1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
41 #include <cluster/masklog.h>
49 #include "extent_map.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
65 #include "buffer_head_io.h"
67 static int ocfs2_init_file_private(struct inode
*inode
, struct file
*file
)
69 struct ocfs2_file_private
*fp
;
71 fp
= kzalloc(sizeof(struct ocfs2_file_private
), GFP_KERNEL
);
76 mutex_init(&fp
->fp_mutex
);
77 ocfs2_file_lock_res_init(&fp
->fp_flock
, fp
);
78 file
->private_data
= fp
;
83 static void ocfs2_free_file_private(struct inode
*inode
, struct file
*file
)
85 struct ocfs2_file_private
*fp
= file
->private_data
;
86 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
89 ocfs2_simple_drop_lockres(osb
, &fp
->fp_flock
);
90 ocfs2_lock_res_free(&fp
->fp_flock
);
92 file
->private_data
= NULL
;
96 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
99 int mode
= file
->f_flags
;
100 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
102 trace_ocfs2_file_open(inode
, file
, file
->f_path
.dentry
,
103 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
104 file
->f_path
.dentry
->d_name
.len
,
105 file
->f_path
.dentry
->d_name
.name
, mode
);
107 if (file
->f_mode
& FMODE_WRITE
)
108 dquot_initialize(inode
);
110 spin_lock(&oi
->ip_lock
);
112 /* Check that the inode hasn't been wiped from disk by another
113 * node. If it hasn't then we're safe as long as we hold the
114 * spin lock until our increment of open count. */
115 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_DELETED
) {
116 spin_unlock(&oi
->ip_lock
);
123 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
126 spin_unlock(&oi
->ip_lock
);
128 status
= ocfs2_init_file_private(inode
, file
);
131 * We want to set open count back if we're failing the
134 spin_lock(&oi
->ip_lock
);
136 spin_unlock(&oi
->ip_lock
);
143 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
145 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
147 spin_lock(&oi
->ip_lock
);
148 if (!--oi
->ip_open_count
)
149 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
151 trace_ocfs2_file_release(inode
, file
, file
->f_path
.dentry
,
153 file
->f_path
.dentry
->d_name
.len
,
154 file
->f_path
.dentry
->d_name
.name
,
156 spin_unlock(&oi
->ip_lock
);
158 ocfs2_free_file_private(inode
, file
);
163 static int ocfs2_dir_open(struct inode
*inode
, struct file
*file
)
165 return ocfs2_init_file_private(inode
, file
);
168 static int ocfs2_dir_release(struct inode
*inode
, struct file
*file
)
170 ocfs2_free_file_private(inode
, file
);
174 static int ocfs2_sync_file(struct file
*file
, loff_t start
, loff_t end
,
178 struct inode
*inode
= file
->f_mapping
->host
;
179 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
180 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
181 journal_t
*journal
= osb
->journal
->j_journal
;
184 bool needs_barrier
= false;
186 trace_ocfs2_sync_file(inode
, file
, file
->f_path
.dentry
,
187 OCFS2_I(inode
)->ip_blkno
,
188 file
->f_path
.dentry
->d_name
.len
,
189 file
->f_path
.dentry
->d_name
.name
,
190 (unsigned long long)datasync
);
192 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
195 err
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
199 commit_tid
= datasync
? oi
->i_datasync_tid
: oi
->i_sync_tid
;
200 if (journal
->j_flags
& JBD2_BARRIER
&&
201 !jbd2_trans_will_send_data_barrier(journal
, commit_tid
))
202 needs_barrier
= true;
203 err
= jbd2_complete_transaction(journal
, commit_tid
);
205 ret
= blkdev_issue_flush(inode
->i_sb
->s_bdev
, GFP_KERNEL
, NULL
);
213 return (err
< 0) ? -EIO
: 0;
216 int ocfs2_should_update_atime(struct inode
*inode
,
217 struct vfsmount
*vfsmnt
)
220 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
222 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
225 if ((inode
->i_flags
& S_NOATIME
) ||
226 ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
230 * We can be called with no vfsmnt structure - NFSD will
233 * Note that our action here is different than touch_atime() -
234 * if we can't tell whether this is a noatime mount, then we
235 * don't know whether to trust the value of s_atime_quantum.
240 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
241 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
244 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
245 if ((timespec_compare(&inode
->i_atime
, &inode
->i_mtime
) <= 0) ||
246 (timespec_compare(&inode
->i_atime
, &inode
->i_ctime
) <= 0))
253 if ((now
.tv_sec
- inode
->i_atime
.tv_sec
<= osb
->s_atime_quantum
))
259 int ocfs2_update_inode_atime(struct inode
*inode
,
260 struct buffer_head
*bh
)
263 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
265 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
267 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
268 if (IS_ERR(handle
)) {
269 ret
= PTR_ERR(handle
);
274 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
275 OCFS2_JOURNAL_ACCESS_WRITE
);
282 * Don't use ocfs2_mark_inode_dirty() here as we don't always
283 * have i_mutex to guard against concurrent changes to other
286 inode
->i_atime
= CURRENT_TIME
;
287 di
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
288 di
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
289 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
290 ocfs2_journal_dirty(handle
, bh
);
293 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
298 static int ocfs2_set_inode_size(handle_t
*handle
,
300 struct buffer_head
*fe_bh
,
305 i_size_write(inode
, new_i_size
);
306 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
307 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
309 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
319 int ocfs2_simple_size_update(struct inode
*inode
,
320 struct buffer_head
*di_bh
,
324 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
325 handle_t
*handle
= NULL
;
327 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
328 if (IS_ERR(handle
)) {
329 ret
= PTR_ERR(handle
);
334 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
339 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
340 ocfs2_commit_trans(osb
, handle
);
345 static int ocfs2_cow_file_pos(struct inode
*inode
,
346 struct buffer_head
*fe_bh
,
350 u32 phys
, cpos
= offset
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
351 unsigned int num_clusters
= 0;
352 unsigned int ext_flags
= 0;
355 * If the new offset is aligned to the range of the cluster, there is
356 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
359 if ((offset
& (OCFS2_SB(inode
->i_sb
)->s_clustersize
- 1)) == 0)
362 status
= ocfs2_get_clusters(inode
, cpos
, &phys
,
363 &num_clusters
, &ext_flags
);
369 if (!(ext_flags
& OCFS2_EXT_REFCOUNTED
))
372 return ocfs2_refcount_cow(inode
, fe_bh
, cpos
, 1, cpos
+1);
378 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
380 struct buffer_head
*fe_bh
,
385 struct ocfs2_dinode
*di
;
389 * We need to CoW the cluster contains the offset if it is reflinked
390 * since we will call ocfs2_zero_range_for_truncate later which will
391 * write "0" from offset to the end of the cluster.
393 status
= ocfs2_cow_file_pos(inode
, fe_bh
, new_i_size
);
399 /* TODO: This needs to actually orphan the inode in this
402 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
403 if (IS_ERR(handle
)) {
404 status
= PTR_ERR(handle
);
409 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), fe_bh
,
410 OCFS2_JOURNAL_ACCESS_WRITE
);
417 * Do this before setting i_size.
