Linux 3.16-rc2
[linux/fpc-iii.git] / fs / jbd2 / journal.c
blob67b8e303946ceaa79a0fd0d39ecd8ca428b67f1f
1 /*
2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108 unsigned int line, const char *fmt, ...)
110 struct va_format vaf;
111 va_list args;
113 if (level > jbd2_journal_enable_debug)
114 return;
115 va_start(args, fmt);
116 vaf.fmt = fmt;
117 vaf.va = &args;
118 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119 va_end(args);
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
124 /* Checksumming functions */
125 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
128 return 1;
130 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 __u32 csum;
136 __be32 old_csum;
138 old_csum = sb->s_checksum;
139 sb->s_checksum = 0;
140 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141 sb->s_checksum = old_csum;
143 return cpu_to_be32(csum);
146 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
149 return 1;
151 return sb->s_checksum == jbd2_superblock_csum(j, sb);
154 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
157 return;
159 sb->s_checksum = jbd2_superblock_csum(j, sb);
163 * Helper function used to manage commit timeouts
166 static void commit_timeout(unsigned long __data)
168 struct task_struct * p = (struct task_struct *) __data;
170 wake_up_process(p);
174 * kjournald2: The main thread function used to manage a logging device
175 * journal.
177 * This kernel thread is responsible for two things:
179 * 1) COMMIT: Every so often we need to commit the current state of the
180 * filesystem to disk. The journal thread is responsible for writing
181 * all of the metadata buffers to disk.
183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184 * of the data in that part of the log has been rewritten elsewhere on
185 * the disk. Flushing these old buffers to reclaim space in the log is
186 * known as checkpointing, and this thread is responsible for that job.
189 static int kjournald2(void *arg)
191 journal_t *journal = arg;
192 transaction_t *transaction;
195 * Set up an interval timer which can be used to trigger a commit wakeup
196 * after the commit interval expires
198 setup_timer(&journal->j_commit_timer, commit_timeout,
199 (unsigned long)current);
201 set_freezable();
203 /* Record that the journal thread is running */
204 journal->j_task = current;
205 wake_up(&journal->j_wait_done_commit);
208 * And now, wait forever for commit wakeup events.
210 write_lock(&journal->j_state_lock);
212 loop:
213 if (journal->j_flags & JBD2_UNMOUNT)
214 goto end_loop;
216 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217 journal->j_commit_sequence, journal->j_commit_request);
219 if (journal->j_commit_sequence != journal->j_commit_request) {
220 jbd_debug(1, "OK, requests differ\n");
221 write_unlock(&journal->j_state_lock);
222 del_timer_sync(&journal->j_commit_timer);
223 jbd2_journal_commit_transaction(journal);
224 write_lock(&journal->j_state_lock);
225 goto loop;
228 wake_up(&journal->j_wait_done_commit);
229 if (freezing(current)) {
231 * The simpler the better. Flushing journal isn't a
232 * good idea, because that depends on threads that may
233 * be already stopped.
235 jbd_debug(1, "Now suspending kjournald2\n");
236 write_unlock(&journal->j_state_lock);
237 try_to_freeze();
238 write_lock(&journal->j_state_lock);
239 } else {
241 * We assume on resume that commits are already there,
242 * so we don't sleep
244 DEFINE_WAIT(wait);
245 int should_sleep = 1;
247 prepare_to_wait(&journal->j_wait_commit, &wait,
248 TASK_INTERRUPTIBLE);
249 if (journal->j_commit_sequence != journal->j_commit_request)
250 should_sleep = 0;
251 transaction = journal->j_running_transaction;
252 if (transaction && time_after_eq(jiffies,
253 transaction->t_expires))
254 should_sleep = 0;
255 if (journal->j_flags & JBD2_UNMOUNT)
256 should_sleep = 0;
257 if (should_sleep) {
258 write_unlock(&journal->j_state_lock);
259 schedule();
260 write_lock(&journal->j_state_lock);
262 finish_wait(&journal->j_wait_commit, &wait);
265 jbd_debug(1, "kjournald2 wakes\n");
268 * Were we woken up by a commit wakeup event?
270 transaction = journal->j_running_transaction;
271 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272 journal->j_commit_request = transaction->t_tid;
273 jbd_debug(1, "woke because of timeout\n");
275 goto loop;
277 end_loop:
278 write_unlock(&journal->j_state_lock);
279 del_timer_sync(&journal->j_commit_timer);
280 journal->j_task = NULL;
281 wake_up(&journal->j_wait_done_commit);
282 jbd_debug(1, "Journal thread exiting.\n");
283 return 0;
286 static int jbd2_journal_start_thread(journal_t *journal)
288 struct task_struct *t;
290 t = kthread_run(kjournald2, journal, "jbd2/%s",
291 journal->j_devname);
292 if (IS_ERR(t))
293 return PTR_ERR(t);
295 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296 return 0;
299 static void journal_kill_thread(journal_t *journal)
301 write_lock(&journal->j_state_lock);
302 journal->j_flags |= JBD2_UNMOUNT;
304 while (journal->j_task) {
305 write_unlock(&journal->j_state_lock);
306 wake_up(&journal->j_wait_commit);
307 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308 write_lock(&journal->j_state_lock);
310 write_unlock(&journal->j_state_lock);
314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316 * Writes a metadata buffer to a given disk block. The actual IO is not
317 * performed but a new buffer_head is constructed which labels the data
318 * to be written with the correct destination disk block.
320 * Any magic-number escaping which needs to be done will cause a
321 * copy-out here. If the buffer happens to start with the
322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323 * magic number is only written to the log for descripter blocks. In
324 * this case, we copy the data and replace the first word with 0, and we
325 * return a result code which indicates that this buffer needs to be
326 * marked as an escaped buffer in the corresponding log descriptor
327 * block. The missing word can then be restored when the block is read
328 * during recovery.
330 * If the source buffer has already been modified by a new transaction
331 * since we took the last commit snapshot, we use the frozen copy of
332 * that data for IO. If we end up using the existing buffer_head's data
333 * for the write, then we have to make sure nobody modifies it while the
334 * IO is in progress. do_get_write_access() handles this.
336 * The function returns a pointer to the buffer_head to be used for IO.
339 * Return value:
340 * <0: Error
341 * >=0: Finished OK
343 * On success:
344 * Bit 0 set == escape performed on the data
345 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349 struct journal_head *jh_in,
350 struct buffer_head **bh_out,
351 sector_t blocknr)
353 int need_copy_out = 0;
354 int done_copy_out = 0;
355 int do_escape = 0;
356 char *mapped_data;
357 struct buffer_head *new_bh;
358 struct page *new_page;
359 unsigned int new_offset;
360 struct buffer_head *bh_in = jh2bh(jh_in);
361 journal_t *journal = transaction->t_journal;
364 * The buffer really shouldn't be locked: only the current committing
365 * transaction is allowed to write it, so nobody else is allowed
366 * to do any IO.
368 * akpm: except if we're journalling data, and write() output is
369 * also part of a shared mapping, and another thread has
370 * decided to launch a writepage() against this buffer.
372 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
374 retry_alloc:
375 new_bh = alloc_buffer_head(GFP_NOFS);
376 if (!new_bh) {
378 * Failure is not an option, but __GFP_NOFAIL is going
379 * away; so we retry ourselves here.
381 congestion_wait(BLK_RW_ASYNC, HZ/50);
382 goto retry_alloc;
385 /* keep subsequent assertions sane */
386 atomic_set(&new_bh->b_count, 1);
388 jbd_lock_bh_state(bh_in);
389 repeat:
391 * If a new transaction has already done a buffer copy-out, then
392 * we use that version of the data for the commit.
394 if (jh_in->b_frozen_data) {
395 done_copy_out = 1;
396 new_page = virt_to_page(jh_in->b_frozen_data);
397 new_offset = offset_in_page(jh_in->b_frozen_data);
398 } else {
399 new_page = jh2bh(jh_in)->b_page;
400 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
403 mapped_data = kmap_atomic(new_page);
405 * Fire data frozen trigger if data already wasn't frozen. Do this
406 * before checking for escaping, as the trigger may modify the magic
407 * offset. If a copy-out happens afterwards, it will have the correct
408 * data in the buffer.
410 if (!done_copy_out)
411 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412 jh_in->b_triggers);
415 * Check for escaping
417 if (*((__be32 *)(mapped_data + new_offset)) ==
418 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419 need_copy_out = 1;
420 do_escape = 1;
422 kunmap_atomic(mapped_data);
425 * Do we need to do a data copy?
427 if (need_copy_out && !done_copy_out) {
428 char *tmp;
430 jbd_unlock_bh_state(bh_in);
431 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432 if (!tmp) {
433 brelse(new_bh);
434 return -ENOMEM;
436 jbd_lock_bh_state(bh_in);
437 if (jh_in->b_frozen_data) {
438 jbd2_free(tmp, bh_in->b_size);
439 goto repeat;
442 jh_in->b_frozen_data = tmp;
443 mapped_data = kmap_atomic(new_page);
444 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445 kunmap_atomic(mapped_data);
447 new_page = virt_to_page(tmp);
448 new_offset = offset_in_page(tmp);
449 done_copy_out = 1;
452 * This isn't strictly necessary, as we're using frozen
453 * data for the escaping, but it keeps consistency with
454 * b_frozen_data usage.
