2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_inode_item.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_error.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
40 #include "xfs_dinode.h"
42 #include <linux/aio.h>
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
47 static const struct vm_operations_struct xfs_file_vm_ops
;
50 * Locking primitives for read and write IO paths to ensure we consistently use
51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
58 if (type
& XFS_IOLOCK_EXCL
)
59 mutex_lock(&VFS_I(ip
)->i_mutex
);
68 xfs_iunlock(ip
, type
);
69 if (type
& XFS_IOLOCK_EXCL
)
70 mutex_unlock(&VFS_I(ip
)->i_mutex
);
78 xfs_ilock_demote(ip
, type
);
79 if (type
& XFS_IOLOCK_EXCL
)
80 mutex_unlock(&VFS_I(ip
)->i_mutex
);
86 * xfs_iozero clears the specified range of buffer supplied,
87 * and marks all the affected blocks as valid and modified. If
88 * an affected block is not allocated, it will be allocated. If
89 * an affected block is not completely overwritten, and is not
90 * valid before the operation, it will be read from disk before
91 * being partially zeroed.
95 struct xfs_inode
*ip
, /* inode */
96 loff_t pos
, /* offset in file */
97 size_t count
) /* size of data to zero */
100 struct address_space
*mapping
;
103 mapping
= VFS_I(ip
)->i_mapping
;
105 unsigned offset
, bytes
;
108 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
109 bytes
= PAGE_CACHE_SIZE
- offset
;
113 status
= pagecache_write_begin(NULL
, mapping
, pos
, bytes
,
114 AOP_FLAG_UNINTERRUPTIBLE
,
119 zero_user(page
, offset
, bytes
);
121 status
= pagecache_write_end(NULL
, mapping
, pos
, bytes
, bytes
,
123 WARN_ON(status
<= 0); /* can't return less than zero! */
133 * Fsync operations on directories are much simpler than on regular files,
134 * as there is no file data to flush, and thus also no need for explicit
135 * cache flush operations, and there are no non-transaction metadata updates
136 * on directories either.
145 struct xfs_inode
*ip
= XFS_I(file
->f_mapping
->host
);
146 struct xfs_mount
*mp
= ip
->i_mount
;
149 trace_xfs_dir_fsync(ip
);
151 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
152 if (xfs_ipincount(ip
))
153 lsn
= ip
->i_itemp
->ili_last_lsn
;
154 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
158 return -_xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, NULL
);
168 struct inode
*inode
= file
->f_mapping
->host
;
169 struct xfs_inode
*ip
= XFS_I(inode
);
170 struct xfs_mount
*mp
= ip
->i_mount
;
175 trace_xfs_file_fsync(ip
);
177 error
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
181 if (XFS_FORCED_SHUTDOWN(mp
))
182 return -XFS_ERROR(EIO
);
184 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
186 if (mp
->m_flags
& XFS_MOUNT_BARRIER
) {
188 * If we have an RT and/or log subvolume we need to make sure
189 * to flush the write cache the device used for file data
190 * first. This is to ensure newly written file data make
191 * it to disk before logging the new inode size in case of
192 * an extending write.
194 if (XFS_IS_REALTIME_INODE(ip
))
195 xfs_blkdev_issue_flush(mp
->m_rtdev_targp
);
196 else if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
197 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
201 * All metadata updates are logged, which means that we just have
202 * to flush the log up to the latest LSN that touched the inode.
204 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
205 if (xfs_ipincount(ip
)) {
207 (ip
->i_itemp
->ili_fields
& ~XFS_ILOG_TIMESTAMP
))
208 lsn
= ip
->i_itemp
->ili_last_lsn
;
210 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
213 error
= _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, &log_flushed
);
216 * If we only have a single device, and the log force about was
217 * a no-op we might have to flush the data device cache here.