419 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
420 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
427 i_size_write(inode
, new_i_size
);
428 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
430 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
431 di
->i_size
= cpu_to_le64(new_i_size
);
432 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
433 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
434 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
436 ocfs2_journal_dirty(handle
, fe_bh
);
439 ocfs2_commit_trans(osb
, handle
);
444 static int ocfs2_truncate_file(struct inode
*inode
,
445 struct buffer_head
*di_bh
,
449 struct ocfs2_dinode
*fe
= NULL
;
450 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
452 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
453 * already validated it */
454 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
456 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
457 (unsigned long long)le64_to_cpu(fe
->i_size
),
458 (unsigned long long)new_i_size
);
460 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
461 "Inode %llu, inode i_size = %lld != di "
462 "i_size = %llu, i_flags = 0x%x\n",
463 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
465 (unsigned long long)le64_to_cpu(fe
->i_size
),
466 le32_to_cpu(fe
->i_flags
));
468 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
469 trace_ocfs2_truncate_file_error(
470 (unsigned long long)le64_to_cpu(fe
->i_size
),
471 (unsigned long long)new_i_size
);
477 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
479 ocfs2_resv_discard(&osb
->osb_la_resmap
,
480 &OCFS2_I(inode
)->ip_la_data_resv
);
483 * The inode lock forced other nodes to sync and drop their
484 * pages, which (correctly) happens even if we have a truncate
485 * without allocation change - ocfs2 cluster sizes can be much
486 * greater than page size, so we have to truncate them
489 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
490 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
492 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
493 status
= ocfs2_truncate_inline(inode
, di_bh
, new_i_size
,
494 i_size_read(inode
), 1);
498 goto bail_unlock_sem
;
501 /* alright, we're going to need to do a full blown alloc size
502 * change. Orphan the inode so that recovery can complete the
503 * truncate if necessary. This does the task of marking
505 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
508 goto bail_unlock_sem
;
511 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
);
514 goto bail_unlock_sem
;
517 /* TODO: orphan dir cleanup here. */
519 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
522 if (!status
&& OCFS2_I(inode
)->ip_clusters
== 0)
523 status
= ocfs2_try_remove_refcount_tree(inode
, di_bh
);
529 * extend file allocation only here.
530 * we'll update all the disk stuff, and oip->alloc_size
532 * expect stuff to be locked, a transaction started and enough data /
533 * metadata reservations in the contexts.
535 * Will return -EAGAIN, and a reason if a restart is needed.
536 * If passed in, *reason will always be set, even in error.
538 int ocfs2_add_inode_data(struct ocfs2_super
*osb
,
543 struct buffer_head
*fe_bh
,
545 struct ocfs2_alloc_context
*data_ac
,
546 struct ocfs2_alloc_context
*meta_ac
,
547 enum ocfs2_alloc_restarted
*reason_ret
)
550 struct ocfs2_extent_tree et
;
552 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), fe_bh
);
553 ret
= ocfs2_add_clusters_in_btree(handle
, &et
, logical_offset
,
554 clusters_to_add
, mark_unwritten
,
555 data_ac
, meta_ac
, reason_ret
);
560 static int __ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
561 u32 clusters_to_add
, int mark_unwritten
)
564 int restart_func
= 0;
567 struct buffer_head
*bh
= NULL
;
568 struct ocfs2_dinode
*fe
= NULL
;
569 handle_t
*handle
= NULL
;
570 struct ocfs2_alloc_context
*data_ac
= NULL
;
571 struct ocfs2_alloc_context
*meta_ac
= NULL
;
572 enum ocfs2_alloc_restarted why
;
573 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
574 struct ocfs2_extent_tree et
;
578 * Unwritten extent only exists for file systems which
581 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
583 status
= ocfs2_read_inode_block(inode
, &bh
);
588 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
591 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
593 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), bh
);
594 status
= ocfs2_lock_allocators(inode
, &et
, clusters_to_add
, 0,
601 credits
= ocfs2_calc_extend_credits(osb
->sb
, &fe
->id2
.i_list
);
602 handle
= ocfs2_start_trans(osb
, credits
);
603 if (IS_ERR(handle
)) {
604 status
= PTR_ERR(handle
);
610 restarted_transaction
:
611 trace_ocfs2_extend_allocation(
612 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
613 (unsigned long long)i_size_read(inode
),
614 le32_to_cpu(fe
->i_clusters
), clusters_to_add
,
617 status
= dquot_alloc_space_nodirty(inode
,
618 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
623 /* reserve a write to the file entry early on - that we if we
624 * run out of credits in the allocation path, we can still
626 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
627 OCFS2_JOURNAL_ACCESS_WRITE
);
633 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
635 status
= ocfs2_add_inode_data(osb
,
645 if ((status
< 0) && (status
!= -EAGAIN
)) {
646 if (status
!= -ENOSPC
)
650 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
651 ocfs2_journal_dirty(handle
, bh
);
653 spin_lock(&OCFS2_I(inode
)->ip_lock
);
654 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
655 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
656 /* Release unused quota reservation */
657 dquot_free_space(inode
,
658 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
661 if (why
!= RESTART_NONE
&& clusters_to_add
) {
662 if (why
== RESTART_META
) {
666 BUG_ON(why
!= RESTART_TRANS
);
668 status
= ocfs2_allocate_extend_trans(handle
, 1);
670 /* handle still has to be committed at
676 goto restarted_transaction
;
680 trace_ocfs2_extend_allocation_end(OCFS2_I(inode
)->ip_blkno
,
681 le32_to_cpu(fe
->i_clusters
),
682 (unsigned long long)le64_to_cpu(fe
->i_size
),
683 OCFS2_I(inode
)->ip_clusters
,
684 (unsigned long long)i_size_read(inode
));
687 if (status
< 0 && did_quota
)
688 dquot_free_space(inode
,
689 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
691 ocfs2_commit_trans(osb
, handle
);
695 ocfs2_free_alloc_context(data_ac
);
699 ocfs2_free_alloc_context(meta_ac
);
702 if ((!status
) && restart_func
) {
713 * While a write will already be ordering the data, a truncate will not.
714 * Thus, we need to explicitly order the zeroed pages.
