2 * Request reply cache. This is currently a global cache, but this may
3 * change in the future and be a per-client cache.
5 * This code is heavily inspired by the 44BSD implementation, although
6 * it does things a bit differently.
8 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
11 #include <linux/slab.h>
12 #include <linux/sunrpc/addr.h>
13 #include <linux/highmem.h>
14 #include <linux/log2.h>
15 #include <linux/hash.h>
16 #include <net/checksum.h>
21 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE
24 * We use this value to determine the number of hash buckets from the max
25 * cache size, the idea being that when the cache is at its maximum number
26 * of entries, then this should be the average number of entries per bucket.
28 #define TARGET_BUCKET_SIZE 64
30 static struct hlist_head
* cache_hash
;
31 static struct list_head lru_head
;
32 static struct kmem_cache
*drc_slab
;
34 /* max number of entries allowed in the cache */
35 static unsigned int max_drc_entries
;
37 /* number of significant bits in the hash value */
38 static unsigned int maskbits
;
41 * Stats and other tracking of on the duplicate reply cache. All of these and
42 * the "rc" fields in nfsdstats are protected by the cache_lock
45 /* total number of entries */
46 static unsigned int num_drc_entries
;
48 /* cache misses due only to checksum comparison failures */
49 static unsigned int payload_misses
;
51 /* amount of memory (in bytes) currently consumed by the DRC */
52 static unsigned int drc_mem_usage
;
54 /* longest hash chain seen */
55 static unsigned int longest_chain
;
57 /* size of cache when we saw the longest hash chain */
58 static unsigned int longest_chain_cachesize
;
60 static int nfsd_cache_append(struct svc_rqst
*rqstp
, struct kvec
*vec
);
61 static void cache_cleaner_func(struct work_struct
*unused
);
62 static unsigned long nfsd_reply_cache_count(struct shrinker
*shrink
,
63 struct shrink_control
*sc
);
64 static unsigned long nfsd_reply_cache_scan(struct shrinker
*shrink
,
65 struct shrink_control
*sc
);
67 static struct shrinker nfsd_reply_cache_shrinker
= {
68 .scan_objects
= nfsd_reply_cache_scan
,
69 .count_objects
= nfsd_reply_cache_count
,
74 * locking for the reply cache:
75 * A cache entry is "single use" if c_state == RC_INPROG
76 * Otherwise, it when accessing _prev or _next, the lock must be held.
78 static DEFINE_SPINLOCK(cache_lock
);
79 static DECLARE_DELAYED_WORK(cache_cleaner
, cache_cleaner_func
);
82 * Put a cap on the size of the DRC based on the amount of available
83 * low memory in the machine.
95 * ...with a hard cap of 256k entries. In the worst case, each entry will be
96 * ~1k, so the above numbers should give a rough max of the amount of memory
100 nfsd_cache_size_limit(void)
103 unsigned long low_pages
= totalram_pages
- totalhigh_pages
;
105 limit
= (16 * int_sqrt(low_pages
)) << (PAGE_SHIFT
-10);
106 return min_t(unsigned int, limit
, 256*1024);
110 * Compute the number of hash buckets we need. Divide the max cachesize by
111 * the "target" max bucket size, and round up to next power of two.
