Linux 3.16-rc2
[linux/fpc-iii.git] / fs / kernfs / dir.c
bloba693f5b01ae6ebdda49911cab77f8d75deb97306
1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 * This file is released under the GPLv2.
9 */
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
19 #include "kernfs-internal.h"
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 static bool kernfs_active(struct kernfs_node *kn)
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
33 static bool kernfs_lockdep(struct kernfs_node *kn)
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
50 char *p = buf + buflen;
51 int len;
53 *--p = '\0';
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
68 return p;
71 /**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
81 * This function can be called from any context.
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
85 unsigned long flags;
86 int ret;
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
94 /**
95 * kernfs_path - build full path of a given node
96 * @kn: kernfs_node of interest
97 * @buf: buffer to copy @kn's name into
98 * @buflen: size of @buf
100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
101 * path is built from the end of @buf so the returned pointer usually
102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
103 * and %NULL is returned.
105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
107 unsigned long flags;
108 char *p;
110 spin_lock_irqsave(&kernfs_rename_lock, flags);
111 p = kernfs_path_locked(kn, buf, buflen);
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 return p;
115 EXPORT_SYMBOL_GPL(kernfs_path);
118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119 * @kn: kernfs_node of interest
121 * This function can be called from any context.
123 void pr_cont_kernfs_name(struct kernfs_node *kn)
125 unsigned long flags;
127 spin_lock_irqsave(&kernfs_rename_lock, flags);
129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 pr_cont("%s", kernfs_pr_cont_buf);
132 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137 * @kn: kernfs_node of interest
139 * This function can be called from any context.
141 void pr_cont_kernfs_path(struct kernfs_node *kn)
143 unsigned long flags;
144 char *p;
146 spin_lock_irqsave(&kernfs_rename_lock, flags);
148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 sizeof(kernfs_pr_cont_buf));
150 if (p)
151 pr_cont("%s", p);
152 else
153 pr_cont("<name too long>");
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
159 * kernfs_get_parent - determine the parent node and pin it
160 * @kn: kernfs_node of interest
162 * Determines @kn's parent, pins and returns it. This function can be
163 * called from any context.
165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
167 struct kernfs_node *parent;
168 unsigned long flags;
170 spin_lock_irqsave(&kernfs_rename_lock, flags);
171 parent = kn->parent;
172 kernfs_get(parent);
173 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
175 return parent;
179 * kernfs_name_hash
180 * @name: Null terminated string to hash
181 * @ns: Namespace tag to hash
183 * Returns 31 bit hash of ns + name (so it fits in an off_t )
185 static unsigned int kernfs_name_hash(const char *name, const void *ns)
187 unsigned long hash = init_name_hash();
188 unsigned int len = strlen(name);
189 while (len--)
190 hash = partial_name_hash(*name++, hash);
191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 hash &= 0x7fffffffU;
193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
194 if (hash < 2)
195 hash += 2;
196 if (hash >= INT_MAX)
197 hash = INT_MAX - 1;
198 return hash;
201 static int kernfs_name_compare(unsigned int hash, const char *name,
202 const void *ns, const struct kernfs_node *kn)
204 if (hash != kn->hash)
205 return hash - kn->hash;
206 if (ns != kn->ns)
207 return ns - kn->ns;
208 return strcmp(name, kn->name);
211 static int kernfs_sd_compare(const struct kernfs_node *left,
212 const struct kernfs_node *right)
214 return kernfs_name_compare(left->hash, left->name, left->ns, right);
218 * kernfs_link_sibling - link kernfs_node into sibling rbtree
219 * @kn: kernfs_node of interest
221 * Link @kn into its sibling rbtree which starts from
222 * @kn->parent->dir.children.
224 * Locking:
225 * mutex_lock(kernfs_mutex)
227 * RETURNS:
228 * 0 on susccess -EEXIST on failure.
230 static int kernfs_link_sibling(struct kernfs_node *kn)
232 struct rb_node **node = &kn->parent->dir.children.rb_node;
233 struct rb_node *parent = NULL;
235 while (*node) {
236 struct kernfs_node *pos;
237 int result;
239 pos = rb_to_kn(*node);
240 parent = *node;
241 result = kernfs_sd_compare(kn, pos);
242 if (result < 0)
243 node = &pos->rb.rb_left;
244 else if (result > 0)
245 node = &pos->rb.rb_right;
246 else
247 return -EEXIST;
250 /* add new node and rebalance the tree */
251 rb_link_node(&kn->rb, parent, node);
252 rb_insert_color(&kn->rb, &kn->parent->dir.children);
254 /* successfully added, account subdir number */
255 if (kernfs_type(kn) == KERNFS_DIR)
256 kn->parent->dir.subdirs++;
258 return 0;
262 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
263 * @kn: kernfs_node of interest
265 * Try to unlink @kn from its sibling rbtree which starts from
266 * kn->parent->dir.children. Returns %true if @kn was actually
267 * removed, %false if @kn wasn't on the rbtree.
