4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 static struct kmem_cache
*discard_entry_slab
;
30 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
31 * MSB and LSB are reversed in a byte by f2fs_set_bit.
33 static inline unsigned long __reverse_ffs(unsigned long word
)
37 #if BITS_PER_LONG == 64
38 if ((word
& 0xffffffff) == 0) {
43 if ((word
& 0xffff) == 0) {
47 if ((word
& 0xff) == 0) {
51 if ((word
& 0xf0) == 0)
55 if ((word
& 0xc) == 0)
59 if ((word
& 0x2) == 0)
65 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
66 * f2fs_set_bit makes MSB and LSB reversed in a byte.
69 * f2fs_set_bit(0, bitmap) => 0000 0001
70 * f2fs_set_bit(7, bitmap) => 1000 0000
72 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
73 unsigned long size
, unsigned long offset
)
75 const unsigned long *p
= addr
+ BIT_WORD(offset
);
76 unsigned long result
= offset
& ~(BITS_PER_LONG
- 1);
78 unsigned long mask
, submask
;
79 unsigned long quot
, rest
;
85 offset
%= BITS_PER_LONG
;
90 quot
= (offset
>> 3) << 3;
93 submask
= (unsigned char)(0xff << rest
) >> rest
;
97 if (size
< BITS_PER_LONG
)
102 size
-= BITS_PER_LONG
;
103 result
+= BITS_PER_LONG
;
105 while (size
& ~(BITS_PER_LONG
-1)) {
109 result
+= BITS_PER_LONG
;
110 size
-= BITS_PER_LONG
;
116 tmp
&= (~0UL >> (BITS_PER_LONG
- size
));
117 if (tmp
== 0UL) /* Are any bits set? */
118 return result
+ size
; /* Nope. */
120 return result
+ __reverse_ffs(tmp
);
123 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
124 unsigned long size
, unsigned long offset
)
126 const unsigned long *p
= addr
+ BIT_WORD(offset
);
127 unsigned long result
= offset
& ~(BITS_PER_LONG
- 1);
129 unsigned long mask
, submask
;
130 unsigned long quot
, rest
;
136 offset
%= BITS_PER_LONG
;
141 quot
= (offset
>> 3) << 3;
143 mask
= ~(~0UL << quot
);
144 submask
= (unsigned char)~((unsigned char)(0xff << rest
) >> rest
);
148 if (size
< BITS_PER_LONG
)
153 size
-= BITS_PER_LONG
;
154 result
+= BITS_PER_LONG
;
156 while (size
& ~(BITS_PER_LONG
- 1)) {
160 result
+= BITS_PER_LONG
;
161 size
-= BITS_PER_LONG
;
169 if (tmp
== ~0UL) /* Are any bits zero? */
170 return result
+ size
; /* Nope. */
172 return result
+ __reverse_ffz(tmp
);
176 * This function balances dirty node and dentry pages.
177 * In addition, it controls garbage collection.
179 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
)
182 * We should do GC or end up with checkpoint, if there are so many dirty
183 * dir/node pages without enough free segments.
185 if (has_not_enough_free_secs(sbi
, 0)) {
186 mutex_lock(&sbi
->gc_mutex
);
191 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
193 /* check the # of cached NAT entries and prefree segments */
194 if (try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
) ||
195 excess_prefree_segs(sbi
))
196 f2fs_sync_fs(sbi
->sb
, true);
199 static int issue_flush_thread(void *data
)
201 struct f2fs_sb_info
*sbi
= data
;
202 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
203 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
205 if (kthread_should_stop())
208 spin_lock(&fcc
->issue_lock
);
209 if (fcc
->issue_list
) {
210 fcc
->dispatch_list
= fcc
->issue_list
;
211 fcc
->issue_list
= fcc
->issue_tail
= NULL
;
213 spin_unlock(&fcc
->issue_lock
);
215 if (fcc
->dispatch_list
) {
216 struct bio
*bio
= bio_alloc(GFP_NOIO
, 0);
217 struct flush_cmd
*cmd
, *next
;
220 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
221 ret
= submit_bio_wait(WRITE_FLUSH
, bio
);
223 for (cmd
= fcc
->dispatch_list
; cmd
; cmd
= next
) {
226 complete(&cmd
->wait
);
229 fcc
->dispatch_list
= NULL
;
232 wait_event_interruptible(*q
,
233 kthread_should_stop() || fcc
->issue_list
);
237 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
)
239 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
240 struct flush_cmd cmd
;
242 if (!test_opt(sbi
, FLUSH_MERGE
))
243 return blkdev_issue_flush(sbi
->sb
->s_bdev
, GFP_KERNEL
, NULL
);
245 init_completion(&cmd
.wait
);
248 spin_lock(&fcc
->issue_lock
);
250 fcc
->issue_tail
->next
= &cmd
;
252 fcc
->issue_list
= &cmd
;
253 fcc
->issue_tail
= &cmd
;
254 spin_unlock(&fcc
->issue_lock
);
256 if (!fcc
->dispatch_list
)
257 wake_up(&fcc
->flush_wait_queue
);
259 wait_for_completion(&cmd
.wait
);
264 int create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
266 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
267 struct flush_cmd_control
*fcc
;
270 fcc
= kzalloc(sizeof(struct flush_cmd_control
), GFP_KERNEL
);
273 spin_lock_init(&fcc
->issue_lock
);
274 init_waitqueue_head(&fcc
->flush_wait_queue
);
275 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
276 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
277 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
278 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
282 sbi
->sm_info
->cmd_control_info
= fcc
;
287 void destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
)
289 struct flush_cmd_control
*fcc
=
290 sbi
->sm_info
->cmd_control_info
;
292 if (fcc
&& fcc
->f2fs_issue_flush
)
293 kthread_stop(fcc
->f2fs_issue_flush
);
295 sbi
->sm_info
->cmd_control_info
= NULL
;
298 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
299 enum dirty_type dirty_type
)
301 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
303 /* need not be added */
304 if (IS_CURSEG(sbi
, segno
))
307 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
308 dirty_i
->nr_dirty
[dirty_type
]++;
310 if (dirty_type
== DIRTY
) {
311 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
312 enum dirty_type t
= sentry
->type
;
314 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
315 dirty_i
->nr_dirty
[t
]++;
319 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
320 enum dirty_type dirty_type
)
322 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
324 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
325 dirty_i
->nr_dirty
[dirty_type
]--;
327 if (dirty_type
== DIRTY
) {
328 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
329 enum dirty_type t
= sentry
->type
;
331 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
332 dirty_i
->nr_dirty
[t
]--;
334 if (get_valid_blocks(sbi
, segno
, sbi
->segs_per_sec
) == 0)
335 clear_bit(GET_SECNO(sbi
, segno
),
336 dirty_i
->victim_secmap
);
341 * Should not occur error such as -ENOMEM.
342 * Adding dirty entry into seglist is not critical operation.
343 * If a given segment is one of current working segments, it won't be added.
