1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
35 #include <cluster/masklog.h>
40 #include "blockcheck.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
47 #include "localalloc.h"
54 #include "buffer_head_io.h"
55 #include "ocfs2_trace.h"
57 DEFINE_SPINLOCK(trans_inc_lock
);
59 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
61 static int ocfs2_force_read_journal(struct inode
*inode
);
62 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
63 int node_num
, int slot_num
);
64 static int __ocfs2_recovery_thread(void *arg
);
65 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
66 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
67 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
68 int dirty
, int replayed
);
69 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
71 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
73 static int ocfs2_commit_thread(void *arg
);
74 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
76 struct ocfs2_dinode
*la_dinode
,
77 struct ocfs2_dinode
*tl_dinode
,
78 struct ocfs2_quota_recovery
*qrec
);
80 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
82 return __ocfs2_wait_on_mount(osb
, 0);
85 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
87 return __ocfs2_wait_on_mount(osb
, 1);
91 * This replay_map is to track online/offline slots, so we could recover
92 * offline slots during recovery and mount
95 enum ocfs2_replay_state
{
96 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
97 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
98 REPLAY_DONE
/* Replay was already queued */
101 struct ocfs2_replay_map
{
102 unsigned int rm_slots
;
103 enum ocfs2_replay_state rm_state
;
104 unsigned char rm_replay_slots
[0];
107 void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
109 if (!osb
->replay_map
)
112 /* If we've already queued the replay, we don't have any more to do */
113 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
116 osb
->replay_map
->rm_state
= state
;
119 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
121 struct ocfs2_replay_map
*replay_map
;
124 /* If replay map is already set, we don't do it again */
128 replay_map
= kzalloc(sizeof(struct ocfs2_replay_map
) +
129 (osb
->max_slots
* sizeof(char)), GFP_KERNEL
);
136 spin_lock(&osb
->osb_lock
);
138 replay_map
->rm_slots
= osb
->max_slots
;
139 replay_map
->rm_state
= REPLAY_UNNEEDED
;
141 /* set rm_replay_slots for offline slot(s) */
142 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
143 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
144 replay_map
->rm_replay_slots
[i
] = 1;
147 osb
->replay_map
= replay_map
;
148 spin_unlock(&osb
->osb_lock
);
152 void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
)
154 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
160 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
163 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
164 if (replay_map
->rm_replay_slots
[i
])
165 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
167 replay_map
->rm_state
= REPLAY_DONE
;
170 void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
172 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
174 if (!osb
->replay_map
)
178 osb
->replay_map
= NULL
;
181 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
183 struct ocfs2_recovery_map
*rm
;
185 mutex_init(&osb
->recovery_lock
);
186 osb
->disable_recovery
= 0;
187 osb
->recovery_thread_task
= NULL
;
188 init_waitqueue_head(&osb
->recovery_event
);
190 rm
= kzalloc(sizeof(struct ocfs2_recovery_map
) +
191 osb
->max_slots
* sizeof(unsigned int),
198 rm
->rm_entries
= (unsigned int *)((char *)rm
+
199 sizeof(struct ocfs2_recovery_map
));
200 osb
->recovery_map
= rm
;
205 /* we can't grab the goofy sem lock from inside wait_event, so we use
206 * memory barriers to make sure that we'll see the null task before
208 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
211 return osb
->recovery_thread_task
!= NULL
;
214 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
216 struct ocfs2_recovery_map
*rm
;
218 /* disable any new recovery threads and wait for any currently
219 * running ones to exit. Do this before setting the vol_state. */
220 mutex_lock(&osb
->recovery_lock
);
221 osb
->disable_recovery
= 1;
222 mutex_unlock(&osb
->recovery_lock
);
223 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
225 /* At this point, we know that no more recovery threads can be
226 * launched, so wait for any recovery completion work to
228 flush_workqueue(ocfs2_wq
);
231 * Now that recovery is shut down, and the osb is about to be
232 * freed, the osb_lock is not taken here.
234 rm
= osb
->recovery_map
;
235 /* XXX: Should we bug if there are dirty entries? */
240 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
241 unsigned int node_num
)
244 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
246 assert_spin_locked(&osb
->osb_lock
);
248 for (i
= 0; i
< rm
->rm_used
; i
++) {
249 if (rm
->rm_entries
[i
] == node_num
)
256 /* Behaves like test-and-set. Returns the previous value */
257 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
258 unsigned int node_num
)
260 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
262 spin_lock(&osb
->osb_lock
);
263 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
264 spin_unlock(&osb
->osb_lock
);
268 /* XXX: Can this be exploited? Not from o2dlm... */
269 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
271 rm
->rm_entries
[rm
->rm_used
] = node_num
;
273 spin_unlock(&osb
->osb_lock
);
278 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
279 unsigned int node_num
)
282 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
284 spin_lock(&osb
->osb_lock
);
286 for (i
= 0; i
< rm
->rm_used
; i
++) {
287 if (rm
->rm_entries
[i
] == node_num
)
291 if (i
< rm
->rm_used
) {
292 /* XXX: be careful with the pointer math */
293 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
294 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
298 spin_unlock(&osb
->osb_lock
);
301 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
304 unsigned int flushed
;
305 struct ocfs2_journal
*journal
= NULL
;
307 journal
= osb
->journal
;
309 /* Flush all pending commits and checkpoint the journal. */
310 down_write(&journal
->j_trans_barrier
);
312 flushed
= atomic_read(&journal
->j_num_trans
);
313 trace_ocfs2_commit_cache_begin(flushed
);
315 up_write(&journal
->j_trans_barrier
);
319 jbd2_journal_lock_updates(journal
->j_journal
);
320 status
= jbd2_journal_flush(journal
->j_journal
);
321 jbd2_journal_unlock_updates(journal
->j_journal
);
323 up_write(&journal
->j_trans_barrier
);
328 ocfs2_inc_trans_id(journal
);
330 flushed
= atomic_read(&journal
->j_num_trans
);
331 atomic_set(&journal
->j_num_trans
, 0);
332 up_write(&journal
->j_trans_barrier
);
334 trace_ocfs2_commit_cache_end(journal
->j_trans_id
, flushed
);
336 ocfs2_wake_downconvert_thread(osb
);
337 wake_up(&journal
->j_checkpointed
);
342 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
344 journal_t
*journal
= osb
->journal
->j_journal
;
347 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
349 if (ocfs2_is_hard_readonly(osb
))
350 return ERR_PTR(-EROFS
);
352 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
353 BUG_ON(max_buffs
<= 0);
355 /* Nested transaction? Just return the handle... */
356 if (journal_current_handle())
357 return jbd2_journal_start(journal
, max_buffs
);
359 sb_start_intwrite(osb
->sb
);
361 down_read(&osb
->journal
->j_trans_barrier
);
363 handle
= jbd2_journal_start(journal
, max_buffs
);
364 if (IS_ERR(handle
)) {
365 up_read(&osb
->journal
->j_trans_barrier
);
366 sb_end_intwrite(osb
->sb
);
368 mlog_errno(PTR_ERR(handle
));
370 if (is_journal_aborted(journal
)) {
371 ocfs2_abort(osb
->sb
, "Detected aborted journal");
372 handle
= ERR_PTR(-EROFS
);
375 if (!ocfs2_mount_local(osb
))
376 atomic_inc(&(osb
->journal
->j_num_trans
));
382 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
386 struct ocfs2_journal
*journal
= osb
->journal
;
390 nested
= handle
->h_ref
> 1;
391 ret
= jbd2_journal_stop(handle
);
396 up_read(&journal
->j_trans_barrier
);
397 sb_end_intwrite(osb
->sb
);
404 * 'nblocks' is what you want to add to the current transaction.