716 static handle_t
*ocfs2_zero_start_ordered_transaction(struct inode
*inode
,
717 struct buffer_head
*di_bh
)
719 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
720 handle_t
*handle
= NULL
;
723 if (!ocfs2_should_order_data(inode
))
726 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
727 if (IS_ERR(handle
)) {
733 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
739 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
740 OCFS2_JOURNAL_ACCESS_WRITE
);
743 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
748 ocfs2_commit_trans(osb
, handle
);
749 handle
= ERR_PTR(ret
);
754 /* Some parts of this taken from generic_cont_expand, which turned out
755 * to be too fragile to do exactly what we need without us having to
756 * worry about recursive locking in ->write_begin() and ->write_end(). */
757 static int ocfs2_write_zero_page(struct inode
*inode
, u64 abs_from
,
758 u64 abs_to
, struct buffer_head
*di_bh
)
760 struct address_space
*mapping
= inode
->i_mapping
;
762 unsigned long index
= abs_from
>> PAGE_CACHE_SHIFT
;
763 handle_t
*handle
= NULL
;
765 unsigned zero_from
, zero_to
, block_start
, block_end
;
766 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
768 BUG_ON(abs_from
>= abs_to
);
769 BUG_ON(abs_to
> (((u64
)index
+ 1) << PAGE_CACHE_SHIFT
));
770 BUG_ON(abs_from
& (inode
->i_blkbits
- 1));
772 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
779 /* Get the offsets within the page that we want to zero */
780 zero_from
= abs_from
& (PAGE_CACHE_SIZE
- 1);
781 zero_to
= abs_to
& (PAGE_CACHE_SIZE
- 1);
783 zero_to
= PAGE_CACHE_SIZE
;
785 trace_ocfs2_write_zero_page(
786 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
787 (unsigned long long)abs_from
,
788 (unsigned long long)abs_to
,
789 index
, zero_from
, zero_to
);
791 /* We know that zero_from is block aligned */
792 for (block_start
= zero_from
; block_start
< zero_to
;
793 block_start
= block_end
) {
794 block_end
= block_start
+ (1 << inode
->i_blkbits
);
797 * block_start is block-aligned. Bump it by one to force
798 * __block_write_begin and block_commit_write to zero the
801 ret
= __block_write_begin(page
, block_start
+ 1, 0,
809 handle
= ocfs2_zero_start_ordered_transaction(inode
,
811 if (IS_ERR(handle
)) {
812 ret
= PTR_ERR(handle
);
818 /* must not update i_size! */
819 ret
= block_commit_write(page
, block_start
+ 1,
829 * fs-writeback will release the dirty pages without page lock
830 * whose offset are over inode size, the release happens at
831 * block_write_full_page().
833 i_size_write(inode
, abs_to
);
834 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
835 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
836 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
837 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
838 di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
839 di
->i_mtime_nsec
= di
->i_ctime_nsec
;
840 ocfs2_journal_dirty(handle
, di_bh
);
841 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
842 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
847 page_cache_release(page
);
853 * Find the next range to zero. We do this in terms of bytes because
854 * that's what ocfs2_zero_extend() wants, and it is dealing with the
855 * pagecache. We may return multiple extents.
857 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
858 * needs to be zeroed. range_start and range_end return the next zeroing
859 * range. A subsequent call should pass the previous range_end as its
860 * zero_start. If range_end is 0, there's nothing to do.
862 * Unwritten extents are skipped over. Refcounted extents are CoWd.
864 static int ocfs2_zero_extend_get_range(struct inode
*inode
,
865 struct buffer_head
*di_bh
,
866 u64 zero_start
, u64 zero_end
,
867 u64
*range_start
, u64
*range_end
)
869 int rc
= 0, needs_cow
= 0;
870 u32 p_cpos
, zero_clusters
= 0;
872 zero_start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
873 u32 last_cpos
= ocfs2_clusters_for_bytes(inode
->i_sb
, zero_end
);
874 unsigned int num_clusters
= 0;
875 unsigned int ext_flags
= 0;
877 while (zero_cpos
< last_cpos
) {
878 rc
= ocfs2_get_clusters(inode
, zero_cpos
, &p_cpos
,
879 &num_clusters
, &ext_flags
);
885 if (p_cpos
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
)) {
886 zero_clusters
= num_clusters
;
887 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
892 zero_cpos
+= num_clusters
;
894 if (!zero_clusters
) {
899 while ((zero_cpos
+ zero_clusters
) < last_cpos
) {
900 rc
= ocfs2_get_clusters(inode
, zero_cpos
+ zero_clusters
,
901 &p_cpos
, &num_clusters
,
908 if (!p_cpos
|| (ext_flags
& OCFS2_EXT_UNWRITTEN
))
910 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
912 zero_clusters
+= num_clusters
;
914 if ((zero_cpos
+ zero_clusters
) > last_cpos
)
915 zero_clusters
= last_cpos
- zero_cpos
;
918 rc
= ocfs2_refcount_cow(inode
, di_bh
, zero_cpos
,
919 zero_clusters
, UINT_MAX
);
926 *range_start
= ocfs2_clusters_to_bytes(inode
->i_sb
, zero_cpos
);
927 *range_end
= ocfs2_clusters_to_bytes(inode
->i_sb
,
928 zero_cpos
+ zero_clusters
);
935 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
936 * has made sure that the entire range needs zeroing.
938 static int ocfs2_zero_extend_range(struct inode
*inode
, u64 range_start
,
939 u64 range_end
, struct buffer_head
*di_bh
)
943 u64 zero_pos
= range_start
;
945 trace_ocfs2_zero_extend_range(
946 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
947 (unsigned long long)range_start
,
948 (unsigned long long)range_end
);
949 BUG_ON(range_start
>= range_end
);
951 while (zero_pos
< range_end
) {
952 next_pos
= (zero_pos
& PAGE_CACHE_MASK
) + PAGE_CACHE_SIZE
;
953 if (next_pos
> range_end
)
954 next_pos
= range_end
;
955 rc
= ocfs2_write_zero_page(inode
, zero_pos
, next_pos
, di_bh
);
963 * Very large extends have the potential to lock up
964 * the cpu for extended periods of time.
972 int ocfs2_zero_extend(struct inode
*inode
, struct buffer_head
*di_bh
,
976 u64 zero_start
, range_start
= 0, range_end
= 0;
977 struct super_block
*sb
= inode
->i_sb
;
979 zero_start
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
980 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
981 (unsigned long long)zero_start
,
982 (unsigned long long)i_size_read(inode
));
983 while (zero_start
< zero_to_size
) {
984 ret
= ocfs2_zero_extend_get_range(inode
, di_bh
, zero_start
,
995 if (range_start
< zero_start
)
996 range_start
= zero_start
;
997 if (range_end
> zero_to_size
)
998 range_end
= zero_to_size
;
1000 ret
= ocfs2_zero_extend_range(inode
, range_start
,
1006 zero_start
= range_end
;
1012 int ocfs2_extend_no_holes(struct inode
*inode
, struct buffer_head
*di_bh
,
1013 u64 new_i_size
, u64 zero_to
)
1016 u32 clusters_to_add
;
1017 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1020 * Only quota files call this without a bh, and they can't be
1023 BUG_ON(!di_bh
&& (oi
->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
));
1024 BUG_ON(!di_bh
&& !(oi
->ip_flags
& OCFS2_INODE_SYSTEM_FILE
));
1026 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
);
1027 if (clusters_to_add
< oi
->ip_clusters
)
1028 clusters_to_add
= 0;
1030 clusters_to_add
-= oi
->ip_clusters
;
1032 if (clusters_to_add
) {
1033 ret
= __ocfs2_extend_allocation(inode
, oi
->ip_clusters
,
1034 clusters_to_add
, 0);
1042 * Call this even if we don't add any clusters to the tree. We
1043 * still need to zero the area between the old i_size and the
1046 ret
= ocfs2_zero_extend(inode
, di_bh
, zero_to
);
1054 static int ocfs2_extend_file(struct inode
*inode
,
1055 struct buffer_head
*di_bh
,
1059 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1063 /* setattr sometimes calls us like this. */
1064 if (new_i_size
== 0)
1067 if (i_size_read(inode
) == new_i_size
)
1069 BUG_ON(new_i_size
< i_size_read(inode
));
1072 * The alloc sem blocks people in read/write from reading our
1073 * allocation until we're done changing it. We depend on
1074 * i_mutex to block other extend/truncate calls while we're
1075 * here. We even have to hold it for sparse files because there
1076 * might be some tail zeroing.