114 nfsd_hashsize(unsigned int limit
)
116 return roundup_pow_of_two(limit
/ TARGET_BUCKET_SIZE
);
119 static struct svc_cacherep
*
120 nfsd_reply_cache_alloc(void)
122 struct svc_cacherep
*rp
;
124 rp
= kmem_cache_alloc(drc_slab
, GFP_KERNEL
);
126 rp
->c_state
= RC_UNUSED
;
127 rp
->c_type
= RC_NOCACHE
;
128 INIT_LIST_HEAD(&rp
->c_lru
);
129 INIT_HLIST_NODE(&rp
->c_hash
);
135 nfsd_reply_cache_free_locked(struct svc_cacherep
*rp
)
137 if (rp
->c_type
== RC_REPLBUFF
&& rp
->c_replvec
.iov_base
) {
138 drc_mem_usage
-= rp
->c_replvec
.iov_len
;
139 kfree(rp
->c_replvec
.iov_base
);
141 if (!hlist_unhashed(&rp
->c_hash
))
142 hlist_del(&rp
->c_hash
);
143 list_del(&rp
->c_lru
);
145 drc_mem_usage
-= sizeof(*rp
);
146 kmem_cache_free(drc_slab
, rp
);
150 nfsd_reply_cache_free(struct svc_cacherep
*rp
)
152 spin_lock(&cache_lock
);
153 nfsd_reply_cache_free_locked(rp
);
154 spin_unlock(&cache_lock
);
157 int nfsd_reply_cache_init(void)
159 unsigned int hashsize
;
161 INIT_LIST_HEAD(&lru_head
);
162 max_drc_entries
= nfsd_cache_size_limit();
164 hashsize
= nfsd_hashsize(max_drc_entries
);
165 maskbits
= ilog2(hashsize
);
167 register_shrinker(&nfsd_reply_cache_shrinker
);
168 drc_slab
= kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep
),
173 cache_hash
= kcalloc(hashsize
, sizeof(struct hlist_head
), GFP_KERNEL
);
179 printk(KERN_ERR
"nfsd: failed to allocate reply cache\n");
180 nfsd_reply_cache_shutdown();
184 void nfsd_reply_cache_shutdown(void)
186 struct svc_cacherep
*rp
;
188 unregister_shrinker(&nfsd_reply_cache_shrinker
);
189 cancel_delayed_work_sync(&cache_cleaner
);
191 while (!list_empty(&lru_head
)) {
192 rp
= list_entry(lru_head
.next
, struct svc_cacherep
, c_lru
);
193 nfsd_reply_cache_free_locked(rp
);
200 kmem_cache_destroy(drc_slab
);
206 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
207 * not already scheduled.
210 lru_put_end(struct svc_cacherep
*rp
)
212 rp
->c_timestamp
= jiffies
;
213 list_move_tail(&rp
->c_lru
, &lru_head
);
214 schedule_delayed_work(&cache_cleaner
, RC_EXPIRE
);
218 * Move a cache entry from one hash list to another
221 hash_refile(struct svc_cacherep
*rp
)
223 hlist_del_init(&rp
->c_hash
);
224 hlist_add_head(&rp
->c_hash
, cache_hash
+ hash_32(rp
->c_xid
, maskbits
));
228 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
229 * Also prune the oldest ones when the total exceeds the max number of entries.
232 prune_cache_entries(void)
234 struct svc_cacherep
*rp
, *tmp
;
237 list_for_each_entry_safe(rp
, tmp
, &lru_head
, c_lru
) {
239 * Don't free entries attached to calls that are still
240 * in-progress, but do keep scanning the list.
242 if (rp
->c_state
== RC_INPROG
)
244 if (num_drc_entries
<= max_drc_entries
&&
245 time_before(jiffies
, rp
->c_timestamp
+ RC_EXPIRE
))
247 nfsd_reply_cache_free_locked(rp
);
252 * Conditionally rearm the job. If we cleaned out the list, then
253 * cancel any pending run (since there won't be any work to do).
254 * Otherwise, we rearm the job or modify the existing one to run in
255 * RC_EXPIRE since we just ran the pruner.
257 if (list_empty(&lru_head
))
258 cancel_delayed_work(&cache_cleaner
);
260 mod_delayed_work(system_wq
, &cache_cleaner
, RC_EXPIRE
);
265 cache_cleaner_func(struct work_struct
*unused
)
267 spin_lock(&cache_lock
);
268 prune_cache_entries();
269 spin_unlock(&cache_lock
);
273 nfsd_reply_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
277 spin_lock(&cache_lock
);
278 num
= num_drc_entries
;
279 spin_unlock(&cache_lock
);
285 nfsd_reply_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
289 spin_lock(&cache_lock
);
290 freed
= prune_cache_entries();
291 spin_unlock(&cache_lock
);
295 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
298 nfsd_cache_csum(struct svc_rqst
*rqstp
)
303 struct xdr_buf
*buf
= &rqstp
->rq_arg
;
304 const unsigned char *p
= buf
->head
[0].iov_base
;
305 size_t csum_len
= min_t(size_t, buf
->head
[0].iov_len
+ buf
->page_len
,
307 size_t len
= min(buf
->head
[0].iov_len
, csum_len
);
309 /* rq_arg.head first */
310 csum
= csum_partial(p
, len
, 0);
313 /* Continue into page array */
314 idx
= buf
->page_base
/ PAGE_SIZE
;
315 base
= buf
->page_base
& ~PAGE_MASK
;
317 p
= page_address(buf
->pages
[idx
]) + base
;
318 len
= min_t(size_t, PAGE_SIZE
- base
, csum_len
);
319 csum
= csum_partial(p
, len
, csum
);
328 nfsd_cache_match(struct svc_rqst
*rqstp
, __wsum csum
, struct svc_cacherep
*rp
)
330 /* Check RPC header info first */
331 if (rqstp
->rq_xid
!= rp
->c_xid
|| rqstp
->rq_proc
!= rp
->c_proc
||
332 rqstp
->rq_prot
!= rp
->c_prot
|| rqstp
->rq_vers
!= rp
->c_vers
||
333 rqstp
->rq_arg
.len
!= rp
->c_len
||
334 !rpc_cmp_addr(svc_addr(rqstp
), (struct sockaddr
*)&rp
->c_addr
) ||
335 rpc_get_port(svc_addr(rqstp
)) != rpc_get_port((struct sockaddr
*)&rp
->c_addr
))
338 /* compare checksum of NFS data */
339 if (csum
!= rp
->c_csum
) {
348 * Search the request hash for an entry that matches the given rqstp.