345 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
347 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
348 unsigned short valid_blocks
;
350 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
353 mutex_lock(&dirty_i
->seglist_lock
);
355 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
357 if (valid_blocks
== 0) {
358 __locate_dirty_segment(sbi
, segno
, PRE
);
359 __remove_dirty_segment(sbi
, segno
, DIRTY
);
360 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
361 __locate_dirty_segment(sbi
, segno
, DIRTY
);
363 /* Recovery routine with SSR needs this */
364 __remove_dirty_segment(sbi
, segno
, DIRTY
);
367 mutex_unlock(&dirty_i
->seglist_lock
);
370 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
371 block_t blkstart
, block_t blklen
)
373 sector_t start
= SECTOR_FROM_BLOCK(sbi
, blkstart
);
374 sector_t len
= SECTOR_FROM_BLOCK(sbi
, blklen
);
375 trace_f2fs_issue_discard(sbi
->sb
, blkstart
, blklen
);
376 return blkdev_issue_discard(sbi
->sb
->s_bdev
, start
, len
, GFP_NOFS
, 0);
379 void discard_next_dnode(struct f2fs_sb_info
*sbi
)
381 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_WARM_NODE
);
382 block_t blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
384 if (f2fs_issue_discard(sbi
, blkaddr
, 1)) {
385 struct page
*page
= grab_meta_page(sbi
, blkaddr
);
386 /* zero-filled page */
387 set_page_dirty(page
);
388 f2fs_put_page(page
, 1);
392 static void add_discard_addrs(struct f2fs_sb_info
*sbi
,
393 unsigned int segno
, struct seg_entry
*se
)
395 struct list_head
*head
= &SM_I(sbi
)->discard_list
;
396 struct discard_entry
*new;
397 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
398 int max_blocks
= sbi
->blocks_per_seg
;
399 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
400 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
401 unsigned long dmap
[entries
];
402 unsigned int start
= 0, end
= -1;
405 if (!test_opt(sbi
, DISCARD
))
408 /* zero block will be discarded through the prefree list */
409 if (!se
->valid_blocks
|| se
->valid_blocks
== max_blocks
)
412 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
413 for (i
= 0; i
< entries
; i
++)
414 dmap
[i
] = (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
416 while (SM_I(sbi
)->nr_discards
<= SM_I(sbi
)->max_discards
) {
417 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
418 if (start
>= max_blocks
)
421 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
423 new = f2fs_kmem_cache_alloc(discard_entry_slab
, GFP_NOFS
);
424 INIT_LIST_HEAD(&new->list
);
425 new->blkaddr
= START_BLOCK(sbi
, segno
) + start
;
426 new->len
= end
- start
;
428 list_add_tail(&new->list
, head
);
429 SM_I(sbi
)->nr_discards
+= end
- start
;
434 * Should call clear_prefree_segments after checkpoint is done.
436 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
438 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
439 unsigned int segno
= -1;
440 unsigned int total_segs
= TOTAL_SEGS(sbi
);
442 mutex_lock(&dirty_i
->seglist_lock
);
444 segno
= find_next_bit(dirty_i
->dirty_segmap
[PRE
], total_segs
,
446 if (segno
>= total_segs
)
448 __set_test_and_free(sbi
, segno
);
450 mutex_unlock(&dirty_i
->seglist_lock
);
453 void clear_prefree_segments(struct f2fs_sb_info
*sbi
)
455 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
456 struct discard_entry
*entry
, *this;
457 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
458 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
459 unsigned int total_segs
= TOTAL_SEGS(sbi
);
460 unsigned int start
= 0, end
= -1;
462 mutex_lock(&dirty_i
->seglist_lock
);
466 start
= find_next_bit(prefree_map
, total_segs
, end
+ 1);
467 if (start
>= total_segs
)
469 end
= find_next_zero_bit(prefree_map
, total_segs
, start
+ 1);
471 for (i
= start
; i
< end
; i
++)
472 clear_bit(i
, prefree_map
);
474 dirty_i
->nr_dirty
[PRE
] -= end
- start
;
476 if (!test_opt(sbi
, DISCARD
))
479 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
480 (end
- start
) << sbi
->log_blocks_per_seg
);
482 mutex_unlock(&dirty_i
->seglist_lock
);
484 /* send small discards */
485 list_for_each_entry_safe(entry
, this, head
, list
) {
486 f2fs_issue_discard(sbi
, entry
->blkaddr
, entry
->len
);
487 list_del(&entry
->list
);
488 SM_I(sbi
)->nr_discards
-= entry
->len
;
489 kmem_cache_free(discard_entry_slab
, entry
);
493 static void __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
495 struct sit_info
*sit_i
= SIT_I(sbi
);
496 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
))
497 sit_i
->dirty_sentries
++;
500 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
501 unsigned int segno
, int modified
)
503 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
506 __mark_sit_entry_dirty(sbi
, segno
);
509 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
511 struct seg_entry
*se
;
512 unsigned int segno
, offset
;
513 long int new_vblocks
;
515 segno
= GET_SEGNO(sbi
, blkaddr
);
517 se
= get_seg_entry(sbi
, segno
);
518 new_vblocks
= se
->valid_blocks
+ del
;
519 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
521 f2fs_bug_on((new_vblocks
>> (sizeof(unsigned short) << 3) ||
522 (new_vblocks
> sbi
->blocks_per_seg
)));
524 se
->valid_blocks
= new_vblocks
;
525 se
->mtime
= get_mtime(sbi
);
526 SIT_I(sbi
)->max_mtime
= se
->mtime
;
528 /* Update valid block bitmap */
530 if (f2fs_set_bit(offset
, se
->cur_valid_map
))
533 if (!f2fs_clear_bit(offset
, se
->cur_valid_map
))
536 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
537 se
->ckpt_valid_blocks
+= del
;
539 __mark_sit_entry_dirty(sbi
, segno
);
541 /* update total number of valid blocks to be written in ckpt area */
542 SIT_I(sbi
)->written_valid_blocks
+= del
;
544 if (sbi
->segs_per_sec
> 1)
545 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
548 void refresh_sit_entry(struct f2fs_sb_info
*sbi
, block_t old
, block_t
new)
550 update_sit_entry(sbi
, new, 1);
551 if (GET_SEGNO(sbi
, old
) != NULL_SEGNO
)
552 update_sit_entry(sbi
, old
, -1);
554 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old
));
555 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new));
558 void invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
560 unsigned int segno
= GET_SEGNO(sbi
, addr
);
561 struct sit_info
*sit_i
= SIT_I(sbi
);
563 f2fs_bug_on(addr
== NULL_ADDR
);
564 if (addr
== NEW_ADDR
)
567 /* add it into sit main buffer */
568 mutex_lock(&sit_i
->sentry_lock
);
570 update_sit_entry(sbi
, addr
, -1);
572 /* add it into dirty seglist */
573 locate_dirty_segment(sbi
, segno
);
575 mutex_unlock(&sit_i
->sentry_lock
);
