves ++;
345 all_cpu_cache_info[cpu].cache_leaves = this_cache;
346 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
348 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
350 return 0;
353 /* Add cache interface for CPU device */
354 static int cache_add_dev(struct device *sys_dev)
356 unsigned int cpu = sys_dev->id;
357 unsigned long i, j;
358 struct cache_info *this_object;
359 int retval = 0;
360 cpumask_t oldmask;
362 if (all_cpu_cache_info[cpu].kobj.parent)
363 return 0;
365 oldmask = current->cpus_allowed;
366 retval = set_cpus_allowed_ptr(current, cpumask_of(cpu));
367 if (unlikely(retval))
368 return retval;
370 retval = cpu_cache_sysfs_init(cpu);
371 set_cpus_allowed_ptr(current, &oldmask);
372 if (unlikely(retval < 0))
373 return retval;
375 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
376 &cache_ktype_percpu_entry, &sys_dev->kobj,
377 "%s", "cache");
378 if (unlikely(retval < 0)) {
379 cpu_cache_sysfs_exit(cpu);
380 return retval;
383 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
384 this_object = LEAF_KOBJECT_PTR(cpu,i);
385 retval = kobject_init_and_add(&(this_object->kobj),
386 &cache_ktype,
387 &all_cpu_cache_info[cpu].kobj,
388 "index%1lu", i);
389 if (unlikely(retval)) {
390 for (j = 0; j < i; j++) {
391 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
393 kobject_put(&all_cpu_cache_info[cpu].kobj);
394 cpu_cache_sysfs_exit(cpu);
395 return retval;
397 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
399 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
400 return retval;
403 /* Remove cache interface for CPU device */
404 static int cache_remove_dev(struct device *sys_dev)
406 unsigned int cpu = sys_dev->id;
407 unsigned long i;
409 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
410 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
412 if (all_cpu_cache_info[cpu].kobj.parent) {
413 kobject_put(&all_cpu_cache_info[cpu].kobj);
414 memset(&all_cpu_cache_info[cpu].kobj,
416 sizeof(struct kobject));
419 cpu_cache_sysfs_exit(cpu);
421 return 0;
425 * When a cpu is hot-plugged, do a check and initiate
426 * cache kobject if necessary
428 static int cache_cpu_callback(struct notifier_block *nfb,
429 unsigned long action, void *hcpu)
431 unsigned int cpu = (unsigned long)hcpu;
432 struct device *sys_dev;
434 sys_dev = get_cpu_device(cpu);
435 switch (action) {
436 case CPU_ONLINE:
437 case CPU_ONLINE_FROZEN:
438 cache_add_dev(sys_dev);
439 break;
440 case CPU_DEAD:
441 case CPU_DEAD_FROZEN:
442 cache_remove_dev(sys_dev);
443 break;
445 return NOTIFY_OK;
448 static struct notifier_block cache_cpu_notifier =
450 .notifier_call = cache_cpu_callback
453 static int __init cache_sysfs_init(void)
455 int i;
457 cpu_notifier_register_begin();
459 for_each_online_cpu(i) {
460 struct device *sys_dev = get_cpu_device((unsigned int)i);
461 cache_add_dev(sys_dev);
464 __register_hotcpu_notifier(&cache_cpu_notifier);
466 cpu_notifier_register_done();
468 return 0;
471 device_initcall(cache_sysfs_init);