218 * This can only happen for fdatasync/O_DSYNC if we were overwriting
219 * an already allocated file and thus do not have any metadata to
222 if ((mp
->m_flags
& XFS_MOUNT_BARRIER
) &&
223 mp
->m_logdev_targp
== mp
->m_ddev_targp
&&
224 !XFS_IS_REALTIME_INODE(ip
) &&
226 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
236 struct file
*file
= iocb
->ki_filp
;
237 struct inode
*inode
= file
->f_mapping
->host
;
238 struct xfs_inode
*ip
= XFS_I(inode
);
239 struct xfs_mount
*mp
= ip
->i_mount
;
240 size_t size
= iov_iter_count(to
);
244 loff_t pos
= iocb
->ki_pos
;
246 XFS_STATS_INC(xs_read_calls
);
248 if (unlikely(file
->f_flags
& O_DIRECT
))
249 ioflags
|= IO_ISDIRECT
;
250 if (file
->f_mode
& FMODE_NOCMTIME
)
253 if (unlikely(ioflags
& IO_ISDIRECT
)) {
254 xfs_buftarg_t
*target
=
255 XFS_IS_REALTIME_INODE(ip
) ?
256 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
257 /* DIO must be aligned to device logical sector size */
258 if ((pos
| size
) & target
->bt_logical_sectormask
) {
259 if (pos
== i_size_read(inode
))
261 return -XFS_ERROR(EINVAL
);
265 n
= mp
->m_super
->s_maxbytes
- pos
;
266 if (n
<= 0 || size
== 0)
272 if (XFS_FORCED_SHUTDOWN(mp
))
276 * Locking is a bit tricky here. If we take an exclusive lock
277 * for direct IO, we effectively serialise all new concurrent
278 * read IO to this file and block it behind IO that is currently in
279 * progress because IO in progress holds the IO lock shared. We only
280 * need to hold the lock exclusive to blow away the page cache, so
281 * only take lock exclusively if the page cache needs invalidation.
282 * This allows the normal direct IO case of no page cache pages to
283 * proceeed concurrently without serialisation.
285 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
286 if ((ioflags
& IO_ISDIRECT
) && inode
->i_mapping
->nrpages
) {
287 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
288 xfs_rw_ilock(ip
, XFS_IOLOCK_EXCL
);
290 if (inode
->i_mapping
->nrpages
) {
291 ret
= filemap_write_and_wait_range(
292 VFS_I(ip
)->i_mapping
,
295 xfs_rw_iunlock(ip
, XFS_IOLOCK_EXCL
);
298 truncate_pagecache_range(VFS_I(ip
), pos
, -1);
300 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
303 trace_xfs_file_read(ip
, size
, pos
, ioflags
);
305 ret
= generic_file_read_iter(iocb
, to
);
307 XFS_STATS_ADD(xs_read_bytes
, ret
);
309 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
314 xfs_file_splice_read(
317 struct pipe_inode_info
*pipe
,
321 struct xfs_inode
*ip
= XFS_I(infilp
->f_mapping
->host
);
325 XFS_STATS_INC(xs_read_calls
);
327 if (infilp
->f_mode
& FMODE_NOCMTIME
)
330 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
333 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
335 trace_xfs_file_splice_read(ip
, count
, *ppos
, ioflags
);
337 ret
= generic_file_splice_read(infilp
, ppos
, pipe
, count
, flags
);
339 XFS_STATS_ADD(xs_read_bytes
, ret
);
341 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
346 * This routine is called to handle zeroing any space in the last block of the
347 * file that is beyond the EOF. We do this since the size is being increased
348 * without writing anything to that block and we don't want to read the
349 * garbage on the disk.
351 STATIC
int /* error (positive) */
353 struct xfs_inode
*ip
,
357 struct xfs_mount
*mp
= ip
->i_mount
;
358 xfs_fileoff_t last_fsb
= XFS_B_TO_FSBT(mp
, isize
);
359 int zero_offset
= XFS_B_FSB_OFFSET(mp
, isize
);
363 struct xfs_bmbt_irec imap
;
365 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
366 error
= xfs_bmapi_read(ip
, last_fsb
, 1, &imap
, &nimaps
, 0);
367 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
374 * If the block underlying isize is just a hole, then there
375 * is nothing to zero.
377 if (imap
.br_startblock
== HOLESTARTBLOCK
)
380 zero_len
= mp
->m_sb
.sb_blocksize
- zero_offset
;
381 if (isize
+ zero_len
> offset
)
382 zero_len
= offset
- isize
;
383 return xfs_iozero(ip
, isize
, zero_len
);
387 * Zero any on disk space between the current EOF and the new, larger EOF.