1078 down_write(&oi
->ip_alloc_sem
);
1080 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1082 * We can optimize small extends by keeping the inodes
1085 if (ocfs2_size_fits_inline_data(di_bh
, new_i_size
)) {
1086 up_write(&oi
->ip_alloc_sem
);
1087 goto out_update_size
;
1090 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1092 up_write(&oi
->ip_alloc_sem
);
1098 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
1099 ret
= ocfs2_zero_extend(inode
, di_bh
, new_i_size
);
1101 ret
= ocfs2_extend_no_holes(inode
, di_bh
, new_i_size
,
1104 up_write(&oi
->ip_alloc_sem
);
1112 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
1120 int ocfs2_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1122 int status
= 0, size_change
;
1123 struct inode
*inode
= dentry
->d_inode
;
1124 struct super_block
*sb
= inode
->i_sb
;
1125 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
1126 struct buffer_head
*bh
= NULL
;
1127 handle_t
*handle
= NULL
;
1128 struct dquot
*transfer_to
[MAXQUOTAS
] = { };
1131 trace_ocfs2_setattr(inode
, dentry
,
1132 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1133 dentry
->d_name
.len
, dentry
->d_name
.name
,
1134 attr
->ia_valid
, attr
->ia_mode
,
1135 from_kuid(&init_user_ns
, attr
->ia_uid
),
1136 from_kgid(&init_user_ns
, attr
->ia_gid
));
1138 /* ensuring we don't even attempt to truncate a symlink */
1139 if (S_ISLNK(inode
->i_mode
))
1140 attr
->ia_valid
&= ~ATTR_SIZE
;
1142 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1143 | ATTR_GID | ATTR_UID | ATTR_MODE)
1144 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
))
1147 status
= inode_change_ok(inode
, attr
);
1151 if (is_quota_modification(inode
, attr
))
1152 dquot_initialize(inode
);
1153 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
1155 status
= ocfs2_rw_lock(inode
, 1);
1162 status
= ocfs2_inode_lock(inode
, &bh
, 1);
1164 if (status
!= -ENOENT
)
1166 goto bail_unlock_rw
;
1170 status
= inode_newsize_ok(inode
, attr
->ia_size
);
1174 inode_dio_wait(inode
);
1176 if (i_size_read(inode
) >= attr
->ia_size
) {
1177 if (ocfs2_should_order_data(inode
)) {
1178 status
= ocfs2_begin_ordered_truncate(inode
,
1183 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
1185 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
);
1187 if (status
!= -ENOSPC
)
1194 if ((attr
->ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
1195 (attr
->ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
1197 * Gather pointers to quota structures so that allocation /
1198 * freeing of quota structures happens here and not inside
1199 * dquot_transfer() where we have problems with lock ordering
1201 if (attr
->ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)
1202 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1203 OCFS2_FEATURE_RO_COMPAT_USRQUOTA
)) {
1204 transfer_to
[USRQUOTA
] = dqget(sb
, make_kqid_uid(attr
->ia_uid
));
1205 if (!transfer_to
[USRQUOTA
]) {
1210 if (attr
->ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
)
1211 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1212 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA
)) {
1213 transfer_to
[GRPQUOTA
] = dqget(sb
, make_kqid_gid(attr
->ia_gid
));
1214 if (!transfer_to
[GRPQUOTA
]) {
1219 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
+
1220 2 * ocfs2_quota_trans_credits(sb
));
1221 if (IS_ERR(handle
)) {
1222 status
= PTR_ERR(handle
);
1226 status
= __dquot_transfer(inode
, transfer_to
);
1230 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1231 if (IS_ERR(handle
)) {
1232 status
= PTR_ERR(handle
);
1238 setattr_copy(inode
, attr
);
1239 mark_inode_dirty(inode
);
1241 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
1246 ocfs2_commit_trans(osb
, handle
);
1248 ocfs2_inode_unlock(inode
, 1);
1251 ocfs2_rw_unlock(inode
, 1);
1255 /* Release quota pointers in case we acquired them */
1256 for (qtype
= 0; qtype
< MAXQUOTAS
; qtype
++)
1257 dqput(transfer_to
[qtype
]);
1259 if (!status
&& attr
->ia_valid
& ATTR_MODE
) {
1260 status
= posix_acl_chmod(inode
, inode
->i_mode
);
1268 int ocfs2_getattr(struct vfsmount
*mnt
,
1269 struct dentry
*dentry
,
1272 struct inode
*inode
= dentry
->d_inode
;
1273 struct super_block
*sb
= dentry
->d_inode
->i_sb
;
1274 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1277 err
= ocfs2_inode_revalidate(dentry
);
1284 generic_fillattr(inode
, stat
);
1286 /* We set the blksize from the cluster size for performance */
1287 stat
->blksize
= osb
->s_clustersize
;
1293 int ocfs2_permission(struct inode
*inode
, int mask
)
1297 if (mask
& MAY_NOT_BLOCK
)
1300 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
1307 ret
= generic_permission(inode
, mask
);
1309 ocfs2_inode_unlock(inode
, 0);
1314 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1315 struct buffer_head
*bh
)
1319 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1320 struct ocfs2_dinode
*di
;
1322 trace_ocfs2_write_remove_suid(
1323 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1326 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1327 if (IS_ERR(handle
)) {
1328 ret
= PTR_ERR(handle
);
1333 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
1334 OCFS2_JOURNAL_ACCESS_WRITE
);
1340 inode
->i_mode
&= ~S_ISUID
;
1341 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1342 inode
->i_mode
&= ~S_ISGID
;
1344 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1345 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1346 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
1348 ocfs2_journal_dirty(handle
, bh
);
1351 ocfs2_commit_trans(osb
, handle
);
1357 * Will look for holes and unwritten extents in the range starting at
1358 * pos for count bytes (inclusive).
1360 static int ocfs2_check_range_for_holes(struct inode
*inode
, loff_t pos
,
1364 unsigned int extent_flags
;
1365 u32 cpos
, clusters
, extent_len
, phys_cpos
;
1366 struct super_block
*sb
= inode
->i_sb
;
1368 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
1369 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
1372 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
1379 if (phys_cpos
== 0 || (extent_flags
& OCFS2_EXT_UNWRITTEN
)) {
1384 if (extent_len
> clusters
)
1385 extent_len
= clusters
;
1387 clusters
-= extent_len
;
1394 static int ocfs2_write_remove_suid(struct inode
*inode
)
1397 struct buffer_head
*bh
= NULL
;
1399 ret
= ocfs2_read_inode_block(inode
, &bh
);
1405 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1412 * Allocate enough extents to cover the region starting at byte offset
1413 * start for len bytes. Existing extents are skipped, any extents
1414 * added are marked as "unwritten".
1416 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1420 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1421 u64 end
= start
+ len
;
1422 struct buffer_head
*di_bh
= NULL
;
1424 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1425 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
1432 * Nothing to do if the requested reservation range
1433 * fits within the inode.
1435 if (ocfs2_size_fits_inline_data(di_bh
, end
))
1438 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1446 * We consider both start and len to be inclusive.