456 jh_in->b_frozen_triggers = jh_in->b_triggers;
460 * Did we need to do an escaping? Now we've done all the
461 * copying, we can finally do so.
463 if (do_escape) {
464 mapped_data = kmap_atomic(new_page);
465 *((unsigned int *)(mapped_data + new_offset)) = 0;
466 kunmap_atomic(mapped_data);
469 set_bh_page(new_bh, new_page, new_offset);
470 new_bh->b_size = bh_in->b_size;
471 new_bh->b_bdev = journal->j_dev;
472 new_bh->b_blocknr = blocknr;
473 new_bh->b_private = bh_in;
474 set_buffer_mapped(new_bh);
475 set_buffer_dirty(new_bh);
477 *bh_out = new_bh;
480 * The to-be-written buffer needs to get moved to the io queue,
481 * and the original buffer whose contents we are shadowing or
482 * copying is moved to the transaction's shadow queue.
484 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485 spin_lock(&journal->j_list_lock);
486 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487 spin_unlock(&journal->j_list_lock);
488 set_buffer_shadow(bh_in);
489 jbd_unlock_bh_state(bh_in);
491 return do_escape | (done_copy_out << 1);
495 * Allocation code for the journal file. Manage the space left in the
496 * journal, so that we can begin checkpointing when appropriate.
500 * Called with j_state_lock locked for writing.
501 * Returns true if a transaction commit was started.
503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
505 /* Return if the txn has already requested to be committed */
506 if (journal->j_commit_request == target)
507 return 0;
510 * The only transaction we can possibly wait upon is the
511 * currently running transaction (if it exists). Otherwise,
512 * the target tid must be an old one.
514 if (journal->j_running_transaction &&
515 journal->j_running_transaction->t_tid == target) {
517 * We want a new commit: OK, mark the request and wakeup the
518 * commit thread. We do _not_ do the commit ourselves.
521 journal->j_commit_request = target;
522 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523 journal->j_commit_request,
524 journal->j_commit_sequence);
525 journal->j_running_transaction->t_requested = jiffies;
526 wake_up(&journal->j_wait_commit);
527 return 1;
528 } else if (!tid_geq(journal->j_commit_request, target))
529 /* This should never happen, but if it does, preserve
530 the evidence before kjournald goes into a loop and
531 increments j_commit_sequence beyond all recognition. */
532 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533 journal->j_commit_request,
534 journal->j_commit_sequence,
535 target, journal->j_running_transaction ?
536 journal->j_running_transaction->t_tid : 0);
537 return 0;
540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
542 int ret;
544 write_lock(&journal->j_state_lock);
545 ret = __jbd2_log_start_commit(journal, tid);
546 write_unlock(&journal->j_state_lock);
547 return ret;
551 * Force and wait any uncommitted transactions. We can only force the running
552 * transaction if we don't have an active handle, otherwise, we will deadlock.
553 * Returns: <0 in case of error,
554 * 0 if nothing to commit,
555 * 1 if transaction was successfully committed.
557 static int __jbd2_journal_force_commit(journal_t *journal)
559 transaction_t *transaction = NULL;
560 tid_t tid;
561 int need_to_start = 0, ret = 0;
563 read_lock(&journal->j_state_lock);
564 if (journal->j_running_transaction && !current->journal_info) {
565 transaction = journal->j_running_transaction;
566 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567 need_to_start = 1;
568 } else if (journal->j_committing_transaction)
569 transaction = journal->j_committing_transaction;
571 if (!transaction) {
572 /* Nothing to commit */
573 read_unlock(&journal->j_state_lock);
574 return 0;
576 tid = transaction->t_tid;
577 read_unlock(&journal->j_state_lock);
578 if (need_to_start)
579 jbd2_log_start_commit(journal, tid);
580 ret = jbd2_log_wait_commit(journal, tid);
581 if (!ret)
582 ret = 1;
584 return ret;
588 * Force and wait upon a commit if the calling process is not within
589 * transaction. This is used for forcing out undo-protected data which contains
590 * bitmaps, when the fs is running out of space.
592 * @journal: journal to force
593 * Returns true if progress was made.
595 int jbd2_journal_force_commit_nested(journal_t *journal)
597 int ret;
599 ret = __jbd2_journal_force_commit(journal);
600 return ret > 0;
604 * int journal_force_commit() - force any uncommitted transactions
605 * @journal: journal to force
607 * Caller want unconditional commit. We can only force the running transaction
608 * if we don't have an active handle, otherwise, we will deadlock.
610 int jbd2_journal_force_commit(journal_t *journal)
612 int ret;
614 J_ASSERT(!current->journal_info);
615 ret = __jbd2_journal_force_commit(journal);
616 if (ret > 0)
617 ret = 0;
618 return ret;
622 * Start a commit of the current running transaction (if any). Returns true
623 * if a transaction is going to be committed (or is currently already
624 * committing), and fills its tid in at *ptid
626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
628 int ret = 0;
630 write_lock(&journal->j_state_lock);
631 if (journal->j_running_transaction) {
632 tid_t tid = journal->j_running_transaction->t_tid;
634 __jbd2_log_start_commit(journal, tid);
635 /* There's a running transaction and we've just made sure
636 * it's commit has been scheduled. */
637 if (ptid)
638 *ptid = tid;
639 ret = 1;
640 } else if (journal->j_committing_transaction) {
642 * If commit has been started, then we have to wait for
643 * completion of that transaction.
645 if (ptid)
646 *ptid = journal->j_committing_transaction->t_tid;
647 ret = 1;
649 write_unlock(&journal->j_state_lock);
650 return ret;
654 * Return 1 if a given transaction has not yet sent barrier request
655 * connected with a transaction commit. If 0 is returned, transaction
656 * may or may not have sent the barrier. Used to avoid sending barrier
657 * twice in common cases.
659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
661 int ret = 0;
662 transaction_t *commit_trans;
664 if (!(journal->j_flags & JBD2_BARRIER))
665 return 0;
666 read_lock(&journal->j_state_lock);
667 /* Transaction already committed? */
668 if (tid_geq(journal->j_commit_sequence, tid))
669 goto out;
670 commit_trans = journal->j_committing_transaction;
671 if (!commit_trans || commit_trans->t_tid != tid) {
672 ret = 1;
673 goto out;
676 * Transaction is being committed and we already proceeded to
677 * submitting a flush to fs partition?
679 if (journal->j_fs_dev != journal->j_dev) {
680 if (!commit_trans->t_need_data_flush ||
681 commit_trans->t_state >= T_COMMIT_DFLUSH)
682 goto out;
683 } else {
684 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685 goto out;
687 ret = 1;
688 out:
689 read_unlock(&journal->j_state_lock);
690 return ret;
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
695 * Wait for a specified commit to complete.
696 * The caller may not hold the journal lock.
698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
700 int err = 0;
702 read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_JBD2_DEBUG
704 if (!tid_geq(journal->j_commit_request, tid)) {
705 printk(KERN_ERR
706 "%s: error: j_commit_request=%d, tid=%d\n",
707 __func__, journal->j_commit_request, tid);
709 #endif
710 while (tid_gt(tid, journal->j_commit_sequence)) {
711 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
712 tid, journal->j_commit_sequence);
713 read_unlock(&journal->j_state_lock);
714 wake_up(&journal->j_wait_commit);
715 wait_event(journal->j_wait_done_commit,
716 !tid_gt(tid, journal->j_commit_sequence));
717 read_lock(&journal->j_state_lock);
719 read_unlock(&journal->j_state_lock);
721 if (unlikely(is_journal_aborted(journal)))
722 err = -EIO;
723 return err;
727 * When this function returns the transaction corresponding to tid
728 * will be completed. If the transaction has currently running, start
729 * committing that transaction before waiting for it to complete. If
730 * the transaction id is stale, it is by definition already completed,
731 * so just return SUCCESS.