406 * This might call jbd2_journal_restart() which will commit dirty buffers
407 * and then restart the transaction. Before calling
408 * ocfs2_extend_trans(), any changed blocks should have been
409 * dirtied. After calling it, all blocks which need to be changed must
410 * go through another set of journal_access/journal_dirty calls.
412 * WARNING: This will not release any semaphores or disk locks taken
413 * during the transaction, so make sure they were taken *before*
414 * start_trans or we'll have ordering deadlocks.
416 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
417 * good because transaction ids haven't yet been recorded on the
418 * cluster locks associated with this handle.
420 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
422 int status
, old_nblocks
;
430 old_nblocks
= handle
->h_buffer_credits
;
432 trace_ocfs2_extend_trans(old_nblocks
, nblocks
);
434 #ifdef CONFIG_OCFS2_DEBUG_FS
437 status
= jbd2_journal_extend(handle
, nblocks
);
445 trace_ocfs2_extend_trans_restart(old_nblocks
+ nblocks
);
446 status
= jbd2_journal_restart(handle
,
447 old_nblocks
+ nblocks
);
460 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
461 * If that fails, restart the transaction & regain write access for the
462 * buffer head which is used for metadata modifications.
463 * Taken from Ext4: extend_or_restart_transaction()
465 int ocfs2_allocate_extend_trans(handle_t
*handle
, int thresh
)
467 int status
, old_nblks
;
471 old_nblks
= handle
->h_buffer_credits
;
472 trace_ocfs2_allocate_extend_trans(old_nblks
, thresh
);
474 if (old_nblks
< thresh
)
477 status
= jbd2_journal_extend(handle
, OCFS2_MAX_TRANS_DATA
);
484 status
= jbd2_journal_restart(handle
, OCFS2_MAX_TRANS_DATA
);
494 struct ocfs2_triggers
{
495 struct jbd2_buffer_trigger_type ot_triggers
;
499 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
501 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
504 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
505 struct buffer_head
*bh
,
506 void *data
, size_t size
)
508 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
511 * We aren't guaranteed to have the superblock here, so we
512 * must unconditionally compute the ecc data.
513 * __ocfs2_journal_access() will only set the triggers if
514 * metaecc is enabled.
516 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
520 * Quota blocks have their own trigger because the struct ocfs2_block_check
521 * offset depends on the blocksize.
523 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
524 struct buffer_head
*bh
,
525 void *data
, size_t size
)
527 struct ocfs2_disk_dqtrailer
*dqt
=
528 ocfs2_block_dqtrailer(size
, data
);
531 * We aren't guaranteed to have the superblock here, so we
532 * must unconditionally compute the ecc data.
533 * __ocfs2_journal_access() will only set the triggers if
534 * metaecc is enabled.
536 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
540 * Directory blocks also have their own trigger because the
541 * struct ocfs2_block_check offset depends on the blocksize.
543 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
544 struct buffer_head
*bh
,
545 void *data
, size_t size
)
547 struct ocfs2_dir_block_trailer
*trailer
=
548 ocfs2_dir_trailer_from_size(size
, data
);
551 * We aren't guaranteed to have the superblock here, so we
552 * must unconditionally compute the ecc data.
553 * __ocfs2_journal_access() will only set the triggers if
554 * metaecc is enabled.