1448 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1449 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1453 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1461 * Hole or existing extent len can be arbitrary, so
1462 * cap it to our own allocation request.
1464 if (alloc_size
> clusters
)
1465 alloc_size
= clusters
;
1469 * We already have an allocation at this
1470 * region so we can safely skip it.
1475 ret
= __ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1484 clusters
-= alloc_size
;
1495 * Truncate a byte range, avoiding pages within partial clusters. This
1496 * preserves those pages for the zeroing code to write to.
1498 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1501 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1503 struct address_space
*mapping
= inode
->i_mapping
;
1505 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1506 end
= byte_start
+ byte_len
;
1507 end
= end
& ~(osb
->s_clustersize
- 1);
1510 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1511 truncate_inode_pages_range(mapping
, start
, end
- 1);
1515 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1519 u64 tmpend
, end
= start
+ len
;
1520 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1521 unsigned int csize
= osb
->s_clustersize
;
1525 * The "start" and "end" values are NOT necessarily part of
1526 * the range whose allocation is being deleted. Rather, this
1527 * is what the user passed in with the request. We must zero
1528 * partial clusters here. There's no need to worry about
1529 * physical allocation - the zeroing code knows to skip holes.
1531 trace_ocfs2_zero_partial_clusters(
1532 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1533 (unsigned long long)start
, (unsigned long long)end
);
1536 * If both edges are on a cluster boundary then there's no
1537 * zeroing required as the region is part of the allocation to
1540 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1543 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1544 if (IS_ERR(handle
)) {
1545 ret
= PTR_ERR(handle
);
1551 * We want to get the byte offset of the end of the 1st cluster.
1553 tmpend
= (u64
)osb
->s_clustersize
+ (start
& ~(osb
->s_clustersize
- 1));
1557 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start
,
1558 (unsigned long long)tmpend
);
1560 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, tmpend
);
1566 * This may make start and end equal, but the zeroing
1567 * code will skip any work in that case so there's no
1568 * need to catch it up here.
1570 start
= end
& ~(osb
->s_clustersize
- 1);
1572 trace_ocfs2_zero_partial_clusters_range2(
1573 (unsigned long long)start
, (unsigned long long)end
);
1575 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1579 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
1581 ocfs2_commit_trans(osb
, handle
);
1586 static int ocfs2_find_rec(struct ocfs2_extent_list
*el
, u32 pos
)
1589 struct ocfs2_extent_rec
*rec
= NULL
;
1591 for (i
= le16_to_cpu(el
->l_next_free_rec
) - 1; i
>= 0; i
--) {
1593 rec
= &el
->l_recs
[i
];
1595 if (le32_to_cpu(rec
->e_cpos
) < pos
)
1603 * Helper to calculate the punching pos and length in one run, we handle the
1604 * following three cases in order:
1606 * - remove the entire record
1607 * - remove a partial record
1608 * - no record needs to be removed (hole-punching completed)
1610 static void ocfs2_calc_trunc_pos(struct inode
*inode
,
1611 struct ocfs2_extent_list
*el
,
1612 struct ocfs2_extent_rec
*rec
,
1613 u32 trunc_start
, u32
*trunc_cpos
,
1614 u32
*trunc_len
, u32
*trunc_end
,
1615 u64
*blkno
, int *done
)
1620 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1622 if (le32_to_cpu(rec
->e_cpos
) >= trunc_start
) {
1624 * remove an entire extent record.
1626 *trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
1628 * Skip holes if any.
1630 if (range
< *trunc_end
)
1632 *trunc_len
= *trunc_end
- le32_to_cpu(rec
->e_cpos
);
1633 *blkno
= le64_to_cpu(rec
->e_blkno
);
1634 *trunc_end
= le32_to_cpu(rec
->e_cpos
);
1635 } else if (range
> trunc_start
) {
1637 * remove a partial extent record, which means we're
1638 * removing the last extent record.
1640 *trunc_cpos
= trunc_start
;
1644 if (range
< *trunc_end
)
1646 *trunc_len
= *trunc_end
- trunc_start
;
1647 coff
= trunc_start
- le32_to_cpu(rec
->e_cpos
);
1648 *blkno
= le64_to_cpu(rec
->e_blkno
) +
1649 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
1650 *trunc_end
= trunc_start
;
1653 * It may have two following possibilities:
1655 * - last record has been removed
1656 * - trunc_start was within a hole
1658 * both two cases mean the completion of hole punching.
1666 static int ocfs2_remove_inode_range(struct inode
*inode
,
1667 struct buffer_head
*di_bh
, u64 byte_start
,
1670 int ret
= 0, flags
= 0, done
= 0, i
;
1671 u32 trunc_start
, trunc_len
, trunc_end
, trunc_cpos
, phys_cpos
;
1673 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1674 struct ocfs2_cached_dealloc_ctxt dealloc
;
1675 struct address_space
*mapping
= inode
->i_mapping
;
1676 struct ocfs2_extent_tree et
;
1677 struct ocfs2_path
*path
= NULL
;
1678 struct ocfs2_extent_list
*el
= NULL
;
1679 struct ocfs2_extent_rec
*rec
= NULL
;
1680 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1681 u64 blkno
, refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
1683 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
1684 ocfs2_init_dealloc_ctxt(&dealloc
);
1686 trace_ocfs2_remove_inode_range(
1687 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1688 (unsigned long long)byte_start
,
1689 (unsigned long long)byte_len
);
1694 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1695 ret
= ocfs2_truncate_inline(inode
, di_bh
, byte_start
,
1696 byte_start
+ byte_len
, 0);
1702 * There's no need to get fancy with the page cache
1703 * truncate of an inline-data inode. We're talking
1704 * about less than a page here, which will be cached
1705 * in the dinode buffer anyway.
1707 unmap_mapping_range(mapping
, 0, 0, 0);
1708 truncate_inode_pages(mapping
, 0);
1713 * For reflinks, we may need to CoW 2 clusters which might be
1714 * partially zero'd later, if hole's start and end offset were
1715 * within one cluster(means is not exactly aligned to clustersize).
1718 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
) {
1720 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
);
1726 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
+ byte_len
);
1733 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1734 trunc_end
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1735 cluster_in_el
= trunc_end
;
1737 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1743 path
= ocfs2_new_path_from_et(&et
);
1750 while (trunc_end
> trunc_start
) {
1752 ret
= ocfs2_find_path(INODE_CACHE(inode
), path
,
1759 el
= path_leaf_el(path
);
1761 i
= ocfs2_find_rec(el
, trunc_end
);
1763 * Need to go to previous extent block.
1766 if (path
->p_tree_depth
== 0)
1769 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
1778 * We've reached the leftmost extent block,
1779 * it's safe to leave.
1781 if (cluster_in_el
== 0)
1785 * The 'pos' searched for previous extent block is
1786 * always one cluster less than actual trunc_end.