733 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
735 int need_to_wait = 1;
737 read_lock(&journal->j_state_lock);
738 if (journal->j_running_transaction &&
739 journal->j_running_transaction->t_tid == tid) {
740 if (journal->j_commit_request != tid) {
741 /* transaction not yet started, so request it */
742 read_unlock(&journal->j_state_lock);
743 jbd2_log_start_commit(journal, tid);
744 goto wait_commit;
746 } else if (!(journal->j_committing_transaction &&
747 journal->j_committing_transaction->t_tid == tid))
748 need_to_wait = 0;
749 read_unlock(&journal->j_state_lock);
750 if (!need_to_wait)
751 return 0;
752 wait_commit:
753 return jbd2_log_wait_commit(journal, tid);
755 EXPORT_SYMBOL(jbd2_complete_transaction);
758 * Log buffer allocation routines:
761 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
763 unsigned long blocknr;
765 write_lock(&journal->j_state_lock);
766 J_ASSERT(journal->j_free > 1);
768 blocknr = journal->j_head;
769 journal->j_head++;
770 journal->j_free--;
771 if (journal->j_head == journal->j_last)
772 journal->j_head = journal->j_first;
773 write_unlock(&journal->j_state_lock);
774 return jbd2_journal_bmap(journal, blocknr, retp);
778 * Conversion of logical to physical block numbers for the journal
780 * On external journals the journal blocks are identity-mapped, so
781 * this is a no-op. If needed, we can use j_blk_offset - everything is
782 * ready.
784 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
785 unsigned long long *retp)
787 int err = 0;
788 unsigned long long ret;
790 if (journal->j_inode) {
791 ret = bmap(journal->j_inode, blocknr);
792 if (ret)
793 *retp = ret;
794 else {
795 printk(KERN_ALERT "%s: journal block not found "
796 "at offset %lu on %s\n",
797 __func__, blocknr, journal->j_devname);
798 err = -EIO;
799 __journal_abort_soft(journal, err);
801 } else {
802 *retp = blocknr; /* +journal->j_blk_offset */
804 return err;
808 * We play buffer_head aliasing tricks to write data/metadata blocks to
809 * the journal without copying their contents, but for journal
810 * descriptor blocks we do need to generate bona fide buffers.
812 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
813 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
814 * But we don't bother doing that, so there will be coherency problems with
815 * mmaps of blockdevs which hold live JBD-controlled filesystems.
817 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
819 struct buffer_head *bh;
820 unsigned long long blocknr;
821 int err;
823 err = jbd2_journal_next_log_block(journal, &blocknr);
825 if (err)
826 return NULL;
828 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
829 if (!bh)
830 return NULL;
831 lock_buffer(bh);
832 memset(bh->b_data, 0, journal->j_blocksize);
833 set_buffer_uptodate(bh);
834 unlock_buffer(bh);
835 BUFFER_TRACE(bh, "return this buffer");
836 return bh;
840 * Return tid of the oldest transaction in the journal and block in the journal
841 * where the transaction starts.
843 * If the journal is now empty, return which will be the next transaction ID
844 * we will write and where will that transaction start.
846 * The return value is 0 if journal tail cannot be pushed any further, 1 if
847 * it can.
849 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
850 unsigned long *block)
852 transaction_t *transaction;
853 int ret;
855 read_lock(&journal->j_state_lock);
856 spin_lock(&journal->j_list_lock);
857 transaction = journal->j_checkpoint_transactions;
858 if (transaction) {
859 *tid = transaction->t_tid;
860 *block = transaction->t_log_start;
861 } else if ((transaction = journal->j_committing_transaction) != NULL) {
862 *tid = transaction->t_tid;
863 *block = transaction->t_log_start;
864 } else if ((transaction = journal->j_running_transaction) != NULL) {
865 *tid = transaction->t_tid;
866 *block = journal->j_head;
867 } else {
868 *tid = journal->j_transaction_sequence;
869 *block = journal->j_head;
871 ret = tid_gt(*tid, journal->j_tail_sequence);
872 spin_unlock(&journal->j_list_lock);
873 read_unlock(&journal->j_state_lock);
875 return ret;
879 * Update information in journal structure and in on disk journal superblock
880 * about log tail. This function does not check whether information passed in
881 * really pushes log tail further. It's responsibility of the caller to make
882 * sure provided log tail information is valid (e.g. by holding
883 * j_checkpoint_mutex all the time between computing log tail and calling this
884 * function as is the case with jbd2_cleanup_journal_tail()).
886 * Requires j_checkpoint_mutex
888 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
890 unsigned long freed;
892 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
895 * We cannot afford for write to remain in drive's caches since as
896 * soon as we update j_tail, next transaction can start reusing journal
897 * space and if we lose sb update during power failure we'd replay
898 * old transaction with possibly newly overwritten data.
900 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
901 write_lock(&journal->j_state_lock);
902 freed = block - journal->j_tail;
903 if (block < journal->j_tail)
904 freed += journal->j_last - journal->j_first;
906 trace_jbd2_update_log_tail(journal, tid, block, freed);
907 jbd_debug(1,
908 "Cleaning journal tail from %d to %d (offset %lu), "
909 "freeing %lu\n",
910 journal->j_tail_sequence, tid, block, freed);
912 journal->j_free += freed;
913 journal->j_tail_sequence = tid;
914 journal->j_tail = block;
915 write_unlock(&journal->j_state_lock);
919 * This is a variaon of __jbd2_update_log_tail which checks for validity of
920 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
921 * with other threads updating log tail.
923 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
925 mutex_lock(&journal->j_checkpoint_mutex);
926 if (tid_gt(tid, journal->j_tail_sequence))
927 __jbd2_update_log_tail(journal, tid, block);
928 mutex_unlock(&journal->j_checkpoint_mutex);
931 struct jbd2_stats_proc_session {
932 journal_t *journal;
933 struct transaction_stats_s *stats;
934 int start;
935 int max;
938 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
940 return *pos ? NULL : SEQ_START_TOKEN;
943 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
945 return NULL;
948 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
950 struct jbd2_stats_proc_session *s = seq->private;
952 if (v != SEQ_START_TOKEN)
953 return 0;
954 seq_printf(seq, "%lu transactions (%lu requested), "
955 "each up to %u blocks\n",
956 s->stats->ts_tid, s->stats->ts_requested,
957 s->journal->j_max_transaction_buffers);
958 if (s->stats->ts_tid == 0)
959 return 0;
960 seq_printf(seq, "average: \n %ums waiting for transaction\n",
961 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
962 seq_printf(seq, " %ums request delay\n",
963 (s->stats->ts_requested == 0) ? 0 :
964 jiffies_to_msecs(s->stats->run.rs_request_delay /
965 s->stats->ts_requested));
966 seq_printf(seq, " %ums running transaction\n",
967 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
968 seq_printf(seq, " %ums transaction was being locked\n",
969 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
970 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
971 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
972 seq_printf(seq, " %ums logging transaction\n",
973 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
974 seq_printf(seq, " %lluus average transaction commit time\n",
975 div_u64(s->journal->j_average_commit_time, 1000));
976 seq_printf(seq, " %lu handles per transaction\n",
977 s->stats->run.rs_handle_count / s->stats->ts_tid);
978 seq_printf(seq, " %lu blocks per transaction\n",
979 s->stats->run.rs_blocks / s->stats->ts_tid);
980 seq_printf(seq, " %lu logged blocks per transaction\n",
981 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
982 return 0;
985 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
989 static const struct seq_operations jbd2_seq_info_ops = {
990 .start = jbd2_seq_info_start,
991 .next = jbd2_seq_info_next,
992 .stop = jbd2_seq_info_stop,
993 .show = jbd2_seq_info_show,
996 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
998 journal_t *journal = PDE_DATA(inode);
999 struct jbd2_stats_proc_session *s;
1000 int rc, size;
1002 s = kmalloc(sizeof(*s), GFP_KERNEL);
1003 if (s == NULL)
1004 return -ENOMEM;
1005 size = sizeof(struct transaction_stats_s);
1006 s->stats = kmalloc(size, GFP_KERNEL);
1007 if (s->stats == NULL) {
1008 kfree(s);
1009 return -ENOMEM;
1011 spin_lock(&journal->j_history_lock);
1012 memcpy(s->stats, &journal->j_stats, size);
1013 s->journal = journal;
1014 spin_unlock(&journal->j_history_lock);
1016 rc = seq_open(file, &jbd2_seq_info_ops);
1017 if (rc == 0) {
1018 struct seq_file *m = file->private_data;
1019 m->private = s;
1020 } else {
1021 kfree(s->stats);
1022 kfree(s);
1024 return rc;
1028 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1030 struct seq_file *seq = file->private_data;
1031 struct jbd2_stats_proc_session *s = seq->private;
1032 kfree(s->stats);
1033 kfree(s);
1034 return seq_release(inode, file);
1037 static const struct file_operations jbd2_seq_info_fops = {
1038 .owner = THIS_MODULE,
1039 .open = jbd2_seq_info_open,
1040 .read = seq_read,
1041 .llseek = seq_lseek,
1042 .release = jbd2_seq_info_release,
1045 static struct proc_dir_entry *proc_jbd2_stats;
1047 static void jbd2_stats_proc_init(journal_t *journal)
1049 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1050 if (journal->j_proc_entry) {
1051 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1052 &jbd2_seq_info_fops, journal);
1056 static void jbd2_stats_proc_exit(journal_t *journal)
1058 remove_proc_entry("info", journal->j_proc_entry);
1059 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1063 * Management for journal control blocks: functions to create and
1064 * destroy journal_t structures, and to initialise and read existing
1065 * journal blocks from disk. */
1067 /* First: create and setup a journal_t object in memory. We initialise
1068 * very few fields yet: that has to wait until we have created the
1069 * journal structures from from scratch, or loaded them from disk. */
1071 static journal_t * journal_init_common (void)
1073 journal_t *journal;
1074 int err;
1076 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1077 if (!journal)
1078 return NULL;
1080 init_waitqueue_head(&journal->j_wait_transaction_locked);
1081 init_waitqueue_head(&journal->j_wait_done_commit);
1082 init_waitqueue_head(&journal->j_wait_commit);
1083 init_waitqueue_head(&journal->j_wait_updates);
1084 init_waitqueue_head(&journal->j_wait_reserved);
1085 mutex_init(&journal->j_barrier);
1086 mutex_init(&journal->j_checkpoint_mutex);
1087 spin_lock_init(&journal->j_revoke_lock);
1088 spin_lock_init(&journal->j_list_lock);
1089 rwlock_init(&journal->j_state_lock);
1091 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1092 journal->j_min_batch_time = 0;
1093 journal->j_max_batch_time = 15000; /* 15ms */
1094 atomic_set(&journal->j_reserved_credits, 0);
1096 /* The journal is marked for error until we succeed with recovery! */
1097 journal->j_flags = JBD2_ABORT;
1099 /* Set up a default-sized revoke table for the new mount. */
1100 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1101 if (err) {
1102 kfree(journal);
1103 return NULL;
1106 spin_lock_init(&journal->j_history_lock);
1108 return journal;
1111 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1113 * Create a journal structure assigned some fixed set of disk blocks to
1114 * the journal. We don't actually touch those disk blocks yet, but we
1115 * need to set up all of the mapping information to tell the journaling
1116 * system where the journal blocks are.
