2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
40 #include "blk-cgroup.h"
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
49 DEFINE_IDA(blk_queue_ida
);
52 * For the allocated request tables
54 struct kmem_cache
*request_cachep
= NULL
;
57 * For queue allocation
59 struct kmem_cache
*blk_requestq_cachep
;
62 * Controlling structure to kblockd
64 static struct workqueue_struct
*kblockd_workqueue
;
66 void blk_queue_congestion_threshold(struct request_queue
*q
)
70 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
71 if (nr
> q
->nr_requests
)
73 q
->nr_congestion_on
= nr
;
75 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
78 q
->nr_congestion_off
= nr
;
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
85 * Locates the passed device's request queue and returns the address of its
88 * Will return NULL if the request queue cannot be located.
90 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
92 struct backing_dev_info
*ret
= NULL
;
93 struct request_queue
*q
= bdev_get_queue(bdev
);
96 ret
= &q
->backing_dev_info
;
99 EXPORT_SYMBOL(blk_get_backing_dev_info
);
101 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
103 memset(rq
, 0, sizeof(*rq
));
105 INIT_LIST_HEAD(&rq
->queuelist
);
106 INIT_LIST_HEAD(&rq
->timeout_list
);
109 rq
->__sector
= (sector_t
) -1;
110 INIT_HLIST_NODE(&rq
->hash
);
111 RB_CLEAR_NODE(&rq
->rb_node
);
113 rq
->cmd_len
= BLK_MAX_CDB
;
115 rq
->start_time
= jiffies
;
116 set_start_time_ns(rq
);
119 EXPORT_SYMBOL(blk_rq_init
);
121 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
122 unsigned int nbytes
, int error
)
125 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
126 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
129 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
130 set_bit(BIO_QUIET
, &bio
->bi_flags
);
132 bio_advance(bio
, nbytes
);
134 /* don't actually finish bio if it's part of flush sequence */
135 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
136 bio_endio(bio
, error
);
139 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
143 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%llx\n", msg
,
144 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
145 (unsigned long long) rq
->cmd_flags
);
147 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
148 (unsigned long long)blk_rq_pos(rq
),
149 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
150 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
151 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
153 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
154 printk(KERN_INFO
" cdb: ");
155 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
156 printk("%02x ", rq
->cmd
[bit
]);
160 EXPORT_SYMBOL(blk_dump_rq_flags
);
162 static void blk_delay_work(struct work_struct
*work
)
164 struct request_queue
*q
;
166 q
= container_of(work
, struct request_queue
, delay_work
.work
);
167 spin_lock_irq(q
->queue_lock
);
169 spin_unlock_irq(q
->queue_lock
);
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
182 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
184 if (likely(!blk_queue_dead(q
)))
185 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
186 msecs_to_jiffies(msecs
));
188 EXPORT_SYMBOL(blk_delay_queue
);
191 * blk_start_queue - restart a previously stopped queue
192 * @q: The &struct request_queue in question
195 * blk_start_queue() will clear the stop flag on the queue, and call
196 * the request_fn for the queue if it was in a stopped state when
197 * entered. Also see blk_stop_queue(). Queue lock must be held.
199 void blk_start_queue(struct request_queue
*q
)
201 WARN_ON(!irqs_disabled());
203 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
206 EXPORT_SYMBOL(blk_start_queue
);
209 * blk_stop_queue - stop a queue
210 * @q: The &struct request_queue in question
213 * The Linux block layer assumes that a block driver will consume all
214 * entries on the request queue when the request_fn strategy is called.
215 * Often this will not happen, because of hardware limitations (queue
216 * depth settings). If a device driver gets a 'queue full' response,
217 * or if it simply chooses not to queue more I/O at one point, it can
218 * call this function to prevent the request_fn from being called until
219 * the driver has signalled it's ready to go again. This happens by calling
220 * blk_start_queue() to restart queue operations. Queue lock must be held.
222 void blk_stop_queue(struct request_queue
*q
)
224 cancel_delayed_work(&q
->delay_work
);
225 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
227 EXPORT_SYMBOL(blk_stop_queue
);
230 * blk_sync_queue - cancel any pending callbacks on a queue
234 * The block layer may perform asynchronous callback activity
235 * on a queue, such as calling the unplug function after a timeout.
236 * A block device may call blk_sync_queue to ensure that any
237 * such activity is cancelled, thus allowing it to release resources
238 * that the callbacks might use. The caller must already have made sure
239 * that its ->make_request_fn will not re-add plugging prior to calling
242 * This function does not cancel any asynchronous activity arising
243 * out of elevator or throttling code. That would require elevaotor_exit()
244 * and blkcg_exit_queue() to be called with queue lock initialized.
247 void blk_sync_queue(struct request_queue
*q
)
249 del_timer_sync(&q
->timeout
);
252 struct blk_mq_hw_ctx
*hctx
;
255 queue_for_each_hw_ctx(q
, hctx
, i
) {
256 cancel_delayed_work_sync(&hctx
->run_work
);
257 cancel_delayed_work_sync(&hctx
->delay_work
);
260 cancel_delayed_work_sync(&q
->delay_work
);
263 EXPORT_SYMBOL(blk_sync_queue
);
266 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
267 * @q: The queue to run
270 * Invoke request handling on a queue if there are any pending requests.
271 * May be used to restart request handling after a request has completed.
272 * This variant runs the queue whether or not the queue has been
273 * stopped. Must be called with the queue lock held and interrupts
274 * disabled. See also @blk_run_queue.
276 inline void __blk_run_queue_uncond(struct request_queue
*q
)
278 if (unlikely(blk_queue_dead(q
)))
282 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
283 * the queue lock internally. As a result multiple threads may be
284 * running such a request function concurrently. Keep track of the
285 * number of active request_fn invocations such that blk_drain_queue()
286 * can wait until all these request_fn calls have finished.
288 q
->request_fn_active
++;
290 q
->request_fn_active
--;
294 * __blk_run_queue - run a single device queue
295 * @q: The queue to run
298 * See @blk_run_queue. This variant must be called with the queue lock
299 * held and interrupts disabled.
301 void __blk_run_queue(struct request_queue
*q
)
303 if (unlikely(blk_queue_stopped(q
)))
306 __blk_run_queue_uncond(q
);
308 EXPORT_SYMBOL(__blk_run_queue
);
311 * blk_run_queue_async - run a single device queue in workqueue context
312 * @q: The queue to run
315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316 * of us. The caller must hold the queue lock.
318 void blk_run_queue_async(struct request_queue
*q
)
320 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
321 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
323 EXPORT_SYMBOL(blk_run_queue_async
);
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
330 * Invoke request handling on this queue, if it has pending work to do.
331 * May be used to restart queueing when a request has completed.
333 void blk_run_queue(struct request_queue
*q
)
337 spin_lock_irqsave(q
->queue_lock
, flags
);
339 spin_unlock_irqrestore(q
->queue_lock
, flags
);
341 EXPORT_SYMBOL(blk_run_queue
);
343 void blk_put_queue(struct request_queue
*q
)
345 kobject_put(&q
->kobj
);
347 EXPORT_SYMBOL(blk_put_queue
);
350 * __blk_drain_queue - drain requests from request_queue
352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
358 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
359 __releases(q
->queue_lock
)
360 __acquires(q
->queue_lock
)
364 lockdep_assert_held(q
->queue_lock
);
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
374 elv_drain_elevator(q
);
376 blkcg_drain_queue(q
);
379 * This function might be called on a queue which failed
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
385 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
388 drain
|= q
->nr_rqs_elvpriv
;
389 drain
|= q
->request_fn_active
;
392 * Unfortunately, requests are queued at and tracked from
393 * multiple places and there's no single counter which can
394 * be drained. Check all the queues and counters.
397 drain
|= !list_empty(&q
->queue_head
);
398 for (i
= 0; i
< 2; i
++) {
399 drain
|= q
->nr_rqs
[i
];
400 drain
|= q
->in_flight
[i
];
401 drain
|= !list_empty(&q
->flush_queue
[i
]);
408 spin_unlock_irq(q
->queue_lock
);
412 spin_lock_irq(q
->queue_lock
);
416 * With queue marked dead, any woken up waiter will fail the
417 * allocation path, so the wakeup chaining is lost and we're
418 * left with hung waiters. We need to wake up those waiters.
421 struct request_list
*rl
;
423 blk_queue_for_each_rl(rl
, q
)
424 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
425 wake_up_all(&rl
->wait
[i
]);
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
435 * throttled or issued before. On return, it's guaranteed that no request
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
439 void blk_queue_bypass_start(struct request_queue
*q
)
443 spin_lock_irq(q
->queue_lock
);
444 drain
= !q
->bypass_depth
++;
445 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
446 spin_unlock_irq(q
->queue_lock
);
449 spin_lock_irq(q
->queue_lock
);
450 __blk_drain_queue(q
, false);
451 spin_unlock_irq(q
->queue_lock
);
453 /* ensure blk_queue_bypass() is %true inside RCU read lock */
457 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
460 * blk_queue_bypass_end - leave queue bypass mode
461 * @q: queue of interest
463 * Leave bypass mode and restore the normal queueing behavior.
465 void blk_queue_bypass_end(struct request_queue
*q
)
467 spin_lock_irq(q
->queue_lock
);
468 if (!--q
->bypass_depth
)
469 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
470 WARN_ON_ONCE(q
->bypass_depth
< 0);
471 spin_unlock_irq(q
->queue_lock
);
473 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
476 * blk_cleanup_queue - shutdown a request queue
477 * @q: request queue to shutdown
479 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
480 * put it. All future requests will be failed immediately with -ENODEV.