389 * This handles the normal case of zeroing the remainder of the last block in
390 * the file and the unusual case of zeroing blocks out beyond the size of the
391 * file. This second case only happens with fixed size extents and when the
392 * system crashes before the inode size was updated but after blocks were
395 * Expects the iolock to be held exclusive, and will take the ilock internally.
397 int /* error (positive) */
399 struct xfs_inode
*ip
,
400 xfs_off_t offset
, /* starting I/O offset */
401 xfs_fsize_t isize
) /* current inode size */
403 struct xfs_mount
*mp
= ip
->i_mount
;
404 xfs_fileoff_t start_zero_fsb
;
405 xfs_fileoff_t end_zero_fsb
;
406 xfs_fileoff_t zero_count_fsb
;
407 xfs_fileoff_t last_fsb
;
408 xfs_fileoff_t zero_off
;
409 xfs_fsize_t zero_len
;
412 struct xfs_bmbt_irec imap
;
414 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
415 ASSERT(offset
> isize
);
418 * First handle zeroing the block on which isize resides.
420 * We only zero a part of that block so it is handled specially.
422 if (XFS_B_FSB_OFFSET(mp
, isize
) != 0) {
423 error
= xfs_zero_last_block(ip
, offset
, isize
);
429 * Calculate the range between the new size and the old where blocks
430 * needing to be zeroed may exist.
432 * To get the block where the last byte in the file currently resides,
433 * we need to subtract one from the size and truncate back to a block
434 * boundary. We subtract 1 in case the size is exactly on a block
437 last_fsb
= isize
? XFS_B_TO_FSBT(mp
, isize
- 1) : (xfs_fileoff_t
)-1;
438 start_zero_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
439 end_zero_fsb
= XFS_B_TO_FSBT(mp
, offset
- 1);
440 ASSERT((xfs_sfiloff_t
)last_fsb
< (xfs_sfiloff_t
)start_zero_fsb
);
441 if (last_fsb
== end_zero_fsb
) {
443 * The size was only incremented on its last block.
444 * We took care of that above, so just return.
449 ASSERT(start_zero_fsb
<= end_zero_fsb
);
450 while (start_zero_fsb
<= end_zero_fsb
) {
452 zero_count_fsb
= end_zero_fsb
- start_zero_fsb
+ 1;
454 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
455 error
= xfs_bmapi_read(ip
, start_zero_fsb
, zero_count_fsb
,
457 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
463 if (imap
.br_state
== XFS_EXT_UNWRITTEN
||
464 imap
.br_startblock
== HOLESTARTBLOCK
) {
465 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
466 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
471 * There are blocks we need to zero.
473 zero_off
= XFS_FSB_TO_B(mp
, start_zero_fsb
);
474 zero_len
= XFS_FSB_TO_B(mp
, imap
.br_blockcount
);
476 if ((zero_off
+ zero_len
) > offset
)
477 zero_len
= offset
- zero_off
;
479 error
= xfs_iozero(ip
, zero_off
, zero_len
);
483 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
484 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
491 * Common pre-write limit and setup checks.
493 * Called with the iolocked held either shared and exclusive according to
494 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
495 * if called for a direct write beyond i_size.
498 xfs_file_aio_write_checks(
504 struct inode
*inode
= file
->f_mapping
->host
;
505 struct xfs_inode
*ip
= XFS_I(inode
);
509 error
= generic_write_checks(file
, pos
, count
, S_ISBLK(inode
->i_mode
));
514 * If the offset is beyond the size of the file, we need to zero any
515 * blocks that fall between the existing EOF and the start of this
516 * write. If zeroing is needed and we are currently holding the
517 * iolock shared, we need to update it to exclusive which implies
518 * having to redo all checks before.
520 if (*pos
> i_size_read(inode
)) {
521 if (*iolock
== XFS_IOLOCK_SHARED
) {
522 xfs_rw_iunlock(ip
, *iolock
);
523 *iolock
= XFS_IOLOCK_EXCL
;
524 xfs_rw_ilock(ip
, *iolock
);
527 error
= -xfs_zero_eof(ip
, *pos
, i_size_read(inode
));
533 * Updating the timestamps will grab the ilock again from
534 * xfs_fs_dirty_inode, so we have to call it after dropping the
535 * lock above. Eventually we should look into a way to avoid
536 * the pointless lock roundtrip.