1788 trunc_end
= cluster_in_el
+ 1;
1790 ocfs2_reinit_path(path
, 1);
1795 rec
= &el
->l_recs
[i
];
1797 ocfs2_calc_trunc_pos(inode
, el
, rec
, trunc_start
, &trunc_cpos
,
1798 &trunc_len
, &trunc_end
, &blkno
, &done
);
1802 flags
= rec
->e_flags
;
1803 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
1805 ret
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
1806 phys_cpos
, trunc_len
, flags
,
1807 &dealloc
, refcount_loc
);
1813 cluster_in_el
= trunc_end
;
1815 ocfs2_reinit_path(path
, 1);
1818 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1821 ocfs2_free_path(path
);
1822 ocfs2_schedule_truncate_log_flush(osb
, 1);
1823 ocfs2_run_deallocs(osb
, &dealloc
);
1829 * Parts of this function taken from xfs_change_file_space()
1831 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1832 loff_t f_pos
, unsigned int cmd
,
1833 struct ocfs2_space_resv
*sr
,
1839 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1840 struct buffer_head
*di_bh
= NULL
;
1842 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1844 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1847 mutex_lock(&inode
->i_mutex
);
1850 * This prevents concurrent writes on other nodes
1852 ret
= ocfs2_rw_lock(inode
, 1);
1858 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1864 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1866 goto out_inode_unlock
;
1869 switch (sr
->l_whence
) {
1870 case 0: /*SEEK_SET*/
1872 case 1: /*SEEK_CUR*/
1873 sr
->l_start
+= f_pos
;
1875 case 2: /*SEEK_END*/
1876 sr
->l_start
+= i_size_read(inode
);
1880 goto out_inode_unlock
;
1884 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1887 || sr
->l_start
> max_off
1888 || (sr
->l_start
+ llen
) < 0
1889 || (sr
->l_start
+ llen
) > max_off
) {
1891 goto out_inode_unlock
;
1893 size
= sr
->l_start
+ sr
->l_len
;
1895 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
||
1896 cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) {
1897 if (sr
->l_len
<= 0) {
1899 goto out_inode_unlock
;
1903 if (file
&& should_remove_suid(file
->f_path
.dentry
)) {
1904 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
1907 goto out_inode_unlock
;
1911 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1913 case OCFS2_IOC_RESVSP
:
1914 case OCFS2_IOC_RESVSP64
:
1916 * This takes unsigned offsets, but the signed ones we
1917 * pass have been checked against overflow above.
1919 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
1922 case OCFS2_IOC_UNRESVSP
:
1923 case OCFS2_IOC_UNRESVSP64
:
1924 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
1930 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1933 goto out_inode_unlock
;
1937 * We update c/mtime for these changes
1939 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1940 if (IS_ERR(handle
)) {
1941 ret
= PTR_ERR(handle
);
1943 goto out_inode_unlock
;
1946 if (change_size
&& i_size_read(inode
) < size
)
1947 i_size_write(inode
, size
);
1949 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
1950 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
1954 if (file
&& (file
->f_flags
& O_SYNC
))
1957 ocfs2_commit_trans(osb
, handle
);
1961 ocfs2_inode_unlock(inode
, 1);
1963 ocfs2_rw_unlock(inode
, 1);
1966 mutex_unlock(&inode
->i_mutex
);
1970 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
1971 struct ocfs2_space_resv
*sr
)
1973 struct inode
*inode
= file_inode(file
);
1974 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1977 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
1978 !ocfs2_writes_unwritten_extents(osb
))
1980 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
1981 !ocfs2_sparse_alloc(osb
))
1984 if (!S_ISREG(inode
->i_mode
))
1987 if (!(file
->f_mode
& FMODE_WRITE
))
1990 ret
= mnt_want_write_file(file
);
1993 ret
= __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
1994 mnt_drop_write_file(file
);
1998 static long ocfs2_fallocate(struct file
*file
, int mode
, loff_t offset
,
2001 struct inode
*inode
= file_inode(file
);
2002 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2003 struct ocfs2_space_resv sr
;
2004 int change_size
= 1;
2005 int cmd
= OCFS2_IOC_RESVSP64
;
2007 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2009 if (!ocfs2_writes_unwritten_extents(osb
))
2012 if (mode
& FALLOC_FL_KEEP_SIZE
)
2015 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2016 cmd
= OCFS2_IOC_UNRESVSP64
;
2019 sr
.l_start
= (s64
)offset
;
2020 sr
.l_len
= (s64
)len
;
2022 return __ocfs2_change_file_space(NULL
, inode
, offset
, cmd
, &sr
,
2026 int ocfs2_check_range_for_refcount(struct inode
*inode
, loff_t pos
,
2030 unsigned int extent_flags
;
2031 u32 cpos
, clusters
, extent_len
, phys_cpos
;
2032 struct super_block
*sb
= inode
->i_sb
;
2034 if (!ocfs2_refcount_tree(OCFS2_SB(inode
->i_sb
)) ||
2035 !(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
) ||
2036 OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2039 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
2040 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
2043 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
2050 if (phys_cpos
&& (extent_flags
& OCFS2_EXT_REFCOUNTED
)) {
2055 if (extent_len
> clusters
)
2056 extent_len
= clusters
;
2058 clusters
-= extent_len
;
2065 static int ocfs2_is_io_unaligned(struct inode
*inode
, size_t count
, loff_t pos
)
2067 int blockmask
= inode
->i_sb
->s_blocksize
- 1;
2068 loff_t final_size
= pos
+ count
;
2070 if ((pos
& blockmask
) || (final_size
& blockmask
))
2075 static int ocfs2_prepare_inode_for_refcount(struct inode
*inode
,
2077 loff_t pos
, size_t count
,
2081 struct buffer_head
*di_bh
= NULL
;
2082 u32 cpos
= pos
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
2084 ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ count
) - cpos
;
2086 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2094 ret
= ocfs2_refcount_cow(inode
, di_bh
, cpos
, clusters
, UINT_MAX
);
2102 static int ocfs2_prepare_inode_for_write(struct file
*file
,
2109 int ret
= 0, meta_level
= 0;
2110 struct dentry
*dentry
= file
->f_path
.dentry
;
2111 struct inode
*inode
= dentry
->d_inode
;
2112 loff_t saved_pos
= 0, end
;
2115 * We start with a read level meta lock and only jump to an ex
2116 * if we need to make modifications here.
2119 ret
= ocfs2_inode_lock(inode
, NULL
, meta_level
);
2126 /* Clear suid / sgid if necessary. We do this here
2127 * instead of later in the write path because
2128 * remove_suid() calls ->setattr without any hint that
2129 * we may have already done our cluster locking. Since
2130 * ocfs2_setattr() *must* take cluster locks to
2131 * proceed, this will lead us to recursively lock the
2132 * inode. There's also the dinode i_size state which
2133 * can be lost via setattr during extending writes (we
2134 * set inode->i_size at the end of a write. */
2135 if (should_remove_suid(dentry
)) {
2136 if (meta_level
== 0) {
2137 ocfs2_inode_unlock(inode
, meta_level
);
2142 ret
= ocfs2_write_remove_suid(inode
);
2149 /* work on a copy of ppos until we're sure that we won't have
2150 * to recalculate it due to relocking. */
2152 saved_pos
= i_size_read(inode
);
2156 end
= saved_pos
+ count
;
2158 ret
= ocfs2_check_range_for_refcount(inode
, saved_pos
, count
);
2160 ocfs2_inode_unlock(inode
, meta_level
);
2163 ret
= ocfs2_prepare_inode_for_refcount(inode
,
2180 * Skip the O_DIRECT checks if we don't need
2183 if (!direct_io
|| !(*direct_io
))
2187 * There's no sane way to do direct writes to an inode
2190 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
2196 * Allowing concurrent direct writes means
2197 * i_size changes wouldn't be synchronized, so
2198 * one node could wind up truncating another
2201 if (end
> i_size_read(inode
)) {
2207 * We don't fill holes during direct io, so
2208 * check for them here. If any are found, the
2209 * caller will have to retake some cluster
2210 * locks and initiate the io as buffered.