349 * Must be called with cache_lock held. Returns the found entry or
352 static struct svc_cacherep
*
353 nfsd_cache_search(struct svc_rqst
*rqstp
, __wsum csum
)
355 struct svc_cacherep
*rp
, *ret
= NULL
;
356 struct hlist_head
*rh
;
357 unsigned int entries
= 0;
359 rh
= &cache_hash
[hash_32(rqstp
->rq_xid
, maskbits
)];
360 hlist_for_each_entry(rp
, rh
, c_hash
) {
362 if (nfsd_cache_match(rqstp
, csum
, rp
)) {
368 /* tally hash chain length stats */
369 if (entries
> longest_chain
) {
370 longest_chain
= entries
;
371 longest_chain_cachesize
= num_drc_entries
;
372 } else if (entries
== longest_chain
) {
373 /* prefer to keep the smallest cachesize possible here */
374 longest_chain_cachesize
= min(longest_chain_cachesize
,
382 * Try to find an entry matching the current call in the cache. When none
383 * is found, we try to grab the oldest expired entry off the LRU list. If
384 * a suitable one isn't there, then drop the cache_lock and allocate a
385 * new one, then search again in case one got inserted while this thread
386 * didn't hold the lock.
389 nfsd_cache_lookup(struct svc_rqst
*rqstp
)
391 struct svc_cacherep
*rp
, *found
;
392 __be32 xid
= rqstp
->rq_xid
;
393 u32 proto
= rqstp
->rq_prot
,
394 vers
= rqstp
->rq_vers
,
395 proc
= rqstp
->rq_proc
;
398 int type
= rqstp
->rq_cachetype
;
401 rqstp
->rq_cacherep
= NULL
;
402 if (type
== RC_NOCACHE
) {
403 nfsdstats
.rcnocache
++;
407 csum
= nfsd_cache_csum(rqstp
);
410 * Since the common case is a cache miss followed by an insert,
411 * preallocate an entry.
413 rp
= nfsd_reply_cache_alloc();
414 spin_lock(&cache_lock
);
417 drc_mem_usage
+= sizeof(*rp
);
420 /* go ahead and prune the cache */
421 prune_cache_entries();
423 found
= nfsd_cache_search(rqstp
, csum
);
426 nfsd_reply_cache_free_locked(rp
);
432 dprintk("nfsd: unable to allocate DRC entry!\n");
436 nfsdstats
.rcmisses
++;
437 rqstp
->rq_cacherep
= rp
;
438 rp
->c_state
= RC_INPROG
;
441 rpc_copy_addr((struct sockaddr
*)&rp
->c_addr
, svc_addr(rqstp
));
442 rpc_set_port((struct sockaddr
*)&rp
->c_addr
, rpc_get_port(svc_addr(rqstp
)));
445 rp
->c_len
= rqstp
->rq_arg
.len
;
451 /* release any buffer */
452 if (rp
->c_type
== RC_REPLBUFF
) {
453 drc_mem_usage
-= rp
->c_replvec
.iov_len
;
454 kfree(rp
->c_replvec
.iov_base
);
455 rp
->c_replvec
.iov_base
= NULL
;
457 rp
->c_type
= RC_NOCACHE
;
459 spin_unlock(&cache_lock
);
464 /* We found a matching entry which is either in progress or done. */
465 age
= jiffies
- rp
->c_timestamp
;
469 /* Request being processed or excessive rexmits */
470 if (rp
->c_state
== RC_INPROG
|| age
< RC_DELAY
)
473 /* From the hall of fame of impractical attacks:
474 * Is this a user who tries to snoop on the cache? */
476 if (!rqstp
->rq_secure
&& rp
->c_secure
)
479 /* Compose RPC reply header */
480 switch (rp
->c_type
) {
484 svc_putu32(&rqstp
->rq_res
.head
[0], rp
->c_replstat
);
488 if (!nfsd_cache_append(rqstp
, &rp
->c_replvec
))
489 goto out
; /* should not happen */
493 printk(KERN_WARNING
"nfsd: bad repcache type %d\n", rp
->c_type
);
494 nfsd_reply_cache_free_locked(rp
);
501 * Update a cache entry. This is called from nfsd_dispatch when
502 * the procedure has been executed and the complete reply is in
505 * We're copying around data here rather than swapping buffers because
506 * the toplevel loop requires max-sized buffers, which would be a waste
507 * of memory for a cache with a max reply size of 100 bytes (diropokres).