538 if (likely(!(file
->f_mode
& FMODE_NOCMTIME
))) {
539 error
= file_update_time(file
);
545 * If we're writing the file then make sure to clear the setuid and
546 * setgid bits if the process is not being run by root. This keeps
547 * people from modifying setuid and setgid binaries.
549 return file_remove_suid(file
);
553 * xfs_file_dio_aio_write - handle direct IO writes
555 * Lock the inode appropriately to prepare for and issue a direct IO write.
556 * By separating it from the buffered write path we remove all the tricky to
557 * follow locking changes and looping.
559 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
560 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
561 * pages are flushed out.
563 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
564 * allowing them to be done in parallel with reads and other direct IO writes.
565 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
566 * needs to do sub-block zeroing and that requires serialisation against other
567 * direct IOs to the same block. In this case we need to serialise the
568 * submission of the unaligned IOs so that we don't get racing block zeroing in
569 * the dio layer. To avoid the problem with aio, we also need to wait for
570 * outstanding IOs to complete so that unwritten extent conversion is completed
571 * before we try to map the overlapping block. This is currently implemented by
572 * hitting it with a big hammer (i.e. inode_dio_wait()).
574 * Returns with locks held indicated by @iolock and errors indicated by
575 * negative return values.
578 xfs_file_dio_aio_write(
580 struct iov_iter
*from
)
582 struct file
*file
= iocb
->ki_filp
;
583 struct address_space
*mapping
= file
->f_mapping
;
584 struct inode
*inode
= mapping
->host
;
585 struct xfs_inode
*ip
= XFS_I(inode
);
586 struct xfs_mount
*mp
= ip
->i_mount
;
588 int unaligned_io
= 0;
590 size_t count
= iov_iter_count(from
);
591 loff_t pos
= iocb
->ki_pos
;
592 struct xfs_buftarg
*target
= XFS_IS_REALTIME_INODE(ip
) ?
593 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
595 /* DIO must be aligned to device logical sector size */
596 if ((pos
| count
) & target
->bt_logical_sectormask
)
597 return -XFS_ERROR(EINVAL
);
599 /* "unaligned" here means not aligned to a filesystem block */
600 if ((pos
& mp
->m_blockmask
) || ((pos
+ count
) & mp
->m_blockmask
))
604 * We don't need to take an exclusive lock unless there page cache needs
605 * to be invalidated or unaligned IO is being executed. We don't need to
606 * consider the EOF extension case here because
607 * xfs_file_aio_write_checks() will relock the inode as necessary for
608 * EOF zeroing cases and fill out the new inode size as appropriate.
610 if (unaligned_io
|| mapping
->nrpages
)
611 iolock
= XFS_IOLOCK_EXCL
;
613 iolock
= XFS_IOLOCK_SHARED
;
614 xfs_rw_ilock(ip
, iolock
);
617 * Recheck if there are cached pages that need invalidate after we got
618 * the iolock to protect against other threads adding new pages while
619 * we were waiting for the iolock.
621 if (mapping
->nrpages
&& iolock
== XFS_IOLOCK_SHARED
) {
622 xfs_rw_iunlock(ip
, iolock
);
623 iolock
= XFS_IOLOCK_EXCL
;
624 xfs_rw_ilock(ip
, iolock
);
627 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, &iolock
);
630 iov_iter_truncate(from
, count
);
632 if (mapping
->nrpages
) {
633 ret
= filemap_write_and_wait_range(VFS_I(ip
)->i_mapping
,
637 truncate_pagecache_range(VFS_I(ip
), pos
, -1);
641 * If we are doing unaligned IO, wait for all other IO to drain,
642 * otherwise demote the lock if we had to flush cached pages
645 inode_dio_wait(inode
);
646 else if (iolock
== XFS_IOLOCK_EXCL
) {
647 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
648 iolock
= XFS_IOLOCK_SHARED
;
651 trace_xfs_file_direct_write(ip
, count
, iocb
->ki_pos
, 0);
652 ret
= generic_file_direct_write(iocb
, from
, pos
);
655 xfs_rw_iunlock(ip
, iolock
);
657 /* No fallback to buffered IO on errors for XFS. */
658 ASSERT(ret
< 0 || ret
== count
);
663 xfs_file_buffered_aio_write(
665 struct iov_iter
*from
)
667 struct file
*file
= iocb
->ki_filp
;