482 void blk_cleanup_queue(struct request_queue
*q
)
484 spinlock_t
*lock
= q
->queue_lock
;
486 /* mark @q DYING, no new request or merges will be allowed afterwards */
487 mutex_lock(&q
->sysfs_lock
);
488 queue_flag_set_unlocked(QUEUE_FLAG_DYING
, q
);
492 * A dying queue is permanently in bypass mode till released. Note
493 * that, unlike blk_queue_bypass_start(), we aren't performing
494 * synchronize_rcu() after entering bypass mode to avoid the delay
495 * as some drivers create and destroy a lot of queues while
496 * probing. This is still safe because blk_release_queue() will be
497 * called only after the queue refcnt drops to zero and nothing,
498 * RCU or not, would be traversing the queue by then.
501 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
503 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
504 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
505 queue_flag_set(QUEUE_FLAG_DYING
, q
);
506 spin_unlock_irq(lock
);
507 mutex_unlock(&q
->sysfs_lock
);
510 * Drain all requests queued before DYING marking. Set DEAD flag to
511 * prevent that q->request_fn() gets invoked after draining finished.
514 blk_mq_drain_queue(q
);
518 __blk_drain_queue(q
, true);
520 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
521 spin_unlock_irq(lock
);
523 /* @q won't process any more request, flush async actions */
524 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
528 if (q
->queue_lock
!= &q
->__queue_lock
)
529 q
->queue_lock
= &q
->__queue_lock
;
530 spin_unlock_irq(lock
);
532 /* @q is and will stay empty, shutdown and put */
535 EXPORT_SYMBOL(blk_cleanup_queue
);
537 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
540 if (unlikely(rl
->rq_pool
))
544 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
545 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
546 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
547 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
549 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
550 mempool_free_slab
, request_cachep
,
558 void blk_exit_rl(struct request_list
*rl
)
561 mempool_destroy(rl
->rq_pool
);
564 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
566 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
568 EXPORT_SYMBOL(blk_alloc_queue
);
570 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
572 struct request_queue
*q
;
575 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
576 gfp_mask
| __GFP_ZERO
, node_id
);
580 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
584 q
->backing_dev_info
.ra_pages
=
585 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
586 q
->backing_dev_info
.state
= 0;
587 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
588 q
->backing_dev_info
.name
= "block";
591 err
= bdi_init(&q
->backing_dev_info
);
595 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
596 laptop_mode_timer_fn
, (unsigned long) q
);
597 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
598 INIT_LIST_HEAD(&q
->queue_head
);
599 INIT_LIST_HEAD(&q
->timeout_list
);
600 INIT_LIST_HEAD(&q
->icq_list
);
601 #ifdef CONFIG_BLK_CGROUP
602 INIT_LIST_HEAD(&q
->blkg_list
);
604 INIT_LIST_HEAD(&q
->flush_queue
[0]);
605 INIT_LIST_HEAD(&q
->flush_queue
[1]);
606 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
607 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
609 kobject_init(&q
->kobj
, &blk_queue_ktype
);
611 mutex_init(&q
->sysfs_lock
);
612 spin_lock_init(&q
->__queue_lock
);
615 * By default initialize queue_lock to internal lock and driver can
616 * override it later if need be.
618 q
->queue_lock
= &q
->__queue_lock
;
621 * A queue starts its life with bypass turned on to avoid
622 * unnecessary bypass on/off overhead and nasty surprises during
623 * init. The initial bypass will be finished when the queue is
624 * registered by blk_register_queue().
627 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
629 init_waitqueue_head(&q
->mq_freeze_wq
);
631 if (blkcg_init_queue(q
))
637 bdi_destroy(&q
->backing_dev_info
);
639 ida_simple_remove(&blk_queue_ida
, q
->id
);
641 kmem_cache_free(blk_requestq_cachep
, q
);
644 EXPORT_SYMBOL(blk_alloc_queue_node
);
647 * blk_init_queue - prepare a request queue for use with a block device
648 * @rfn: The function to be called to process requests that have been
649 * placed on the queue.
650 * @lock: Request queue spin lock
653 * If a block device wishes to use the standard request handling procedures,
654 * which sorts requests and coalesces adjacent requests, then it must
655 * call blk_init_queue(). The function @rfn will be called when there
656 * are requests on the queue that need to be processed. If the device
657 * supports plugging, then @rfn may not be called immediately when requests
658 * are available on the queue, but may be called at some time later instead.
659 * Plugged queues are generally unplugged when a buffer belonging to one
660 * of the requests on the queue is needed, or due to memory pressure.
662 * @rfn is not required, or even expected, to remove all requests off the
663 * queue, but only as many as it can handle at a time. If it does leave
664 * requests on the queue, it is responsible for arranging that the requests
665 * get dealt with eventually.
667 * The queue spin lock must be held while manipulating the requests on the
668 * request queue; this lock will be taken also from interrupt context, so irq
669 * disabling is needed for it.
671 * Function returns a pointer to the initialized request queue, or %NULL if
675 * blk_init_queue() must be paired with a blk_cleanup_queue() call
676 * when the block device is deactivated (such as at module unload).
679 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
681 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
683 EXPORT_SYMBOL(blk_init_queue
);
685 struct request_queue
*
686 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
688 struct request_queue
*uninit_q
, *q
;
690 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
694 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
696 blk_cleanup_queue(uninit_q
);
700 EXPORT_SYMBOL(blk_init_queue_node
);
702 struct request_queue
*
703 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
709 q
->flush_rq
= kzalloc(sizeof(struct request
), GFP_KERNEL
);
713 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
717 q
->prep_rq_fn
= NULL
;
718 q
->unprep_rq_fn
= NULL
;
719 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
721 /* Override internal queue lock with supplied lock pointer */
723 q
->queue_lock
= lock
;
726 * This also sets hw/phys segments, boundary and size
728 blk_queue_make_request(q
, blk_queue_bio
);
730 q
->sg_reserved_size
= INT_MAX
;
732 /* Protect q->elevator from elevator_change */
733 mutex_lock(&q
->sysfs_lock
);
736 if (elevator_init(q
, NULL
)) {
737 mutex_unlock(&q
->sysfs_lock
);
741 mutex_unlock(&q
->sysfs_lock
);
749 EXPORT_SYMBOL(blk_init_allocated_queue
);
751 bool blk_get_queue(struct request_queue
*q
)
753 if (likely(!blk_queue_dying(q
))) {
760 EXPORT_SYMBOL(blk_get_queue
);
762 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
764 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
765 elv_put_request(rl
->q
, rq
);
767 put_io_context(rq
->elv
.icq
->ioc
);
770 mempool_free(rq
, rl
->rq_pool
);
774 * ioc_batching returns true if the ioc is a valid batching request and
775 * should be given priority access to a request.
777 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
783 * Make sure the process is able to allocate at least 1 request
784 * even if the batch times out, otherwise we could theoretically
787 return ioc
->nr_batch_requests
== q
->nr_batching
||
788 (ioc
->nr_batch_requests
> 0
789 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
793 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
794 * will cause the process to be a "batcher" on all queues in the system. This
795 * is the behaviour we want though - once it gets a wakeup it should be given
798 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
800 if (!ioc
|| ioc_batching(q
, ioc
))
803 ioc
->nr_batch_requests
= q
->nr_batching
;
804 ioc
->last_waited
= jiffies
;
807 static void __freed_request(struct request_list
*rl
, int sync
)
809 struct request_queue
*q
= rl
->q
;
812 * bdi isn't aware of blkcg yet. As all async IOs end up root
813 * blkcg anyway, just use root blkcg state.
815 if (rl
== &q
->root_rl
&&
816 rl
->count
[sync
] < queue_congestion_off_threshold(q
))
817 blk_clear_queue_congested(q
, sync
);
819 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
820 if (waitqueue_active(&rl
->wait
[sync
]))
821 wake_up(&rl
->wait
[sync
]);
823 blk_clear_rl_full(rl
, sync
);
828 * A request has just been released. Account for it, update the full and
829 * congestion status, wake up any waiters. Called under q->queue_lock.
831 static void freed_request(struct request_list
*rl
, unsigned int flags
)
833 struct request_queue
*q
= rl
->q
;
834 int sync
= rw_is_sync(flags
);
838 if (flags
& REQ_ELVPRIV
)
841 __freed_request(rl
, sync
);
843 if (unlikely(rl
->starved
[sync
^ 1]))
844 __freed_request(rl
, sync
^ 1);
847 int blk_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
849 struct request_list
*rl
;
851 spin_lock_irq(q
->queue_lock
);
853 blk_queue_congestion_threshold(q
);
855 /* congestion isn't cgroup aware and follows root blkcg for now */
858 if (rl
->count
[BLK_RW_SYNC
] >= queue_congestion_on_threshold(q
))
859 blk_set_queue_congested(q
, BLK_RW_SYNC
);
860 else if (rl
->count
[BLK_RW_SYNC
] < queue_congestion_off_threshold(q
))
861 blk_clear_queue_congested(q
, BLK_RW_SYNC
);
863 if (rl
->count
[BLK_RW_ASYNC
] >= queue_congestion_on_threshold(q
))
864 blk_set_queue_congested(q
, BLK_RW_ASYNC
);
865 else if (rl
->count
[BLK_RW_ASYNC
] < queue_congestion_off_threshold(q
))
866 blk_clear_queue_congested(q
, BLK_RW_ASYNC
);
868 blk_queue_for_each_rl(rl
, q
) {
869 if (rl
->count
[BLK_RW_SYNC
] >= q
->nr_requests
) {
870 blk_set_rl_full(rl
, BLK_RW_SYNC
);
872 blk_clear_rl_full(rl
, BLK_RW_SYNC
);
873 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
876 if (rl
->count
[BLK_RW_ASYNC
] >= q
->nr_requests
) {
877 blk_set_rl_full(rl
, BLK_RW_ASYNC
);
879 blk_clear_rl_full(rl
, BLK_RW_ASYNC
);
880 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
884 spin_unlock_irq(q
->queue_lock
);
889 * Determine if elevator data should be initialized when allocating the
890 * request associated with @bio.