1121 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1122 * @bdev: Block device on which to create the journal
1123 * @fs_dev: Device which hold journalled filesystem for this journal.
1124 * @start: Block nr Start of journal.
1125 * @len: Length of the journal in blocks.
1126 * @blocksize: blocksize of journalling device
1128 * Returns: a newly created journal_t *
1130 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1131 * range of blocks on an arbitrary block device.
1134 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1135 struct block_device *fs_dev,
1136 unsigned long long start, int len, int blocksize)
1138 journal_t *journal = journal_init_common();
1139 struct buffer_head *bh;
1140 char *p;
1141 int n;
1143 if (!journal)
1144 return NULL;
1146 /* journal descriptor can store up to n blocks -bzzz */
1147 journal->j_blocksize = blocksize;
1148 journal->j_dev = bdev;
1149 journal->j_fs_dev = fs_dev;
1150 journal->j_blk_offset = start;
1151 journal->j_maxlen = len;
1152 bdevname(journal->j_dev, journal->j_devname);
1153 p = journal->j_devname;
1154 while ((p = strchr(p, '/')))
1155 *p = '!';
1156 jbd2_stats_proc_init(journal);
1157 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1158 journal->j_wbufsize = n;
1159 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1160 if (!journal->j_wbuf) {
1161 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1162 __func__);
1163 goto out_err;
1166 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1167 if (!bh) {
1168 printk(KERN_ERR
1169 "%s: Cannot get buffer for journal superblock\n",
1170 __func__);
1171 goto out_err;
1173 journal->j_sb_buffer = bh;
1174 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1176 return journal;
1177 out_err:
1178 kfree(journal->j_wbuf);
1179 jbd2_stats_proc_exit(journal);
1180 kfree(journal);
1181 return NULL;
1185 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1186 * @inode: An inode to create the journal in
1188 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1189 * the journal. The inode must exist already, must support bmap() and
1190 * must have all data blocks preallocated.
1192 journal_t * jbd2_journal_init_inode (struct inode *inode)
1194 struct buffer_head *bh;
1195 journal_t *journal = journal_init_common();
1196 char *p;
1197 int err;
1198 int n;
1199 unsigned long long blocknr;
1201 if (!journal)
1202 return NULL;
1204 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1205 journal->j_inode = inode;
1206 bdevname(journal->j_dev, journal->j_devname);
1207 p = journal->j_devname;
1208 while ((p = strchr(p, '/')))
1209 *p = '!';
1210 p = journal->j_devname + strlen(journal->j_devname);
1211 sprintf(p, "-%lu", journal->j_inode->i_ino);
1212 jbd_debug(1,
1213 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1214 journal, inode->i_sb->s_id, inode->i_ino,
1215 (long long) inode->i_size,
1216 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1218 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1219 journal->j_blocksize = inode->i_sb->s_blocksize;
1220 jbd2_stats_proc_init(journal);
1222 /* journal descriptor can store up to n blocks -bzzz */
1223 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1224 journal->j_wbufsize = n;
1225 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1226 if (!journal->j_wbuf) {
1227 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1228 __func__);
1229 goto out_err;
1232 err = jbd2_journal_bmap(journal, 0, &blocknr);
1233 /* If that failed, give up */
1234 if (err) {
1235 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1236 __func__);
1237 goto out_err;
1240 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1241 if (!bh) {
1242 printk(KERN_ERR
1243 "%s: Cannot get buffer for journal superblock\n",
1244 __func__);
1245 goto out_err;
1247 journal->j_sb_buffer = bh;
1248 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1250 return journal;
1251 out_err:
1252 kfree(journal->j_wbuf);
1253 jbd2_stats_proc_exit(journal);
1254 kfree(journal);
1255 return NULL;
1259 * If the journal init or create aborts, we need to mark the journal
1260 * superblock as being NULL to prevent the journal destroy from writing
1261 * back a bogus superblock.
1263 static void journal_fail_superblock (journal_t *journal)
1265 struct buffer_head *bh = journal->j_sb_buffer;
1266 brelse(bh);
1267 journal->j_sb_buffer = NULL;
1271 * Given a journal_t structure, initialise the various fields for
1272 * startup of a new journaling session. We use this both when creating
1273 * a journal, and after recovering an old journal to reset it for
1274 * subsequent use.
1277 static int journal_reset(journal_t *journal)
1279 journal_superblock_t *sb = journal->j_superblock;
1280 unsigned long long first, last;
1282 first = be32_to_cpu(sb->s_first);
1283 last = be32_to_cpu(sb->s_maxlen);
1284 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1285 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1286 first, last);
1287 journal_fail_superblock(journal);
1288 return -EINVAL;
1291 journal->j_first = first;
1292 journal->j_last = last;
1294 journal->j_head = first;
1295 journal->j_tail = first;
1296 journal->j_free = last - first;
1298 journal->j_tail_sequence = journal->j_transaction_sequence;
1299 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1300 journal->j_commit_request = journal->j_commit_sequence;
1302 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1305 * As a special case, if the on-disk copy is already marked as needing
1306 * no recovery (s_start == 0), then we can safely defer the superblock
1307 * update until the next commit by setting JBD2_FLUSHED. This avoids
1308 * attempting a write to a potential-readonly device.
1310 if (sb->s_start == 0) {
1311 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1312 "(start %ld, seq %d, errno %d)\n",
1313 journal->j_tail, journal->j_tail_sequence,
1314 journal->j_errno);
1315 journal->j_flags |= JBD2_FLUSHED;
1316 } else {
1317 /* Lock here to make assertions happy... */
1318 mutex_lock(&journal->j_checkpoint_mutex);
1320 * Update log tail information. We use WRITE_FUA since new
1321 * transaction will start reusing journal space and so we
1322 * must make sure information about current log tail is on
1323 * disk before that.
1325 jbd2_journal_update_sb_log_tail(journal,
1326 journal->j_tail_sequence,
1327 journal->j_tail,
1328 WRITE_FUA);
1329 mutex_unlock(&journal->j_checkpoint_mutex);
1331 return jbd2_journal_start_thread(journal);
1334 static void jbd2_write_superblock(journal_t *journal, int write_op)
1336 struct buffer_head *bh = journal->j_sb_buffer;
1337 journal_superblock_t *sb = journal->j_superblock;
1338 int ret;
1340 trace_jbd2_write_superblock(journal, write_op);
1341 if (!(journal->j_flags & JBD2_BARRIER))
1342 write_op &= ~(REQ_FUA | REQ_FLUSH);
1343 lock_buffer(bh);
1344 if (buffer_write_io_error(bh)) {
1346 * Oh, dear. A previous attempt to write the journal
1347 * superblock failed. This could happen because the
1348 * USB device was yanked out. Or it could happen to
1349 * be a transient write error and maybe the block will
1350 * be remapped. Nothing we can do but to retry the
1351 * write and hope for the best.