579 * This function should be resided under the curseg_mutex lock
581 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
582 struct f2fs_summary
*sum
)
584 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
585 void *addr
= curseg
->sum_blk
;
586 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
587 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
591 * Calculate the number of current summary pages for writing
593 int npages_for_summary_flush(struct f2fs_sb_info
*sbi
)
595 int valid_sum_count
= 0;
598 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
599 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
600 valid_sum_count
+= sbi
->blocks_per_seg
;
602 valid_sum_count
+= curseg_blkoff(sbi
, i
);
605 sum_in_page
= (PAGE_CACHE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
606 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
607 if (valid_sum_count
<= sum_in_page
)
609 else if ((valid_sum_count
- sum_in_page
) <=
610 (PAGE_CACHE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
616 * Caller should put this summary page
618 struct page
*get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
620 return get_meta_page(sbi
, GET_SUM_BLOCK(sbi
, segno
));
623 static void write_sum_page(struct f2fs_sb_info
*sbi
,
624 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
626 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
627 void *kaddr
= page_address(page
);
628 memcpy(kaddr
, sum_blk
, PAGE_CACHE_SIZE
);
629 set_page_dirty(page
);
630 f2fs_put_page(page
, 1);
633 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
635 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
636 unsigned int segno
= curseg
->segno
+ 1;
637 struct free_segmap_info
*free_i
= FREE_I(sbi
);
639 if (segno
< TOTAL_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
640 return !test_bit(segno
, free_i
->free_segmap
);
645 * Find a new segment from the free segments bitmap to right order
646 * This function should be returned with success, otherwise BUG
648 static void get_new_segment(struct f2fs_sb_info
*sbi
,
649 unsigned int *newseg
, bool new_sec
, int dir
)
651 struct free_segmap_info
*free_i
= FREE_I(sbi
);
652 unsigned int segno
, secno
, zoneno
;
653 unsigned int total_zones
= TOTAL_SECS(sbi
) / sbi
->secs_per_zone
;
654 unsigned int hint
= *newseg
/ sbi
->segs_per_sec
;
655 unsigned int old_zoneno
= GET_ZONENO_FROM_SEGNO(sbi
, *newseg
);
656 unsigned int left_start
= hint
;
661 write_lock(&free_i
->segmap_lock
);
663 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
664 segno
= find_next_zero_bit(free_i
->free_segmap
,
665 TOTAL_SEGS(sbi
), *newseg
+ 1);
666 if (segno
- *newseg
< sbi
->segs_per_sec
-
667 (*newseg
% sbi
->segs_per_sec
))
671 secno
= find_next_zero_bit(free_i
->free_secmap
, TOTAL_SECS(sbi
), hint
);
672 if (secno
>= TOTAL_SECS(sbi
)) {
673 if (dir
== ALLOC_RIGHT
) {
674 secno
= find_next_zero_bit(free_i
->free_secmap
,
676 f2fs_bug_on(secno
>= TOTAL_SECS(sbi
));
679 left_start
= hint
- 1;
685 while (test_bit(left_start
, free_i
->free_secmap
)) {
686 if (left_start
> 0) {
690 left_start
= find_next_zero_bit(free_i
->free_secmap
,
692 f2fs_bug_on(left_start
>= TOTAL_SECS(sbi
));
698 segno
= secno
* sbi
->segs_per_sec
;
699 zoneno
= secno
/ sbi
->secs_per_zone
;
701 /* give up on finding another zone */
704 if (sbi
->secs_per_zone
== 1)
706 if (zoneno
== old_zoneno
)
708 if (dir
== ALLOC_LEFT
) {
709 if (!go_left
&& zoneno
+ 1 >= total_zones
)
711 if (go_left
&& zoneno
== 0)
714 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
715 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
718 if (i
< NR_CURSEG_TYPE
) {
719 /* zone is in user, try another */
721 hint
= zoneno
* sbi
->secs_per_zone
- 1;
722 else if (zoneno
+ 1 >= total_zones
)
725 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
727 goto find_other_zone
;
730 /* set it as dirty segment in free segmap */
731 f2fs_bug_on(test_bit(segno
, free_i
->free_segmap
));
732 __set_inuse(sbi
, segno
);
734 write_unlock(&free_i
->segmap_lock
);
737 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
739 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
740 struct summary_footer
*sum_footer
;
742 curseg
->segno
= curseg
->next_segno
;
743 curseg
->zone
= GET_ZONENO_FROM_SEGNO(sbi
, curseg
->segno
);
744 curseg
->next_blkoff
= 0;
745 curseg
->next_segno
= NULL_SEGNO
;
747 sum_footer
= &(curseg
->sum_blk
->footer
);
748 memset(sum_footer
, 0, sizeof(struct summary_footer
));
749 if (IS_DATASEG(type
))
750 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
751 if (IS_NODESEG(type
))
752 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
753 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
757 * Allocate a current working segment.
758 * This function always allocates a free segment in LFS manner.
760 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
762 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
763 unsigned int segno
= curseg
->segno
;
764 int dir
= ALLOC_LEFT
;
766 write_sum_page(sbi
, curseg
->sum_blk
,
767 GET_SUM_BLOCK(sbi
, segno
));
768 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
771 if (test_opt(sbi
, NOHEAP
))
774 get_new_segment(sbi
, &segno
, new_sec
, dir
);
775 curseg
->next_segno
= segno
;
776 reset_curseg(sbi
, type
, 1);
777 curseg
->alloc_type
= LFS
;
780 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
781 struct curseg_info
*seg
, block_t start
)
783 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
784 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
785 unsigned long target_map
[entries
];
786 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
787 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
790 for (i
= 0; i
< entries
; i
++)
791 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
793 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
795 seg
->next_blkoff
= pos
;
799 * If a segment is written by LFS manner, next block offset is just obtained
800 * by increasing the current block offset. However, if a segment is written by
801 * SSR manner, next block offset obtained by calling __next_free_blkoff
803 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
804 struct curseg_info
*seg
)
806 if (seg
->alloc_type
== SSR
)
807 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
813 * This function always allocates a used segment (from dirty seglist) by SSR
814 * manner, so it should recover the existing segment information of valid blocks
816 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
, bool reuse
)
818 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