892 static bool blk_rq_should_init_elevator(struct bio
*bio
)
898 * Flush requests do not use the elevator so skip initialization.
899 * This allows a request to share the flush and elevator data.
901 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
908 * rq_ioc - determine io_context for request allocation
909 * @bio: request being allocated is for this bio (can be %NULL)
911 * Determine io_context to use for request allocation for @bio. May return
912 * %NULL if %current->io_context doesn't exist.
914 static struct io_context
*rq_ioc(struct bio
*bio
)
916 #ifdef CONFIG_BLK_CGROUP
917 if (bio
&& bio
->bi_ioc
)
920 return current
->io_context
;
924 * __get_request - get a free request
925 * @rl: request list to allocate from
926 * @rw_flags: RW and SYNC flags
927 * @bio: bio to allocate request for (can be %NULL)
928 * @gfp_mask: allocation mask
930 * Get a free request from @q. This function may fail under memory
931 * pressure or if @q is dead.
933 * Must be callled with @q->queue_lock held and,
934 * Returns %NULL on failure, with @q->queue_lock held.
935 * Returns !%NULL on success, with @q->queue_lock *not held*.
937 static struct request
*__get_request(struct request_list
*rl
, int rw_flags
,
938 struct bio
*bio
, gfp_t gfp_mask
)
940 struct request_queue
*q
= rl
->q
;
942 struct elevator_type
*et
= q
->elevator
->type
;
943 struct io_context
*ioc
= rq_ioc(bio
);
944 struct io_cq
*icq
= NULL
;
945 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
948 if (unlikely(blk_queue_dying(q
)))
951 may_queue
= elv_may_queue(q
, rw_flags
);
952 if (may_queue
== ELV_MQUEUE_NO
)
955 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
956 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
958 * The queue will fill after this allocation, so set
959 * it as full, and mark this process as "batching".
960 * This process will be allowed to complete a batch of
961 * requests, others will be blocked.
963 if (!blk_rl_full(rl
, is_sync
)) {
964 ioc_set_batching(q
, ioc
);
965 blk_set_rl_full(rl
, is_sync
);
967 if (may_queue
!= ELV_MQUEUE_MUST
968 && !ioc_batching(q
, ioc
)) {
970 * The queue is full and the allocating
971 * process is not a "batcher", and not
972 * exempted by the IO scheduler
979 * bdi isn't aware of blkcg yet. As all async IOs end up
980 * root blkcg anyway, just use root blkcg state.
982 if (rl
== &q
->root_rl
)
983 blk_set_queue_congested(q
, is_sync
);
987 * Only allow batching queuers to allocate up to 50% over the defined
988 * limit of requests, otherwise we could have thousands of requests
989 * allocated with any setting of ->nr_requests
991 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
994 q
->nr_rqs
[is_sync
]++;
995 rl
->count
[is_sync
]++;
996 rl
->starved
[is_sync
] = 0;
999 * Decide whether the new request will be managed by elevator. If
1000 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1001 * prevent the current elevator from being destroyed until the new
1002 * request is freed. This guarantees icq's won't be destroyed and
1003 * makes creating new ones safe.
1005 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1006 * it will be created after releasing queue_lock.
1008 if (blk_rq_should_init_elevator(bio
) && !blk_queue_bypass(q
)) {
1009 rw_flags
|= REQ_ELVPRIV
;
1010 q
->nr_rqs_elvpriv
++;
1011 if (et
->icq_cache
&& ioc
)
1012 icq
= ioc_lookup_icq(ioc
, q
);
1015 if (blk_queue_io_stat(q
))
1016 rw_flags
|= REQ_IO_STAT
;
1017 spin_unlock_irq(q
->queue_lock
);
1019 /* allocate and init request */
1020 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
1025 blk_rq_set_rl(rq
, rl
);
1026 rq
->cmd_flags
= rw_flags
| REQ_ALLOCED
;
1029 if (rw_flags
& REQ_ELVPRIV
) {
1030 if (unlikely(et
->icq_cache
&& !icq
)) {
1032 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1038 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1041 /* @rq->elv.icq holds io_context until @rq is freed */
1043 get_io_context(icq
->ioc
);
1047 * ioc may be NULL here, and ioc_batching will be false. That's
1048 * OK, if the queue is under the request limit then requests need
1049 * not count toward the nr_batch_requests limit. There will always
1050 * be some limit enforced by BLK_BATCH_TIME.
1052 if (ioc_batching(q
, ioc
))
1053 ioc
->nr_batch_requests
--;
1055 trace_block_getrq(q
, bio
, rw_flags
& 1);
1060 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1061 * and may fail indefinitely under memory pressure and thus
1062 * shouldn't stall IO. Treat this request as !elvpriv. This will
1063 * disturb iosched and blkcg but weird is bettern than dead.
1065 printk_ratelimited(KERN_WARNING
"%s: request aux data allocation failed, iosched may be disturbed\n",
1066 dev_name(q
->backing_dev_info
.dev
));
1068 rq
->cmd_flags
&= ~REQ_ELVPRIV
;
1071 spin_lock_irq(q
->queue_lock
);
1072 q
->nr_rqs_elvpriv
--;
1073 spin_unlock_irq(q
->queue_lock
);
1078 * Allocation failed presumably due to memory. Undo anything we
1079 * might have messed up.
1081 * Allocating task should really be put onto the front of the wait
1082 * queue, but this is pretty rare.
1084 spin_lock_irq(q
->queue_lock
);
1085 freed_request(rl
, rw_flags
);
1088 * in the very unlikely event that allocation failed and no
1089 * requests for this direction was pending, mark us starved so that
1090 * freeing of a request in the other direction will notice
1091 * us. another possible fix would be to split the rq mempool into
1095 if (unlikely(rl
->count
[is_sync
] == 0))
1096 rl
->starved
[is_sync
] = 1;
1101 * get_request - get a free request
1102 * @q: request_queue to allocate request from
1103 * @rw_flags: RW and SYNC flags
1104 * @bio: bio to allocate request for (can be %NULL)
1105 * @gfp_mask: allocation mask
1107 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1108 * function keeps retrying under memory pressure and fails iff @q is dead.
1110 * Must be callled with @q->queue_lock held and,
1111 * Returns %NULL on failure, with @q->queue_lock held.
1112 * Returns !%NULL on success, with @q->queue_lock *not held*.
1114 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
1115 struct bio
*bio
, gfp_t gfp_mask
)
1117 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
1119 struct request_list
*rl
;
1122 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1124 rq
= __get_request(rl
, rw_flags
, bio
, gfp_mask
);
1128 if (!(gfp_mask
& __GFP_WAIT
) || unlikely(blk_queue_dying(q
))) {
1133 /* wait on @rl and retry */
1134 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1135 TASK_UNINTERRUPTIBLE
);
1137 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
1139 spin_unlock_irq(q
->queue_lock
);
1143 * After sleeping, we become a "batching" process and will be able
1144 * to allocate at least one request, and up to a big batch of them
1145 * for a small period time. See ioc_batching, ioc_set_batching
1147 ioc_set_batching(q
, current
->io_context
);
1149 spin_lock_irq(q
->queue_lock
);
1150 finish_wait(&rl
->wait
[is_sync
], &wait
);
1155 static struct request
*blk_old_get_request(struct request_queue
*q
, int rw
,
1160 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
1162 /* create ioc upfront */
1163 create_io_context(gfp_mask
, q
->node
);
1165 spin_lock_irq(q
->queue_lock
);
1166 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
1168 spin_unlock_irq(q
->queue_lock
);
1169 /* q->queue_lock is unlocked at this point */
1174 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1177 return blk_mq_alloc_request(q
, rw
, gfp_mask
, false);
1179 return blk_old_get_request(q
, rw
, gfp_mask
);
1181 EXPORT_SYMBOL(blk_get_request
);
1184 * blk_make_request - given a bio, allocate a corresponding struct request.
1185 * @q: target request queue
1186 * @bio: The bio describing the memory mappings that will be submitted for IO.
1187 * It may be a chained-bio properly constructed by block/bio layer.
1188 * @gfp_mask: gfp flags to be used for memory allocation
1190 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1191 * type commands. Where the struct request needs to be farther initialized by
1192 * the caller. It is passed a &struct bio, which describes the memory info of
1195 * The caller of blk_make_request must make sure that bi_io_vec
1196 * are set to describe the memory buffers. That bio_data_dir() will return
1197 * the needed direction of the request. (And all bio's in the passed bio-chain
1198 * are properly set accordingly)
1200 * If called under none-sleepable conditions, mapped bio buffers must not
1201 * need bouncing, by calling the appropriate masked or flagged allocator,
1202 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1205 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1206 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1207 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1208 * completion of a bio that hasn't been submitted yet, thus resulting in a
1209 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1210 * of bio_alloc(), as that avoids the mempool deadlock.
1211 * If possible a big IO should be split into smaller parts when allocation
1212 * fails. Partial allocation should not be an error, or you risk a live-lock.
1214 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
1217 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
1220 return ERR_PTR(-ENOMEM
);
1222 blk_rq_set_block_pc(rq
);
1225 struct bio
*bounce_bio
= bio
;
1228 blk_queue_bounce(q
, &bounce_bio
);
1229 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
1230 if (unlikely(ret
)) {
1231 blk_put_request(rq
);
1232 return ERR_PTR(ret
);
1238 EXPORT_SYMBOL(blk_make_request
);
1241 * blk_rq_set_block_pc - initialize a requeest to type BLOCK_PC
1242 * @rq: request to be initialized
1245 void blk_rq_set_block_pc(struct request
*rq
)
1247 rq
->cmd_type
= REQ_TYPE_BLOCK_PC
;
1249 rq
->__sector
= (sector_t
) -1;
1250 rq
->bio
= rq
->biotail
= NULL
;
1251 memset(rq
->__cmd
, 0, sizeof(rq
->__cmd
));
1252 rq
->cmd
= rq
->__cmd
;
1254 EXPORT_SYMBOL(blk_rq_set_block_pc
);
1257 * blk_requeue_request - put a request back on queue
1258 * @q: request queue where request should be inserted
1259 * @rq: request to be inserted
1262 * Drivers often keep queueing requests until the hardware cannot accept
1263 * more, when that condition happens we need to put the request back
1264 * on the queue. Must be called with queue lock held.