1353 printk(KERN_ERR "JBD2: previous I/O error detected "
1354 "for journal superblock update for %s.\n",
1355 journal->j_devname);
1356 clear_buffer_write_io_error(bh);
1357 set_buffer_uptodate(bh);
1359 jbd2_superblock_csum_set(journal, sb);
1360 get_bh(bh);
1361 bh->b_end_io = end_buffer_write_sync;
1362 ret = submit_bh(write_op, bh);
1363 wait_on_buffer(bh);
1364 if (buffer_write_io_error(bh)) {
1365 clear_buffer_write_io_error(bh);
1366 set_buffer_uptodate(bh);
1367 ret = -EIO;
1369 if (ret) {
1370 printk(KERN_ERR "JBD2: Error %d detected when updating "
1371 "journal superblock for %s.\n", ret,
1372 journal->j_devname);
1377 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1378 * @journal: The journal to update.
1379 * @tail_tid: TID of the new transaction at the tail of the log
1380 * @tail_block: The first block of the transaction at the tail of the log
1381 * @write_op: With which operation should we write the journal sb
1383 * Update a journal's superblock information about log tail and write it to
1384 * disk, waiting for the IO to complete.
1386 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1387 unsigned long tail_block, int write_op)
1389 journal_superblock_t *sb = journal->j_superblock;
1391 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1392 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1393 tail_block, tail_tid);
1395 sb->s_sequence = cpu_to_be32(tail_tid);
1396 sb->s_start = cpu_to_be32(tail_block);
1398 jbd2_write_superblock(journal, write_op);
1400 /* Log is no longer empty */
1401 write_lock(&journal->j_state_lock);
1402 WARN_ON(!sb->s_sequence);
1403 journal->j_flags &= ~JBD2_FLUSHED;
1404 write_unlock(&journal->j_state_lock);
1408 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1409 * @journal: The journal to update.
1411 * Update a journal's dynamic superblock fields to show that journal is empty.
1412 * Write updated superblock to disk waiting for IO to complete.
1414 static void jbd2_mark_journal_empty(journal_t *journal)
1416 journal_superblock_t *sb = journal->j_superblock;
1418 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1419 read_lock(&journal->j_state_lock);
1420 /* Is it already empty? */
1421 if (sb->s_start == 0) {
1422 read_unlock(&journal->j_state_lock);
1423 return;
1425 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1426 journal->j_tail_sequence);
1428 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1429 sb->s_start = cpu_to_be32(0);
1430 read_unlock(&journal->j_state_lock);
1432 jbd2_write_superblock(journal, WRITE_FUA);
1434 /* Log is no longer empty */
1435 write_lock(&journal->j_state_lock);
1436 journal->j_flags |= JBD2_FLUSHED;
1437 write_unlock(&journal->j_state_lock);
1442 * jbd2_journal_update_sb_errno() - Update error in the journal.
1443 * @journal: The journal to update.
1445 * Update a journal's errno. Write updated superblock to disk waiting for IO
1446 * to complete.
1448 void jbd2_journal_update_sb_errno(journal_t *journal)
1450 journal_superblock_t *sb = journal->j_superblock;
1452 read_lock(&journal->j_state_lock);
1453 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1454 journal->j_errno);
1455 sb->s_errno = cpu_to_be32(journal->j_errno);
1456 read_unlock(&journal->j_state_lock);
1458 jbd2_write_superblock(journal, WRITE_SYNC);
1460 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1463 * Read the superblock for a given journal, performing initial
1464 * validation of the format.
1466 static int journal_get_superblock(journal_t *journal)
1468 struct buffer_head *bh;
1469 journal_superblock_t *sb;
1470 int err = -EIO;
1472 bh = journal->j_sb_buffer;
1474 J_ASSERT(bh != NULL);
1475 if (!buffer_uptodate(bh)) {
1476 ll_rw_block(READ, 1, &bh);
1477 wait_on_buffer(bh);
1478 if (!buffer_uptodate(bh)) {
1479 printk(KERN_ERR
1480 "JBD2: IO error reading journal superblock\n");
1481 goto out;
1485 if (buffer_verified(bh))
1486 return 0;
1488 sb = journal->j_superblock;
1490 err = -EINVAL;
1492 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1493 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1494 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1495 goto out;
1498 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1499 case JBD2_SUPERBLOCK_V1:
1500 journal->j_format_version = 1;
1501 break;
1502 case JBD2_SUPERBLOCK_V2:
1503 journal->j_format_version = 2;
1504 break;
1505 default:
1506 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1507 goto out;
1510 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1511 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1512 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1513 printk(KERN_WARNING "JBD2: journal file too short\n");
1514 goto out;
1517 if (be32_to_cpu(sb->s_first) == 0 ||
1518 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1519 printk(KERN_WARNING
1520 "JBD2: Invalid start block of journal: %u\n",
1521 be32_to_cpu(sb->s_first));
1522 goto out;
1525 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1526 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1527 /* Can't have checksum v1 and v2 on at the same time! */
1528 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2 "
1529 "at the same time!\n");
1530 goto out;
1533 if (!jbd2_verify_csum_type(journal, sb)) {
1534 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1535 goto out;
1538 /* Load the checksum driver */
1539 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1540 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1541 if (IS_ERR(journal->j_chksum_driver)) {
1542 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1543 err = PTR_ERR(journal->j_chksum_driver);
1544 journal->j_chksum_driver = NULL;
1545 goto out;
1549 /* Check superblock checksum */
1550 if (!jbd2_superblock_csum_verify(journal, sb)) {
1551 printk(KERN_ERR "JBD2: journal checksum error\n");
1552 goto out;
1555 /* Precompute checksum seed for all metadata */
1556 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1557 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1558 sizeof(sb->s_uuid));
1560 set_buffer_verified(bh);
1562 return 0;
1564 out:
1565 journal_fail_superblock(journal);
1566 return err;
1570 * Load the on-disk journal superblock and read the key fields into the
1571 * journal_t.
1574 static int load_superblock(journal_t *journal)
1576 int err;
1577 journal_superblock_t *sb;
1579 err = journal_get_superblock(journal);
1580 if (err)
1581 return err;
1583 sb = journal->j_superblock;
1585 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1586 journal->j_tail = be32_to_cpu(sb->s_start);
1587 journal->j_first = be32_to_cpu(sb->s_first);
1588 journal->j_last = be32_to_cpu(sb->s_maxlen);
1589 journal->j_errno = be32_to_cpu(sb->s_errno);
1591 return 0;
1596 * int jbd2_journal_load() - Read journal from disk.
1597 * @journal: Journal to act on.
1599 * Given a journal_t structure which tells us which disk blocks contain
1600 * a journal, read the journal from disk to initialise the in-memory
1601 * structures.
1603 int jbd2_journal_load(journal_t *journal)
1605 int err;
1606 journal_superblock_t *sb;
1608 err = load_superblock(journal);
1609 if (err)
1610 return err;
1612 sb = journal->j_superblock;
1613 /* If this is a V2 superblock, then we have to check the
1614 * features flags on it. */
1616 if (journal->j_format_version >= 2) {
1617 if ((sb->s_feature_ro_compat &
1618 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1619 (sb->s_feature_incompat &
1620 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1621 printk(KERN_WARNING
1622 "JBD2: Unrecognised features on journal\n");
1623 return -EINVAL;
1628 * Create a slab for this blocksize
1630 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1631 if (err)
1632 return err;
1634 /* Let the recovery code check whether it needs to recover any
1635 * data from the journal. */
1636 if (jbd2_journal_recover(journal))
1637 goto recovery_error;
1639 if (journal->j_failed_commit) {
1640 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1641 "is corrupt.\n", journal->j_failed_commit,
1642 journal->j_devname);
1643 return -EIO;
1646 /* OK, we've finished with the dynamic journal bits:
1647 * reinitialise the dynamic contents of the superblock in memory
1648 * and reset them on disk. */
1649 if (journal_reset(journal))
1650 goto recovery_error;
1652 journal->j_flags &= ~JBD2_ABORT;
1653 journal->j_flags |= JBD2_LOADED;
1654 return 0;
1656 recovery_error:
1657 printk(KERN_WARNING "JBD2: recovery failed\n");
1658 return -EIO;
1662 * void jbd2_journal_destroy() - Release a journal_t structure.
1663 * @journal: Journal to act on.
1665 * Release a journal_t structure once it is no longer in use by the
1666 * journaled object.
1667 * Return <0 if we couldn't clean up the journal.