269 * Locking:
270 * mutex_lock(kernfs_mutex)
272 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
274 if (RB_EMPTY_NODE(&kn->rb))
275 return false;
277 if (kernfs_type(kn) == KERNFS_DIR)
278 kn->parent->dir.subdirs--;
280 rb_erase(&kn->rb, &kn->parent->dir.children);
281 RB_CLEAR_NODE(&kn->rb);
282 return true;
286 * kernfs_get_active - get an active reference to kernfs_node
287 * @kn: kernfs_node to get an active reference to
289 * Get an active reference of @kn. This function is noop if @kn
290 * is NULL.
292 * RETURNS:
293 * Pointer to @kn on success, NULL on failure.
295 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
297 if (unlikely(!kn))
298 return NULL;
300 if (!atomic_inc_unless_negative(&kn->active))
301 return NULL;
303 if (kernfs_lockdep(kn))
304 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
305 return kn;
309 * kernfs_put_active - put an active reference to kernfs_node
310 * @kn: kernfs_node to put an active reference to
312 * Put an active reference to @kn. This function is noop if @kn
313 * is NULL.
315 void kernfs_put_active(struct kernfs_node *kn)
317 struct kernfs_root *root = kernfs_root(kn);
318 int v;
320 if (unlikely(!kn))
321 return;
323 if (kernfs_lockdep(kn))
324 rwsem_release(&kn->dep_map, 1, _RET_IP_);
325 v = atomic_dec_return(&kn->active);
326 if (likely(v != KN_DEACTIVATED_BIAS))
327 return;
329 wake_up_all(&root->deactivate_waitq);
333 * kernfs_drain - drain kernfs_node
334 * @kn: kernfs_node to drain
336 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
337 * removers may invoke this function concurrently on @kn and all will
338 * return after draining is complete.
340 static void kernfs_drain(struct kernfs_node *kn)
341 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
343 struct kernfs_root *root = kernfs_root(kn);
345 lockdep_assert_held(&kernfs_mutex);
346 WARN_ON_ONCE(kernfs_active(kn));
348 mutex_unlock(&kernfs_mutex);
350 if (kernfs_lockdep(kn)) {
351 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
352 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
353 lock_contended(&kn->dep_map, _RET_IP_);
356 /* but everyone should wait for draining */
357 wait_event(root->deactivate_waitq,
358 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
360 if (kernfs_lockdep(kn)) {
361 lock_acquired(&kn->dep_map, _RET_IP_);
362 rwsem_release(&kn->dep_map, 1, _RET_IP_);
365 kernfs_unmap_bin_file(kn);
367 mutex_lock(&kernfs_mutex);
371 * kernfs_get - get a reference count on a kernfs_node
372 * @kn: the target kernfs_node
374 void kernfs_get(struct kernfs_node *kn)
376 if (kn) {
377 WARN_ON(!atomic_read(&kn->count));
378 atomic_inc(&kn->count);
381 EXPORT_SYMBOL_GPL(kernfs_get);
384 * kernfs_put - put a reference count on a kernfs_node
385 * @kn: the target kernfs_node
387 * Put a reference count of @kn and destroy it if it reached zero.
389 void kernfs_put(struct kernfs_node *kn)
391 struct kernfs_node *parent;
392 struct kernfs_root *root;
394 if (!kn || !atomic_dec_and_test(&kn->count))
395 return;
396 root = kernfs_root(kn);
397 repeat:
399 * Moving/renaming is always done while holding reference.
400 * kn->parent won't change beneath us.