556 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
559 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
560 struct buffer_head
*bh
)
563 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
564 "bh->b_blocknr = %llu\n",
566 (unsigned long long)bh
->b_blocknr
);
568 /* We aren't guaranteed to have the superblock here - but if we
569 * don't, it'll just crash. */
570 ocfs2_error(bh
->b_assoc_map
->host
->i_sb
,
571 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
574 static struct ocfs2_triggers di_triggers
= {
576 .t_frozen
= ocfs2_frozen_trigger
,
577 .t_abort
= ocfs2_abort_trigger
,
579 .ot_offset
= offsetof(struct ocfs2_dinode
, i_check
),
582 static struct ocfs2_triggers eb_triggers
= {
584 .t_frozen
= ocfs2_frozen_trigger
,
585 .t_abort
= ocfs2_abort_trigger
,
587 .ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
),
590 static struct ocfs2_triggers rb_triggers
= {
592 .t_frozen
= ocfs2_frozen_trigger
,
593 .t_abort
= ocfs2_abort_trigger
,
595 .ot_offset
= offsetof(struct ocfs2_refcount_block
, rf_check
),
598 static struct ocfs2_triggers gd_triggers
= {
600 .t_frozen
= ocfs2_frozen_trigger
,
601 .t_abort
= ocfs2_abort_trigger
,
603 .ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
),
606 static struct ocfs2_triggers db_triggers
= {
608 .t_frozen
= ocfs2_db_frozen_trigger
,
609 .t_abort
= ocfs2_abort_trigger
,
613 static struct ocfs2_triggers xb_triggers
= {
615 .t_frozen
= ocfs2_frozen_trigger
,
616 .t_abort
= ocfs2_abort_trigger
,
618 .ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
),
621 static struct ocfs2_triggers dq_triggers
= {
623 .t_frozen
= ocfs2_dq_frozen_trigger
,
624 .t_abort
= ocfs2_abort_trigger
,
628 static struct ocfs2_triggers dr_triggers
= {
630 .t_frozen
= ocfs2_frozen_trigger
,
631 .t_abort
= ocfs2_abort_trigger
,
633 .ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
),
636 static struct ocfs2_triggers dl_triggers
= {
638 .t_frozen
= ocfs2_frozen_trigger
,
639 .t_abort
= ocfs2_abort_trigger
,
641 .ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
),
644 static int __ocfs2_journal_access(handle_t
*handle
,
645 struct ocfs2_caching_info
*ci
,
646 struct buffer_head
*bh
,
647 struct ocfs2_triggers
*triggers
,
651 struct ocfs2_super
*osb
=
652 OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
654 BUG_ON(!ci
|| !ci
->ci_ops
);
658 trace_ocfs2_journal_access(
659 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
660 (unsigned long long)bh
->b_blocknr
, type
, bh
->b_size
);
662 /* we can safely remove this assertion after testing. */
663 if (!buffer_uptodate(bh
)) {
664 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
665 mlog(ML_ERROR
, "b_blocknr=%llu\n",
666 (unsigned long long)bh
->b_blocknr
);
670 /* Set the current transaction information on the ci so
671 * that the locking code knows whether it can drop it's locks
672 * on this ci or not. We're protected from the commit
673 * thread updating the current transaction id until
674 * ocfs2_commit_trans() because ocfs2_start_trans() took
675 * j_trans_barrier for us. */
676 ocfs2_set_ci_lock_trans(osb
->journal
, ci
);
678 ocfs2_metadata_cache_io_lock(ci
);
680 case OCFS2_JOURNAL_ACCESS_CREATE
:
681 case OCFS2_JOURNAL_ACCESS_WRITE
:
682 status
= jbd2_journal_get_write_access(handle
, bh
);
685 case OCFS2_JOURNAL_ACCESS_UNDO
:
686 status
= jbd2_journal_get_undo_access(handle
, bh
);
691 mlog(ML_ERROR
, "Unknown access type!\n");
693 if (!status
&& ocfs2_meta_ecc(osb
) && triggers
)
694 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
695 ocfs2_metadata_cache_io_unlock(ci
);
698 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
704 int ocfs2_journal_access_di(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
705 struct buffer_head
*bh
, int type
)
707 return __ocfs2_journal_access(handle
, ci
, bh
, &di_triggers
, type
);
710 int ocfs2_journal_access_eb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
711 struct buffer_head
*bh
, int type
)
713 return __ocfs2_journal_access(handle
, ci
, bh
, &eb_triggers
, type
);
716 int ocfs2_journal_access_rb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
717 struct buffer_head
*bh
, int type
)
719 return __ocfs2_journal_access(handle
, ci
, bh
, &rb_triggers
,
723 int ocfs2_journal_access_gd(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
724 struct buffer_head
*bh
, int type
)
726 return __ocfs2_journal_access(handle
, ci
, bh
, &gd_triggers
, type
);
729 int ocfs2_journal_access_db(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
730 struct buffer_head
*bh
, int type
)
732 return __ocfs2_journal_access(handle
, ci
, bh
, &db_triggers
, type
);
735 int ocfs2_journal_access_xb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
736 struct buffer_head
*bh
, int type
)
738 return __ocfs2_journal_access(handle
, ci
, bh
, &xb_triggers
, type
);
741 int ocfs2_journal_access_dq(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
742 struct buffer_head
*bh
, int type
)
744 return __ocfs2_journal_access(handle
, ci
, bh
, &dq_triggers
, type
);
747 int ocfs2_journal_access_dr(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
748 struct buffer_head
*bh
, int type
)
750 return __ocfs2_journal_access(handle
, ci
, bh
, &dr_triggers
, type
);
753 int ocfs2_journal_access_dl(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
754 struct buffer_head
*bh
, int type
)
756 return __ocfs2_journal_access(handle
, ci
, bh
, &dl_triggers
, type
);
759 int ocfs2_journal_access(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
760 struct buffer_head
*bh
, int type
)
762 return __ocfs2_journal_access(handle
, ci
, bh
, NULL
, type
);
765 void ocfs2_journal_dirty(handle_t
*handle
, struct buffer_head
*bh
)
769 trace_ocfs2_journal_dirty((unsigned long long)bh
->b_blocknr
);
771 status
= jbd2_journal_dirty_metadata(handle
, bh
);
775 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
777 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
779 journal_t
*journal
= osb
->journal
->j_journal
;
780 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
782 if (osb
->osb_commit_interval
)
783 commit_interval
= osb
->osb_commit_interval
;
785 write_lock(&journal
->j_state_lock
);
786 journal
->j_commit_interval
= commit_interval
;
787 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
788 journal
->j_flags
|= JBD2_BARRIER
;
790 journal
->j_flags
&= ~JBD2_BARRIER
;
791 write_unlock(&journal
->j_state_lock
);
794 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
797 struct inode
*inode
= NULL
; /* the journal inode */
798 journal_t
*j_journal
= NULL
;
799 struct ocfs2_dinode
*di
= NULL
;
800 struct buffer_head
*bh
= NULL
;
801 struct ocfs2_super
*osb
;
806 osb
= journal
->j_osb
;
808 /* already have the inode for our journal */
809 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
816 if (is_bad_inode(inode
)) {
817 mlog(ML_ERROR
, "access error (bad inode)\n");
824 SET_INODE_JOURNAL(inode
);
825 OCFS2_I(inode
)->ip_open_count
++;
827 /* Skip recovery waits here - journal inode metadata never
828 * changes in a live cluster so it can be considered an
829 * exception to the rule. */
830 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
832 if (status
!= -ERESTARTSYS
)
833 mlog(ML_ERROR
, "Could not get lock on journal!\n");
838 di
= (struct ocfs2_dinode
*)bh
->b_data
;
840 if (i_size_read(inode
) < OCFS2_MIN_JOURNAL_SIZE
) {
841 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
847 trace_ocfs2_journal_init(i_size_read(inode
),
848 (unsigned long long)inode
->i_blocks
,
849 OCFS2_I(inode
)->ip_clusters
);
851 /* call the kernels journal init function now */
852 j_journal
= jbd2_journal_init_inode(inode
);
853 if (j_journal
== NULL
) {
854 mlog(ML_ERROR
, "Linux journal layer error\n");
859 trace_ocfs2_journal_init_maxlen(j_journal
->j_maxlen
);
861 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
862 OCFS2_JOURNAL_DIRTY_FL
);
864 journal
->j_journal
= j_journal
;
865 journal
->j_inode
= inode
;
868 ocfs2_set_journal_params(osb
);
870 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
876 ocfs2_inode_unlock(inode
, 1);
879 OCFS2_I(inode
)->ip_open_count
--;
887 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
889 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
892 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
894 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
897 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
898 int dirty
, int replayed
)
902 struct ocfs2_journal
*journal
= osb
->journal
;
903 struct buffer_head
*bh
= journal
->j_bh
;
904 struct ocfs2_dinode
*fe
;
906 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
908 /* The journal bh on the osb always comes from ocfs2_journal_init()
909 * and was validated there inside ocfs2_inode_lock_full(). It's a
910 * code bug if we mess it up. */
911 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
913 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
915 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
917 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
918 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
921 ocfs2_bump_recovery_generation(fe
);
923 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
924 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(journal
->j_inode
));
932 * If the journal has been kmalloc'd it needs to be freed after this
935 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
937 struct ocfs2_journal
*journal
= NULL
;
939 struct inode
*inode
= NULL
;
940 int num_running_trans
= 0;
944 journal
= osb
->journal
;
948 inode
= journal
->j_inode
;
950 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
953 /* need to inc inode use count - jbd2_journal_destroy will iput. */
957 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
958 trace_ocfs2_journal_shutdown(num_running_trans
);
960 /* Do a commit_cache here. It will flush our journal, *and*
961 * release any locks that are still held.