819 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
820 unsigned int new_segno
= curseg
->next_segno
;
821 struct f2fs_summary_block
*sum_node
;
822 struct page
*sum_page
;
824 write_sum_page(sbi
, curseg
->sum_blk
,
825 GET_SUM_BLOCK(sbi
, curseg
->segno
));
826 __set_test_and_inuse(sbi
, new_segno
);
828 mutex_lock(&dirty_i
->seglist_lock
);
829 __remove_dirty_segment(sbi
, new_segno
, PRE
);
830 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
831 mutex_unlock(&dirty_i
->seglist_lock
);
833 reset_curseg(sbi
, type
, 1);
834 curseg
->alloc_type
= SSR
;
835 __next_free_blkoff(sbi
, curseg
, 0);
838 sum_page
= get_sum_page(sbi
, new_segno
);
839 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
840 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
841 f2fs_put_page(sum_page
, 1);
845 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
847 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
848 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
850 if (IS_NODESEG(type
) || !has_not_enough_free_secs(sbi
, 0))
851 return v_ops
->get_victim(sbi
,
852 &(curseg
)->next_segno
, BG_GC
, type
, SSR
);
854 /* For data segments, let's do SSR more intensively */
855 for (; type
>= CURSEG_HOT_DATA
; type
--)
856 if (v_ops
->get_victim(sbi
, &(curseg
)->next_segno
,
863 * flush out current segment and replace it with new segment
864 * This function should be returned with success, otherwise BUG
866 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
867 int type
, bool force
)
869 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
872 new_curseg(sbi
, type
, true);
873 else if (type
== CURSEG_WARM_NODE
)
874 new_curseg(sbi
, type
, false);
875 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
))
876 new_curseg(sbi
, type
, false);
877 else if (need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
878 change_curseg(sbi
, type
, true);
880 new_curseg(sbi
, type
, false);
882 stat_inc_seg_type(sbi
, curseg
);
885 void allocate_new_segments(struct f2fs_sb_info
*sbi
)
887 struct curseg_info
*curseg
;
888 unsigned int old_curseg
;
891 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
892 curseg
= CURSEG_I(sbi
, i
);
893 old_curseg
= curseg
->segno
;
894 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, i
, true);
895 locate_dirty_segment(sbi
, old_curseg
);
899 static const struct segment_allocation default_salloc_ops
= {
900 .allocate_segment
= allocate_segment_by_default
,
903 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
905 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
906 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
911 static int __get_segment_type_2(struct page
*page
, enum page_type p_type
)
914 return CURSEG_HOT_DATA
;
916 return CURSEG_HOT_NODE
;
919 static int __get_segment_type_4(struct page
*page
, enum page_type p_type
)
921 if (p_type
== DATA
) {
922 struct inode
*inode
= page
->mapping
->host
;
924 if (S_ISDIR(inode
->i_mode
))
925 return CURSEG_HOT_DATA
;
927 return CURSEG_COLD_DATA
;
929 if (IS_DNODE(page
) && !is_cold_node(page
))
930 return CURSEG_HOT_NODE
;
932 return CURSEG_COLD_NODE
;
936 static int __get_segment_type_6(struct page
*page
, enum page_type p_type
)
938 if (p_type
== DATA
) {
939 struct inode
*inode
= page
->mapping
->host
;
941 if (S_ISDIR(inode
->i_mode
))
942 return CURSEG_HOT_DATA
;
943 else if (is_cold_data(page
) || file_is_cold(inode
))
944 return CURSEG_COLD_DATA
;
946 return CURSEG_WARM_DATA
;
949 return is_cold_node(page
) ? CURSEG_WARM_NODE
:
952 return CURSEG_COLD_NODE
;
956 static int __get_segment_type(struct page
*page
, enum page_type p_type
)
958 struct f2fs_sb_info
*sbi
= F2FS_SB(page
->mapping
->host
->i_sb
);
959 switch (sbi
->active_logs
) {
961 return __get_segment_type_2(page
, p_type
);
963 return __get_segment_type_4(page
, p_type
);
965 /* NR_CURSEG_TYPE(6) logs by default */
966 f2fs_bug_on(sbi
->active_logs
!= NR_CURSEG_TYPE
);
967 return __get_segment_type_6(page
, p_type
);
970 void allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
971 block_t old_blkaddr
, block_t
*new_blkaddr
,
972 struct f2fs_summary
*sum
, int type
)
974 struct sit_info
*sit_i
= SIT_I(sbi
);
975 struct curseg_info
*curseg
;
976 unsigned int old_cursegno
;
978 curseg
= CURSEG_I(sbi
, type
);
980 mutex_lock(&curseg
->curseg_mutex
);
982 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
983 old_cursegno
= curseg
->segno
;
986 * __add_sum_entry should be resided under the curseg_mutex
987 * because, this function updates a summary entry in the
988 * current summary block.
990 __add_sum_entry(sbi
, type
, sum
);
992 mutex_lock(&sit_i
->sentry_lock
);
993 __refresh_next_blkoff(sbi
, curseg
);
995 stat_inc_block_count(sbi
, curseg
);
997 if (!__has_curseg_space(sbi
, type
))
998 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
1000 * SIT information should be updated before segment allocation,
1001 * since SSR needs latest valid block information.
1003 refresh_sit_entry(sbi
, old_blkaddr
, *new_blkaddr
);
1004 locate_dirty_segment(sbi
, old_cursegno
);
1006 mutex_unlock(&sit_i
->sentry_lock
);
1008 if (page
&& IS_NODESEG(type
))
1009 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
1011 mutex_unlock(&curseg
->curseg_mutex
);
1014 static void do_write_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
1015 block_t old_blkaddr
, block_t
*new_blkaddr
,
1016 struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
1018 int type
= __get_segment_type(page
, fio
->type
);
1020 allocate_data_block(sbi
, page
, old_blkaddr
, new_blkaddr
, sum
, type
);
1022 /* writeout dirty page into bdev */
1023 f2fs_submit_page_mbio(sbi
, page
, *new_blkaddr
, fio
);
1026 void write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1028 struct f2fs_io_info fio
= {
1030 .rw
= WRITE_SYNC
| REQ_META
| REQ_PRIO
1033 set_page_writeback(page
);
1034 f2fs_submit_page_mbio(sbi
, page
, page
->index
, &fio
);
1037 void write_node_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
1038 struct f2fs_io_info
*fio
,
1039 unsigned int nid
, block_t old_blkaddr
, block_t
*new_blkaddr
)
1041 struct f2fs_summary sum
;
1042 set_summary(&sum
, nid
, 0, 0);
1043 do_write_page(sbi
, page
, old_blkaddr
, new_blkaddr
, &sum
, fio
);
1046 void write_data_page(struct page
*page
, struct dnode_of_data
*dn
,
1047 block_t
*new_blkaddr
, struct f2fs_io_info
*fio
)
1049 struct f2fs_sb_info
*sbi
= F2FS_SB(dn
->inode
->i_sb
);
1050 struct f2fs_summary sum
;
1051 struct node_info ni
;
1053 f2fs_bug_on(dn
->data_blkaddr
== NULL_ADDR
);
1054 get_node_info(sbi
, dn
->nid
, &ni
);