402 parent = kn->parent;
404 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
405 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
406 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
408 if (kernfs_type(kn) == KERNFS_LINK)
409 kernfs_put(kn->symlink.target_kn);
410 if (!(kn->flags & KERNFS_STATIC_NAME))
411 kfree(kn->name);
412 if (kn->iattr) {
413 if (kn->iattr->ia_secdata)
414 security_release_secctx(kn->iattr->ia_secdata,
415 kn->iattr->ia_secdata_len);
416 simple_xattrs_free(&kn->iattr->xattrs);
418 kfree(kn->iattr);
419 ida_simple_remove(&root->ino_ida, kn->ino);
420 kmem_cache_free(kernfs_node_cache, kn);
422 kn = parent;
423 if (kn) {
424 if (atomic_dec_and_test(&kn->count))
425 goto repeat;
426 } else {
427 /* just released the root kn, free @root too */
428 ida_destroy(&root->ino_ida);
429 kfree(root);
432 EXPORT_SYMBOL_GPL(kernfs_put);
434 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
436 struct kernfs_node *kn;
438 if (flags & LOOKUP_RCU)
439 return -ECHILD;
441 /* Always perform fresh lookup for negatives */
442 if (!dentry->d_inode)
443 goto out_bad_unlocked;
445 kn = dentry->d_fsdata;
446 mutex_lock(&kernfs_mutex);
448 /* The kernfs node has been deactivated */
449 if (!kernfs_active(kn))
450 goto out_bad;
452 /* The kernfs node has been moved? */
453 if (dentry->d_parent->d_fsdata != kn->parent)
454 goto out_bad;
456 /* The kernfs node has been renamed */
457 if (strcmp(dentry->d_name.name, kn->name) != 0)
458 goto out_bad;
460 /* The kernfs node has been moved to a different namespace */
461 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
462 kernfs_info(dentry->d_sb)->ns != kn->ns)
463 goto out_bad;
465 mutex_unlock(&kernfs_mutex);
466 out_valid:
467 return 1;
468 out_bad:
469 mutex_unlock(&kernfs_mutex);
470 out_bad_unlocked:
472 * @dentry doesn't match the underlying kernfs node, drop the
473 * dentry and force lookup. If we have submounts we must allow the
474 * vfs caches to lie about the state of the filesystem to prevent
475 * leaks and other nasty things, so use check_submounts_and_drop()
476 * instead of d_drop().
478 if (check_submounts_and_drop(dentry) != 0)
479 goto out_valid;
481 return 0;
484 static void kernfs_dop_release(struct dentry *dentry)
486 kernfs_put(dentry->d_fsdata);
489 const struct dentry_operations kernfs_dops = {
490 .d_revalidate = kernfs_dop_revalidate,
491 .d_release = kernfs_dop_release,
495 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
496 * @dentry: the dentry in question
498 * Return the kernfs_node associated with @dentry. If @dentry is not a
499 * kernfs one, %NULL is returned.
501 * While the returned kernfs_node will stay accessible as long as @dentry
502 * is accessible, the returned node can be in any state and the caller is
503 * fully responsible for determining what's accessible.
505 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
507 if (dentry->d_sb->s_op == &kernfs_sops)
508 return dentry->d_fsdata;
509 return NULL;
512 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
513 const char *name, umode_t mode,
514 unsigned flags)
516 char *dup_name = NULL;
517 struct kernfs_node *kn;
518 int ret;
520 if (!(flags & KERNFS_STATIC_NAME)) {
521 name = dup_name = kstrdup(name, GFP_KERNEL);
522 if (!name)
523 return NULL;
526 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
527 if (!kn)
528 goto err_out1;
530 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
531 if (ret < 0)
532 goto err_out2;
533 kn->ino = ret;
535 atomic_set(&kn->count, 1);
536 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
537 RB_CLEAR_NODE(&kn->rb);
539 kn->name = name;
540 kn->mode = mode;
541 kn->flags = flags;
543 return kn;
545 err_out2:
546 kmem_cache_free(kernfs_node_cache, kn);
547 err_out1:
548 kfree(dup_name);
549 return NULL;
552 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
553 const char *name, umode_t mode,
554 unsigned flags)
556 struct kernfs_node *kn;
558 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
559 if (kn) {
560 kernfs_get(parent);
561 kn->parent = parent;
563 return kn;
567 * kernfs_add_one - add kernfs_node to parent without warning
568 * @kn: kernfs_node to be added
570 * The caller must already have initialized @kn->parent. This
571 * function increments nlink of the parent's inode if @kn is a
572 * directory and link into the children list of the parent.
574 * RETURNS:
575 * 0 on success, -EEXIST if entry with the given name already
576 * exists.
578 int kernfs_add_one(struct kernfs_node *kn)
580 struct kernfs_node *parent = kn->parent;
581 struct kernfs_iattrs *ps_iattr;
582 bool has_ns;
583 int ret;
585 mutex_lock(&kernfs_mutex);
587 ret = -EINVAL;
588 has_ns = kernfs_ns_enabled(parent);
589 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
590 has_ns ? "required" : "invalid", parent->name, kn->name))
591 goto out_unlock;
593 if (kernfs_type(parent) != KERNFS_DIR)
594 goto out_unlock;
596 ret = -ENOENT;
597 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
598 goto out_unlock;
600 kn->hash = kernfs_name_hash(kn->name, kn->ns);
602 ret = kernfs_link_sibling(kn);
603 if (ret)
604 goto out_unlock;
606 /* Update timestamps on the parent */
607 ps_iattr = parent->iattr;
608 if (ps_iattr) {
609 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
610 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
613 mutex_unlock(&kernfs_mutex);
616 * Activate the new node unless CREATE_DEACTIVATED is requested.