2212 ret
= ocfs2_check_range_for_holes(inode
, saved_pos
, count
);
2225 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode
)->ip_blkno
,
2226 saved_pos
, appending
, count
,
2227 direct_io
, has_refcount
);
2229 if (meta_level
>= 0)
2230 ocfs2_inode_unlock(inode
, meta_level
);
2236 static ssize_t
ocfs2_file_write_iter(struct kiocb
*iocb
,
2237 struct iov_iter
*from
)
2239 int ret
, direct_io
, appending
, rw_level
, have_alloc_sem
= 0;
2240 int can_do_direct
, has_refcount
= 0;
2241 ssize_t written
= 0;
2242 size_t count
= iov_iter_count(from
);
2243 loff_t old_size
, *ppos
= &iocb
->ki_pos
;
2245 struct file
*file
= iocb
->ki_filp
;
2246 struct inode
*inode
= file_inode(file
);
2247 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2248 int full_coherency
= !(osb
->s_mount_opt
&
2249 OCFS2_MOUNT_COHERENCY_BUFFERED
);
2250 int unaligned_dio
= 0;
2252 trace_ocfs2_file_aio_write(inode
, file
, file
->f_path
.dentry
,
2253 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2254 file
->f_path
.dentry
->d_name
.len
,
2255 file
->f_path
.dentry
->d_name
.name
,
2256 (unsigned int)from
->nr_segs
); /* GRRRRR */
2258 if (iocb
->ki_nbytes
== 0)
2261 appending
= file
->f_flags
& O_APPEND
? 1 : 0;
2262 direct_io
= file
->f_flags
& O_DIRECT
? 1 : 0;
2264 mutex_lock(&inode
->i_mutex
);
2266 ocfs2_iocb_clear_sem_locked(iocb
);
2269 /* to match setattr's i_mutex -> rw_lock ordering */
2272 /* communicate with ocfs2_dio_end_io */
2273 ocfs2_iocb_set_sem_locked(iocb
);
2277 * Concurrent O_DIRECT writes are allowed with
2278 * mount_option "coherency=buffered".
2280 rw_level
= (!direct_io
|| full_coherency
);
2282 ret
= ocfs2_rw_lock(inode
, rw_level
);
2289 * O_DIRECT writes with "coherency=full" need to take EX cluster
2290 * inode_lock to guarantee coherency.
2292 if (direct_io
&& full_coherency
) {
2294 * We need to take and drop the inode lock to force
2295 * other nodes to drop their caches. Buffered I/O
2296 * already does this in write_begin().
2298 ret
= ocfs2_inode_lock(inode
, NULL
, 1);
2304 ocfs2_inode_unlock(inode
, 1);
2307 can_do_direct
= direct_io
;
2308 ret
= ocfs2_prepare_inode_for_write(file
, ppos
,
2309 iocb
->ki_nbytes
, appending
,
2310 &can_do_direct
, &has_refcount
);
2316 if (direct_io
&& !is_sync_kiocb(iocb
))
2317 unaligned_dio
= ocfs2_is_io_unaligned(inode
, iocb
->ki_nbytes
,
2321 * We can't complete the direct I/O as requested, fall back to
2324 if (direct_io
&& !can_do_direct
) {
2325 ocfs2_rw_unlock(inode
, rw_level
);
2334 if (unaligned_dio
) {
2336 * Wait on previous unaligned aio to complete before
2339 mutex_lock(&OCFS2_I(inode
)->ip_unaligned_aio
);
2340 /* Mark the iocb as needing an unlock in ocfs2_dio_end_io */
2341 ocfs2_iocb_set_unaligned_aio(iocb
);
2345 * To later detect whether a journal commit for sync writes is
2346 * necessary, we sample i_size, and cluster count here.
2348 old_size
= i_size_read(inode
);
2349 old_clusters
= OCFS2_I(inode
)->ip_clusters
;
2351 /* communicate with ocfs2_dio_end_io */
2352 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2354 ret
= generic_write_checks(file
, ppos
, &count
,
2355 S_ISBLK(inode
->i_mode
));
2359 iov_iter_truncate(from
, count
);
2361 written
= generic_file_direct_write(iocb
, from
, *ppos
);
2367 current
->backing_dev_info
= file
->f_mapping
->backing_dev_info
;
2368 written
= generic_perform_write(file
, from
, *ppos
);
2369 if (likely(written
>= 0))
2370 iocb
->ki_pos
= *ppos
+ written
;
2371 current
->backing_dev_info
= NULL
;
2375 /* buffered aio wouldn't have proper lock coverage today */
2376 BUG_ON(ret
== -EIOCBQUEUED
&& !(file
->f_flags
& O_DIRECT
));
2378 if (((file
->f_flags
& O_DSYNC
) && !direct_io
) || IS_SYNC(inode
) ||
2379 ((file
->f_flags
& O_DIRECT
) && !direct_io
)) {
2380 ret
= filemap_fdatawrite_range(file
->f_mapping
, *ppos
,
2385 if (!ret
&& ((old_size
!= i_size_read(inode
)) ||
2386 (old_clusters
!= OCFS2_I(inode
)->ip_clusters
) ||
2388 ret
= jbd2_journal_force_commit(osb
->journal
->j_journal
);
2394 ret
= filemap_fdatawait_range(file
->f_mapping
, *ppos
,
2399 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2400 * function pointer which is called when o_direct io completes so that
2401 * it can unlock our rw lock.
2402 * Unfortunately there are error cases which call end_io and others
2403 * that don't. so we don't have to unlock the rw_lock if either an
2404 * async dio is going to do it in the future or an end_io after an
2405 * error has already done it.
2407 if ((ret
== -EIOCBQUEUED
) || (!ocfs2_iocb_is_rw_locked(iocb
))) {
2413 if (unaligned_dio
) {
2414 ocfs2_iocb_clear_unaligned_aio(iocb
);
2415 mutex_unlock(&OCFS2_I(inode
)->ip_unaligned_aio
);
2420 ocfs2_rw_unlock(inode
, rw_level
);
2424 ocfs2_iocb_clear_sem_locked(iocb
);
2426 mutex_unlock(&inode
->i_mutex
);
2433 static ssize_t
ocfs2_file_splice_read(struct file
*in
,
2435 struct pipe_inode_info
*pipe
,
2439 int ret
= 0, lock_level
= 0;
2440 struct inode
*inode
= file_inode(in
);
2442 trace_ocfs2_file_splice_read(inode
, in
, in
->f_path
.dentry
,
2443 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2444 in
->f_path
.dentry
->d_name
.len
,
2445 in
->f_path
.dentry
->d_name
.name
, len
);
2448 * See the comment in ocfs2_file_read_iter()
2450 ret
= ocfs2_inode_lock_atime(inode
, in
->f_path
.mnt
, &lock_level
);
2455 ocfs2_inode_unlock(inode
, lock_level
);
2457 ret
= generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
2463 static ssize_t
ocfs2_file_read_iter(struct kiocb
*iocb
,
2464 struct iov_iter
*to
)
2466 int ret
= 0, rw_level
= -1, have_alloc_sem
= 0, lock_level
= 0;
2467 struct file
*filp
= iocb
->ki_filp
;
2468 struct inode
*inode
= file_inode(filp
);
2470 trace_ocfs2_file_aio_read(inode
, filp
, filp
->f_path
.dentry
,
2471 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2472 filp
->f_path
.dentry
->d_name
.len
,
2473 filp
->f_path
.dentry
->d_name
.name
,
2474 to
->nr_segs
); /* GRRRRR */
2483 ocfs2_iocb_clear_sem_locked(iocb
);
2486 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2487 * need locks to protect pending reads from racing with truncate.