1669 int jbd2_journal_destroy(journal_t *journal)
1671 int err = 0;
1673 /* Wait for the commit thread to wake up and die. */
1674 journal_kill_thread(journal);
1676 /* Force a final log commit */
1677 if (journal->j_running_transaction)
1678 jbd2_journal_commit_transaction(journal);
1680 /* Force any old transactions to disk */
1682 /* Totally anal locking here... */
1683 spin_lock(&journal->j_list_lock);
1684 while (journal->j_checkpoint_transactions != NULL) {
1685 spin_unlock(&journal->j_list_lock);
1686 mutex_lock(&journal->j_checkpoint_mutex);
1687 jbd2_log_do_checkpoint(journal);
1688 mutex_unlock(&journal->j_checkpoint_mutex);
1689 spin_lock(&journal->j_list_lock);
1692 J_ASSERT(journal->j_running_transaction == NULL);
1693 J_ASSERT(journal->j_committing_transaction == NULL);
1694 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1695 spin_unlock(&journal->j_list_lock);
1697 if (journal->j_sb_buffer) {
1698 if (!is_journal_aborted(journal)) {
1699 mutex_lock(&journal->j_checkpoint_mutex);
1700 jbd2_mark_journal_empty(journal);
1701 mutex_unlock(&journal->j_checkpoint_mutex);
1702 } else
1703 err = -EIO;
1704 brelse(journal->j_sb_buffer);
1707 if (journal->j_proc_entry)
1708 jbd2_stats_proc_exit(journal);
1709 if (journal->j_inode)
1710 iput(journal->j_inode);
1711 if (journal->j_revoke)
1712 jbd2_journal_destroy_revoke(journal);
1713 if (journal->j_chksum_driver)
1714 crypto_free_shash(journal->j_chksum_driver);
1715 kfree(journal->j_wbuf);
1716 kfree(journal);
1718 return err;
1723 *int jbd2_journal_check_used_features () - Check if features specified are used.
1724 * @journal: Journal to check.
1725 * @compat: bitmask of compatible features
1726 * @ro: bitmask of features that force read-only mount
1727 * @incompat: bitmask of incompatible features
1729 * Check whether the journal uses all of a given set of
1730 * features. Return true (non-zero) if it does.
1733 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1734 unsigned long ro, unsigned long incompat)
1736 journal_superblock_t *sb;
1738 if (!compat && !ro && !incompat)
1739 return 1;
1740 /* Load journal superblock if it is not loaded yet. */
1741 if (journal->j_format_version == 0 &&
1742 journal_get_superblock(journal) != 0)
1743 return 0;
1744 if (journal->j_format_version == 1)
1745 return 0;
1747 sb = journal->j_superblock;
1749 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1750 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1751 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1752 return 1;
1754 return 0;
1758 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1759 * @journal: Journal to check.
1760 * @compat: bitmask of compatible features
1761 * @ro: bitmask of features that force read-only mount
1762 * @incompat: bitmask of incompatible features
1764 * Check whether the journaling code supports the use of
1765 * all of a given set of features on this journal. Return true
1766 * (non-zero) if it can. */
1768 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1769 unsigned long ro, unsigned long incompat)
1771 if (!compat && !ro && !incompat)
1772 return 1;
1774 /* We can support any known requested features iff the
1775 * superblock is in version 2. Otherwise we fail to support any
1776 * extended sb features. */
1778 if (journal->j_format_version != 2)
1779 return 0;
1781 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1782 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1783 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1784 return 1;
1786 return 0;
1790 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1791 * @journal: Journal to act on.
1792 * @compat: bitmask of compatible features
1793 * @ro: bitmask of features that force read-only mount
1794 * @incompat: bitmask of incompatible features
1796 * Mark a given journal feature as present on the
1797 * superblock. Returns true if the requested features could be set.
1801 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1802 unsigned long ro, unsigned long incompat)
1804 #define INCOMPAT_FEATURE_ON(f) \
1805 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1806 #define COMPAT_FEATURE_ON(f) \
1807 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1808 journal_superblock_t *sb;
1810 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1811 return 1;
1813 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1814 return 0;
1816 /* Asking for checksumming v2 and v1? Only give them v2. */
1817 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1818 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1819 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1821 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1822 compat, ro, incompat);
1824 sb = journal->j_superblock;
1826 /* If enabling v2 checksums, update superblock */
1827 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1828 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1829 sb->s_feature_compat &=
1830 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1832 /* Load the checksum driver */
1833 if (journal->j_chksum_driver == NULL) {
1834 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1835 0, 0);
1836 if (IS_ERR(journal->j_chksum_driver)) {
1837 printk(KERN_ERR "JBD2: Cannot load crc32c "
1838 "driver.\n");
1839 journal->j_chksum_driver = NULL;
1840 return 0;
1844 /* Precompute checksum seed for all metadata */
1845 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1846 JBD2_FEATURE_INCOMPAT_CSUM_V2))
1847 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1848 sb->s_uuid,
1849 sizeof(sb->s_uuid));
1852 /* If enabling v1 checksums, downgrade superblock */
1853 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1854 sb->s_feature_incompat &=
1855 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1857 sb->s_feature_compat |= cpu_to_be32(compat);
1858 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1859 sb->s_feature_incompat |= cpu_to_be32(incompat);
1861 return 1;
1862 #undef COMPAT_FEATURE_ON
1863 #undef INCOMPAT_FEATURE_ON
1867 * jbd2_journal_clear_features () - Clear a given journal feature in the
1868 * superblock
1869 * @journal: Journal to act on.
1870 * @compat: bitmask of compatible features
1871 * @ro: bitmask of features that force read-only mount
1872 * @incompat: bitmask of incompatible features
1874 * Clear a given journal feature as present on the
1875 * superblock.
1877 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1878 unsigned long ro, unsigned long incompat)
1880 journal_superblock_t *sb;
1882 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1883 compat, ro, incompat);
1885 sb = journal->j_superblock;
1887 sb->s_feature_compat &= ~cpu_to_be32(compat);
1888 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1889 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1891 EXPORT_SYMBOL(jbd2_journal_clear_features);
1894 * int jbd2_journal_flush () - Flush journal
1895 * @journal: Journal to act on.
1897 * Flush all data for a given journal to disk and empty the journal.
1898 * Filesystems can use this when remounting readonly to ensure that
1899 * recovery does not need to happen on remount.
1902 int jbd2_journal_flush(journal_t *journal)
1904 int err = 0;
1905 transaction_t *transaction = NULL;
1907 write_lock(&journal->j_state_lock);
1909 /* Force everything buffered to the log... */
1910 if (journal->j_running_transaction) {
1911 transaction = journal->j_running_transaction;
1912 __jbd2_log_start_commit(journal, transaction->t_tid);
1913 } else if (journal->j_committing_transaction)
1914 transaction = journal->j_committing_transaction;
1916 /* Wait for the log commit to complete... */
1917 if (transaction) {
1918 tid_t tid = transaction->t_tid;
1920 write_unlock(&journal->j_state_lock);
1921 jbd2_log_wait_commit(journal, tid);
1922 } else {
1923 write_unlock(&journal->j_state_lock);
1926 /* ...and flush everything in the log out to disk. */
1927 spin_lock(&journal->j_list_lock);
1928 while (!err && journal->j_checkpoint_transactions != NULL) {
1929 spin_unlock(&journal->j_list_lock);
1930 mutex_lock(&journal->j_checkpoint_mutex);
1931 err = jbd2_log_do_checkpoint(journal);
1932 mutex_unlock(&journal->j_checkpoint_mutex);
1933 spin_lock(&journal->j_list_lock);
1935 spin_unlock(&journal->j_list_lock);
1937 if (is_journal_aborted(journal))
1938 return -EIO;
1940 mutex_lock(&journal->j_checkpoint_mutex);
1941 jbd2_cleanup_journal_tail(journal);
1943 /* Finally, mark the journal as really needing no recovery.
1944 * This sets s_start==0 in the underlying superblock, which is
1945 * the magic code for a fully-recovered superblock. Any future
1946 * commits of data to the journal will restore the current
1947 * s_start value. */
1948 jbd2_mark_journal_empty(journal);
1949 mutex_unlock(&journal->j_checkpoint_mutex);
1950 write_lock(&journal->j_state_lock);
1951 J_ASSERT(!journal->j_running_transaction);
1952 J_ASSERT(!journal->j_committing_transaction);
1953 J_ASSERT(!journal->j_checkpoint_transactions);
1954 J_ASSERT(journal->j_head == journal->j_tail);
1955 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1956 write_unlock(&journal->j_state_lock);
1957 return 0;
1961 * int jbd2_journal_wipe() - Wipe journal contents
1962 * @journal: Journal to act on.
1963 * @write: flag (see below)
1965 * Wipe out all of the contents of a journal, safely. This will produce
1966 * a warning if the journal contains any valid recovery information.
1967 * Must be called between journal_init_*() and jbd2_journal_load().
1969 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1970 * we merely suppress recovery.
1973 int jbd2_journal_wipe(journal_t *journal, int write)
1975 int err = 0;
1977 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1979 err = load_superblock(journal);
1980 if (err)
1981 return err;
1983 if (!journal->j_tail)
1984 goto no_recovery;
1986 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1987 write ? "Clearing" : "Ignoring");
1989 err = jbd2_journal_skip_recovery(journal);
1990 if (write) {
1991 /* Lock to make assertions happy... */
1992 mutex_lock(&journal->j_checkpoint_mutex);
1993 jbd2_mark_journal_empty(journal);
1994 mutex_unlock(&journal->j_checkpoint_mutex);
1997 no_recovery:
1998 return err;
2002 * Journal abort has very specific semantics, which we describe
2003 * for journal abort.
2005 * Two internal functions, which provide abort to the jbd layer
2006 * itself are here.