668 struct address_space
*mapping
= file
->f_mapping
;
669 struct inode
*inode
= mapping
->host
;
670 struct xfs_inode
*ip
= XFS_I(inode
);
673 int iolock
= XFS_IOLOCK_EXCL
;
674 loff_t pos
= iocb
->ki_pos
;
675 size_t count
= iov_iter_count(from
);
677 xfs_rw_ilock(ip
, iolock
);
679 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, &iolock
);
683 iov_iter_truncate(from
, count
);
684 /* We can write back this queue in page reclaim */
685 current
->backing_dev_info
= mapping
->backing_dev_info
;
688 trace_xfs_file_buffered_write(ip
, count
, iocb
->ki_pos
, 0);
689 ret
= generic_perform_write(file
, from
, pos
);
690 if (likely(ret
>= 0))
691 iocb
->ki_pos
= pos
+ ret
;
693 * If we just got an ENOSPC, try to write back all dirty inodes to
694 * convert delalloc space to free up some of the excess reserved
697 if (ret
== -ENOSPC
&& !enospc
) {
699 xfs_flush_inodes(ip
->i_mount
);
703 current
->backing_dev_info
= NULL
;
705 xfs_rw_iunlock(ip
, iolock
);
712 struct iov_iter
*from
)
714 struct file
*file
= iocb
->ki_filp
;
715 struct address_space
*mapping
= file
->f_mapping
;
716 struct inode
*inode
= mapping
->host
;
717 struct xfs_inode
*ip
= XFS_I(inode
);
719 size_t ocount
= iov_iter_count(from
);
721 XFS_STATS_INC(xs_write_calls
);
726 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
729 if (unlikely(file
->f_flags
& O_DIRECT
))
730 ret
= xfs_file_dio_aio_write(iocb
, from
);
732 ret
= xfs_file_buffered_aio_write(iocb
, from
);
737 XFS_STATS_ADD(xs_write_bytes
, ret
);
739 /* Handle various SYNC-type writes */
740 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
754 struct inode
*inode
= file_inode(file
);
755 struct xfs_inode
*ip
= XFS_I(inode
);
756 struct xfs_trans
*tp
;
760 if (!S_ISREG(inode
->i_mode
))
762 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
|
763 FALLOC_FL_COLLAPSE_RANGE
| FALLOC_FL_ZERO_RANGE
))
766 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
767 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
768 error
= xfs_free_file_space(ip
, offset
, len
);
771 } else if (mode
& FALLOC_FL_COLLAPSE_RANGE
) {
772 unsigned blksize_mask
= (1 << inode
->i_blkbits
) - 1;
774 if (offset
& blksize_mask
|| len
& blksize_mask
) {
780 * There is no need to overlap collapse range with EOF,
781 * in which case it is effectively a truncate operation
783 if (offset
+ len
>= i_size_read(inode
)) {
788 new_size
= i_size_read(inode
) - len
;
790 error
= xfs_collapse_file_space(ip
, offset
, len
);
794 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
795 offset
+ len
> i_size_read(inode
)) {
796 new_size
= offset
+ len
;
797 error
= -inode_newsize_ok(inode
, new_size
);
802 if (mode
& FALLOC_FL_ZERO_RANGE
)
803 error
= xfs_zero_file_space(ip
, offset
, len
);
805 error
= xfs_alloc_file_space(ip
, offset
, len
,
811 tp
= xfs_trans_alloc(ip
->i_mount
, XFS_TRANS_WRITEID
);
812 error
= xfs_trans_reserve(tp
, &M_RES(ip
->i_mount
)->tr_writeid
, 0, 0);
814 xfs_trans_cancel(tp
, 0);
818 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
819 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
820 ip
->i_d
.di_mode
&= ~S_ISUID
;
821 if (ip
->i_d
.di_mode
& S_IXGRP
)
822 ip
->i_d
.di_mode
&= ~S_ISGID
;
824 if (!(mode
& (FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_COLLAPSE_RANGE
)))
825 ip
->i_d
.di_flags
|= XFS_DIFLAG_PREALLOC
;
827 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
828 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
830 if (file
->f_flags
& O_DSYNC
)
831 xfs_trans_set_sync(tp
);
832 error
= xfs_trans_commit(tp
, 0);
836 /* Change file size if needed */
840 iattr
.ia_valid
= ATTR_SIZE
;
841 iattr
.ia_size
= new_size
;
842 error
= xfs_setattr_size(ip
, &iattr
);
846 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
856 if (!(file
->f_flags
& O_LARGEFILE
) && i_size_read(inode
) > MAX_NON_LFS
)
858 if (XFS_FORCED_SHUTDOWN(XFS_M(inode
->i_sb
)))
868 struct xfs_inode
*ip
= XFS_I(inode
);
872 error
= xfs_file_open(inode
, file
);
877 * If there are any blocks, read-ahead block 0 as we're almost
878 * certain to have the next operation be a read there.