2489 if (filp
->f_flags
& O_DIRECT
) {
2491 ocfs2_iocb_set_sem_locked(iocb
);
2493 ret
= ocfs2_rw_lock(inode
, 0);
2499 /* communicate with ocfs2_dio_end_io */
2500 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2504 * We're fine letting folks race truncates and extending
2505 * writes with read across the cluster, just like they can
2506 * locally. Hence no rw_lock during read.
2508 * Take and drop the meta data lock to update inode fields
2509 * like i_size. This allows the checks down below
2510 * generic_file_aio_read() a chance of actually working.
2512 ret
= ocfs2_inode_lock_atime(inode
, filp
->f_path
.mnt
, &lock_level
);
2517 ocfs2_inode_unlock(inode
, lock_level
);
2519 ret
= generic_file_read_iter(iocb
, to
);
2520 trace_generic_file_aio_read_ret(ret
);
2522 /* buffered aio wouldn't have proper lock coverage today */
2523 BUG_ON(ret
== -EIOCBQUEUED
&& !(filp
->f_flags
& O_DIRECT
));
2525 /* see ocfs2_file_write_iter */
2526 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2533 ocfs2_iocb_clear_sem_locked(iocb
);
2536 ocfs2_rw_unlock(inode
, rw_level
);
2541 /* Refer generic_file_llseek_unlocked() */
2542 static loff_t
ocfs2_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2544 struct inode
*inode
= file
->f_mapping
->host
;
2547 mutex_lock(&inode
->i_mutex
);
2553 /* SEEK_END requires the OCFS2 inode lock for the file
2554 * because it references the file's size.
2556 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
2561 offset
+= i_size_read(inode
);
2562 ocfs2_inode_unlock(inode
, 0);
2566 offset
= file
->f_pos
;
2569 offset
+= file
->f_pos
;
2573 ret
= ocfs2_seek_data_hole_offset(file
, &offset
, whence
);
2582 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
2585 mutex_unlock(&inode
->i_mutex
);
2591 const struct inode_operations ocfs2_file_iops
= {
2592 .setattr
= ocfs2_setattr
,
2593 .getattr
= ocfs2_getattr
,
2594 .permission
= ocfs2_permission
,
2595 .setxattr
= generic_setxattr
,
2596 .getxattr
= generic_getxattr
,
2597 .listxattr
= ocfs2_listxattr
,
2598 .removexattr
= generic_removexattr
,
2599 .fiemap
= ocfs2_fiemap
,
2600 .get_acl
= ocfs2_iop_get_acl
,
2601 .set_acl
= ocfs2_iop_set_acl
,
2604 const struct inode_operations ocfs2_special_file_iops
= {
2605 .setattr
= ocfs2_setattr
,
2606 .getattr
= ocfs2_getattr
,
2607 .permission
= ocfs2_permission
,
2608 .get_acl
= ocfs2_iop_get_acl
,
2609 .set_acl
= ocfs2_iop_set_acl
,
2613 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2614 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2616 const struct file_operations ocfs2_fops
= {
2617 .llseek
= ocfs2_file_llseek
,
2618 .read
= new_sync_read
,
2619 .write
= new_sync_write
,
2621 .fsync
= ocfs2_sync_file
,
2622 .release
= ocfs2_file_release
,
2623 .open
= ocfs2_file_open
,
2624 .read_iter
= ocfs2_file_read_iter
,
2625 .write_iter
= ocfs2_file_write_iter
,
2626 .unlocked_ioctl
= ocfs2_ioctl
,
2627 #ifdef CONFIG_COMPAT
2628 .compat_ioctl
= ocfs2_compat_ioctl
,
2631 .flock
= ocfs2_flock
,
2632 .splice_read
= ocfs2_file_splice_read
,
2633 .splice_write
= iter_file_splice_write
,
2634 .fallocate
= ocfs2_fallocate
,
2637 const struct file_operations ocfs2_dops
= {
2638 .llseek
= generic_file_llseek
,
2639 .read
= generic_read_dir
,
2640 .iterate
= ocfs2_readdir
,
2641 .fsync
= ocfs2_sync_file
,
2642 .release
= ocfs2_dir_release
,
2643 .open
= ocfs2_dir_open
,
2644 .unlocked_ioctl
= ocfs2_ioctl
,
2645 #ifdef CONFIG_COMPAT
2646 .compat_ioctl
= ocfs2_compat_ioctl
,
2649 .flock
= ocfs2_flock
,
2653 * POSIX-lockless variants of our file_operations.
2655 * These will be used if the underlying cluster stack does not support
2656 * posix file locking, if the user passes the "localflocks" mount
2657 * option, or if we have a local-only fs.
2659 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2660 * so we still want it in the case of no stack support for
2661 * plocks. Internally, it will do the right thing when asked to ignore
2664 const struct file_operations ocfs2_fops_no_plocks
= {
2665 .llseek
= ocfs2_file_llseek
,
2666 .read
= new_sync_read
,
2667 .write
= new_sync_write
,
2669 .fsync
= ocfs2_sync_file
,
2670 .release
= ocfs2_file_release
,
2671 .open
= ocfs2_file_open
,
2672 .read_iter
= ocfs2_file_read_iter
,
2673 .write_iter
= ocfs2_file_write_iter
,
2674 .unlocked_ioctl
= ocfs2_ioctl
,
2675 #ifdef CONFIG_COMPAT
2676 .compat_ioctl
= ocfs2_compat_ioctl
,
2678 .flock
= ocfs2_flock
,
2679 .splice_read
= ocfs2_file_splice_read
,
2680 .splice_write
= iter_file_splice_write
,
2681 .fallocate
= ocfs2_fallocate
,
2684 const struct file_operations ocfs2_dops_no_plocks
= {
2685 .llseek
= generic_file_llseek
,
2686 .read
= generic_read_dir
,
2687 .iterate
= ocfs2_readdir
,
2688 .fsync
= ocfs2_sync_file
,
2689 .release
= ocfs2_dir_release
,
2690 .open
= ocfs2_dir_open
,
2691 .unlocked_ioctl
= ocfs2_ioctl
,
2692 #ifdef CONFIG_COMPAT
2693 .compat_ioctl
= ocfs2_compat_ioctl
,
2695 .flock
= ocfs2_flock
,