617 * If not activated here, the kernfs user is responsible for
618 * activating the node with kernfs_activate(). A node which hasn't
619 * been activated is not visible to userland and its removal won't
620 * trigger deactivation.
622 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
623 kernfs_activate(kn);
624 return 0;
626 out_unlock:
627 mutex_unlock(&kernfs_mutex);
628 return ret;
632 * kernfs_find_ns - find kernfs_node with the given name
633 * @parent: kernfs_node to search under
634 * @name: name to look for
635 * @ns: the namespace tag to use
637 * Look for kernfs_node with name @name under @parent. Returns pointer to
638 * the found kernfs_node on success, %NULL on failure.
640 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
641 const unsigned char *name,
642 const void *ns)
644 struct rb_node *node = parent->dir.children.rb_node;
645 bool has_ns = kernfs_ns_enabled(parent);
646 unsigned int hash;
648 lockdep_assert_held(&kernfs_mutex);
650 if (has_ns != (bool)ns) {
651 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
652 has_ns ? "required" : "invalid", parent->name, name);
653 return NULL;
656 hash = kernfs_name_hash(name, ns);
657 while (node) {
658 struct kernfs_node *kn;
659 int result;
661 kn = rb_to_kn(node);
662 result = kernfs_name_compare(hash, name, ns, kn);
663 if (result < 0)
664 node = node->rb_left;
665 else if (result > 0)
666 node = node->rb_right;
667 else
668 return kn;
670 return NULL;
674 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
675 * @parent: kernfs_node to search under
676 * @name: name to look for
677 * @ns: the namespace tag to use
679 * Look for kernfs_node with name @name under @parent and get a reference
680 * if found. This function may sleep and returns pointer to the found
681 * kernfs_node on success, %NULL on failure.
683 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
684 const char *name, const void *ns)
686 struct kernfs_node *kn;
688 mutex_lock(&kernfs_mutex);
689 kn = kernfs_find_ns(parent, name, ns);
690 kernfs_get(kn);
691 mutex_unlock(&kernfs_mutex);
693 return kn;
695 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
698 * kernfs_create_root - create a new kernfs hierarchy
699 * @scops: optional syscall operations for the hierarchy
700 * @flags: KERNFS_ROOT_* flags
701 * @priv: opaque data associated with the new directory
703 * Returns the root of the new hierarchy on success, ERR_PTR() value on
704 * failure.
706 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
707 unsigned int flags, void *priv)
709 struct kernfs_root *root;
710 struct kernfs_node *kn;
712 root = kzalloc(sizeof(*root), GFP_KERNEL);
713 if (!root)
714 return ERR_PTR(-ENOMEM);
716 ida_init(&root->ino_ida);
717 INIT_LIST_HEAD(&root->supers);
719 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
720 KERNFS_DIR);
721 if (!kn) {
722 ida_destroy(&root->ino_ida);
723 kfree(root);
724 return ERR_PTR(-ENOMEM);
727 kn->priv = priv;
728 kn->dir.root = root;
730 root->syscall_ops = scops;
731 root->flags = flags;
732 root->kn = kn;
733 init_waitqueue_head(&root->deactivate_waitq);
735 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
736 kernfs_activate(kn);
738 return root;
742 * kernfs_destroy_root - destroy a kernfs hierarchy
743 * @root: root of the hierarchy to destroy
745 * Destroy the hierarchy anchored at @root by removing all existing
746 * directories and destroying @root.
748 void kernfs_destroy_root(struct kernfs_root *root)
750 kernfs_remove(root->kn); /* will also free @root */
754 * kernfs_create_dir_ns - create a directory
755 * @parent: parent in which to create a new directory
756 * @name: name of the new directory
757 * @mode: mode of the new directory
758 * @priv: opaque data associated with the new directory
759 * @ns: optional namespace tag of the directory
761 * Returns the created node on success, ERR_PTR() value on failure.