880 mode
= xfs_ilock_data_map_shared(ip
);
881 if (ip
->i_d
.di_nextents
> 0)
882 xfs_dir3_data_readahead(ip
, 0, -1);
883 xfs_iunlock(ip
, mode
);
892 return -xfs_release(XFS_I(inode
));
898 struct dir_context
*ctx
)
900 struct inode
*inode
= file_inode(file
);
901 xfs_inode_t
*ip
= XFS_I(inode
);
906 * The Linux API doesn't pass down the total size of the buffer
907 * we read into down to the filesystem. With the filldir concept
908 * it's not needed for correct information, but the XFS dir2 leaf
909 * code wants an estimate of the buffer size to calculate it's
910 * readahead window and size the buffers used for mapping to
913 * Try to give it an estimate that's good enough, maybe at some
914 * point we can change the ->readdir prototype to include the
915 * buffer size. For now we use the current glibc buffer size.
917 bufsize
= (size_t)min_t(loff_t
, 32768, ip
->i_d
.di_size
);
919 error
= xfs_readdir(ip
, ctx
, bufsize
);
928 struct vm_area_struct
*vma
)
930 vma
->vm_ops
= &xfs_file_vm_ops
;
937 * mmap()d file has taken write protection fault and is being made
938 * writable. We can set the page state up correctly for a writable
939 * page, which means we can do correct delalloc accounting (ENOSPC
940 * checking!) and unwritten extent mapping.
944 struct vm_area_struct
*vma
,
945 struct vm_fault
*vmf
)
947 return block_page_mkwrite(vma
, vmf
, xfs_get_blocks
);
951 * This type is designed to indicate the type of offset we would like
952 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
960 * Lookup the desired type of offset from the given page.
962 * On success, return true and the offset argument will point to the
963 * start of the region that was found. Otherwise this function will
964 * return false and keep the offset argument unchanged.
967 xfs_lookup_buffer_offset(
972 loff_t lastoff
= page_offset(page
);
974 struct buffer_head
*bh
, *head
;
976 bh
= head
= page_buffers(page
);
979 * Unwritten extents that have data in the page
980 * cache covering them can be identified by the
981 * BH_Unwritten state flag. Pages with multiple
982 * buffers might have a mix of holes, data and
983 * unwritten extents - any buffer with valid
984 * data in it should have BH_Uptodate flag set
987 if (buffer_unwritten(bh
) ||
988 buffer_uptodate(bh
)) {
989 if (type
== DATA_OFF
)
992 if (type
== HOLE_OFF
)
1000 lastoff
+= bh
->b_size
;
1001 } while ((bh
= bh
->b_this_page
) != head
);
1007 * This routine is called to find out and return a data or hole offset
1008 * from the page cache for unwritten extents according to the desired
1009 * type for xfs_seek_data() or xfs_seek_hole().
1011 * The argument offset is used to tell where we start to search from the
1012 * page cache. Map is used to figure out the end points of the range to
1015 * Return true if the desired type of offset was found, and the argument
1016 * offset is filled with that address. Otherwise, return false and keep
1020 xfs_find_get_desired_pgoff(
1021 struct inode
*inode
,
1022 struct xfs_bmbt_irec
*map
,
1026 struct xfs_inode
*ip
= XFS_I(inode
);
1027 struct xfs_mount
*mp
= ip
->i_mount
;
1028 struct pagevec pvec
;
1032 loff_t startoff
= *offset
;
1033 loff_t lastoff
= startoff
;
1036 pagevec_init(&pvec
, 0);
1038 index
= startoff
>> PAGE_CACHE_SHIFT
;
1039 endoff
= XFS_FSB_TO_B(mp
, map
->br_startoff
+ map
->br_blockcount
);
1040 end
= endoff
>> PAGE_CACHE_SHIFT
;
1046 want
= min_t(pgoff_t
, end
- index
, PAGEVEC_SIZE
);
1047 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, index
,
1050 * No page mapped into given range. If we are searching holes
1051 * and if this is the first time we got into the loop, it means
1052 * that the given offset is landed in a hole, return it.