1055 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
1057 do_write_page(sbi
, page
, dn
->data_blkaddr
, new_blkaddr
, &sum
, fio
);
1060 void rewrite_data_page(struct page
*page
, block_t old_blkaddr
,
1061 struct f2fs_io_info
*fio
)
1063 struct inode
*inode
= page
->mapping
->host
;
1064 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
1065 f2fs_submit_page_mbio(sbi
, page
, old_blkaddr
, fio
);
1068 void recover_data_page(struct f2fs_sb_info
*sbi
,
1069 struct page
*page
, struct f2fs_summary
*sum
,
1070 block_t old_blkaddr
, block_t new_blkaddr
)
1072 struct sit_info
*sit_i
= SIT_I(sbi
);
1073 struct curseg_info
*curseg
;
1074 unsigned int segno
, old_cursegno
;
1075 struct seg_entry
*se
;
1078 segno
= GET_SEGNO(sbi
, new_blkaddr
);
1079 se
= get_seg_entry(sbi
, segno
);
1082 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
1083 if (old_blkaddr
== NULL_ADDR
)
1084 type
= CURSEG_COLD_DATA
;
1086 type
= CURSEG_WARM_DATA
;
1088 curseg
= CURSEG_I(sbi
, type
);
1090 mutex_lock(&curseg
->curseg_mutex
);
1091 mutex_lock(&sit_i
->sentry_lock
);
1093 old_cursegno
= curseg
->segno
;
1095 /* change the current segment */
1096 if (segno
!= curseg
->segno
) {
1097 curseg
->next_segno
= segno
;
1098 change_curseg(sbi
, type
, true);
1101 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
1102 __add_sum_entry(sbi
, type
, sum
);
1104 refresh_sit_entry(sbi
, old_blkaddr
, new_blkaddr
);
1105 locate_dirty_segment(sbi
, old_cursegno
);
1107 mutex_unlock(&sit_i
->sentry_lock
);
1108 mutex_unlock(&curseg
->curseg_mutex
);
1111 void rewrite_node_page(struct f2fs_sb_info
*sbi
,
1112 struct page
*page
, struct f2fs_summary
*sum
,
1113 block_t old_blkaddr
, block_t new_blkaddr
)
1115 struct sit_info
*sit_i
= SIT_I(sbi
);
1116 int type
= CURSEG_WARM_NODE
;
1117 struct curseg_info
*curseg
;
1118 unsigned int segno
, old_cursegno
;
1119 block_t next_blkaddr
= next_blkaddr_of_node(page
);
1120 unsigned int next_segno
= GET_SEGNO(sbi
, next_blkaddr
);
1121 struct f2fs_io_info fio
= {
1126 curseg
= CURSEG_I(sbi
, type
);
1128 mutex_lock(&curseg
->curseg_mutex
);
1129 mutex_lock(&sit_i
->sentry_lock
);
1131 segno
= GET_SEGNO(sbi
, new_blkaddr
);
1132 old_cursegno
= curseg
->segno
;
1134 /* change the current segment */
1135 if (segno
!= curseg
->segno
) {
1136 curseg
->next_segno
= segno
;
1137 change_curseg(sbi
, type
, true);
1139 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
1140 __add_sum_entry(sbi
, type
, sum
);
1142 /* change the current log to the next block addr in advance */
1143 if (next_segno
!= segno
) {
1144 curseg
->next_segno
= next_segno
;
1145 change_curseg(sbi
, type
, true);
1147 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, next_blkaddr
);
1149 /* rewrite node page */
1150 set_page_writeback(page
);
1151 f2fs_submit_page_mbio(sbi
, page
, new_blkaddr
, &fio
);
1152 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1153 refresh_sit_entry(sbi
, old_blkaddr
, new_blkaddr
);
1154 locate_dirty_segment(sbi
, old_cursegno
);
1156 mutex_unlock(&sit_i
->sentry_lock
);
1157 mutex_unlock(&curseg
->curseg_mutex
);
1160 static inline bool is_merged_page(struct f2fs_sb_info
*sbi
,
1161 struct page
*page
, enum page_type type
)
1163 enum page_type btype
= PAGE_TYPE_OF_BIO(type
);
1164 struct f2fs_bio_info
*io
= &sbi
->write_io
[btype
];
1165 struct bio_vec
*bvec
;
1168 down_read(&io
->io_rwsem
);
1172 bio_for_each_segment_all(bvec
, io
->bio
, i
) {
1173 if (page
== bvec
->bv_page
) {
1174 up_read(&io
->io_rwsem
);
1180 up_read(&io
->io_rwsem
);
1184 void f2fs_wait_on_page_writeback(struct page
*page
,
1185 enum page_type type
)
1187 struct f2fs_sb_info
*sbi
= F2FS_SB(page
->mapping
->host
->i_sb
);
1188 if (PageWriteback(page
)) {
1189 if (is_merged_page(sbi
, page
, type
))
1190 f2fs_submit_merged_bio(sbi
, type
, WRITE
);
1191 wait_on_page_writeback(page
);
1195 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
1197 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1198 struct curseg_info
*seg_i
;
1199 unsigned char *kaddr
;
1204 start
= start_sum_block(sbi
);
1206 page
= get_meta_page(sbi
, start
++);
1207 kaddr
= (unsigned char *)page_address(page
);
1209 /* Step 1: restore nat cache */
1210 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1211 memcpy(&seg_i
->sum_blk
->n_nats
, kaddr
, SUM_JOURNAL_SIZE
);
1213 /* Step 2: restore sit cache */
1214 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1215 memcpy(&seg_i
->sum_blk
->n_sits
, kaddr
+ SUM_JOURNAL_SIZE
,
1217 offset
= 2 * SUM_JOURNAL_SIZE
;
1219 /* Step 3: restore summary entries */
1220 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1221 unsigned short blk_off
;
1224 seg_i
= CURSEG_I(sbi
, i
);
1225 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
1226 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
1227 seg_i
->next_segno
= segno
;
1228 reset_curseg(sbi
, i
, 0);
1229 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
1230 seg_i
->next_blkoff
= blk_off
;
1232 if (seg_i
->alloc_type
== SSR
)
1233 blk_off
= sbi
->blocks_per_seg
;
1235 for (j
= 0; j
< blk_off
; j
++) {
1236 struct f2fs_summary
*s
;
1237 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
1238 seg_i
->sum_blk
->entries
[j
] = *s
;
1239 offset
+= SUMMARY_SIZE
;
1240 if (offset
+ SUMMARY_SIZE
<= PAGE_CACHE_SIZE
-
1244 f2fs_put_page(page
, 1);
1247 page
= get_meta_page(sbi
, start
++);
1248 kaddr
= (unsigned char *)page_address(page
);
1252 f2fs_put_page(page
, 1);
1256 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
1258 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1259 struct f2fs_summary_block
*sum
;
1260 struct curseg_info
*curseg
;
1262 unsigned short blk_off
;
1263 unsigned int segno
= 0;
1264 block_t blk_addr
= 0;
1266 /* get segment number and block addr */
1267 if (IS_DATASEG(type
)) {
1268 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
1269 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
1271 if (is_set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
))
1272 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
1274 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
1276 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
1278 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
1280 if (is_set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
))
1281 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
1282 type
- CURSEG_HOT_NODE
);
1284 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
1287 new = get_meta_page(sbi
, blk_addr
);
1288 sum
= (struct f2fs_summary_block
*)page_address(new);
1290 if (IS_NODESEG(type
)) {