763 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
764 const char *name, umode_t mode,
765 void *priv, const void *ns)
767 struct kernfs_node *kn;
768 int rc;
770 /* allocate */
771 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
772 if (!kn)
773 return ERR_PTR(-ENOMEM);
775 kn->dir.root = parent->dir.root;
776 kn->ns = ns;
777 kn->priv = priv;
779 /* link in */
780 rc = kernfs_add_one(kn);
781 if (!rc)
782 return kn;
784 kernfs_put(kn);
785 return ERR_PTR(rc);
788 static struct dentry *kernfs_iop_lookup(struct inode *dir,
789 struct dentry *dentry,
790 unsigned int flags)
792 struct dentry *ret;
793 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
794 struct kernfs_node *kn;
795 struct inode *inode;
796 const void *ns = NULL;
798 mutex_lock(&kernfs_mutex);
800 if (kernfs_ns_enabled(parent))
801 ns = kernfs_info(dir->i_sb)->ns;
803 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
805 /* no such entry */
806 if (!kn || !kernfs_active(kn)) {
807 ret = NULL;
808 goto out_unlock;
810 kernfs_get(kn);
811 dentry->d_fsdata = kn;
813 /* attach dentry and inode */
814 inode = kernfs_get_inode(dir->i_sb, kn);
815 if (!inode) {
816 ret = ERR_PTR(-ENOMEM);
817 goto out_unlock;
820 /* instantiate and hash dentry */
821 ret = d_materialise_unique(dentry, inode);
822 out_unlock:
823 mutex_unlock(&kernfs_mutex);
824 return ret;
827 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
828 umode_t mode)
830 struct kernfs_node *parent = dir->i_private;
831 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
832 int ret;
834 if (!scops || !scops->mkdir)
835 return -EPERM;
837 if (!kernfs_get_active(parent))
838 return -ENODEV;
840 ret = scops->mkdir(parent, dentry->d_name.name, mode);
842 kernfs_put_active(parent);
843 return ret;
846 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
848 struct kernfs_node *kn = dentry->d_fsdata;
849 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
850 int ret;
852 if (!scops || !scops->rmdir)
853 return -EPERM;
855 if (!kernfs_get_active(kn))
856 return -ENODEV;
858 ret = scops->rmdir(kn);
860 kernfs_put_active(kn);
861 return ret;
864 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
865 struct inode *new_dir, struct dentry *new_dentry)
867 struct kernfs_node *kn = old_dentry->d_fsdata;
868 struct kernfs_node *new_parent = new_dir->i_private;
869 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
870 int ret;
872 if (!scops || !scops->rename)
873 return -EPERM;
875 if (!kernfs_get_active(kn))
876 return -ENODEV;
878 if (!kernfs_get_active(new_parent)) {
879 kernfs_put_active(kn);
880 return -ENODEV;
883 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
885 kernfs_put_active(new_parent);
886 kernfs_put_active(kn);
887 return ret;
890 const struct inode_operations kernfs_dir_iops = {
891 .lookup = kernfs_iop_lookup,
892 .permission = kernfs_iop_permission,
893 .setattr = kernfs_iop_setattr,
894 .getattr = kernfs_iop_getattr,
895 .setxattr = kernfs_iop_setxattr,
896 .removexattr = kernfs_iop_removexattr,
897 .getxattr = kernfs_iop_getxattr,
898 .listxattr = kernfs_iop_listxattr,
900 .mkdir = kernfs_iop_mkdir,
901 .rmdir = kernfs_iop_rmdir,
902 .rename = kernfs_iop_rename,
905 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
907 struct kernfs_node *last;
909 while (true) {
910 struct rb_node *rbn;
912 last = pos;
914 if (kernfs_type(pos) != KERNFS_DIR)
915 break;
917 rbn = rb_first(&pos->dir.children);
918 if (!rbn)
919 break;
921 pos = rb_to_kn(rbn);
924 return last;
928 * kernfs_next_descendant_post - find the next descendant for post-order walk
929 * @pos: the current position (%NULL to initiate traversal)
930 * @root: kernfs_node whose descendants to walk
932 * Find the next descendant to visit for post-order traversal of @root's
933 * descendants. @root is included in the iteration and the last node to be
934 * visited.
936 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
937 struct kernfs_node *root)
939 struct rb_node *rbn;
941 lockdep_assert_held(&kernfs_mutex);
943 /* if first iteration, visit leftmost descendant which may be root */
944 if (!pos)
945 return kernfs_leftmost_descendant(root);
947 /* if we visited @root, we're done */
948 if (pos == root)
949 return NULL;
951 /* if there's an unvisited sibling, visit its leftmost descendant */
952 rbn = rb_next(&pos->rb);
953 if (rbn)
954 return kernfs_leftmost_descendant(rb_to_kn(rbn));
956 /* no sibling left, visit parent */
957 return pos->parent;
961 * kernfs_activate - activate a node which started deactivated
962 * @kn: kernfs_node whose subtree is to be activated
964 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
965 * needs to be explicitly activated. A node which hasn't been activated
966 * isn't visible to userland and deactivation is skipped during its
967 * removal. This is useful to construct atomic init sequences where
968 * creation of multiple nodes should either succeed or fail atomically.