1054 * If we have already stepped through some block buffers to find
1055 * holes but they all contains data. In this case, the last
1056 * offset is already updated and pointed to the end of the last
1057 * mapped page, if it does not reach the endpoint to search,
1058 * that means there should be a hole between them.
1060 if (nr_pages
== 0) {
1061 /* Data search found nothing */
1062 if (type
== DATA_OFF
)
1065 ASSERT(type
== HOLE_OFF
);
1066 if (lastoff
== startoff
|| lastoff
< endoff
) {
1074 * At lease we found one page. If this is the first time we
1075 * step into the loop, and if the first page index offset is
1076 * greater than the given search offset, a hole was found.
1078 if (type
== HOLE_OFF
&& lastoff
== startoff
&&
1079 lastoff
< page_offset(pvec
.pages
[0])) {
1084 for (i
= 0; i
< nr_pages
; i
++) {
1085 struct page
*page
= pvec
.pages
[i
];
1089 * At this point, the page may be truncated or
1090 * invalidated (changing page->mapping to NULL),
1091 * or even swizzled back from swapper_space to tmpfs
1092 * file mapping. However, page->index will not change
1093 * because we have a reference on the page.
1095 * Searching done if the page index is out of range.
1096 * If the current offset is not reaches the end of
1097 * the specified search range, there should be a hole
1100 if (page
->index
> end
) {
1101 if (type
== HOLE_OFF
&& lastoff
< endoff
) {
1110 * Page truncated or invalidated(page->mapping == NULL).
1111 * We can freely skip it and proceed to check the next
1114 if (unlikely(page
->mapping
!= inode
->i_mapping
)) {
1119 if (!page_has_buffers(page
)) {
1124 found
= xfs_lookup_buffer_offset(page
, &b_offset
, type
);
1127 * The found offset may be less than the start
1128 * point to search if this is the first time to
1131 *offset
= max_t(loff_t
, startoff
, b_offset
);
1137 * We either searching data but nothing was found, or
1138 * searching hole but found a data buffer. In either
1139 * case, probably the next page contains the desired
1140 * things, update the last offset to it so.
1142 lastoff
= page_offset(page
) + PAGE_SIZE
;
1147 * The number of returned pages less than our desired, search
1148 * done. In this case, nothing was found for searching data,
1149 * but we found a hole behind the last offset.
1151 if (nr_pages
< want
) {
1152 if (type
== HOLE_OFF
) {
1159 index
= pvec
.pages
[i
- 1]->index
+ 1;
1160 pagevec_release(&pvec
);
1161 } while (index
<= end
);
1164 pagevec_release(&pvec
);
1173 struct inode
*inode
= file
->f_mapping
->host
;
1174 struct xfs_inode
*ip
= XFS_I(inode
);
1175 struct xfs_mount
*mp
= ip
->i_mount
;
1176 loff_t
uninitialized_var(offset
);
1178 xfs_fileoff_t fsbno
;
1183 lock
= xfs_ilock_data_map_shared(ip
);
1185 isize
= i_size_read(inode
);
1186 if (start
>= isize
) {
1192 * Try to read extents from the first block indicated
1193 * by fsbno to the end block of the file.
1195 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1196 end
= XFS_B_TO_FSB(mp
, isize
);
1198 struct xfs_bmbt_irec map
[2];
1202 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1207 /* No extents at given offset, must be beyond EOF */
1213 for (i
= 0; i
< nmap
; i
++) {
1214 offset
= max_t(loff_t
, start
,
1215 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1217 /* Landed in a data extent */
1218 if (map
[i
].br_startblock
== DELAYSTARTBLOCK
||
1219 (map
[i
].br_state
== XFS_EXT_NORM
&&
1220 !isnullstartblock(map
[i
].br_startblock
)))
1224 * Landed in an unwritten extent, try to search data
1227 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1228 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1235 * map[0] is hole or its an unwritten extent but
1236 * without data in page cache. Probably means that
1237 * we are reading after EOF if nothing in map[1].