1266 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1268 blk_delete_timer(rq
);
1269 blk_clear_rq_complete(rq
);
1270 trace_block_rq_requeue(q
, rq
);
1272 if (blk_rq_tagged(rq
))
1273 blk_queue_end_tag(q
, rq
);
1275 BUG_ON(blk_queued_rq(rq
));
1277 elv_requeue_request(q
, rq
);
1279 EXPORT_SYMBOL(blk_requeue_request
);
1281 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1284 blk_account_io_start(rq
, true);
1285 __elv_add_request(q
, rq
, where
);
1288 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1293 if (now
== part
->stamp
)
1296 inflight
= part_in_flight(part
);
1298 __part_stat_add(cpu
, part
, time_in_queue
,
1299 inflight
* (now
- part
->stamp
));
1300 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1306 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1307 * @cpu: cpu number for stats access
1308 * @part: target partition
1310 * The average IO queue length and utilisation statistics are maintained
1311 * by observing the current state of the queue length and the amount of
1312 * time it has been in this state for.
1314 * Normally, that accounting is done on IO completion, but that can result
1315 * in more than a second's worth of IO being accounted for within any one
1316 * second, leading to >100% utilisation. To deal with that, we call this
1317 * function to do a round-off before returning the results when reading
1318 * /proc/diskstats. This accounts immediately for all queue usage up to
1319 * the current jiffies and restarts the counters again.
1321 void part_round_stats(int cpu
, struct hd_struct
*part
)
1323 unsigned long now
= jiffies
;
1326 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1327 part_round_stats_single(cpu
, part
, now
);
1329 EXPORT_SYMBOL_GPL(part_round_stats
);
1331 #ifdef CONFIG_PM_RUNTIME
1332 static void blk_pm_put_request(struct request
*rq
)
1334 if (rq
->q
->dev
&& !(rq
->cmd_flags
& REQ_PM
) && !--rq
->q
->nr_pending
)
1335 pm_runtime_mark_last_busy(rq
->q
->dev
);
1338 static inline void blk_pm_put_request(struct request
*rq
) {}
1342 * queue lock must be held
1344 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1350 blk_mq_free_request(req
);
1354 blk_pm_put_request(req
);
1356 elv_completed_request(q
, req
);
1358 /* this is a bio leak */
1359 WARN_ON(req
->bio
!= NULL
);
1362 * Request may not have originated from ll_rw_blk. if not,
1363 * it didn't come out of our reserved rq pools
1365 if (req
->cmd_flags
& REQ_ALLOCED
) {
1366 unsigned int flags
= req
->cmd_flags
;
1367 struct request_list
*rl
= blk_rq_rl(req
);
1369 BUG_ON(!list_empty(&req
->queuelist
));
1370 BUG_ON(ELV_ON_HASH(req
));
1372 blk_free_request(rl
, req
);
1373 freed_request(rl
, flags
);
1377 EXPORT_SYMBOL_GPL(__blk_put_request
);
1379 void blk_put_request(struct request
*req
)
1381 struct request_queue
*q
= req
->q
;
1384 blk_mq_free_request(req
);
1386 unsigned long flags
;
1388 spin_lock_irqsave(q
->queue_lock
, flags
);
1389 __blk_put_request(q
, req
);
1390 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1393 EXPORT_SYMBOL(blk_put_request
);
1396 * blk_add_request_payload - add a payload to a request
1397 * @rq: request to update
1398 * @page: page backing the payload
1399 * @len: length of the payload.
1401 * This allows to later add a payload to an already submitted request by
1402 * a block driver. The driver needs to take care of freeing the payload
1405 * Note that this is a quite horrible hack and nothing but handling of
1406 * discard requests should ever use it.
1408 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1411 struct bio
*bio
= rq
->bio
;
1413 bio
->bi_io_vec
->bv_page
= page
;
1414 bio
->bi_io_vec
->bv_offset
= 0;
1415 bio
->bi_io_vec
->bv_len
= len
;
1417 bio
->bi_iter
.bi_size
= len
;
1419 bio
->bi_phys_segments
= 1;
1421 rq
->__data_len
= rq
->resid_len
= len
;
1422 rq
->nr_phys_segments
= 1;
1424 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1426 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1429 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1431 if (!ll_back_merge_fn(q
, req
, bio
))
1434 trace_block_bio_backmerge(q
, req
, bio
);
1436 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1437 blk_rq_set_mixed_merge(req
);
1439 req
->biotail
->bi_next
= bio
;
1441 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1442 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1444 blk_account_io_start(req
, false);
1448 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
1451 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1453 if (!ll_front_merge_fn(q
, req
, bio
))
1456 trace_block_bio_frontmerge(q
, req
, bio
);
1458 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1459 blk_rq_set_mixed_merge(req
);
1461 bio
->bi_next
= req
->bio
;
1464 req
->__sector
= bio
->bi_iter
.bi_sector
;
1465 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1466 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1468 blk_account_io_start(req
, false);
1473 * blk_attempt_plug_merge - try to merge with %current's plugged list
1474 * @q: request_queue new bio is being queued at
1475 * @bio: new bio being queued
1476 * @request_count: out parameter for number of traversed plugged requests
1478 * Determine whether @bio being queued on @q can be merged with a request
1479 * on %current's plugged list. Returns %true if merge was successful,
1482 * Plugging coalesces IOs from the same issuer for the same purpose without
1483 * going through @q->queue_lock. As such it's more of an issuing mechanism
1484 * than scheduling, and the request, while may have elvpriv data, is not
1485 * added on the elevator at this point. In addition, we don't have
1486 * reliable access to the elevator outside queue lock. Only check basic
1487 * merging parameters without querying the elevator.
1489 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1491 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1492 unsigned int *request_count
)
1494 struct blk_plug
*plug
;
1497 struct list_head
*plug_list
;
1499 plug
= current
->plug
;
1505 plug_list
= &plug
->mq_list
;
1507 plug_list
= &plug
->list
;
1509 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
1515 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1518 el_ret
= blk_try_merge(rq
, bio
);
1519 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1520 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1523 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1524 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1533 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1535 req
->cmd_type
= REQ_TYPE_FS
;
1537 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1538 if (bio
->bi_rw
& REQ_RAHEAD
)
1539 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1542 req
->__sector
= bio
->bi_iter
.bi_sector
;
1543 req
->ioprio
= bio_prio(bio
);
1544 blk_rq_bio_prep(req
->q
, req
, bio
);
1547 void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1549 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1550 struct blk_plug
*plug
;
1551 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1552 struct request
*req
;
1553 unsigned int request_count
= 0;
1556 * low level driver can indicate that it wants pages above a
1557 * certain limit bounced to low memory (ie for highmem, or even
1558 * ISA dma in theory)
1560 blk_queue_bounce(q
, &bio
);
1562 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1563 bio_endio(bio
, -EIO
);
1567 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1568 spin_lock_irq(q
->queue_lock
);
1569 where
= ELEVATOR_INSERT_FLUSH
;
1574 * Check if we can merge with the plugged list before grabbing
1577 if (!blk_queue_nomerges(q
) &&
1578 blk_attempt_plug_merge(q
, bio
, &request_count
))
1581 spin_lock_irq(q
->queue_lock
);
1583 el_ret
= elv_merge(q
, &req
, bio
);
1584 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1585 if (bio_attempt_back_merge(q
, req
, bio
)) {
1586 elv_bio_merged(q
, req
, bio
);
1587 if (!attempt_back_merge(q
, req
))
1588 elv_merged_request(q
, req
, el_ret
);
1591 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1592 if (bio_attempt_front_merge(q
, req
, bio
)) {
1593 elv_bio_merged(q
, req
, bio
);
1594 if (!attempt_front_merge(q
, req
))
1595 elv_merged_request(q
, req
, el_ret
);
1602 * This sync check and mask will be re-done in init_request_from_bio(),
1603 * but we need to set it earlier to expose the sync flag to the
1604 * rq allocator and io schedulers.
1606 rw_flags
= bio_data_dir(bio
);
1608 rw_flags
|= REQ_SYNC
;
1611 * Grab a free request. This is might sleep but can not fail.
1612 * Returns with the queue unlocked.
1614 req
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
1615 if (unlikely(!req
)) {
1616 bio_endio(bio
, -ENODEV
); /* @q is dead */
1621 * After dropping the lock and possibly sleeping here, our request
1622 * may now be mergeable after it had proven unmergeable (above).
1623 * We don't worry about that case for efficiency. It won't happen
1624 * often, and the elevators are able to handle it.
