2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
28 #include "xfs_mount.h"
29 #include "xfs_inode.h"
30 #include "xfs_btree.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_error.h"
37 #include "xfs_cksum.h"
38 #include "xfs_trans.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_icreate_item.h"
41 #include "xfs_icache.h"
42 #include "xfs_dinode.h"
43 #include "xfs_trace.h"
47 * Allocation group level functions.
50 xfs_ialloc_cluster_alignment(
51 xfs_alloc_arg_t
*args
)
53 if (xfs_sb_version_hasalign(&args
->mp
->m_sb
) &&
54 args
->mp
->m_sb
.sb_inoalignmt
>=
55 XFS_B_TO_FSBT(args
->mp
, args
->mp
->m_inode_cluster_size
))
56 return args
->mp
->m_sb
.sb_inoalignmt
;
61 * Lookup a record by ino in the btree given by cur.
65 struct xfs_btree_cur
*cur
, /* btree cursor */
66 xfs_agino_t ino
, /* starting inode of chunk */
67 xfs_lookup_t dir
, /* <=, >=, == */
68 int *stat
) /* success/failure */
70 cur
->bc_rec
.i
.ir_startino
= ino
;
71 cur
->bc_rec
.i
.ir_freecount
= 0;
72 cur
->bc_rec
.i
.ir_free
= 0;
73 return xfs_btree_lookup(cur
, dir
, stat
);
77 * Update the record referred to by cur to the value given.
78 * This either works (return 0) or gets an EFSCORRUPTED error.
80 STATIC
int /* error */
82 struct xfs_btree_cur
*cur
, /* btree cursor */
83 xfs_inobt_rec_incore_t
*irec
) /* btree record */
85 union xfs_btree_rec rec
;
87 rec
.inobt
.ir_startino
= cpu_to_be32(irec
->ir_startino
);
88 rec
.inobt
.ir_freecount
= cpu_to_be32(irec
->ir_freecount
);
89 rec
.inobt
.ir_free
= cpu_to_be64(irec
->ir_free
);
90 return xfs_btree_update(cur
, &rec
);
94 * Get the data from the pointed-to record.
98 struct xfs_btree_cur
*cur
, /* btree cursor */
99 xfs_inobt_rec_incore_t
*irec
, /* btree record */
100 int *stat
) /* output: success/failure */
102 union xfs_btree_rec
*rec
;
105 error
= xfs_btree_get_rec(cur
, &rec
, stat
);
106 if (!error
&& *stat
== 1) {
107 irec
->ir_startino
= be32_to_cpu(rec
->inobt
.ir_startino
);
108 irec
->ir_freecount
= be32_to_cpu(rec
->inobt
.ir_freecount
);
109 irec
->ir_free
= be64_to_cpu(rec
->inobt
.ir_free
);
115 * Insert a single inobt record. Cursor must already point to desired location.
118 xfs_inobt_insert_rec(
119 struct xfs_btree_cur
*cur
,
124 cur
->bc_rec
.i
.ir_freecount
= freecount
;
125 cur
->bc_rec
.i
.ir_free
= free
;
126 return xfs_btree_insert(cur
, stat
);
130 * Insert records describing a newly allocated inode chunk into the inobt.
134 struct xfs_mount
*mp
,
135 struct xfs_trans
*tp
,
136 struct xfs_buf
*agbp
,
141 struct xfs_btree_cur
*cur
;
142 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
143 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
148 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
150 for (thisino
= newino
;
151 thisino
< newino
+ newlen
;
152 thisino
+= XFS_INODES_PER_CHUNK
) {
153 error
= xfs_inobt_lookup(cur
, thisino
, XFS_LOOKUP_EQ
, &i
);
155 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
160 error
= xfs_inobt_insert_rec(cur
, XFS_INODES_PER_CHUNK
,
161 XFS_INOBT_ALL_FREE
, &i
);
163 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
169 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
175 * Verify that the number of free inodes in the AGI is correct.
179 xfs_check_agi_freecount(
180 struct xfs_btree_cur
*cur
,
183 if (cur
->bc_nlevels
== 1) {
184 xfs_inobt_rec_incore_t rec
;
189 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
194 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
199 freecount
+= rec
.ir_freecount
;
200 error
= xfs_btree_increment(cur
, 0, &i
);
206 if (!XFS_FORCED_SHUTDOWN(cur
->bc_mp
))
207 ASSERT(freecount
== be32_to_cpu(agi
->agi_freecount
));
212 #define xfs_check_agi_freecount(cur, agi) 0
216 * Initialise a new set of inodes. When called without a transaction context
217 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
218 * than logging them (which in a transaction context puts them into the AIL
219 * for writeback rather than the xfsbufd queue).