1247 * Nothing was found, proceed to the next round of search
1248 * if reading offset not beyond or hit EOF.
1250 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1251 start
= XFS_FSB_TO_B(mp
, fsbno
);
1252 if (start
>= isize
) {
1259 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
1262 xfs_iunlock(ip
, lock
);
1274 struct inode
*inode
= file
->f_mapping
->host
;
1275 struct xfs_inode
*ip
= XFS_I(inode
);
1276 struct xfs_mount
*mp
= ip
->i_mount
;
1277 loff_t
uninitialized_var(offset
);
1279 xfs_fileoff_t fsbno
;
1284 if (XFS_FORCED_SHUTDOWN(mp
))
1285 return -XFS_ERROR(EIO
);
1287 lock
= xfs_ilock_data_map_shared(ip
);
1289 isize
= i_size_read(inode
);
1290 if (start
>= isize
) {
1295 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1296 end
= XFS_B_TO_FSB(mp
, isize
);
1299 struct xfs_bmbt_irec map
[2];
1303 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1308 /* No extents at given offset, must be beyond EOF */
1314 for (i
= 0; i
< nmap
; i
++) {
1315 offset
= max_t(loff_t
, start
,
1316 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1318 /* Landed in a hole */
1319 if (map
[i
].br_startblock
== HOLESTARTBLOCK
)
1323 * Landed in an unwritten extent, try to search hole
1326 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1327 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1334 * map[0] contains data or its unwritten but contains
1335 * data in page cache, probably means that we are
1336 * reading after EOF. We should fix offset to point
1337 * to the end of the file(i.e., there is an implicit
1338 * hole at the end of any file).
1348 * Both mappings contains data, proceed to the next round of
1349 * search if the current reading offset not beyond or hit EOF.
1351 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1352 start
= XFS_FSB_TO_B(mp
, fsbno
);
1353 if (start
>= isize
) {
1361 * At this point, we must have found a hole. However, the returned
1362 * offset may be bigger than the file size as it may be aligned to
1363 * page boundary for unwritten extents, we need to deal with this
1364 * situation in particular.
1366 offset
= min_t(loff_t
, offset
, isize
);
1367 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
1370 xfs_iunlock(ip
, lock
);
1387 return generic_file_llseek(file
, offset
, origin
);
1389 return xfs_seek_data(file
, offset
);
1391 return xfs_seek_hole(file
, offset
);
1397 const struct file_operations xfs_file_operations
= {
1398 .llseek
= xfs_file_llseek
,
1399 .read
= new_sync_read
,
1400 .write
= new_sync_write
,
1401 .read_iter
= xfs_file_read_iter
,
1402 .write_iter
= xfs_file_write_iter
,
1403 .splice_read
= xfs_file_splice_read
,
1404 .splice_write
= iter_file_splice_write
,
1405 .unlocked_ioctl
= xfs_file_ioctl
,
1406 #ifdef CONFIG_COMPAT
1407 .compat_ioctl
= xfs_file_compat_ioctl
,
1409 .mmap
= xfs_file_mmap
,
1410 .open
= xfs_file_open
,
1411 .release
= xfs_file_release
,
1412 .fsync
= xfs_file_fsync
,
1413 .fallocate
= xfs_file_fallocate
,
1416 const struct file_operations xfs_dir_file_operations
= {
1417 .open
= xfs_dir_open
,
1418 .read
= generic_read_dir
,
1419 .iterate
= xfs_file_readdir
,
1420 .llseek
= generic_file_llseek
,
1421 .unlocked_ioctl
= xfs_file_ioctl
,
1422 #ifdef CONFIG_COMPAT
1423 .compat_ioctl
= xfs_file_compat_ioctl
,
1425 .fsync
= xfs_dir_fsync
,
1428 static const struct vm_operations_struct xfs_file_vm_ops
= {
1429 .fault
= filemap_fault
,
1430 .map_pages
= filemap_map_pages
,
1431 .page_mkwrite
= xfs_vm_page_mkwrite
,
1432 .remap_pages
= generic_file_remap_pages
,