1626 init_request_from_bio(req
, bio
);
1628 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1629 req
->cpu
= raw_smp_processor_id();
1631 plug
= current
->plug
;
1634 * If this is the first request added after a plug, fire
1638 trace_block_plug(q
);
1640 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1641 blk_flush_plug_list(plug
, false);
1642 trace_block_plug(q
);
1645 list_add_tail(&req
->queuelist
, &plug
->list
);
1646 blk_account_io_start(req
, true);
1648 spin_lock_irq(q
->queue_lock
);
1649 add_acct_request(q
, req
, where
);
1652 spin_unlock_irq(q
->queue_lock
);
1655 EXPORT_SYMBOL_GPL(blk_queue_bio
); /* for device mapper only */
1658 * If bio->bi_dev is a partition, remap the location
1660 static inline void blk_partition_remap(struct bio
*bio
)
1662 struct block_device
*bdev
= bio
->bi_bdev
;
1664 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1665 struct hd_struct
*p
= bdev
->bd_part
;
1667 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
1668 bio
->bi_bdev
= bdev
->bd_contains
;
1670 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1672 bio
->bi_iter
.bi_sector
- p
->start_sect
);
1676 static void handle_bad_sector(struct bio
*bio
)
1678 char b
[BDEVNAME_SIZE
];
1680 printk(KERN_INFO
"attempt to access beyond end of device\n");
1681 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1682 bdevname(bio
->bi_bdev
, b
),
1684 (unsigned long long)bio_end_sector(bio
),
1685 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1687 set_bit(BIO_EOF
, &bio
->bi_flags
);
1690 #ifdef CONFIG_FAIL_MAKE_REQUEST
1692 static DECLARE_FAULT_ATTR(fail_make_request
);
1694 static int __init
setup_fail_make_request(char *str
)
1696 return setup_fault_attr(&fail_make_request
, str
);
1698 __setup("fail_make_request=", setup_fail_make_request
);
1700 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1702 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1705 static int __init
fail_make_request_debugfs(void)
1707 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1708 NULL
, &fail_make_request
);
1710 return PTR_ERR_OR_ZERO(dir
);
1713 late_initcall(fail_make_request_debugfs
);
1715 #else /* CONFIG_FAIL_MAKE_REQUEST */
1717 static inline bool should_fail_request(struct hd_struct
*part
,
1723 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1726 * Check whether this bio extends beyond the end of the device.
1728 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1735 /* Test device or partition size, when known. */
1736 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1738 sector_t sector
= bio
->bi_iter
.bi_sector
;
1740 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1742 * This may well happen - the kernel calls bread()
1743 * without checking the size of the device, e.g., when
1744 * mounting a device.
1746 handle_bad_sector(bio
);
1754 static noinline_for_stack
bool
1755 generic_make_request_checks(struct bio
*bio
)
1757 struct request_queue
*q
;
1758 int nr_sectors
= bio_sectors(bio
);
1760 char b
[BDEVNAME_SIZE
];
1761 struct hd_struct
*part
;
1765 if (bio_check_eod(bio
, nr_sectors
))
1768 q
= bdev_get_queue(bio
->bi_bdev
);
1771 "generic_make_request: Trying to access "
1772 "nonexistent block-device %s (%Lu)\n",
1773 bdevname(bio
->bi_bdev
, b
),
1774 (long long) bio
->bi_iter
.bi_sector
);
1778 if (likely(bio_is_rw(bio
) &&
1779 nr_sectors
> queue_max_hw_sectors(q
))) {
1780 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1781 bdevname(bio
->bi_bdev
, b
),
1783 queue_max_hw_sectors(q
));
1787 part
= bio
->bi_bdev
->bd_part
;
1788 if (should_fail_request(part
, bio
->bi_iter
.bi_size
) ||
1789 should_fail_request(&part_to_disk(part
)->part0
,
1790 bio
->bi_iter
.bi_size
))
1794 * If this device has partitions, remap block n
1795 * of partition p to block n+start(p) of the disk.
1797 blk_partition_remap(bio
);
1799 if (bio_check_eod(bio
, nr_sectors
))
1803 * Filter flush bio's early so that make_request based
1804 * drivers without flush support don't have to worry
1807 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1808 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1815 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1816 (!blk_queue_discard(q
) ||
1817 ((bio
->bi_rw
& REQ_SECURE
) && !blk_queue_secdiscard(q
)))) {
1822 if (bio
->bi_rw
& REQ_WRITE_SAME
&& !bdev_write_same(bio
->bi_bdev
)) {
1828 * Various block parts want %current->io_context and lazy ioc
1829 * allocation ends up trading a lot of pain for a small amount of
1830 * memory. Just allocate it upfront. This may fail and block
1831 * layer knows how to live with it.
1833 create_io_context(GFP_ATOMIC
, q
->node
);
1835 if (blk_throtl_bio(q
, bio
))
1836 return false; /* throttled, will be resubmitted later */
1838 trace_block_bio_queue(q
, bio
);
1842 bio_endio(bio
, err
);
1847 * generic_make_request - hand a buffer to its device driver for I/O
1848 * @bio: The bio describing the location in memory and on the device.
1850 * generic_make_request() is used to make I/O requests of block
1851 * devices. It is passed a &struct bio, which describes the I/O that needs
1854 * generic_make_request() does not return any status. The
1855 * success/failure status of the request, along with notification of
1856 * completion, is delivered asynchronously through the bio->bi_end_io
1857 * function described (one day) else where.
1859 * The caller of generic_make_request must make sure that bi_io_vec
1860 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1861 * set to describe the device address, and the
1862 * bi_end_io and optionally bi_private are set to describe how
1863 * completion notification should be signaled.
1865 * generic_make_request and the drivers it calls may use bi_next if this
1866 * bio happens to be merged with someone else, and may resubmit the bio to
1867 * a lower device by calling into generic_make_request recursively, which
1868 * means the bio should NOT be touched after the call to ->make_request_fn.
1870 void generic_make_request(struct bio
*bio
)
1872 struct bio_list bio_list_on_stack
;
1874 if (!generic_make_request_checks(bio
))
1878 * We only want one ->make_request_fn to be active at a time, else
1879 * stack usage with stacked devices could be a problem. So use
1880 * current->bio_list to keep a list of requests submited by a
1881 * make_request_fn function. current->bio_list is also used as a
1882 * flag to say if generic_make_request is currently active in this
1883 * task or not. If it is NULL, then no make_request is active. If
1884 * it is non-NULL, then a make_request is active, and new requests
1885 * should be added at the tail
1887 if (current
->bio_list
) {
1888 bio_list_add(current
->bio_list
, bio
);
1892 /* following loop may be a bit non-obvious, and so deserves some
1894 * Before entering the loop, bio->bi_next is NULL (as all callers
1895 * ensure that) so we have a list with a single bio.
1896 * We pretend that we have just taken it off a longer list, so
1897 * we assign bio_list to a pointer to the bio_list_on_stack,
1898 * thus initialising the bio_list of new bios to be
1899 * added. ->make_request() may indeed add some more bios
1900 * through a recursive call to generic_make_request. If it
1901 * did, we find a non-NULL value in bio_list and re-enter the loop
1902 * from the top. In this case we really did just take the bio
1903 * of the top of the list (no pretending) and so remove it from
1904 * bio_list, and call into ->make_request() again.
1906 BUG_ON(bio
->bi_next
);
1907 bio_list_init(&bio_list_on_stack
);
1908 current
->bio_list
= &bio_list_on_stack
;
1910 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1912 q
->make_request_fn(q
, bio
);
1914 bio
= bio_list_pop(current
->bio_list
);
1916 current
->bio_list
= NULL
; /* deactivate */
1918 EXPORT_SYMBOL(generic_make_request
);
1921 * submit_bio - submit a bio to the block device layer for I/O
1922 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1923 * @bio: The &struct bio which describes the I/O
1925 * submit_bio() is very similar in purpose to generic_make_request(), and
1926 * uses that function to do most of the work. Both are fairly rough
1927 * interfaces; @bio must be presetup and ready for I/O.
1930 void submit_bio(int rw
, struct bio
*bio
)
1935 * If it's a regular read/write or a barrier with data attached,
1936 * go through the normal accounting stuff before submission.
1938 if (bio_has_data(bio
)) {
1941 if (unlikely(rw
& REQ_WRITE_SAME
))
1942 count
= bdev_logical_block_size(bio
->bi_bdev
) >> 9;
1944 count
= bio_sectors(bio
);
1947 count_vm_events(PGPGOUT
, count
);
1949 task_io_account_read(bio
->bi_iter
.bi_size
);
1950 count_vm_events(PGPGIN
, count
);
1953 if (unlikely(block_dump
)) {
1954 char b
[BDEVNAME_SIZE
];
1955 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1956 current
->comm
, task_pid_nr(current
),
1957 (rw
& WRITE
) ? "WRITE" : "READ",
1958 (unsigned long long)bio
->bi_iter
.bi_sector
,
1959 bdevname(bio
->bi_bdev
, b
),
1964 generic_make_request(bio
);
1966 EXPORT_SYMBOL(submit_bio
);
1969 * blk_rq_check_limits - Helper function to check a request for the queue limit
1971 * @rq: the request being checked
1974 * @rq may have been made based on weaker limitations of upper-level queues
1975 * in request stacking drivers, and it may violate the limitation of @q.
1976 * Since the block layer and the underlying device driver trust @rq
1977 * after it is inserted to @q, it should be checked against @q before
1978 * the insertion using this generic function.
1980 * This function should also be useful for request stacking drivers
1981 * in some cases below, so export this function.
1982 * Request stacking drivers like request-based dm may change the queue
1983 * limits while requests are in the queue (e.g. dm's table swapping).
1984 * Such request stacking drivers should check those requests against
1985 * the new queue limits again when they dispatch those requests,
1986 * although such checkings are also done against the old queue limits
1987 * when submitting requests.
1989 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1991 if (!rq_mergeable(rq
))
1994 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, rq
->cmd_flags
)) {
1995 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
2000 * queue's settings related to segment counting like q->bounce_pfn
2001 * may differ from that of other stacking queues.
2002 * Recalculate it to check the request correctly on this queue's
2005 blk_recalc_rq_segments(rq
);
2006 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
2007 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
2013 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
2016 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2017 * @q: the queue to submit the request
2018 * @rq: the request being queued
2020 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
2022 unsigned long flags
;
2023 int where
= ELEVATOR_INSERT_BACK
;
2025 if (blk_rq_check_limits(q
, rq
))
2029 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
2032 spin_lock_irqsave(q
->queue_lock
, flags
);
2033 if (unlikely(blk_queue_dying(q
))) {
2034 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2039 * Submitting request must be dequeued before calling this function
2040 * because it will be linked to another request_queue
2042 BUG_ON(blk_queued_rq(rq
));
2044 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
2045 where
= ELEVATOR_INSERT_FLUSH
;
2047 add_acct_request(q
, rq
, where
);
2048 if (where
== ELEVATOR_INSERT_FLUSH
)
2050 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2054 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
2057 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2058 * @rq: request to examine
2061 * A request could be merge of IOs which require different failure
2062 * handling. This function determines the number of bytes which
2063 * can be failed from the beginning of the request without
2064 * crossing into area which need to be retried further.