1291 if (is_set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
)) {
1292 struct f2fs_summary
*ns
= &sum
->entries
[0];
1294 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
1296 ns
->ofs_in_node
= 0;
1301 err
= restore_node_summary(sbi
, segno
, sum
);
1303 f2fs_put_page(new, 1);
1309 /* set uncompleted segment to curseg */
1310 curseg
= CURSEG_I(sbi
, type
);
1311 mutex_lock(&curseg
->curseg_mutex
);
1312 memcpy(curseg
->sum_blk
, sum
, PAGE_CACHE_SIZE
);
1313 curseg
->next_segno
= segno
;
1314 reset_curseg(sbi
, type
, 0);
1315 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
1316 curseg
->next_blkoff
= blk_off
;
1317 mutex_unlock(&curseg
->curseg_mutex
);
1318 f2fs_put_page(new, 1);
1322 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
1324 int type
= CURSEG_HOT_DATA
;
1327 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
)) {
1328 /* restore for compacted data summary */
1329 if (read_compacted_summaries(sbi
))
1331 type
= CURSEG_HOT_NODE
;
1334 for (; type
<= CURSEG_COLD_NODE
; type
++) {
1335 err
= read_normal_summaries(sbi
, type
);
1343 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1346 unsigned char *kaddr
;
1347 struct f2fs_summary
*summary
;
1348 struct curseg_info
*seg_i
;
1349 int written_size
= 0;
1352 page
= grab_meta_page(sbi
, blkaddr
++);
1353 kaddr
= (unsigned char *)page_address(page
);
1355 /* Step 1: write nat cache */
1356 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1357 memcpy(kaddr
, &seg_i
->sum_blk
->n_nats
, SUM_JOURNAL_SIZE
);
1358 written_size
+= SUM_JOURNAL_SIZE
;
1360 /* Step 2: write sit cache */
1361 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1362 memcpy(kaddr
+ written_size
, &seg_i
->sum_blk
->n_sits
,
1364 written_size
+= SUM_JOURNAL_SIZE
;
1366 /* Step 3: write summary entries */
1367 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1368 unsigned short blkoff
;
1369 seg_i
= CURSEG_I(sbi
, i
);
1370 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1371 blkoff
= sbi
->blocks_per_seg
;
1373 blkoff
= curseg_blkoff(sbi
, i
);
1375 for (j
= 0; j
< blkoff
; j
++) {
1377 page
= grab_meta_page(sbi
, blkaddr
++);
1378 kaddr
= (unsigned char *)page_address(page
);
1381 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
1382 *summary
= seg_i
->sum_blk
->entries
[j
];
1383 written_size
+= SUMMARY_SIZE
;
1385 if (written_size
+ SUMMARY_SIZE
<= PAGE_CACHE_SIZE
-
1389 set_page_dirty(page
);
1390 f2fs_put_page(page
, 1);
1395 set_page_dirty(page
);
1396 f2fs_put_page(page
, 1);
1400 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
1401 block_t blkaddr
, int type
)
1404 if (IS_DATASEG(type
))
1405 end
= type
+ NR_CURSEG_DATA_TYPE
;
1407 end
= type
+ NR_CURSEG_NODE_TYPE
;
1409 for (i
= type
; i
< end
; i
++) {
1410 struct curseg_info
*sum
= CURSEG_I(sbi
, i
);
1411 mutex_lock(&sum
->curseg_mutex
);
1412 write_sum_page(sbi
, sum
->sum_blk
, blkaddr
+ (i
- type
));
1413 mutex_unlock(&sum
->curseg_mutex
);
1417 void write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1419 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
))
1420 write_compacted_summaries(sbi
, start_blk
);
1422 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
1425 void write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1427 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_UMOUNT_FLAG
))
1428 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
1431 int lookup_journal_in_cursum(struct f2fs_summary_block
*sum
, int type
,
1432 unsigned int val
, int alloc
)
1436 if (type
== NAT_JOURNAL
) {
1437 for (i
= 0; i
< nats_in_cursum(sum
); i
++) {
1438 if (le32_to_cpu(nid_in_journal(sum
, i
)) == val
)
1441 if (alloc
&& nats_in_cursum(sum
) < NAT_JOURNAL_ENTRIES
)
1442 return update_nats_in_cursum(sum
, 1);
1443 } else if (type
== SIT_JOURNAL
) {
1444 for (i
= 0; i
< sits_in_cursum(sum
); i
++)
1445 if (le32_to_cpu(segno_in_journal(sum
, i
)) == val
)
1447 if (alloc
&& sits_in_cursum(sum
) < SIT_JOURNAL_ENTRIES
)
1448 return update_sits_in_cursum(sum
, 1);
1453 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
1456 struct sit_info
*sit_i
= SIT_I(sbi
);
1457 unsigned int offset
= SIT_BLOCK_OFFSET(sit_i
, segno
);
1458 block_t blk_addr
= sit_i
->sit_base_addr
+ offset
;
1460 check_seg_range(sbi
, segno
);
1462 /* calculate sit block address */
1463 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
))
1464 blk_addr
+= sit_i
->sit_blocks
;
1466 return get_meta_page(sbi
, blk_addr
);
1469 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
1472 struct sit_info
*sit_i
= SIT_I(sbi
);
1473 struct page
*src_page
, *dst_page
;
1474 pgoff_t src_off
, dst_off
;
1475 void *src_addr
, *dst_addr
;
1477 src_off
= current_sit_addr(sbi
, start
);
1478 dst_off
= next_sit_addr(sbi
, src_off
);
1480 /* get current sit block page without lock */
1481 src_page
= get_meta_page(sbi
, src_off
);
1482 dst_page
= grab_meta_page(sbi
, dst_off
);
1483 f2fs_bug_on(PageDirty(src_page
));
1485 src_addr
= page_address(src_page
);
1486 dst_addr
= page_address(dst_page
);
1487 memcpy(dst_addr
, src_addr
, PAGE_CACHE_SIZE
);
1489 set_page_dirty(dst_page
);
1490 f2fs_put_page(src_page
, 1);
1492 set_to_next_sit(sit_i
, start
);
1497 static bool flush_sits_in_journal(struct f2fs_sb_info
*sbi
)
1499 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1500 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1504 * If the journal area in the current summary is full of sit entries,
1505 * all the sit entries will be flushed. Otherwise the sit entries
1506 * are not able to replace with newly hot sit entries.
1508 if (sits_in_cursum(sum
) >= SIT_JOURNAL_ENTRIES
) {
1509 for (i
= sits_in_cursum(sum
) - 1; i
>= 0; i
--) {
1511 segno
= le32_to_cpu(segno_in_journal(sum
, i
));
1512 __mark_sit_entry_dirty(sbi
, segno
);
1514 update_sits_in_cursum(sum
, -sits_in_cursum(sum
));
1521 * CP calls this function, which flushes SIT entries including sit_journal,
1522 * and moves prefree segs to free segs.
1524 void flush_sit_entries(struct f2fs_sb_info
*sbi
)
1526 struct sit_info
*sit_i
= SIT_I(sbi
);
1527 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
1528 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1529 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1530 unsigned long nsegs
= TOTAL_SEGS(sbi
);
1531 struct page
*page
= NULL
;
1532 struct f2fs_sit_block
*raw_sit
= NULL
;
1533 unsigned int start
= 0, end
= 0;
1534 unsigned int segno
= -1;
1537 mutex_lock(&curseg
->curseg_mutex
);
1538 mutex_lock(&sit_i
->sentry_lock
);
1541 * "flushed" indicates whether sit entries in journal are flushed
1542 * to the SIT area or not.