962 * set the SHUTDOWN flag and release the trans lock.
963 * the commit thread will take the trans lock for us below. */
964 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
966 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
967 * drop the trans_lock (which we want to hold until we
968 * completely destroy the journal. */
969 if (osb
->commit_task
) {
970 /* Wait for the commit thread */
971 trace_ocfs2_journal_shutdown_wait(osb
->commit_task
);
972 kthread_stop(osb
->commit_task
);
973 osb
->commit_task
= NULL
;
976 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
978 if (ocfs2_mount_local(osb
)) {
979 jbd2_journal_lock_updates(journal
->j_journal
);
980 status
= jbd2_journal_flush(journal
->j_journal
);
981 jbd2_journal_unlock_updates(journal
->j_journal
);
988 * Do not toggle if flush was unsuccessful otherwise
989 * will leave dirty metadata in a "clean" journal
991 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
996 /* Shutdown the kernel journal system */
997 jbd2_journal_destroy(journal
->j_journal
);
998 journal
->j_journal
= NULL
;
1000 OCFS2_I(inode
)->ip_open_count
--;
1002 /* unlock our journal */
1003 ocfs2_inode_unlock(inode
, 1);
1005 brelse(journal
->j_bh
);
1006 journal
->j_bh
= NULL
;
1008 journal
->j_state
= OCFS2_JOURNAL_FREE
;
1010 // up_write(&journal->j_trans_barrier);
1016 static void ocfs2_clear_journal_error(struct super_block
*sb
,
1022 olderr
= jbd2_journal_errno(journal
);
1024 mlog(ML_ERROR
, "File system error %d recorded in "
1025 "journal %u.\n", olderr
, slot
);
1026 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
1029 jbd2_journal_ack_err(journal
);
1030 jbd2_journal_clear_err(journal
);
1034 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
1037 struct ocfs2_super
*osb
;
1041 osb
= journal
->j_osb
;
1043 status
= jbd2_journal_load(journal
->j_journal
);
1045 mlog(ML_ERROR
, "Failed to load journal!\n");
1049 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1051 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1057 /* Launch the commit thread */
1059 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1061 if (IS_ERR(osb
->commit_task
)) {
1062 status
= PTR_ERR(osb
->commit_task
);
1063 osb
->commit_task
= NULL
;
1064 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1065 "error=%d", status
);
1069 osb
->commit_task
= NULL
;
1076 /* 'full' flag tells us whether we clear out all blocks or if we just
1077 * mark the journal clean */
1078 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1084 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1090 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1098 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1101 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1103 spin_lock(&osb
->osb_lock
);
1104 empty
= (rm
->rm_used
== 0);
1105 spin_unlock(&osb
->osb_lock
);
1110 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1112 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1116 * JBD Might read a cached version of another nodes journal file. We
1117 * don't want this as this file changes often and we get no
1118 * notification on those changes. The only way to be sure that we've
1119 * got the most up to date version of those blocks then is to force
1120 * read them off disk. Just searching through the buffer cache won't
1121 * work as there may be pages backing this file which are still marked
1122 * up to date. We know things can't change on this file underneath us
1123 * as we have the lock by now :)
1125 static int ocfs2_force_read_journal(struct inode
*inode
)
1129 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1130 #define CONCURRENT_JOURNAL_FILL 32ULL
1131 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
1133 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
1135 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
1137 while (v_blkno
< num_blocks
) {
1138 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1139 &p_blkno
, &p_blocks
, NULL
);
1145 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
1146 p_blocks
= CONCURRENT_JOURNAL_FILL
;
1148 /* We are reading journal data which should not
1149 * be put in the uptodate cache */
1150 status
= ocfs2_read_blocks_sync(OCFS2_SB(inode
->i_sb
),
1151 p_blkno
, p_blocks
, bhs
);
1157 for(i
= 0; i
< p_blocks
; i
++) {
1162 v_blkno
+= p_blocks
;
1166 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
1171 struct ocfs2_la_recovery_item
{
1172 struct list_head lri_list
;
1174 struct ocfs2_dinode
*lri_la_dinode
;
1175 struct ocfs2_dinode
*lri_tl_dinode
;
1176 struct ocfs2_quota_recovery
*lri_qrec
;
1179 /* Does the second half of the recovery process. By this point, the
1180 * node is marked clean and can actually be considered recovered,
1181 * hence it's no longer in the recovery map, but there's still some
1182 * cleanup we can do which shouldn't happen within the recovery thread
1183 * as locking in that context becomes very difficult if we are to take
1184 * recovering nodes into account.
1186 * NOTE: This function can and will sleep on recovery of other nodes
1187 * during cluster locking, just like any other ocfs2 process.