222 xfs_ialloc_inode_init(
223 struct xfs_mount
*mp
,
224 struct xfs_trans
*tp
,
225 struct list_head
*buffer_list
,
228 xfs_agblock_t length
,
231 struct xfs_buf
*fbuf
;
232 struct xfs_dinode
*free
;
233 int nbufs
, blks_per_cluster
, inodes_per_cluster
;
240 * Loop over the new block(s), filling in the inodes. For small block
241 * sizes, manipulate the inodes in buffers which are multiples of the
244 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
245 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
246 nbufs
= length
/ blks_per_cluster
;
249 * Figure out what version number to use in the inodes we create. If
250 * the superblock version has caught up to the one that supports the new
251 * inode format, then use the new inode version. Otherwise use the old
252 * version so that old kernels will continue to be able to use the file
255 * For v3 inodes, we also need to write the inode number into the inode,
256 * so calculate the first inode number of the chunk here as
257 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
258 * across multiple filesystem blocks (such as a cluster) and so cannot
259 * be used in the cluster buffer loop below.
261 * Further, because we are writing the inode directly into the buffer
262 * and calculating a CRC on the entire inode, we have ot log the entire
263 * inode so that the entire range the CRC covers is present in the log.
264 * That means for v3 inode we log the entire buffer rather than just the
267 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
269 ino
= XFS_AGINO_TO_INO(mp
, agno
,
270 XFS_OFFBNO_TO_AGINO(mp
, agbno
, 0));
273 * log the initialisation that is about to take place as an
274 * logical operation. This means the transaction does not
275 * need to log the physical changes to the inode buffers as log
276 * recovery will know what initialisation is actually needed.
277 * Hence we only need to log the buffers as "ordered" buffers so
278 * they track in the AIL as if they were physically logged.
281 xfs_icreate_log(tp
, agno
, agbno
, mp
->m_ialloc_inos
,
282 mp
->m_sb
.sb_inodesize
, length
, gen
);
286 for (j
= 0; j
< nbufs
; j
++) {
290 d
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
+ (j
* blks_per_cluster
));
291 fbuf
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, d
,
292 mp
->m_bsize
* blks_per_cluster
,
297 /* Initialize the inode buffers and log them appropriately. */
298 fbuf
->b_ops
= &xfs_inode_buf_ops
;
299 xfs_buf_zero(fbuf
, 0, BBTOB(fbuf
->b_length
));
300 for (i
= 0; i
< inodes_per_cluster
; i
++) {
301 int ioffset
= i
<< mp
->m_sb
.sb_inodelog
;
302 uint isize
= xfs_dinode_size(version
);
304 free
= xfs_make_iptr(mp
, fbuf
, i
);
305 free
->di_magic
= cpu_to_be16(XFS_DINODE_MAGIC
);
306 free
->di_version
= version
;
307 free
->di_gen
= cpu_to_be32(gen
);
308 free
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
311 free
->di_ino
= cpu_to_be64(ino
);
313 uuid_copy(&free
->di_uuid
, &mp
->m_sb
.sb_uuid
);
314 xfs_dinode_calc_crc(mp
, free
);
316 /* just log the inode core */
317 xfs_trans_log_buf(tp
, fbuf
, ioffset
,
318 ioffset
+ isize
- 1);
324 * Mark the buffer as an inode allocation buffer so it
325 * sticks in AIL at the point of this allocation
326 * transaction. This ensures the they are on disk before
327 * the tail of the log can be moved past this
328 * transaction (i.e. by preventing relogging from moving
329 * it forward in the log).
331 xfs_trans_inode_alloc_buf(tp
, fbuf
);
334 * Mark the buffer as ordered so that they are
335 * not physically logged in the transaction but
336 * still tracked in the AIL as part of the
337 * transaction and pin the log appropriately.
339 xfs_trans_ordered_buf(tp
, fbuf
);
340 xfs_trans_log_buf(tp
, fbuf
, 0,
341 BBTOB(fbuf
->b_length
) - 1);
344 fbuf
->b_flags
|= XBF_DONE
;
345 xfs_buf_delwri_queue(fbuf
, buffer_list
);
353 * Allocate new inodes in the allocation group specified by agbp.
354 * Return 0 for success, else error code.