2067 * The number of bytes to fail.
2070 * queue_lock must be held.
2072 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2074 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2075 unsigned int bytes
= 0;
2078 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
2079 return blk_rq_bytes(rq
);
2082 * Currently the only 'mixing' which can happen is between
2083 * different fastfail types. We can safely fail portions
2084 * which have all the failfast bits that the first one has -
2085 * the ones which are at least as eager to fail as the first
2088 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2089 if ((bio
->bi_rw
& ff
) != ff
)
2091 bytes
+= bio
->bi_iter
.bi_size
;
2094 /* this could lead to infinite loop */
2095 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2098 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2100 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2102 if (blk_do_io_stat(req
)) {
2103 const int rw
= rq_data_dir(req
);
2104 struct hd_struct
*part
;
2107 cpu
= part_stat_lock();
2109 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2114 void blk_account_io_done(struct request
*req
)
2117 * Account IO completion. flush_rq isn't accounted as a
2118 * normal IO on queueing nor completion. Accounting the
2119 * containing request is enough.
2121 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
2122 unsigned long duration
= jiffies
- req
->start_time
;
2123 const int rw
= rq_data_dir(req
);
2124 struct hd_struct
*part
;
2127 cpu
= part_stat_lock();
2130 part_stat_inc(cpu
, part
, ios
[rw
]);
2131 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2132 part_round_stats(cpu
, part
);
2133 part_dec_in_flight(part
, rw
);
2135 hd_struct_put(part
);
2140 #ifdef CONFIG_PM_RUNTIME
2142 * Don't process normal requests when queue is suspended
2143 * or in the process of suspending/resuming
2145 static struct request
*blk_pm_peek_request(struct request_queue
*q
,
2148 if (q
->dev
&& (q
->rpm_status
== RPM_SUSPENDED
||
2149 (q
->rpm_status
!= RPM_ACTIVE
&& !(rq
->cmd_flags
& REQ_PM
))))
2155 static inline struct request
*blk_pm_peek_request(struct request_queue
*q
,
2162 void blk_account_io_start(struct request
*rq
, bool new_io
)
2164 struct hd_struct
*part
;
2165 int rw
= rq_data_dir(rq
);
2168 if (!blk_do_io_stat(rq
))
2171 cpu
= part_stat_lock();
2175 part_stat_inc(cpu
, part
, merges
[rw
]);
2177 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
2178 if (!hd_struct_try_get(part
)) {
2180 * The partition is already being removed,
2181 * the request will be accounted on the disk only
2183 * We take a reference on disk->part0 although that
2184 * partition will never be deleted, so we can treat
2185 * it as any other partition.
2187 part
= &rq
->rq_disk
->part0
;
2188 hd_struct_get(part
);
2190 part_round_stats(cpu
, part
);
2191 part_inc_in_flight(part
, rw
);
2199 * blk_peek_request - peek at the top of a request queue
2200 * @q: request queue to peek at
2203 * Return the request at the top of @q. The returned request
2204 * should be started using blk_start_request() before LLD starts
2208 * Pointer to the request at the top of @q if available. Null
2212 * queue_lock must be held.
2214 struct request
*blk_peek_request(struct request_queue
*q
)
2219 while ((rq
= __elv_next_request(q
)) != NULL
) {
2221 rq
= blk_pm_peek_request(q
, rq
);
2225 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
2227 * This is the first time the device driver
2228 * sees this request (possibly after
2229 * requeueing). Notify IO scheduler.
2231 if (rq
->cmd_flags
& REQ_SORTED
)
2232 elv_activate_rq(q
, rq
);
2235 * just mark as started even if we don't start
2236 * it, a request that has been delayed should
2237 * not be passed by new incoming requests
2239 rq
->cmd_flags
|= REQ_STARTED
;
2240 trace_block_rq_issue(q
, rq
);
2243 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2244 q
->end_sector
= rq_end_sector(rq
);
2245 q
->boundary_rq
= NULL
;
2248 if (rq
->cmd_flags
& REQ_DONTPREP
)
2251 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2253 * make sure space for the drain appears we
2254 * know we can do this because max_hw_segments
2255 * has been adjusted to be one fewer than the
2258 rq
->nr_phys_segments
++;
2264 ret
= q
->prep_rq_fn(q
, rq
);
2265 if (ret
== BLKPREP_OK
) {
2267 } else if (ret
== BLKPREP_DEFER
) {
2269 * the request may have been (partially) prepped.
2270 * we need to keep this request in the front to
2271 * avoid resource deadlock. REQ_STARTED will
2272 * prevent other fs requests from passing this one.
2274 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2275 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
2277 * remove the space for the drain we added
2278 * so that we don't add it again
2280 --rq
->nr_phys_segments
;
2285 } else if (ret
== BLKPREP_KILL
) {
2286 rq
->cmd_flags
|= REQ_QUIET
;
2288 * Mark this request as started so we don't trigger
2289 * any debug logic in the end I/O path.
2291 blk_start_request(rq
);
2292 __blk_end_request_all(rq
, -EIO
);
2294 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2301 EXPORT_SYMBOL(blk_peek_request
);
2303 void blk_dequeue_request(struct request
*rq
)
2305 struct request_queue
*q
= rq
->q
;
2307 BUG_ON(list_empty(&rq
->queuelist
));
2308 BUG_ON(ELV_ON_HASH(rq
));
2310 list_del_init(&rq
->queuelist
);
2313 * the time frame between a request being removed from the lists
2314 * and to it is freed is accounted as io that is in progress at
2317 if (blk_account_rq(rq
)) {
2318 q
->in_flight
[rq_is_sync(rq
)]++;
2319 set_io_start_time_ns(rq
);
2324 * blk_start_request - start request processing on the driver
2325 * @req: request to dequeue
2328 * Dequeue @req and start timeout timer on it. This hands off the
2329 * request to the driver.
2331 * Block internal functions which don't want to start timer should
2332 * call blk_dequeue_request().
2335 * queue_lock must be held.
2337 void blk_start_request(struct request
*req
)
2339 blk_dequeue_request(req
);
2342 * We are now handing the request to the hardware, initialize
2343 * resid_len to full count and add the timeout handler.
2345 req
->resid_len
= blk_rq_bytes(req
);
2346 if (unlikely(blk_bidi_rq(req
)))
2347 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2349 BUG_ON(test_bit(REQ_ATOM_COMPLETE
, &req
->atomic_flags
));
2352 EXPORT_SYMBOL(blk_start_request
);
2355 * blk_fetch_request - fetch a request from a request queue
2356 * @q: request queue to fetch a request from
2359 * Return the request at the top of @q. The request is started on
2360 * return and LLD can start processing it immediately.
2363 * Pointer to the request at the top of @q if available. Null
2367 * queue_lock must be held.
2369 struct request
*blk_fetch_request(struct request_queue
*q
)
2373 rq
= blk_peek_request(q
);
2375 blk_start_request(rq
);
2378 EXPORT_SYMBOL(blk_fetch_request
);
2381 * blk_update_request - Special helper function for request stacking drivers
2382 * @req: the request being processed
2383 * @error: %0 for success, < %0 for error
2384 * @nr_bytes: number of bytes to complete @req
2387 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2388 * the request structure even if @req doesn't have leftover.
2389 * If @req has leftover, sets it up for the next range of segments.
2391 * This special helper function is only for request stacking drivers
2392 * (e.g. request-based dm) so that they can handle partial completion.
2393 * Actual device drivers should use blk_end_request instead.
2395 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2396 * %false return from this function.
2399 * %false - this request doesn't have any more data
2400 * %true - this request has more data
2402 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2409 trace_block_rq_complete(req
->q
, req
, nr_bytes
);
2412 * For fs requests, rq is just carrier of independent bio's
2413 * and each partial completion should be handled separately.
2414 * Reset per-request error on each partial completion.
2416 * TODO: tj: This is too subtle. It would be better to let
2417 * low level drivers do what they see fit.
2419 if (req
->cmd_type
== REQ_TYPE_FS
)
2422 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2423 !(req
->cmd_flags
& REQ_QUIET
)) {
2428 error_type
= "recoverable transport";
2431 error_type
= "critical target";
2434 error_type
= "critical nexus";
2437 error_type
= "timeout";
2440 error_type
= "critical space allocation";
2443 error_type
= "critical medium";
2450 printk_ratelimited(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2451 error_type
, req
->rq_disk
?
2452 req
->rq_disk
->disk_name
: "?",
2453 (unsigned long long)blk_rq_pos(req
));
2457 blk_account_io_completion(req
, nr_bytes
);
2461 struct bio
*bio
= req
->bio
;
2462 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
2464 if (bio_bytes
== bio
->bi_iter
.bi_size
)
2465 req
->bio
= bio
->bi_next
;
2467 req_bio_endio(req
, bio
, bio_bytes
, error
);
2469 total_bytes
+= bio_bytes
;
2470 nr_bytes
-= bio_bytes
;
2481 * Reset counters so that the request stacking driver
2482 * can find how many bytes remain in the request
2485 req
->__data_len
= 0;
2489 req
->__data_len
-= total_bytes
;
2491 /* update sector only for requests with clear definition of sector */
2492 if (req
->cmd_type
== REQ_TYPE_FS
)
2493 req
->__sector
+= total_bytes
>> 9;
2495 /* mixed attributes always follow the first bio */
2496 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2497 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2498 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2502 * If total number of sectors is less than the first segment
2503 * size, something has gone terribly wrong.