1544 flushed
= flush_sits_in_journal(sbi
);
1546 while ((segno
= find_next_bit(bitmap
, nsegs
, segno
+ 1)) < nsegs
) {
1547 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
1548 int sit_offset
, offset
;
1550 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
1552 /* add discard candidates */
1553 if (SM_I(sbi
)->nr_discards
< SM_I(sbi
)->max_discards
)
1554 add_discard_addrs(sbi
, segno
, se
);
1559 offset
= lookup_journal_in_cursum(sum
, SIT_JOURNAL
, segno
, 1);
1561 segno_in_journal(sum
, offset
) = cpu_to_le32(segno
);
1562 seg_info_to_raw_sit(se
, &sit_in_journal(sum
, offset
));
1566 if (!page
|| (start
> segno
) || (segno
> end
)) {
1568 f2fs_put_page(page
, 1);
1572 start
= START_SEGNO(sit_i
, segno
);
1573 end
= start
+ SIT_ENTRY_PER_BLOCK
- 1;
1575 /* read sit block that will be updated */
1576 page
= get_next_sit_page(sbi
, start
);
1577 raw_sit
= page_address(page
);
1580 /* udpate entry in SIT block */
1581 seg_info_to_raw_sit(se
, &raw_sit
->entries
[sit_offset
]);
1583 __clear_bit(segno
, bitmap
);
1584 sit_i
->dirty_sentries
--;
1586 mutex_unlock(&sit_i
->sentry_lock
);
1587 mutex_unlock(&curseg
->curseg_mutex
);
1589 /* writeout last modified SIT block */
1590 f2fs_put_page(page
, 1);
1592 set_prefree_as_free_segments(sbi
);
1595 static int build_sit_info(struct f2fs_sb_info
*sbi
)
1597 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
1598 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1599 struct sit_info
*sit_i
;
1600 unsigned int sit_segs
, start
;
1601 char *src_bitmap
, *dst_bitmap
;
1602 unsigned int bitmap_size
;
1604 /* allocate memory for SIT information */
1605 sit_i
= kzalloc(sizeof(struct sit_info
), GFP_KERNEL
);
1609 SM_I(sbi
)->sit_info
= sit_i
;
1611 sit_i
->sentries
= vzalloc(TOTAL_SEGS(sbi
) * sizeof(struct seg_entry
));
1612 if (!sit_i
->sentries
)
1615 bitmap_size
= f2fs_bitmap_size(TOTAL_SEGS(sbi
));
1616 sit_i
->dirty_sentries_bitmap
= kzalloc(bitmap_size
, GFP_KERNEL
);
1617 if (!sit_i
->dirty_sentries_bitmap
)
1620 for (start
= 0; start
< TOTAL_SEGS(sbi
); start
++) {
1621 sit_i
->sentries
[start
].cur_valid_map
1622 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
1623 sit_i
->sentries
[start
].ckpt_valid_map
1624 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
1625 if (!sit_i
->sentries
[start
].cur_valid_map
1626 || !sit_i
->sentries
[start
].ckpt_valid_map
)
1630 if (sbi
->segs_per_sec
> 1) {
1631 sit_i
->sec_entries
= vzalloc(TOTAL_SECS(sbi
) *
1632 sizeof(struct sec_entry
));
1633 if (!sit_i
->sec_entries
)
1637 /* get information related with SIT */
1638 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
1640 /* setup SIT bitmap from ckeckpoint pack */
1641 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
1642 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
1644 dst_bitmap
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
1648 /* init SIT information */
1649 sit_i
->s_ops
= &default_salloc_ops
;
1651 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
1652 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
1653 sit_i
->written_valid_blocks
= le64_to_cpu(ckpt
->valid_block_count
);
1654 sit_i
->sit_bitmap
= dst_bitmap
;
1655 sit_i
->bitmap_size
= bitmap_size
;
1656 sit_i
->dirty_sentries
= 0;
1657 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
1658 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
1659 sit_i
->mounted_time
= CURRENT_TIME_SEC
.tv_sec
;
1660 mutex_init(&sit_i
->sentry_lock
);
1664 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
1666 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
1667 struct free_segmap_info
*free_i
;
1668 unsigned int bitmap_size
, sec_bitmap_size
;
1670 /* allocate memory for free segmap information */
1671 free_i
= kzalloc(sizeof(struct free_segmap_info
), GFP_KERNEL
);
1675 SM_I(sbi
)->free_info
= free_i
;
1677 bitmap_size
= f2fs_bitmap_size(TOTAL_SEGS(sbi
));
1678 free_i
->free_segmap
= kmalloc(bitmap_size
, GFP_KERNEL
);
1679 if (!free_i
->free_segmap
)
1682 sec_bitmap_size
= f2fs_bitmap_size(TOTAL_SECS(sbi
));
1683 free_i
->free_secmap
= kmalloc(sec_bitmap_size
, GFP_KERNEL
);
1684 if (!free_i
->free_secmap
)
1687 /* set all segments as dirty temporarily */
1688 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
1689 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
1691 /* init free segmap information */
1692 free_i
->start_segno
=
1693 (unsigned int) GET_SEGNO_FROM_SEG0(sbi
, sm_info
->main_blkaddr
);
1694 free_i
->free_segments
= 0;
1695 free_i
->free_sections
= 0;
1696 rwlock_init(&free_i
->segmap_lock
);
1700 static int build_curseg(struct f2fs_sb_info
*sbi
)
1702 struct curseg_info
*array
;
1705 array
= kzalloc(sizeof(*array
) * NR_CURSEG_TYPE
, GFP_KERNEL
);
1709 SM_I(sbi
)->curseg_array
= array
;
1711 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
1712 mutex_init(&array
[i
].curseg_mutex
);
1713 array
[i
].sum_blk
= kzalloc(PAGE_CACHE_SIZE
, GFP_KERNEL
);
1714 if (!array
[i
].sum_blk
)
1716 array
[i
].segno
= NULL_SEGNO
;
1717 array
[i
].next_blkoff
= 0;
1719 return restore_curseg_summaries(sbi
);
1722 static void build_sit_entries(struct f2fs_sb_info
*sbi
)
1724 struct sit_info
*sit_i
= SIT_I(sbi
);
1725 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1726 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1727 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
1728 unsigned int i
, start
, end
;
1729 unsigned int readed
, start_blk
= 0;
1730 int nrpages
= MAX_BIO_BLOCKS(max_hw_blocks(sbi
));
1733 readed
= ra_meta_pages(sbi
, start_blk
, nrpages
, META_SIT
);
1735 start
= start_blk
* sit_i
->sents_per_block
;
1736 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
1738 for (; start
< end
&& start
< TOTAL_SEGS(sbi
); start
++) {
1739 struct seg_entry
*se
= &sit_i
->sentries
[start
];
1740 struct f2fs_sit_block
*sit_blk
;
1741 struct f2fs_sit_entry sit
;
1744 mutex_lock(&curseg
->curseg_mutex
);
1745 for (i
= 0; i
< sits_in_cursum(sum
); i
++) {
1746 if (le32_to_cpu(segno_in_journal(sum
, i
))
1748 sit
= sit_in_journal(sum
, i
);
1749 mutex_unlock(&curseg
->curseg_mutex
);
1753 mutex_unlock(&curseg
->curseg_mutex
);
1755 page
= get_current_sit_page(sbi
, start
);
1756 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
1757 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
1758 f2fs_put_page(page
, 1);
1760 check_block_count(sbi
, start
, &sit
);
1761 seg_info_from_raw_sit(se
, &sit
);
1762 if (sbi
->segs_per_sec
> 1) {
1763 struct sec_entry
*e
= get_sec_entry(sbi
, start
);
1764 e
->valid_blocks
+= se
->valid_blocks
;
1767 start_blk
+= readed
;
1768 } while (start_blk
< sit_blk_cnt
);