356 STATIC
int /* error code or 0 */
358 xfs_trans_t
*tp
, /* transaction pointer */
359 xfs_buf_t
*agbp
, /* alloc group buffer */
362 xfs_agi_t
*agi
; /* allocation group header */
363 xfs_alloc_arg_t args
; /* allocation argument structure */
366 xfs_agino_t newino
; /* new first inode's number */
367 xfs_agino_t newlen
; /* new number of inodes */
368 int isaligned
= 0; /* inode allocation at stripe unit */
370 struct xfs_perag
*pag
;
372 memset(&args
, 0, sizeof(args
));
374 args
.mp
= tp
->t_mountp
;
377 * Locking will ensure that we don't have two callers in here
380 newlen
= args
.mp
->m_ialloc_inos
;
381 if (args
.mp
->m_maxicount
&&
382 args
.mp
->m_sb
.sb_icount
+ newlen
> args
.mp
->m_maxicount
)
383 return XFS_ERROR(ENOSPC
);
384 args
.minlen
= args
.maxlen
= args
.mp
->m_ialloc_blks
;
386 * First try to allocate inodes contiguous with the last-allocated
387 * chunk of inodes. If the filesystem is striped, this will fill
388 * an entire stripe unit with inodes.
390 agi
= XFS_BUF_TO_AGI(agbp
);
391 newino
= be32_to_cpu(agi
->agi_newino
);
392 agno
= be32_to_cpu(agi
->agi_seqno
);
393 args
.agbno
= XFS_AGINO_TO_AGBNO(args
.mp
, newino
) +
394 args
.mp
->m_ialloc_blks
;
395 if (likely(newino
!= NULLAGINO
&&
396 (args
.agbno
< be32_to_cpu(agi
->agi_length
)))) {
397 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
398 args
.type
= XFS_ALLOCTYPE_THIS_BNO
;
402 * We need to take into account alignment here to ensure that
403 * we don't modify the free list if we fail to have an exact
404 * block. If we don't have an exact match, and every oher
405 * attempt allocation attempt fails, we'll end up cancelling
406 * a dirty transaction and shutting down.
408 * For an exact allocation, alignment must be 1,
409 * however we need to take cluster alignment into account when
410 * fixing up the freelist. Use the minalignslop field to
411 * indicate that extra blocks might be required for alignment,
412 * but not to use them in the actual exact allocation.
415 args
.minalignslop
= xfs_ialloc_cluster_alignment(&args
) - 1;
417 /* Allow space for the inode btree to split. */
418 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
419 if ((error
= xfs_alloc_vextent(&args
)))
423 * This request might have dirtied the transaction if the AG can
424 * satisfy the request, but the exact block was not available.
425 * If the allocation did fail, subsequent requests will relax
426 * the exact agbno requirement and increase the alignment
427 * instead. It is critical that the total size of the request
428 * (len + alignment + slop) does not increase from this point
429 * on, so reset minalignslop to ensure it is not included in
430 * subsequent requests.
432 args
.minalignslop
= 0;
434 args
.fsbno
= NULLFSBLOCK
;
436 if (unlikely(args
.fsbno
== NULLFSBLOCK
)) {
438 * Set the alignment for the allocation.
439 * If stripe alignment is turned on then align at stripe unit
441 * If the cluster size is smaller than a filesystem block
442 * then we're doing I/O for inodes in filesystem block size
443 * pieces, so don't need alignment anyway.
446 if (args
.mp
->m_sinoalign
) {
447 ASSERT(!(args
.mp
->m_flags
& XFS_MOUNT_NOALIGN
));
448 args
.alignment
= args
.mp
->m_dalign
;
451 args
.alignment
= xfs_ialloc_cluster_alignment(&args
);
453 * Need to figure out where to allocate the inode blocks.
454 * Ideally they should be spaced out through the a.g.
455 * For now, just allocate blocks up front.
457 args
.agbno
= be32_to_cpu(agi
->agi_root
);
458 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
460 * Allocate a fixed-size extent of inodes.
462 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
465 * Allow space for the inode btree to split.
467 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
468 if ((error
= xfs_alloc_vextent(&args
)))
473 * If stripe alignment is turned on, then try again with cluster
476 if (isaligned
&& args
.fsbno
== NULLFSBLOCK
) {
477 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
478 args
.agbno
= be32_to_cpu(agi
->agi_root
);
479 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
480 args
.alignment
= xfs_ialloc_cluster_alignment(&args
);
481 if ((error
= xfs_alloc_vextent(&args
)))
485 if (args
.fsbno
== NULLFSBLOCK
) {
489 ASSERT(args
.len
== args
.minlen
);
492 * Stamp and write the inode buffers.
494 * Seed the new inode cluster with a random generation number. This
495 * prevents short-term reuse of generation numbers if a chunk is
496 * freed and then immediately reallocated. We use random numbers
497 * rather than a linear progression to prevent the next generation
498 * number from being easily guessable.
500 error
= xfs_ialloc_inode_init(args
.mp
, tp
, NULL
, agno
, args
.agbno
,
501 args
.len
, prandom_u32());
506 * Convert the results.