970 * The caller is responsible for ensuring that this function is not called
971 * after kernfs_remove*() is invoked on @kn.
973 void kernfs_activate(struct kernfs_node *kn)
975 struct kernfs_node *pos;
977 mutex_lock(&kernfs_mutex);
979 pos = NULL;
980 while ((pos = kernfs_next_descendant_post(pos, kn))) {
981 if (!pos || (pos->flags & KERNFS_ACTIVATED))
982 continue;
984 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
985 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
987 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
988 pos->flags |= KERNFS_ACTIVATED;
991 mutex_unlock(&kernfs_mutex);
994 static void __kernfs_remove(struct kernfs_node *kn)
996 struct kernfs_node *pos;
998 lockdep_assert_held(&kernfs_mutex);
1001 * Short-circuit if non-root @kn has already finished removal.
1002 * This is for kernfs_remove_self() which plays with active ref
1003 * after removal.
1005 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1006 return;
1008 pr_debug("kernfs %s: removing\n", kn->name);
1010 /* prevent any new usage under @kn by deactivating all nodes */
1011 pos = NULL;
1012 while ((pos = kernfs_next_descendant_post(pos, kn)))
1013 if (kernfs_active(pos))
1014 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1016 /* deactivate and unlink the subtree node-by-node */
1017 do {
1018 pos = kernfs_leftmost_descendant(kn);
1021 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1022 * base ref could have been put by someone else by the time
1023 * the function returns. Make sure it doesn't go away
1024 * underneath us.
1026 kernfs_get(pos);
1029 * Drain iff @kn was activated. This avoids draining and
1030 * its lockdep annotations for nodes which have never been
1031 * activated and allows embedding kernfs_remove() in create
1032 * error paths without worrying about draining.
1034 if (kn->flags & KERNFS_ACTIVATED)
1035 kernfs_drain(pos);
1036 else
1037 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1040 * kernfs_unlink_sibling() succeeds once per node. Use it
1041 * to decide who's responsible for cleanups.
1043 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1044 struct kernfs_iattrs *ps_iattr =
1045 pos->parent ? pos->parent->iattr : NULL;
1047 /* update timestamps on the parent */
1048 if (ps_iattr) {
1049 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1050 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1053 kernfs_put(pos);
1056 kernfs_put(pos);
1057 } while (pos != kn);
1061 * kernfs_remove - remove a kernfs_node recursively
1062 * @kn: the kernfs_node to remove
1064 * Remove @kn along with all its subdirectories and files.
1066 void kernfs_remove(struct kernfs_node *kn)
1068 mutex_lock(&kernfs_mutex);
1069 __kernfs_remove(kn);
1070 mutex_unlock(&kernfs_mutex);
1074 * kernfs_break_active_protection - break out of active protection
1075 * @kn: the self kernfs_node
1077 * The caller must be running off of a kernfs operation which is invoked
1078 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1079 * this function must also be matched with an invocation of
1080 * kernfs_unbreak_active_protection().
1082 * This function releases the active reference of @kn the caller is
1083 * holding. Once this function is called, @kn may be removed at any point
1084 * and the caller is solely responsible for ensuring that the objects it
1085 * dereferences are accessible.
1087 void kernfs_break_active_protection(struct kernfs_node *kn)
1090 * Take out ourself out of the active ref dependency chain. If
1091 * we're called without an active ref, lockdep will complain.
1093 kernfs_put_active(kn);
1097 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1098 * @kn: the self kernfs_node
1100 * If kernfs_break_active_protection() was called, this function must be
1101 * invoked before finishing the kernfs operation. Note that while this
1102 * function restores the active reference, it doesn't and can't actually
1103 * restore the active protection - @kn may already or be in the process of
1104 * being removed. Once kernfs_break_active_protection() is invoked, that
1105 * protection is irreversibly gone for the kernfs operation instance.
1107 * While this function may be called at any point after
1108 * kernfs_break_active_protection() is invoked, its most useful location
1109 * would be right before the enclosing kernfs operation returns.