1771 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
1776 for (start
= 0; start
< TOTAL_SEGS(sbi
); start
++) {
1777 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
1778 if (!sentry
->valid_blocks
)
1779 __set_free(sbi
, start
);
1782 /* set use the current segments */
1783 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
1784 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
1785 __set_test_and_inuse(sbi
, curseg_t
->segno
);
1789 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
1791 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1792 struct free_segmap_info
*free_i
= FREE_I(sbi
);
1793 unsigned int segno
= 0, offset
= 0, total_segs
= TOTAL_SEGS(sbi
);
1794 unsigned short valid_blocks
;
1797 /* find dirty segment based on free segmap */
1798 segno
= find_next_inuse(free_i
, total_segs
, offset
);
1799 if (segno
>= total_segs
)
1802 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
1803 if (valid_blocks
>= sbi
->blocks_per_seg
|| !valid_blocks
)
1805 mutex_lock(&dirty_i
->seglist_lock
);
1806 __locate_dirty_segment(sbi
, segno
, DIRTY
);
1807 mutex_unlock(&dirty_i
->seglist_lock
);
1811 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
1813 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1814 unsigned int bitmap_size
= f2fs_bitmap_size(TOTAL_SECS(sbi
));
1816 dirty_i
->victim_secmap
= kzalloc(bitmap_size
, GFP_KERNEL
);
1817 if (!dirty_i
->victim_secmap
)
1822 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
1824 struct dirty_seglist_info
*dirty_i
;
1825 unsigned int bitmap_size
, i
;
1827 /* allocate memory for dirty segments list information */
1828 dirty_i
= kzalloc(sizeof(struct dirty_seglist_info
), GFP_KERNEL
);
1832 SM_I(sbi
)->dirty_info
= dirty_i
;
1833 mutex_init(&dirty_i
->seglist_lock
);
1835 bitmap_size
= f2fs_bitmap_size(TOTAL_SEGS(sbi
));
1837 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
1838 dirty_i
->dirty_segmap
[i
] = kzalloc(bitmap_size
, GFP_KERNEL
);
1839 if (!dirty_i
->dirty_segmap
[i
])
1843 init_dirty_segmap(sbi
);
1844 return init_victim_secmap(sbi
);
1848 * Update min, max modified time for cost-benefit GC algorithm
1850 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
1852 struct sit_info
*sit_i
= SIT_I(sbi
);
1855 mutex_lock(&sit_i
->sentry_lock
);
1857 sit_i
->min_mtime
= LLONG_MAX
;
1859 for (segno
= 0; segno
< TOTAL_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
1861 unsigned long long mtime
= 0;
1863 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
1864 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
1866 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
1868 if (sit_i
->min_mtime
> mtime
)
1869 sit_i
->min_mtime
= mtime
;
1871 sit_i
->max_mtime
= get_mtime(sbi
);
1872 mutex_unlock(&sit_i
->sentry_lock
);
1875 int build_segment_manager(struct f2fs_sb_info
*sbi
)
1877 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
1878 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1879 struct f2fs_sm_info
*sm_info
;
1882 sm_info
= kzalloc(sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
1887 sbi
->sm_info
= sm_info
;
1888 INIT_LIST_HEAD(&sm_info
->wblist_head
);
1889 spin_lock_init(&sm_info
->wblist_lock
);
1890 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
1891 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
1892 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
1893 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
1894 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
1895 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
1896 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
1897 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
1898 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
1899 sm_info
->ipu_policy
= F2FS_IPU_DISABLE
;
1900 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
1902 INIT_LIST_HEAD(&sm_info
->discard_list
);
1903 sm_info
->nr_discards
= 0;
1904 sm_info
->max_discards
= 0;
1906 if (test_opt(sbi
, FLUSH_MERGE
) && !f2fs_readonly(sbi
->sb
)) {
1907 err
= create_flush_cmd_control(sbi
);
1912 err
= build_sit_info(sbi
);
1915 err
= build_free_segmap(sbi
);
1918 err
= build_curseg(sbi
);
1922 /* reinit free segmap based on SIT */
1923 build_sit_entries(sbi
);
1925 init_free_segmap(sbi
);
1926 err
= build_dirty_segmap(sbi
);
1930 init_min_max_mtime(sbi
);
1934 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
1935 enum dirty_type dirty_type
)
1937 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1939 mutex_lock(&dirty_i
->seglist_lock
);
1940 kfree(dirty_i
->dirty_segmap
[dirty_type
]);
1941 dirty_i
->nr_dirty
[dirty_type
] = 0;
1942 mutex_unlock(&dirty_i
->seglist_lock
);
1945 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
1947 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1948 kfree(dirty_i
->victim_secmap
);
1951 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
1953 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1959 /* discard pre-free/dirty segments list */
1960 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
1961 discard_dirty_segmap(sbi
, i
);
1963 destroy_victim_secmap(sbi
);
1964 SM_I(sbi
)->dirty_info
= NULL
;
1968 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
1970 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
1975 SM_I(sbi
)->curseg_array
= NULL
;
1976 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
1977 kfree(array
[i
].sum_blk
);
1981 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
1983 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
1986 SM_I(sbi
)->free_info
= NULL
;
1987 kfree(free_i
->free_segmap
);
1988 kfree(free_i
->free_secmap
);
1992 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
1994 struct sit_info
*sit_i
= SIT_I(sbi
);
2000 if (sit_i
->sentries
) {
2001 for (start
= 0; start
< TOTAL_SEGS(sbi
); start
++) {
2002 kfree(sit_i
->sentries
[start
].cur_valid_map
);
2003 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
2006 vfree(sit_i
->sentries
);
2007 vfree(sit_i
->sec_entries
);
2008 kfree(sit_i
->dirty_sentries_bitmap
);
2010 SM_I(sbi
)->sit_info
= NULL
;
2011 kfree(sit_i
->sit_bitmap
);
2015 void destroy_segment_manager(struct f2fs_sb_info
*sbi
)
2017 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2021 destroy_flush_cmd_control(sbi
);
2022 destroy_dirty_segmap(sbi
);
2023 destroy_curseg(sbi
);
2024 destroy_free_segmap(sbi
);
2025 destroy_sit_info(sbi
);
2026 sbi
->sm_info
= NULL
;
2030 int __init
create_segment_manager_caches(void)
2032 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
2033 sizeof(struct discard_entry
));
2034 if (!discard_entry_slab
)
2039 void destroy_segment_manager_caches(void)
2041 kmem_cache_destroy(discard_entry_slab
);