2505 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2506 blk_dump_rq_flags(req
, "request botched");
2507 req
->__data_len
= blk_rq_cur_bytes(req
);
2510 /* recalculate the number of segments */
2511 blk_recalc_rq_segments(req
);
2515 EXPORT_SYMBOL_GPL(blk_update_request
);
2517 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2518 unsigned int nr_bytes
,
2519 unsigned int bidi_bytes
)
2521 if (blk_update_request(rq
, error
, nr_bytes
))
2524 /* Bidi request must be completed as a whole */
2525 if (unlikely(blk_bidi_rq(rq
)) &&
2526 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2529 if (blk_queue_add_random(rq
->q
))
2530 add_disk_randomness(rq
->rq_disk
);
2536 * blk_unprep_request - unprepare a request
2539 * This function makes a request ready for complete resubmission (or
2540 * completion). It happens only after all error handling is complete,
2541 * so represents the appropriate moment to deallocate any resources
2542 * that were allocated to the request in the prep_rq_fn. The queue
2543 * lock is held when calling this.
2545 void blk_unprep_request(struct request
*req
)
2547 struct request_queue
*q
= req
->q
;
2549 req
->cmd_flags
&= ~REQ_DONTPREP
;
2550 if (q
->unprep_rq_fn
)
2551 q
->unprep_rq_fn(q
, req
);
2553 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2556 * queue lock must be held
2558 void blk_finish_request(struct request
*req
, int error
)
2560 if (blk_rq_tagged(req
))
2561 blk_queue_end_tag(req
->q
, req
);
2563 BUG_ON(blk_queued_rq(req
));
2565 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2566 laptop_io_completion(&req
->q
->backing_dev_info
);
2568 blk_delete_timer(req
);
2570 if (req
->cmd_flags
& REQ_DONTPREP
)
2571 blk_unprep_request(req
);
2573 blk_account_io_done(req
);
2576 req
->end_io(req
, error
);
2578 if (blk_bidi_rq(req
))
2579 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2581 __blk_put_request(req
->q
, req
);
2584 EXPORT_SYMBOL(blk_finish_request
);
2587 * blk_end_bidi_request - Complete a bidi request
2588 * @rq: the request to complete
2589 * @error: %0 for success, < %0 for error
2590 * @nr_bytes: number of bytes to complete @rq
2591 * @bidi_bytes: number of bytes to complete @rq->next_rq
2594 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2595 * Drivers that supports bidi can safely call this member for any
2596 * type of request, bidi or uni. In the later case @bidi_bytes is
2600 * %false - we are done with this request
2601 * %true - still buffers pending for this request
2603 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2604 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2606 struct request_queue
*q
= rq
->q
;
2607 unsigned long flags
;
2609 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2612 spin_lock_irqsave(q
->queue_lock
, flags
);
2613 blk_finish_request(rq
, error
);
2614 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2620 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2621 * @rq: the request to complete
2622 * @error: %0 for success, < %0 for error
2623 * @nr_bytes: number of bytes to complete @rq
2624 * @bidi_bytes: number of bytes to complete @rq->next_rq
2627 * Identical to blk_end_bidi_request() except that queue lock is
2628 * assumed to be locked on entry and remains so on return.
2631 * %false - we are done with this request
2632 * %true - still buffers pending for this request
2634 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2635 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2637 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2640 blk_finish_request(rq
, error
);
2646 * blk_end_request - Helper function for drivers to complete the request.
2647 * @rq: the request being processed
2648 * @error: %0 for success, < %0 for error
2649 * @nr_bytes: number of bytes to complete
2652 * Ends I/O on a number of bytes attached to @rq.
2653 * If @rq has leftover, sets it up for the next range of segments.
2656 * %false - we are done with this request
2657 * %true - still buffers pending for this request
2659 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2661 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2663 EXPORT_SYMBOL(blk_end_request
);
2666 * blk_end_request_all - Helper function for drives to finish the request.
2667 * @rq: the request to finish
2668 * @error: %0 for success, < %0 for error
2671 * Completely finish @rq.
2673 void blk_end_request_all(struct request
*rq
, int error
)
2676 unsigned int bidi_bytes
= 0;
2678 if (unlikely(blk_bidi_rq(rq
)))
2679 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2681 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2684 EXPORT_SYMBOL(blk_end_request_all
);
2687 * blk_end_request_cur - Helper function to finish the current request chunk.
2688 * @rq: the request to finish the current chunk for
2689 * @error: %0 for success, < %0 for error
2692 * Complete the current consecutively mapped chunk from @rq.
2695 * %false - we are done with this request
2696 * %true - still buffers pending for this request
2698 bool blk_end_request_cur(struct request
*rq
, int error
)
2700 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2702 EXPORT_SYMBOL(blk_end_request_cur
);
2705 * blk_end_request_err - Finish a request till the next failure boundary.
2706 * @rq: the request to finish till the next failure boundary for
2707 * @error: must be negative errno
2710 * Complete @rq till the next failure boundary.
2713 * %false - we are done with this request
2714 * %true - still buffers pending for this request
2716 bool blk_end_request_err(struct request
*rq
, int error
)
2718 WARN_ON(error
>= 0);
2719 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2721 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2724 * __blk_end_request - Helper function for drivers to complete the request.
2725 * @rq: the request being processed
2726 * @error: %0 for success, < %0 for error
2727 * @nr_bytes: number of bytes to complete
2730 * Must be called with queue lock held unlike blk_end_request().
2733 * %false - we are done with this request
2734 * %true - still buffers pending for this request
2736 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2738 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2740 EXPORT_SYMBOL(__blk_end_request
);
2743 * __blk_end_request_all - Helper function for drives to finish the request.
2744 * @rq: the request to finish
2745 * @error: %0 for success, < %0 for error
2748 * Completely finish @rq. Must be called with queue lock held.
2750 void __blk_end_request_all(struct request
*rq
, int error
)
2753 unsigned int bidi_bytes
= 0;
2755 if (unlikely(blk_bidi_rq(rq
)))
2756 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2758 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2761 EXPORT_SYMBOL(__blk_end_request_all
);
2764 * __blk_end_request_cur - Helper function to finish the current request chunk.
2765 * @rq: the request to finish the current chunk for
2766 * @error: %0 for success, < %0 for error
2769 * Complete the current consecutively mapped chunk from @rq. Must
2770 * be called with queue lock held.
2773 * %false - we are done with this request
2774 * %true - still buffers pending for this request
2776 bool __blk_end_request_cur(struct request
*rq
, int error
)
2778 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2780 EXPORT_SYMBOL(__blk_end_request_cur
);
2783 * __blk_end_request_err - Finish a request till the next failure boundary.
2784 * @rq: the request to finish till the next failure boundary for
2785 * @error: must be negative errno
2788 * Complete @rq till the next failure boundary. Must be called
2789 * with queue lock held.
2792 * %false - we are done with this request
2793 * %true - still buffers pending for this request
2795 bool __blk_end_request_err(struct request
*rq
, int error
)
2797 WARN_ON(error
>= 0);
2798 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2800 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2802 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2805 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2806 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2808 if (bio_has_data(bio
))
2809 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2811 rq
->__data_len
= bio
->bi_iter
.bi_size
;
2812 rq
->bio
= rq
->biotail
= bio
;
2815 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2818 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2820 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2821 * @rq: the request to be flushed
2824 * Flush all pages in @rq.
2826 void rq_flush_dcache_pages(struct request
*rq
)
2828 struct req_iterator iter
;
2829 struct bio_vec bvec
;
2831 rq_for_each_segment(bvec
, rq
, iter
)
2832 flush_dcache_page(bvec
.bv_page
);
2834 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2838 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2839 * @q : the queue of the device being checked
2842 * Check if underlying low-level drivers of a device are busy.
2843 * If the drivers want to export their busy state, they must set own
2844 * exporting function using blk_queue_lld_busy() first.
2846 * Basically, this function is used only by request stacking drivers
2847 * to stop dispatching requests to underlying devices when underlying
2848 * devices are busy. This behavior helps more I/O merging on the queue
2849 * of the request stacking driver and prevents I/O throughput regression
2850 * on burst I/O load.
2853 * 0 - Not busy (The request stacking driver should dispatch request)
2854 * 1 - Busy (The request stacking driver should stop dispatching request)
2856 int blk_lld_busy(struct request_queue
*q
)
2859 return q
->lld_busy_fn(q
);
2863 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2866 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2867 * @rq: the clone request to be cleaned up
2870 * Free all bios in @rq for a cloned request.
2872 void blk_rq_unprep_clone(struct request
*rq
)
2876 while ((bio
= rq
->bio
) != NULL
) {
2877 rq
->bio
= bio
->bi_next
;
2882 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2885 * Copy attributes of the original request to the clone request.
2886 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2888 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2890 dst
->cpu
= src
->cpu
;
2891 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2892 dst
->cmd_type
= src
->cmd_type
;
2893 dst
->__sector
= blk_rq_pos(src
);
2894 dst
->__data_len
= blk_rq_bytes(src
);
2895 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2896 dst
->ioprio
= src
->ioprio
;
2897 dst
->extra_len
= src
->extra_len
;
2901 * blk_rq_prep_clone - Helper function to setup clone request
2902 * @rq: the request to be setup
2903 * @rq_src: original request to be cloned
2904 * @bs: bio_set that bios for clone are allocated from
2905 * @gfp_mask: memory allocation mask for bio
2906 * @bio_ctr: setup function to be called for each clone bio.
2907 * Returns %0 for success, non %0 for failure.
2908 * @data: private data to be passed to @bio_ctr
2911 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2912 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2913 * are not copied, and copying such parts is the caller's responsibility.
2914 * Also, pages which the original bios are pointing to are not copied
2915 * and the cloned bios just point same pages.
2916 * So cloned bios must be completed before original bios, which means
2917 * the caller must complete @rq before @rq_src.