2010 * Quick version for internal journal use (doesn't lock the journal).
2011 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2012 * and don't attempt to make any other journal updates.
2014 void __jbd2_journal_abort_hard(journal_t *journal)
2016 transaction_t *transaction;
2018 if (journal->j_flags & JBD2_ABORT)
2019 return;
2021 printk(KERN_ERR "Aborting journal on device %s.\n",
2022 journal->j_devname);
2024 write_lock(&journal->j_state_lock);
2025 journal->j_flags |= JBD2_ABORT;
2026 transaction = journal->j_running_transaction;
2027 if (transaction)
2028 __jbd2_log_start_commit(journal, transaction->t_tid);
2029 write_unlock(&journal->j_state_lock);
2032 /* Soft abort: record the abort error status in the journal superblock,
2033 * but don't do any other IO. */
2034 static void __journal_abort_soft (journal_t *journal, int errno)
2036 if (journal->j_flags & JBD2_ABORT)
2037 return;
2039 if (!journal->j_errno)
2040 journal->j_errno = errno;
2042 __jbd2_journal_abort_hard(journal);
2044 if (errno)
2045 jbd2_journal_update_sb_errno(journal);
2049 * void jbd2_journal_abort () - Shutdown the journal immediately.
2050 * @journal: the journal to shutdown.
2051 * @errno: an error number to record in the journal indicating
2052 * the reason for the shutdown.
2054 * Perform a complete, immediate shutdown of the ENTIRE
2055 * journal (not of a single transaction). This operation cannot be
2056 * undone without closing and reopening the journal.
2058 * The jbd2_journal_abort function is intended to support higher level error
2059 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2060 * mode.
2062 * Journal abort has very specific semantics. Any existing dirty,
2063 * unjournaled buffers in the main filesystem will still be written to
2064 * disk by bdflush, but the journaling mechanism will be suspended
2065 * immediately and no further transaction commits will be honoured.
2067 * Any dirty, journaled buffers will be written back to disk without
2068 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2069 * filesystem, but we _do_ attempt to leave as much data as possible
2070 * behind for fsck to use for cleanup.
2072 * Any attempt to get a new transaction handle on a journal which is in
2073 * ABORT state will just result in an -EROFS error return. A
2074 * jbd2_journal_stop on an existing handle will return -EIO if we have
2075 * entered abort state during the update.
2077 * Recursive transactions are not disturbed by journal abort until the
2078 * final jbd2_journal_stop, which will receive the -EIO error.
2080 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2081 * which will be recorded (if possible) in the journal superblock. This
2082 * allows a client to record failure conditions in the middle of a
2083 * transaction without having to complete the transaction to record the
2084 * failure to disk. ext3_error, for example, now uses this
2085 * functionality.
2087 * Errors which originate from within the journaling layer will NOT
2088 * supply an errno; a null errno implies that absolutely no further
2089 * writes are done to the journal (unless there are any already in
2090 * progress).
2094 void jbd2_journal_abort(journal_t *journal, int errno)
2096 __journal_abort_soft(journal, errno);
2100 * int jbd2_journal_errno () - returns the journal's error state.
2101 * @journal: journal to examine.
2103 * This is the errno number set with jbd2_journal_abort(), the last
2104 * time the journal was mounted - if the journal was stopped
2105 * without calling abort this will be 0.
2107 * If the journal has been aborted on this mount time -EROFS will
2108 * be returned.
2110 int jbd2_journal_errno(journal_t *journal)
2112 int err;
2114 read_lock(&journal->j_state_lock);
2115 if (journal->j_flags & JBD2_ABORT)
2116 err = -EROFS;
2117 else
2118 err = journal->j_errno;
2119 read_unlock(&journal->j_state_lock);
2120 return err;
2124 * int jbd2_journal_clear_err () - clears the journal's error state
2125 * @journal: journal to act on.
2127 * An error must be cleared or acked to take a FS out of readonly
2128 * mode.
2130 int jbd2_journal_clear_err(journal_t *journal)
2132 int err = 0;
2134 write_lock(&journal->j_state_lock);
2135 if (journal->j_flags & JBD2_ABORT)
2136 err = -EROFS;
2137 else
2138 journal->j_errno = 0;
2139 write_unlock(&journal->j_state_lock);
2140 return err;
2144 * void jbd2_journal_ack_err() - Ack journal err.
2145 * @journal: journal to act on.
2147 * An error must be cleared or acked to take a FS out of readonly
2148 * mode.
2150 void jbd2_journal_ack_err(journal_t *journal)
2152 write_lock(&journal->j_state_lock);
2153 if (journal->j_errno)
2154 journal->j_flags |= JBD2_ACK_ERR;
2155 write_unlock(&journal->j_state_lock);
2158 int jbd2_journal_blocks_per_page(struct inode *inode)
2160 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2164 * helper functions to deal with 32 or 64bit block numbers.
2166 size_t journal_tag_bytes(journal_t *journal)
2168 journal_block_tag_t tag;
2169 size_t x = 0;
2171 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2172 x += sizeof(tag.t_checksum);
2174 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2175 return x + JBD2_TAG_SIZE64;
2176 else
2177 return x + JBD2_TAG_SIZE32;
2181 * JBD memory management
2183 * These functions are used to allocate block-sized chunks of memory
2184 * used for making copies of buffer_head data. Very often it will be
2185 * page-sized chunks of data, but sometimes it will be in
2186 * sub-page-size chunks. (For example, 16k pages on Power systems
2187 * with a 4k block file system.) For blocks smaller than a page, we
2188 * use a SLAB allocator. There are slab caches for each block size,
2189 * which are allocated at mount time, if necessary, and we only free
2190 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2191 * this reason we don't need to a mutex to protect access to
2192 * jbd2_slab[] allocating or releasing memory; only in
2193 * jbd2_journal_create_slab().
2195 #define JBD2_MAX_SLABS 8
2196 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2198 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2199 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2200 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2204 static void jbd2_journal_destroy_slabs(void)
2206 int i;
2208 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2209 if (jbd2_slab[i])
2210 kmem_cache_destroy(jbd2_slab[i]);
2211 jbd2_slab[i] = NULL;
2215 static int jbd2_journal_create_slab(size_t size)
2217 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2218 int i = order_base_2(size) - 10;
2219 size_t slab_size;
2221 if (size == PAGE_SIZE)
2222 return 0;
2224 if (i >= JBD2_MAX_SLABS)
2225 return -EINVAL;
2227 if (unlikely(i < 0))
2228 i = 0;
2229 mutex_lock(&jbd2_slab_create_mutex);
2230 if (jbd2_slab[i]) {
2231 mutex_unlock(&jbd2_slab_create_mutex);
2232 return 0; /* Already created */
2235 slab_size = 1 << (i+10);
2236 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2237 slab_size, 0, NULL);
2238 mutex_unlock(&jbd2_slab_create_mutex);
2239 if (!jbd2_slab[i]) {
2240 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2241 return -ENOMEM;
2243 return 0;
2246 static struct kmem_cache *get_slab(size_t size)
2248 int i = order_base_2(size) - 10;
2250 BUG_ON(i >= JBD2_MAX_SLABS);
2251 if (unlikely(i < 0))
2252 i = 0;
2253 BUG_ON(jbd2_slab[i] == NULL);
2254 return jbd2_slab[i];
2257 void *jbd2_alloc(size_t size, gfp_t flags)
2259 void *ptr;
2261 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2263 flags |= __GFP_REPEAT;
2264 if (size == PAGE_SIZE)
2265 ptr = (void *)__get_free_pages(flags, 0);
2266 else if (size > PAGE_SIZE) {
2267 int order = get_order(size);
2269 if (order < 3)
2270 ptr = (void *)__get_free_pages(flags, order);
2271 else
2272 ptr = vmalloc(size);
2273 } else
2274 ptr = kmem_cache_alloc(get_slab(size), flags);
2276 /* Check alignment; SLUB has gotten this wrong in the past,
2277 * and this can lead to user data corruption! */
2278 BUG_ON(((unsigned long) ptr) & (size-1));
2280 return ptr;
2283 void jbd2_free(void *ptr, size_t size)
2285 if (size == PAGE_SIZE) {
2286 free_pages((unsigned long)ptr, 0);
2287 return;
2289 if (size > PAGE_SIZE) {
2290 int order = get_order(size);
2292 if (order < 3)
2293 free_pages((unsigned long)ptr, order);
2294 else
2295 vfree(ptr);
2296 return;
2298 kmem_cache_free(get_slab(size), ptr);
2302 * Journal_head storage management
2304 static struct kmem_cache *jbd2_journal_head_cache;
2305 #ifdef CONFIG_JBD2_DEBUG
2306 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2307 #endif
2309 static int jbd2_journal_init_journal_head_cache(void)
2311 int retval;
2313 J_ASSERT(jbd2_journal_head_cache == NULL);
2314 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2315 sizeof(struct journal_head),
2316 0, /* offset */
2317 SLAB_TEMPORARY, /* flags */
2318 NULL); /* ctor */
2319 retval = 0;
2320 if (!jbd2_journal_head_cache) {
2321 retval = -ENOMEM;
2322 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2324 return retval;
2327 static void jbd2_journal_destroy_journal_head_cache(void)
2329 if (jbd2_journal_head_cache) {
2330 kmem_cache_destroy(jbd2_journal_head_cache);
2331 jbd2_journal_head_cache = NULL;
2336 * journal_head splicing and dicing
2338 static struct journal_head *journal_alloc_journal_head(void)
2340 struct journal_head *ret;
2342 #ifdef CONFIG_JBD2_DEBUG
2343 atomic_inc(&nr_journal_heads);
2344 #endif
2345 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2346 if (!ret) {
2347 jbd_debug(1, "out of memory for journal_head\n");
2348 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2349 while (!ret) {
2350 yield();
2351 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2354 return ret;
2357 static void journal_free_journal_head(struct journal_head *jh)
2359 #ifdef CONFIG_JBD2_DEBUG
2360 atomic_dec(&nr_journal_heads);
2361 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2362 #endif
2363 kmem_cache_free(jbd2_journal_head_cache, jh);
2367 * A journal_head is attached to a buffer_head whenever JBD has an
2368 * interest in the buffer.