509 * If we should start to use different types of cache entries tailored
510 * specifically for attrstat and fh's, we may save even more space.
512 * Also note that a cachetype of RC_NOCACHE can legally be passed when
513 * nfsd failed to encode a reply that otherwise would have been cached.
514 * In this case, nfsd_cache_update is called with statp == NULL.
517 nfsd_cache_update(struct svc_rqst
*rqstp
, int cachetype
, __be32
*statp
)
519 struct svc_cacherep
*rp
= rqstp
->rq_cacherep
;
520 struct kvec
*resv
= &rqstp
->rq_res
.head
[0], *cachv
;
527 len
= resv
->iov_len
- ((char*)statp
- (char*)resv
->iov_base
);
530 /* Don't cache excessive amounts of data and XDR failures */
531 if (!statp
|| len
> (256 >> 2)) {
532 nfsd_reply_cache_free(rp
);
539 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len
);
540 rp
->c_replstat
= *statp
;
543 cachv
= &rp
->c_replvec
;
545 cachv
->iov_base
= kmalloc(bufsize
, GFP_KERNEL
);
546 if (!cachv
->iov_base
) {
547 nfsd_reply_cache_free(rp
);
550 cachv
->iov_len
= bufsize
;
551 memcpy(cachv
->iov_base
, statp
, bufsize
);
554 nfsd_reply_cache_free(rp
);
557 spin_lock(&cache_lock
);
558 drc_mem_usage
+= bufsize
;
560 rp
->c_secure
= rqstp
->rq_secure
;
561 rp
->c_type
= cachetype
;
562 rp
->c_state
= RC_DONE
;
563 spin_unlock(&cache_lock
);
568 * Copy cached reply to current reply buffer. Should always fit.
569 * FIXME as reply is in a page, we should just attach the page, and
570 * keep a refcount....
573 nfsd_cache_append(struct svc_rqst
*rqstp
, struct kvec
*data
)
575 struct kvec
*vec
= &rqstp
->rq_res
.head
[0];
577 if (vec
->iov_len
+ data
->iov_len
> PAGE_SIZE
) {
578 printk(KERN_WARNING
"nfsd: cached reply too large (%Zd).\n",
582 memcpy((char*)vec
->iov_base
+ vec
->iov_len
, data
->iov_base
, data
->iov_len
);
583 vec
->iov_len
+= data
->iov_len
;
588 * Note that fields may be added, removed or reordered in the future. Programs
589 * scraping this file for info should test the labels to ensure they're
590 * getting the correct field.
592 static int nfsd_reply_cache_stats_show(struct seq_file
*m
, void *v
)
594 spin_lock(&cache_lock
);
595 seq_printf(m
, "max entries: %u\n", max_drc_entries
);
596 seq_printf(m
, "num entries: %u\n", num_drc_entries
);
597 seq_printf(m
, "hash buckets: %u\n", 1 << maskbits
);
598 seq_printf(m
, "mem usage: %u\n", drc_mem_usage
);
599 seq_printf(m
, "cache hits: %u\n", nfsdstats
.rchits
);
600 seq_printf(m
, "cache misses: %u\n", nfsdstats
.rcmisses
);
601 seq_printf(m
, "not cached: %u\n", nfsdstats
.rcnocache
);
602 seq_printf(m
, "payload misses: %u\n", payload_misses
);
603 seq_printf(m
, "longest chain len: %u\n", longest_chain
);
604 seq_printf(m
, "cachesize at longest: %u\n", longest_chain_cachesize
);
605 spin_unlock(&cache_lock
);
609 int nfsd_reply_cache_stats_open(struct inode
*inode
, struct file
*file
)
611 return single_open(file
, nfsd_reply_cache_stats_show
, NULL
);