1189 void ocfs2_complete_recovery(struct work_struct
*work
)
1192 struct ocfs2_journal
*journal
=
1193 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1194 struct ocfs2_super
*osb
= journal
->j_osb
;
1195 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1196 struct ocfs2_la_recovery_item
*item
, *n
;
1197 struct ocfs2_quota_recovery
*qrec
;
1198 LIST_HEAD(tmp_la_list
);
1200 trace_ocfs2_complete_recovery(
1201 (unsigned long long)OCFS2_I(journal
->j_inode
)->ip_blkno
);
1203 spin_lock(&journal
->j_lock
);
1204 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1205 spin_unlock(&journal
->j_lock
);
1207 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1208 list_del_init(&item
->lri_list
);
1210 ocfs2_wait_on_quotas(osb
);
1212 la_dinode
= item
->lri_la_dinode
;
1213 tl_dinode
= item
->lri_tl_dinode
;
1214 qrec
= item
->lri_qrec
;
1216 trace_ocfs2_complete_recovery_slot(item
->lri_slot
,
1217 la_dinode
? le64_to_cpu(la_dinode
->i_blkno
) : 0,
1218 tl_dinode
? le64_to_cpu(tl_dinode
->i_blkno
) : 0,
1222 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1231 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1239 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
1244 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1248 /* Recovery info is already freed now */
1254 trace_ocfs2_complete_recovery_end(ret
);
1257 /* NOTE: This function always eats your references to la_dinode and
1258 * tl_dinode, either manually on error, or by passing them to
1259 * ocfs2_complete_recovery */
1260 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1262 struct ocfs2_dinode
*la_dinode
,
1263 struct ocfs2_dinode
*tl_dinode
,
1264 struct ocfs2_quota_recovery
*qrec
)
1266 struct ocfs2_la_recovery_item
*item
;
1268 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1270 /* Though we wish to avoid it, we are in fact safe in
1271 * skipping local alloc cleanup as fsck.ocfs2 is more
1272 * than capable of reclaiming unused space. */
1277 ocfs2_free_quota_recovery(qrec
);
1279 mlog_errno(-ENOMEM
);
1283 INIT_LIST_HEAD(&item
->lri_list
);
1284 item
->lri_la_dinode
= la_dinode
;
1285 item
->lri_slot
= slot_num
;
1286 item
->lri_tl_dinode
= tl_dinode
;
1287 item
->lri_qrec
= qrec
;
1289 spin_lock(&journal
->j_lock
);
1290 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1291 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
1292 spin_unlock(&journal
->j_lock
);
1295 /* Called by the mount code to queue recovery the last part of
1296 * recovery for it's own and offline slot(s). */
1297 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1299 struct ocfs2_journal
*journal
= osb
->journal
;
1301 if (ocfs2_is_hard_readonly(osb
))
1304 /* No need to queue up our truncate_log as regular cleanup will catch
1306 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1307 osb
->local_alloc_copy
, NULL
, NULL
);
1308 ocfs2_schedule_truncate_log_flush(osb
, 0);
1310 osb
->local_alloc_copy
= NULL
;
1313 /* queue to recover orphan slots for all offline slots */
1314 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1315 ocfs2_queue_replay_slots(osb
);
1316 ocfs2_free_replay_slots(osb
);
1319 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1321 if (osb
->quota_rec
) {
1322 ocfs2_queue_recovery_completion(osb
->journal
,
1327 osb
->quota_rec
= NULL
;
1331 static int __ocfs2_recovery_thread(void *arg
)
1333 int status
, node_num
, slot_num
;
1334 struct ocfs2_super
*osb
= arg
;
1335 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1336 int *rm_quota
= NULL
;
1337 int rm_quota_used
= 0, i
;
1338 struct ocfs2_quota_recovery
*qrec
;
1340 status
= ocfs2_wait_on_mount(osb
);
1345 rm_quota
= kzalloc(osb
->max_slots
* sizeof(int), GFP_NOFS
);
1351 status
= ocfs2_super_lock(osb
, 1);
1357 status
= ocfs2_compute_replay_slots(osb
);
1361 /* queue recovery for our own slot */
1362 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1365 spin_lock(&osb
->osb_lock
);
1366 while (rm
->rm_used
) {
1367 /* It's always safe to remove entry zero, as we won't
1368 * clear it until ocfs2_recover_node() has succeeded. */
1369 node_num
= rm
->rm_entries
[0];
1370 spin_unlock(&osb
->osb_lock
);
1371 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1372 trace_ocfs2_recovery_thread_node(node_num
, slot_num
);
1373 if (slot_num
== -ENOENT
) {
1378 /* It is a bit subtle with quota recovery. We cannot do it
1379 * immediately because we have to obtain cluster locks from
1380 * quota files and we also don't want to just skip it because
1381 * then quota usage would be out of sync until some node takes
1382 * the slot. So we remember which nodes need quota recovery
1383 * and when everything else is done, we recover quotas. */
1384 for (i
= 0; i
< rm_quota_used
&& rm_quota
[i
] != slot_num
; i
++);
1385 if (i
== rm_quota_used
)
1386 rm_quota
[rm_quota_used
++] = slot_num
;
1388 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1391 ocfs2_recovery_map_clear(osb
, node_num
);
1394 "Error %d recovering node %d on device (%u,%u)!\n",
1396 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1397 mlog(ML_ERROR
, "Volume requires unmount.\n");
1400 spin_lock(&osb
->osb_lock
);
1402 spin_unlock(&osb
->osb_lock
);
1403 trace_ocfs2_recovery_thread_end(status
);
1405 /* Refresh all journal recovery generations from disk */
1406 status
= ocfs2_check_journals_nolocks(osb
);
1407 status
= (status
== -EROFS
) ? 0 : status
;
1411 /* Now it is right time to recover quotas... We have to do this under
1412 * superblock lock so that no one can start using the slot (and crash)
1413 * before we recover it */
1414 for (i
= 0; i
< rm_quota_used
; i
++) {
1415 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1417 status
= PTR_ERR(qrec
);
1421 ocfs2_queue_recovery_completion(osb
->journal
, rm_quota
[i
],
1425 ocfs2_super_unlock(osb
, 1);
1427 /* queue recovery for offline slots */
1428 ocfs2_queue_replay_slots(osb
);
1431 mutex_lock(&osb
->recovery_lock
);
1432 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1433 mutex_unlock(&osb
->recovery_lock
);
1437 ocfs2_free_replay_slots(osb
);
1438 osb
->recovery_thread_task
= NULL
;
1439 mb(); /* sync with ocfs2_recovery_thread_running */
1440 wake_up(&osb
->recovery_event
);
1442 mutex_unlock(&osb
->recovery_lock
);
1446 /* no one is callint kthread_stop() for us so the kthread() api
1447 * requires that we call do_exit(). And it isn't exported, but
1448 * complete_and_exit() seems to be a minimal wrapper around it. */
1449 complete_and_exit(NULL
, status
);
1453 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1455 mutex_lock(&osb
->recovery_lock
);
1457 trace_ocfs2_recovery_thread(node_num
, osb
->node_num
,
1458 osb
->disable_recovery
, osb
->recovery_thread_task
,
1459 osb
->disable_recovery
?