1111 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1114 * @kn->active could be in any state; however, the increment we do
1115 * here will be undone as soon as the enclosing kernfs operation
1116 * finishes and this temporary bump can't break anything. If @kn
1117 * is alive, nothing changes. If @kn is being deactivated, the
1118 * soon-to-follow put will either finish deactivation or restore
1119 * deactivated state. If @kn is already removed, the temporary
1120 * bump is guaranteed to be gone before @kn is released.
1122 atomic_inc(&kn->active);
1123 if (kernfs_lockdep(kn))
1124 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1128 * kernfs_remove_self - remove a kernfs_node from its own method
1129 * @kn: the self kernfs_node to remove
1131 * The caller must be running off of a kernfs operation which is invoked
1132 * with an active reference - e.g. one of kernfs_ops. This can be used to
1133 * implement a file operation which deletes itself.
1135 * For example, the "delete" file for a sysfs device directory can be
1136 * implemented by invoking kernfs_remove_self() on the "delete" file
1137 * itself. This function breaks the circular dependency of trying to
1138 * deactivate self while holding an active ref itself. It isn't necessary
1139 * to modify the usual removal path to use kernfs_remove_self(). The
1140 * "delete" implementation can simply invoke kernfs_remove_self() on self
1141 * before proceeding with the usual removal path. kernfs will ignore later
1142 * kernfs_remove() on self.
1144 * kernfs_remove_self() can be called multiple times concurrently on the
1145 * same kernfs_node. Only the first one actually performs removal and
1146 * returns %true. All others will wait until the kernfs operation which
1147 * won self-removal finishes and return %false. Note that the losers wait
1148 * for the completion of not only the winning kernfs_remove_self() but also
1149 * the whole kernfs_ops which won the arbitration. This can be used to
1150 * guarantee, for example, all concurrent writes to a "delete" file to
1151 * finish only after the whole operation is complete.
1153 bool kernfs_remove_self(struct kernfs_node *kn)
1155 bool ret;
1157 mutex_lock(&kernfs_mutex);
1158 kernfs_break_active_protection(kn);
1161 * SUICIDAL is used to arbitrate among competing invocations. Only
1162 * the first one will actually perform removal. When the removal
1163 * is complete, SUICIDED is set and the active ref is restored
1164 * while holding kernfs_mutex. The ones which lost arbitration
1165 * waits for SUICDED && drained which can happen only after the
1166 * enclosing kernfs operation which executed the winning instance
1167 * of kernfs_remove_self() finished.
1169 if (!(kn->flags & KERNFS_SUICIDAL)) {
1170 kn->flags |= KERNFS_SUICIDAL;
1171 __kernfs_remove(kn);
1172 kn->flags |= KERNFS_SUICIDED;
1173 ret = true;
1174 } else {
1175 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1176 DEFINE_WAIT(wait);
1178 while (true) {
1179 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1181 if ((kn->flags & KERNFS_SUICIDED) &&
1182 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1183 break;
1185 mutex_unlock(&kernfs_mutex);
1186 schedule();
1187 mutex_lock(&kernfs_mutex);
1189 finish_wait(waitq, &wait);
1190 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1191 ret = false;
1195 * This must be done while holding kernfs_mutex; otherwise, waiting
1196 * for SUICIDED && deactivated could finish prematurely.
1198 kernfs_unbreak_active_protection(kn);
1200 mutex_unlock(&kernfs_mutex);
1201 return ret;
1205 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1206 * @parent: parent of the target
1207 * @name: name of the kernfs_node to remove
1208 * @ns: namespace tag of the kernfs_node to remove
1210 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1211 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1213 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1214 const void *ns)
1216 struct kernfs_node *kn;
1218 if (!parent) {
1219 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1220 name);
1221 return -ENOENT;
1224 mutex_lock(&kernfs_mutex);
1226 kn = kernfs_find_ns(parent, name, ns);
1227 if (kn)
1228 __kernfs_remove(kn);
1230 mutex_unlock(&kernfs_mutex);
1232 if (kn)
1233 return 0;
1234 else
1235 return -ENOENT;
1239 * kernfs_rename_ns - move and rename a kernfs_node
1240 * @kn: target node
1241 * @new_parent: new parent to put @sd under
1242 * @new_name: new name
1243 * @new_ns: new namespace tag
1245 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1246 const char *new_name, const void *new_ns)
1248 struct kernfs_node *old_parent;
1249 const char *old_name = NULL;
1250 int error;
1252 /* can't move or rename root */
1253 if (!kn->parent)
1254 return -EINVAL;
1256 mutex_lock(&kernfs_mutex);
1258 error = -ENOENT;
1259 if (!kernfs_active(kn) || !kernfs_active(new_parent))
1260 goto out;
1262 error = 0;
1263 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1264 (strcmp(kn->name, new_name) == 0))
1265 goto out; /* nothing to rename */
1267 error = -EEXIST;
1268 if (kernfs_find_ns(new_parent, new_name, new_ns))
1269 goto out;
1271 /* rename kernfs_node */
1272 if (strcmp(kn->name, new_name) != 0) {
1273 error = -ENOMEM;
1274 new_name = kstrdup(new_name, GFP_KERNEL);
1275 if (!new_name)
1276 goto out;
1277 } else {
1278 new_name = NULL;
1282 * Move to the appropriate place in the appropriate directories rbtree.