2370 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2371 * is set. This bit is tested in core kernel code where we need to take
2372 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2373 * there.
2375 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2377 * When a buffer has its BH_JBD bit set it is immune from being released by
2378 * core kernel code, mainly via ->b_count.
2380 * A journal_head is detached from its buffer_head when the journal_head's
2381 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2382 * transaction (b_cp_transaction) hold their references to b_jcount.
2384 * Various places in the kernel want to attach a journal_head to a buffer_head
2385 * _before_ attaching the journal_head to a transaction. To protect the
2386 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2387 * journal_head's b_jcount refcount by one. The caller must call
2388 * jbd2_journal_put_journal_head() to undo this.
2390 * So the typical usage would be:
2392 * (Attach a journal_head if needed. Increments b_jcount)
2393 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2394 * ...
2395 * (Get another reference for transaction)
2396 * jbd2_journal_grab_journal_head(bh);
2397 * jh->b_transaction = xxx;
2398 * (Put original reference)
2399 * jbd2_journal_put_journal_head(jh);
2403 * Give a buffer_head a journal_head.
2405 * May sleep.
2407 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2409 struct journal_head *jh;
2410 struct journal_head *new_jh = NULL;
2412 repeat:
2413 if (!buffer_jbd(bh))
2414 new_jh = journal_alloc_journal_head();
2416 jbd_lock_bh_journal_head(bh);
2417 if (buffer_jbd(bh)) {
2418 jh = bh2jh(bh);
2419 } else {
2420 J_ASSERT_BH(bh,
2421 (atomic_read(&bh->b_count) > 0) ||
2422 (bh->b_page && bh->b_page->mapping));
2424 if (!new_jh) {
2425 jbd_unlock_bh_journal_head(bh);
2426 goto repeat;
2429 jh = new_jh;
2430 new_jh = NULL; /* We consumed it */
2431 set_buffer_jbd(bh);
2432 bh->b_private = jh;
2433 jh->b_bh = bh;
2434 get_bh(bh);
2435 BUFFER_TRACE(bh, "added journal_head");
2437 jh->b_jcount++;
2438 jbd_unlock_bh_journal_head(bh);
2439 if (new_jh)
2440 journal_free_journal_head(new_jh);
2441 return bh->b_private;
2445 * Grab a ref against this buffer_head's journal_head. If it ended up not
2446 * having a journal_head, return NULL
2448 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2450 struct journal_head *jh = NULL;
2452 jbd_lock_bh_journal_head(bh);
2453 if (buffer_jbd(bh)) {
2454 jh = bh2jh(bh);
2455 jh->b_jcount++;
2457 jbd_unlock_bh_journal_head(bh);
2458 return jh;
2461 static void __journal_remove_journal_head(struct buffer_head *bh)
2463 struct journal_head *jh = bh2jh(bh);
2465 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2466 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2467 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2468 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2469 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2470 J_ASSERT_BH(bh, buffer_jbd(bh));
2471 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2472 BUFFER_TRACE(bh, "remove journal_head");
2473 if (jh->b_frozen_data) {
2474 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2475 jbd2_free(jh->b_frozen_data, bh->b_size);
2477 if (jh->b_committed_data) {
2478 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2479 jbd2_free(jh->b_committed_data, bh->b_size);
2481 bh->b_private = NULL;
2482 jh->b_bh = NULL; /* debug, really */
2483 clear_buffer_jbd(bh);
2484 journal_free_journal_head(jh);
2488 * Drop a reference on the passed journal_head. If it fell to zero then
2489 * release the journal_head from the buffer_head.
2491 void jbd2_journal_put_journal_head(struct journal_head *jh)
2493 struct buffer_head *bh = jh2bh(jh);
2495 jbd_lock_bh_journal_head(bh);
2496 J_ASSERT_JH(jh, jh->b_jcount > 0);
2497 --jh->b_jcount;
2498 if (!jh->b_jcount) {
2499 __journal_remove_journal_head(bh);
2500 jbd_unlock_bh_journal_head(bh);
2501 __brelse(bh);
2502 } else
2503 jbd_unlock_bh_journal_head(bh);
2507 * Initialize jbd inode head
2509 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2511 jinode->i_transaction = NULL;
2512 jinode->i_next_transaction = NULL;
2513 jinode->i_vfs_inode = inode;
2514 jinode->i_flags = 0;
2515 INIT_LIST_HEAD(&jinode->i_list);
2519 * Function to be called before we start removing inode from memory (i.e.,
2520 * clear_inode() is a fine place to be called from). It removes inode from
2521 * transaction's lists.
2523 void jbd2_journal_release_jbd_inode(journal_t *journal,
2524 struct jbd2_inode *jinode)
2526 if (!journal)
2527 return;
2528 restart:
2529 spin_lock(&journal->j_list_lock);
2530 /* Is commit writing out inode - we have to wait */
2531 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2532 wait_queue_head_t *wq;
2533 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2534 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2535 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2536 spin_unlock(&journal->j_list_lock);
2537 schedule();
2538 finish_wait(wq, &wait.wait);
2539 goto restart;
2542 if (jinode->i_transaction) {
2543 list_del(&jinode->i_list);
2544 jinode->i_transaction = NULL;
2546 spin_unlock(&journal->j_list_lock);
2550 #ifdef CONFIG_PROC_FS
2552 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2554 static void __init jbd2_create_jbd_stats_proc_entry(void)
2556 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2559 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2561 if (proc_jbd2_stats)
2562 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2565 #else
2567 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2568 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2570 #endif
2572 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2574 static int __init jbd2_journal_init_handle_cache(void)
2576 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2577 if (jbd2_handle_cache == NULL) {
2578 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2579 return -ENOMEM;
2581 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2582 if (jbd2_inode_cache == NULL) {
2583 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2584 kmem_cache_destroy(jbd2_handle_cache);
2585 return -ENOMEM;
2587 return 0;
2590 static void jbd2_journal_destroy_handle_cache(void)
2592 if (jbd2_handle_cache)
2593 kmem_cache_destroy(jbd2_handle_cache);
2594 if (jbd2_inode_cache)
2595 kmem_cache_destroy(jbd2_inode_cache);
2600 * Module startup and shutdown
2603 static int __init journal_init_caches(void)
2605 int ret;
2607 ret = jbd2_journal_init_revoke_caches();
2608 if (ret == 0)
2609 ret = jbd2_journal_init_journal_head_cache();
2610 if (ret == 0)
2611 ret = jbd2_journal_init_handle_cache();
2612 if (ret == 0)
2613 ret = jbd2_journal_init_transaction_cache();
2614 return ret;
2617 static void jbd2_journal_destroy_caches(void)
2619 jbd2_journal_destroy_revoke_caches();
2620 jbd2_journal_destroy_journal_head_cache();
2621 jbd2_journal_destroy_handle_cache();
2622 jbd2_journal_destroy_transaction_cache();
2623 jbd2_journal_destroy_slabs();
2626 static int __init journal_init(void)
2628 int ret;
2630 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2632 ret = journal_init_caches();
2633 if (ret == 0) {
2634 jbd2_create_jbd_stats_proc_entry();
2635 } else {
2636 jbd2_journal_destroy_caches();
2638 return ret;
2641 static void __exit journal_exit(void)
2643 #ifdef CONFIG_JBD2_DEBUG
2644 int n = atomic_read(&nr_journal_heads);
2645 if (n)
2646 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2647 #endif
2648 jbd2_remove_jbd_stats_proc_entry();
2649 jbd2_journal_destroy_caches();
2652 MODULE_LICENSE("GPL");
2653 module_init(journal_init);
2654 module_exit(journal_exit);