1460 -1 : ocfs2_recovery_map_set(osb
, node_num
));
1462 if (osb
->disable_recovery
)
1465 if (osb
->recovery_thread_task
)
1468 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1470 if (IS_ERR(osb
->recovery_thread_task
)) {
1471 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1472 osb
->recovery_thread_task
= NULL
;
1476 mutex_unlock(&osb
->recovery_lock
);
1477 wake_up(&osb
->recovery_event
);
1480 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1482 struct buffer_head
**bh
,
1483 struct inode
**ret_inode
)
1485 int status
= -EACCES
;
1486 struct inode
*inode
= NULL
;
1488 BUG_ON(slot_num
>= osb
->max_slots
);
1490 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1492 if (!inode
|| is_bad_inode(inode
)) {
1496 SET_INODE_JOURNAL(inode
);
1498 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1508 if (status
|| !ret_inode
)
1516 /* Does the actual journal replay and marks the journal inode as
1517 * clean. Will only replay if the journal inode is marked dirty. */
1518 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1525 struct inode
*inode
= NULL
;
1526 struct ocfs2_dinode
*fe
;
1527 journal_t
*journal
= NULL
;
1528 struct buffer_head
*bh
= NULL
;
1531 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1537 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1538 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1543 * As the fs recovery is asynchronous, there is a small chance that
1544 * another node mounted (and recovered) the slot before the recovery
1545 * thread could get the lock. To handle that, we dirty read the journal
1546 * inode for that slot to get the recovery generation. If it is
1547 * different than what we expected, the slot has been recovered.
1548 * If not, it needs recovery.
1550 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1551 trace_ocfs2_replay_journal_recovered(slot_num
,
1552 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1553 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1558 /* Continue with recovery as the journal has not yet been recovered */
1560 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1562 trace_ocfs2_replay_journal_lock_err(status
);
1563 if (status
!= -ERESTARTSYS
)
1564 mlog(ML_ERROR
, "Could not lock journal!\n");
1569 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1571 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1572 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1574 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1575 trace_ocfs2_replay_journal_skip(node_num
);
1576 /* Refresh recovery generation for the slot */
1577 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1581 /* we need to run complete recovery for offline orphan slots */
1582 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1584 printk(KERN_NOTICE
"ocfs2: Begin replay journal (node %d, slot %d) on "\
1585 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1586 MINOR(osb
->sb
->s_dev
));
1588 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1590 status
= ocfs2_force_read_journal(inode
);
1596 journal
= jbd2_journal_init_inode(inode
);
1597 if (journal
== NULL
) {
1598 mlog(ML_ERROR
, "Linux journal layer error\n");
1603 status
= jbd2_journal_load(journal
);
1608 jbd2_journal_destroy(journal
);
1612 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1614 /* wipe the journal */
1615 jbd2_journal_lock_updates(journal
);
1616 status
= jbd2_journal_flush(journal
);
1617 jbd2_journal_unlock_updates(journal
);
1621 /* This will mark the node clean */
1622 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1623 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1624 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1626 /* Increment recovery generation to indicate successful recovery */
1627 ocfs2_bump_recovery_generation(fe
);
1628 osb
->slot_recovery_generations
[slot_num
] =
1629 ocfs2_get_recovery_generation(fe
);
1631 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1632 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(inode
));
1639 jbd2_journal_destroy(journal
);
1641 printk(KERN_NOTICE
"ocfs2: End replay journal (node %d, slot %d) on "\
1642 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1643 MINOR(osb
->sb
->s_dev
));
1645 /* drop the lock on this nodes journal */
1647 ocfs2_inode_unlock(inode
, 1);
1658 * Do the most important parts of node recovery:
1659 * - Replay it's journal
1660 * - Stamp a clean local allocator file
1661 * - Stamp a clean truncate log
1662 * - Mark the node clean
1664 * If this function completes without error, a node in OCFS2 can be
1665 * said to have been safely recovered. As a result, failure during the
1666 * second part of a nodes recovery process (local alloc recovery) is
1667 * far less concerning.