1284 kernfs_unlink_sibling(kn);
1285 kernfs_get(new_parent);
1287 /* rename_lock protects ->parent and ->name accessors */
1288 spin_lock_irq(&kernfs_rename_lock);
1290 old_parent = kn->parent;
1291 kn->parent = new_parent;
1293 kn->ns = new_ns;
1294 if (new_name) {
1295 if (!(kn->flags & KERNFS_STATIC_NAME))
1296 old_name = kn->name;
1297 kn->flags &= ~KERNFS_STATIC_NAME;
1298 kn->name = new_name;
1301 spin_unlock_irq(&kernfs_rename_lock);
1303 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1304 kernfs_link_sibling(kn);
1306 kernfs_put(old_parent);
1307 kfree(old_name);
1309 error = 0;
1310 out:
1311 mutex_unlock(&kernfs_mutex);
1312 return error;
1315 /* Relationship between s_mode and the DT_xxx types */
1316 static inline unsigned char dt_type(struct kernfs_node *kn)
1318 return (kn->mode >> 12) & 15;
1321 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1323 kernfs_put(filp->private_data);
1324 return 0;
1327 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1328 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1330 if (pos) {
1331 int valid = kernfs_active(pos) &&
1332 pos->parent == parent && hash == pos->hash;
1333 kernfs_put(pos);
1334 if (!valid)
1335 pos = NULL;
1337 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1338 struct rb_node *node = parent->dir.children.rb_node;
1339 while (node) {
1340 pos = rb_to_kn(node);
1342 if (hash < pos->hash)
1343 node = node->rb_left;
1344 else if (hash > pos->hash)
1345 node = node->rb_right;
1346 else
1347 break;
1350 /* Skip over entries which are dying/dead or in the wrong namespace */
1351 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1352 struct rb_node *node = rb_next(&pos->rb);
1353 if (!node)
1354 pos = NULL;
1355 else
1356 pos = rb_to_kn(node);
1358 return pos;
1361 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1362 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1364 pos = kernfs_dir_pos(ns, parent, ino, pos);
1365 if (pos) {
1366 do {
1367 struct rb_node *node = rb_next(&pos->rb);
1368 if (!node)
1369 pos = NULL;
1370 else
1371 pos = rb_to_kn(node);
1372 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1374 return pos;
1377 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1379 struct dentry *dentry = file->f_path.dentry;
1380 struct kernfs_node *parent = dentry->d_fsdata;
1381 struct kernfs_node *pos = file->private_data;
1382 const void *ns = NULL;
1384 if (!dir_emit_dots(file, ctx))
1385 return 0;
1386 mutex_lock(&kernfs_mutex);
1388 if (kernfs_ns_enabled(parent))
1389 ns = kernfs_info(dentry->d_sb)->ns;
1391 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1392 pos;
1393 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1394 const char *name = pos->name;
1395 unsigned int type = dt_type(pos);
1396 int len = strlen(name);
1397 ino_t ino = pos->ino;
1399 ctx->pos = pos->hash;
1400 file->private_data = pos;
1401 kernfs_get(pos);
1403 mutex_unlock(&kernfs_mutex);
1404 if (!dir_emit(ctx, name, len, ino, type))
1405 return 0;
1406 mutex_lock(&kernfs_mutex);
1408 mutex_unlock(&kernfs_mutex);
1409 file->private_data = NULL;
1410 ctx->pos = INT_MAX;
1411 return 0;
1414 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1415 int whence)
1417 struct inode *inode = file_inode(file);
1418 loff_t ret;
1420 mutex_lock(&inode->i_mutex);
1421 ret = generic_file_llseek(file, offset, whence);
1422 mutex_unlock(&inode->i_mutex);
1424 return ret;
1427 const struct file_operations kernfs_dir_fops = {
1428 .read = generic_read_dir,
1429 .iterate = kernfs_fop_readdir,
1430 .release = kernfs_dir_fop_release,
1431 .llseek = kernfs_dir_fop_llseek,