2919 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2920 struct bio_set
*bs
, gfp_t gfp_mask
,
2921 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2924 struct bio
*bio
, *bio_src
;
2929 blk_rq_init(NULL
, rq
);
2931 __rq_for_each_bio(bio_src
, rq_src
) {
2932 bio
= bio_clone_bioset(bio_src
, gfp_mask
, bs
);
2936 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2940 rq
->biotail
->bi_next
= bio
;
2943 rq
->bio
= rq
->biotail
= bio
;
2946 __blk_rq_prep_clone(rq
, rq_src
);
2953 blk_rq_unprep_clone(rq
);
2957 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2959 int kblockd_schedule_work(struct work_struct
*work
)
2961 return queue_work(kblockd_workqueue
, work
);
2963 EXPORT_SYMBOL(kblockd_schedule_work
);
2965 int kblockd_schedule_delayed_work(struct delayed_work
*dwork
,
2966 unsigned long delay
)
2968 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2970 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2972 int kblockd_schedule_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
2973 unsigned long delay
)
2975 return queue_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
2977 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on
);
2980 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2981 * @plug: The &struct blk_plug that needs to be initialized
2984 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2985 * pending I/O should the task end up blocking between blk_start_plug() and
2986 * blk_finish_plug(). This is important from a performance perspective, but
2987 * also ensures that we don't deadlock. For instance, if the task is blocking
2988 * for a memory allocation, memory reclaim could end up wanting to free a
2989 * page belonging to that request that is currently residing in our private
2990 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2991 * this kind of deadlock.
2993 void blk_start_plug(struct blk_plug
*plug
)
2995 struct task_struct
*tsk
= current
;
2997 INIT_LIST_HEAD(&plug
->list
);
2998 INIT_LIST_HEAD(&plug
->mq_list
);
2999 INIT_LIST_HEAD(&plug
->cb_list
);
3002 * If this is a nested plug, don't actually assign it. It will be
3003 * flushed on its own.
3007 * Store ordering should not be needed here, since a potential
3008 * preempt will imply a full memory barrier
3013 EXPORT_SYMBOL(blk_start_plug
);
3015 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3017 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
3018 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
3020 return !(rqa
->q
< rqb
->q
||
3021 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
3025 * If 'from_schedule' is true, then postpone the dispatch of requests
3026 * until a safe kblockd context. We due this to avoid accidental big
3027 * additional stack usage in driver dispatch, in places where the originally
3028 * plugger did not intend it.
3030 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
3032 __releases(q
->queue_lock
)
3034 trace_block_unplug(q
, depth
, !from_schedule
);
3037 blk_run_queue_async(q
);
3040 spin_unlock(q
->queue_lock
);
3043 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
3045 LIST_HEAD(callbacks
);
3047 while (!list_empty(&plug
->cb_list
)) {
3048 list_splice_init(&plug
->cb_list
, &callbacks
);
3050 while (!list_empty(&callbacks
)) {
3051 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
3054 list_del(&cb
->list
);
3055 cb
->callback(cb
, from_schedule
);
3060 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
3063 struct blk_plug
*plug
= current
->plug
;
3064 struct blk_plug_cb
*cb
;
3069 list_for_each_entry(cb
, &plug
->cb_list
, list
)
3070 if (cb
->callback
== unplug
&& cb
->data
== data
)
3073 /* Not currently on the callback list */
3074 BUG_ON(size
< sizeof(*cb
));
3075 cb
= kzalloc(size
, GFP_ATOMIC
);
3078 cb
->callback
= unplug
;
3079 list_add(&cb
->list
, &plug
->cb_list
);
3083 EXPORT_SYMBOL(blk_check_plugged
);
3085 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
3087 struct request_queue
*q
;
3088 unsigned long flags
;
3093 flush_plug_callbacks(plug
, from_schedule
);
3095 if (!list_empty(&plug
->mq_list
))
3096 blk_mq_flush_plug_list(plug
, from_schedule
);
3098 if (list_empty(&plug
->list
))
3101 list_splice_init(&plug
->list
, &list
);
3103 list_sort(NULL
, &list
, plug_rq_cmp
);
3109 * Save and disable interrupts here, to avoid doing it for every
3110 * queue lock we have to take.
3112 local_irq_save(flags
);
3113 while (!list_empty(&list
)) {
3114 rq
= list_entry_rq(list
.next
);
3115 list_del_init(&rq
->queuelist
);
3119 * This drops the queue lock
3122 queue_unplugged(q
, depth
, from_schedule
);
3125 spin_lock(q
->queue_lock
);
3129 * Short-circuit if @q is dead
3131 if (unlikely(blk_queue_dying(q
))) {
3132 __blk_end_request_all(rq
, -ENODEV
);
3137 * rq is already accounted, so use raw insert
3139 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
3140 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3142 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3148 * This drops the queue lock
3151 queue_unplugged(q
, depth
, from_schedule
);
3153 local_irq_restore(flags
);
3156 void blk_finish_plug(struct blk_plug
*plug
)
3158 blk_flush_plug_list(plug
, false);
3160 if (plug
== current
->plug
)
3161 current
->plug
= NULL
;
3163 EXPORT_SYMBOL(blk_finish_plug
);
3165 #ifdef CONFIG_PM_RUNTIME
3167 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3168 * @q: the queue of the device
3169 * @dev: the device the queue belongs to
3172 * Initialize runtime-PM-related fields for @q and start auto suspend for
3173 * @dev. Drivers that want to take advantage of request-based runtime PM
3174 * should call this function after @dev has been initialized, and its
3175 * request queue @q has been allocated, and runtime PM for it can not happen
3176 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3177 * cases, driver should call this function before any I/O has taken place.
3179 * This function takes care of setting up using auto suspend for the device,
3180 * the autosuspend delay is set to -1 to make runtime suspend impossible
3181 * until an updated value is either set by user or by driver. Drivers do
3182 * not need to touch other autosuspend settings.
3184 * The block layer runtime PM is request based, so only works for drivers
3185 * that use request as their IO unit instead of those directly use bio's.
3187 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3190 q
->rpm_status
= RPM_ACTIVE
;
3191 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3192 pm_runtime_use_autosuspend(q
->dev
);
3194 EXPORT_SYMBOL(blk_pm_runtime_init
);
3197 * blk_pre_runtime_suspend - Pre runtime suspend check
3198 * @q: the queue of the device
3201 * This function will check if runtime suspend is allowed for the device
3202 * by examining if there are any requests pending in the queue. If there
3203 * are requests pending, the device can not be runtime suspended; otherwise,
3204 * the queue's status will be updated to SUSPENDING and the driver can
3205 * proceed to suspend the device.
3207 * For the not allowed case, we mark last busy for the device so that
3208 * runtime PM core will try to autosuspend it some time later.
3210 * This function should be called near the start of the device's
3211 * runtime_suspend callback.
3214 * 0 - OK to runtime suspend the device
3215 * -EBUSY - Device should not be runtime suspended
3217 int blk_pre_runtime_suspend(struct request_queue
*q
)
3221 spin_lock_irq(q
->queue_lock
);
3222 if (q
->nr_pending
) {
3224 pm_runtime_mark_last_busy(q
->dev
);
3226 q
->rpm_status
= RPM_SUSPENDING
;
3228 spin_unlock_irq(q
->queue_lock
);
3231 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3234 * blk_post_runtime_suspend - Post runtime suspend processing
3235 * @q: the queue of the device
3236 * @err: return value of the device's runtime_suspend function
3239 * Update the queue's runtime status according to the return value of the
3240 * device's runtime suspend function and mark last busy for the device so
3241 * that PM core will try to auto suspend the device at a later time.
3243 * This function should be called near the end of the device's
3244 * runtime_suspend callback.
3246 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3248 spin_lock_irq(q
->queue_lock
);
3250 q
->rpm_status
= RPM_SUSPENDED
;
3252 q
->rpm_status
= RPM_ACTIVE
;
3253 pm_runtime_mark_last_busy(q
->dev
);
3255 spin_unlock_irq(q
->queue_lock
);
3257 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3260 * blk_pre_runtime_resume - Pre runtime resume processing
3261 * @q: the queue of the device
3264 * Update the queue's runtime status to RESUMING in preparation for the
3265 * runtime resume of the device.
3267 * This function should be called near the start of the device's
3268 * runtime_resume callback.
3270 void blk_pre_runtime_resume(struct request_queue
*q
)
3272 spin_lock_irq(q
->queue_lock
);
3273 q
->rpm_status
= RPM_RESUMING
;
3274 spin_unlock_irq(q
->queue_lock
);
3276 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3279 * blk_post_runtime_resume - Post runtime resume processing
3280 * @q: the queue of the device
3281 * @err: return value of the device's runtime_resume function
3284 * Update the queue's runtime status according to the return value of the
3285 * device's runtime_resume function. If it is successfully resumed, process
3286 * the requests that are queued into the device's queue when it is resuming
3287 * and then mark last busy and initiate autosuspend for it.
3289 * This function should be called near the end of the device's
3290 * runtime_resume callback.
3292 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3294 spin_lock_irq(q
->queue_lock
);
3296 q
->rpm_status
= RPM_ACTIVE
;
3298 pm_runtime_mark_last_busy(q
->dev
);
3299 pm_request_autosuspend(q
->dev
);
3301 q
->rpm_status
= RPM_SUSPENDED
;
3303 spin_unlock_irq(q
->queue_lock
);
3305 EXPORT_SYMBOL(blk_post_runtime_resume
);
3308 int __init
blk_dev_init(void)
3310 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
3311 sizeof(((struct request
*)0)->cmd_flags
));
3313 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3314 kblockd_workqueue
= alloc_workqueue("kblockd",
3315 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3316 if (!kblockd_workqueue
)
3317 panic("Failed to create kblockd\n");
3319 request_cachep
= kmem_cache_create("blkdev_requests",
3320 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3322 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
3323 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);