1669 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1670 int node_num
, int slot_num
)
1673 struct ocfs2_dinode
*la_copy
= NULL
;
1674 struct ocfs2_dinode
*tl_copy
= NULL
;
1676 trace_ocfs2_recover_node(node_num
, slot_num
, osb
->node_num
);
1678 /* Should not ever be called to recover ourselves -- in that
1679 * case we should've called ocfs2_journal_load instead. */
1680 BUG_ON(osb
->node_num
== node_num
);
1682 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1684 if (status
== -EBUSY
) {
1685 trace_ocfs2_recover_node_skip(slot_num
, node_num
);
1693 /* Stamp a clean local alloc file AFTER recovering the journal... */
1694 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1700 /* An error from begin_truncate_log_recovery is not
1701 * serious enough to warrant halting the rest of
1703 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1707 /* Likewise, this would be a strange but ultimately not so
1708 * harmful place to get an error... */
1709 status
= ocfs2_clear_slot(osb
, slot_num
);
1713 /* This will kfree the memory pointed to by la_copy and tl_copy */
1714 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1723 /* Test node liveness by trylocking his journal. If we get the lock,
1724 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1725 * still alive (we couldn't get the lock) and < 0 on error. */
1726 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1730 struct inode
*inode
= NULL
;
1732 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1734 if (inode
== NULL
) {
1735 mlog(ML_ERROR
, "access error\n");
1739 if (is_bad_inode(inode
)) {
1740 mlog(ML_ERROR
, "access error (bad inode)\n");
1746 SET_INODE_JOURNAL(inode
);
1748 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1749 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1751 if (status
!= -EAGAIN
)
1756 ocfs2_inode_unlock(inode
, 1);
1764 /* Call this underneath ocfs2_super_lock. It also assumes that the
1765 * slot info struct has been updated from disk. */
1766 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1768 unsigned int node_num
;
1771 struct buffer_head
*bh
= NULL
;
1772 struct ocfs2_dinode
*di
;
1774 /* This is called with the super block cluster lock, so we
1775 * know that the slot map can't change underneath us. */
1777 for (i
= 0; i
< osb
->max_slots
; i
++) {
1778 /* Read journal inode to get the recovery generation */
1779 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1784 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1785 gen
= ocfs2_get_recovery_generation(di
);
1789 spin_lock(&osb
->osb_lock
);
1790 osb
->slot_recovery_generations
[i
] = gen
;
1792 trace_ocfs2_mark_dead_nodes(i
,
1793 osb
->slot_recovery_generations
[i
]);
1795 if (i
== osb
->slot_num
) {
1796 spin_unlock(&osb
->osb_lock
);
1800 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1801 if (status
== -ENOENT
) {
1802 spin_unlock(&osb
->osb_lock
);
1806 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1807 spin_unlock(&osb
->osb_lock
);
1810 spin_unlock(&osb
->osb_lock
);
1812 /* Ok, we have a slot occupied by another node which
1813 * is not in the recovery map. We trylock his journal
1814 * file here to test if he's alive. */
1815 status
= ocfs2_trylock_journal(osb
, i
);
1817 /* Since we're called from mount, we know that
1818 * the recovery thread can't race us on
1819 * setting / checking the recovery bits. */
1820 ocfs2_recovery_thread(osb
, node_num
);
1821 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1833 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1834 * randomness to the timeout to minimize multple nodes firing the timer at the
1837 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1841 get_random_bytes(&time
, sizeof(time
));
1842 time
= ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ (time
% 5000);
1843 return msecs_to_jiffies(time
);
1847 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1848 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1849 * is done to catch any orphans that are left over in orphan directories.
1851 * It scans all slots, even ones that are in use. It does so to handle the
1852 * case described below:
1854 * Node 1 has an inode it was using. The dentry went away due to memory
1855 * pressure. Node 1 closes the inode, but it's on the free list. The node
1856 * has the open lock.
1857 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1858 * but node 1 has no dentry and doesn't get the message. It trylocks the
1859 * open lock, sees that another node has a PR, and does nothing.
1860 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1861 * open lock, sees the PR still, and does nothing.
1862 * Basically, we have to trigger an orphan iput on node 1. The only way
1863 * for this to happen is if node 1 runs node 2's orphan dir.
1865 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1866 * seconds. It gets an EX lock on os_lockres and checks sequence number
1867 * stored in LVB. If the sequence number has changed, it means some other
1868 * node has done the scan. This node skips the scan and tracks the
1869 * sequence number. If the sequence number didn't change, it means a scan
1870 * hasn't happened. The node queues a scan and increments the
1871 * sequence number in the LVB.
1873 void ocfs2_queue_orphan_scan(struct ocfs2_super
*osb
)
1875 struct ocfs2_orphan_scan
*os
;
1879 os
= &osb
->osb_orphan_scan
;
1881 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1884 trace_ocfs2_queue_orphan_scan_begin(os
->os_count
, os
->os_seqno
,
1885 atomic_read(&os
->os_state
));
1887 status
= ocfs2_orphan_scan_lock(osb
, &seqno
);
1889 if (status
!= -EAGAIN
)
1894 /* Do no queue the tasks if the volume is being umounted */
1895 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1898 if (os
->os_seqno
!= seqno
) {
1899 os
->os_seqno
= seqno
;
1903 for (i
= 0; i
< osb
->max_slots
; i
++)
1904 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
, NULL
,
1907 * We queued a recovery on orphan slots, increment the sequence
1908 * number and update LVB so other node will skip the scan for a while
1912 os
->os_scantime
= CURRENT_TIME
;
1914 ocfs2_orphan_scan_unlock(osb
, seqno
);
1916 trace_ocfs2_queue_orphan_scan_end(os
->os_count
, os
->os_seqno
,
1917 atomic_read(&os
->os_state
));
1921 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1922 void ocfs2_orphan_scan_work(struct work_struct
*work
)
1924 struct ocfs2_orphan_scan
*os
;
1925 struct ocfs2_super
*osb
;
1927 os
= container_of(work
, struct ocfs2_orphan_scan
,
1928 os_orphan_scan_work
.work
);
1931 mutex_lock(&os
->os_lock
);
1932 ocfs2_queue_orphan_scan(osb
);
1933 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
)
1934 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
1935 ocfs2_orphan_scan_timeout());
1936 mutex_unlock(&os
->os_lock
);
1939 void ocfs2_orphan_scan_stop(struct ocfs2_super
*osb
)
1941 struct ocfs2_orphan_scan
*os
;
1943 os
= &osb
->osb_orphan_scan
;
1944 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
) {
1945 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1946 mutex_lock(&os
->os_lock
);
1947 cancel_delayed_work(&os
->os_orphan_scan_work
);
1948 mutex_unlock(&os
->os_lock
);
1952 void ocfs2_orphan_scan_init(struct ocfs2_super
*osb
)
1954 struct ocfs2_orphan_scan
*os
;
1956 os
= &osb
->osb_orphan_scan
;
1960 mutex_init(&os
->os_lock
);
1961 INIT_DELAYED_WORK(&os
->os_orphan_scan_work
, ocfs2_orphan_scan_work
);
1964 void ocfs2_orphan_scan_start(struct ocfs2_super
*osb
)
1966 struct ocfs2_orphan_scan
*os
;
1968 os
= &osb
->osb_orphan_scan
;
1969 os
->os_scantime
= CURRENT_TIME
;
1970 if (ocfs2_is_hard_readonly(osb
) || ocfs2_mount_local(osb
))
1971 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1973 atomic_set(&os
->os_state
, ORPHAN_SCAN_ACTIVE
);
1974 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
1975 ocfs2_orphan_scan_timeout());
1979 struct ocfs2_orphan_filldir_priv
{
1980 struct dir_context ctx
;
1982 struct ocfs2_super
*osb
;
1985 static int ocfs2_orphan_filldir(void *priv
, const char *name
, int name_len
,
1986 loff_t pos
, u64 ino
, unsigned type
)
1988 struct ocfs2_orphan_filldir_priv
*p
= priv
;
1991 if (name_len
== 1 && !strncmp(".", name
, 1))
1993 if (name_len
== 2 && !strncmp("..", name
, 2))
1996 /* Skip bad inodes so that recovery can continue */
1997 iter
= ocfs2_iget(p
->osb
, ino
,
1998 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
2002 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter
)->ip_blkno
);
2003 /* No locking is required for the next_orphan queue as there
2004 * is only ever a single process doing orphan recovery. */
2005 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
2011 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
2013 struct inode
**head
)
2016 struct inode
*orphan_dir_inode
= NULL
;
2017 struct ocfs2_orphan_filldir_priv priv
= {
2018 .ctx
.actor
= ocfs2_orphan_filldir
,
2023 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
2024 ORPHAN_DIR_SYSTEM_INODE
,
2026 if (!orphan_dir_inode
) {
2032 mutex_lock(&orphan_dir_inode
->i_mutex
);
2033 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
2039 status
= ocfs2_dir_foreach(orphan_dir_inode
, &priv
.ctx
);
2048 ocfs2_inode_unlock(orphan_dir_inode
, 0);
2050 mutex_unlock(&orphan_dir_inode
->i_mutex
);
2051 iput(orphan_dir_inode
);
2055 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
2060 spin_lock(&osb
->osb_lock
);
2061 ret
= !osb
->osb_orphan_wipes
[slot
];
2062 spin_unlock(&osb
->osb_lock
);
2066 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
2069 spin_lock(&osb
->osb_lock
);
2070 /* Mark ourselves such that new processes in delete_inode()
2071 * know to quit early. */
2072 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2073 while (osb
->osb_orphan_wipes
[slot
]) {
2074 /* If any processes are already in the middle of an
2075 * orphan wipe on this dir, then we need to wait for
2077 spin_unlock(&osb
->osb_lock
);
2078 wait_event_interruptible(osb
->osb_wipe_event
,
2079 ocfs2_orphan_recovery_can_continue(osb
, slot
));
2080 spin_lock(&osb
->osb_lock
);
2082 spin_unlock(&osb
->osb_lock
);
2085 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
2088 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2092 * Orphan recovery. Each mounted node has it's own orphan dir which we
2093 * must run during recovery. Our strategy here is to build a list of
2094 * the inodes in the orphan dir and iget/iput them. The VFS does
2095 * (most) of the rest of the work.
2097 * Orphan recovery can happen at any time, not just mount so we have a
2098 * couple of extra considerations.
2100 * - We grab as many inodes as we can under the orphan dir lock -
2101 * doing iget() outside the orphan dir risks getting a reference on
2103 * - We must be sure not to deadlock with other processes on the
2104 * system wanting to run delete_inode(). This can happen when they go
2105 * to lock the orphan dir and the orphan recovery process attempts to
2106 * iget() inside the orphan dir lock. This can be avoided by
2107 * advertising our state to ocfs2_delete_inode().
2109 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
2113 struct inode
*inode
= NULL
;
2115 struct ocfs2_inode_info
*oi
;
2117 trace_ocfs2_recover_orphans(slot
);
2119 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
2120 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
2121 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
2123 /* Error here should be noted, but we want to continue with as
2124 * many queued inodes as we've got. */
2129 oi
= OCFS2_I(inode
);
2130 trace_ocfs2_recover_orphans_iput(
2131 (unsigned long long)oi
->ip_blkno
);
2133 iter
= oi
->ip_next_orphan
;
2135 spin_lock(&oi
->ip_lock
);
2136 /* Set the proper information to get us going into
2137 * ocfs2_delete_inode. */
2138 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2139 spin_unlock(&oi
->ip_lock
);
2149 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2151 /* This check is good because ocfs2 will wait on our recovery
2152 * thread before changing it to something other than MOUNTED
2154 wait_event(osb
->osb_mount_event
,
2155 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2156 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2157 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2159 /* If there's an error on mount, then we may never get to the
2160 * MOUNTED flag, but this is set right before
2161 * dismount_volume() so we can trust it. */
2162 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2163 trace_ocfs2_wait_on_mount(VOLUME_DISABLED
);
2164 mlog(0, "mount error, exiting!\n");
2171 static int ocfs2_commit_thread(void *arg
)
2174 struct ocfs2_super
*osb
= arg
;
2175 struct ocfs2_journal
*journal
= osb
->journal
;
2177 /* we can trust j_num_trans here because _should_stop() is only set in
2178 * shutdown and nobody other than ourselves should be able to start
2179 * transactions. committing on shutdown might take a few iterations
2180 * as final transactions put deleted inodes on the list */
2181 while (!(kthread_should_stop() &&
2182 atomic_read(&journal
->j_num_trans
) == 0)) {
2184 wait_event_interruptible(osb
->checkpoint_event
,
2185 atomic_read(&journal
->j_num_trans
)
2186 || kthread_should_stop());
2188 status
= ocfs2_commit_cache(osb
);
2190 static unsigned long abort_warn_time
;
2192 /* Warn about this once per minute */
2193 if (printk_timed_ratelimit(&abort_warn_time
, 60*HZ
))
2194 mlog(ML_ERROR
, "status = %d, journal is "
2195 "already aborted.\n", status
);
2197 * After ocfs2_commit_cache() fails, j_num_trans has a
2198 * non-zero value. Sleep here to avoid a busy-wait
2201 msleep_interruptible(1000);
2204 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2206 "commit_thread: %u transactions pending on "
2208 atomic_read(&journal
->j_num_trans
));
2215 /* Reads all the journal inodes without taking any cluster locks. Used
2216 * for hard readonly access to determine whether any journal requires
2217 * recovery. Also used to refresh the recovery generation numbers after
2218 * a journal has been recovered by another node.
2220 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2224 struct buffer_head
*di_bh
= NULL
;
2225 struct ocfs2_dinode
*di
;
2226 int journal_dirty
= 0;
2228 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2229 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2235 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2237 osb
->slot_recovery_generations
[slot
] =
2238 ocfs2_get_recovery_generation(di
);
2240 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2241 OCFS2_JOURNAL_DIRTY_FL
)