508 newino
= XFS_OFFBNO_TO_AGINO(args
.mp
, args
.agbno
, 0);
509 be32_add_cpu(&agi
->agi_count
, newlen
);
510 be32_add_cpu(&agi
->agi_freecount
, newlen
);
511 pag
= xfs_perag_get(args
.mp
, agno
);
512 pag
->pagi_freecount
+= newlen
;
514 agi
->agi_newino
= cpu_to_be32(newino
);
517 * Insert records describing the new inode chunk into the btrees.
519 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
, newlen
,
524 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
525 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
, newlen
,
531 * Log allocation group header fields
533 xfs_ialloc_log_agi(tp
, agbp
,
534 XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
| XFS_AGI_NEWINO
);
536 * Modify/log superblock values for inode count and inode free count.
538 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, (long)newlen
);
539 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, (long)newlen
);
544 STATIC xfs_agnumber_t
550 spin_lock(&mp
->m_agirotor_lock
);
551 agno
= mp
->m_agirotor
;
552 if (++mp
->m_agirotor
>= mp
->m_maxagi
)
554 spin_unlock(&mp
->m_agirotor_lock
);
560 * Select an allocation group to look for a free inode in, based on the parent
561 * inode and the mode. Return the allocation group buffer.
563 STATIC xfs_agnumber_t
564 xfs_ialloc_ag_select(
565 xfs_trans_t
*tp
, /* transaction pointer */
566 xfs_ino_t parent
, /* parent directory inode number */
567 umode_t mode
, /* bits set to indicate file type */
568 int okalloc
) /* ok to allocate more space */
570 xfs_agnumber_t agcount
; /* number of ag's in the filesystem */
571 xfs_agnumber_t agno
; /* current ag number */
572 int flags
; /* alloc buffer locking flags */
573 xfs_extlen_t ineed
; /* blocks needed for inode allocation */
574 xfs_extlen_t longest
= 0; /* longest extent available */
575 xfs_mount_t
*mp
; /* mount point structure */
576 int needspace
; /* file mode implies space allocated */
577 xfs_perag_t
*pag
; /* per allocation group data */
578 xfs_agnumber_t pagno
; /* parent (starting) ag number */
582 * Files of these types need at least one block if length > 0
583 * (and they won't fit in the inode, but that's hard to figure out).
585 needspace
= S_ISDIR(mode
) || S_ISREG(mode
) || S_ISLNK(mode
);
587 agcount
= mp
->m_maxagi
;
589 pagno
= xfs_ialloc_next_ag(mp
);
591 pagno
= XFS_INO_TO_AGNO(mp
, parent
);
592 if (pagno
>= agcount
)
596 ASSERT(pagno
< agcount
);
599 * Loop through allocation groups, looking for one with a little
600 * free space in it. Note we don't look for free inodes, exactly.
601 * Instead, we include whether there is a need to allocate inodes
602 * to mean that blocks must be allocated for them,
603 * if none are currently free.
606 flags
= XFS_ALLOC_FLAG_TRYLOCK
;
608 pag
= xfs_perag_get(mp
, agno
);
609 if (!pag
->pagi_inodeok
) {
610 xfs_ialloc_next_ag(mp
);
614 if (!pag
->pagi_init
) {
615 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
620 if (pag
->pagi_freecount
) {
628 if (!pag
->pagf_init
) {
629 error
= xfs_alloc_pagf_init(mp
, tp
, agno
, flags
);
635 * Is there enough free space for the file plus a block of
636 * inodes? (if we need to allocate some)?
638 ineed
= mp
->m_ialloc_blks
;
639 longest
= pag
->pagf_longest
;
641 longest
= pag
->pagf_flcount
> 0;
643 if (pag
->pagf_freeblks
>= needspace
+ ineed
&&
651 * No point in iterating over the rest, if we're shutting
654 if (XFS_FORCED_SHUTDOWN(mp
))
668 * Try to retrieve the next record to the left/right from the current one.
672 struct xfs_btree_cur
*cur
,
673 xfs_inobt_rec_incore_t
*rec
,
681 error
= xfs_btree_decrement(cur
, 0, &i
);
683 error
= xfs_btree_increment(cur
, 0, &i
);
689 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
692 XFS_WANT_CORRUPTED_RETURN(i
== 1);
700 struct xfs_btree_cur
*cur
,
702 xfs_inobt_rec_incore_t
*rec
,
708 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_EQ
, &i
);
713 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
716 XFS_WANT_CORRUPTED_RETURN(i
== 1);
723 * Allocate an inode using the inobt-only algorithm.
726 xfs_dialloc_ag_inobt(
727 struct xfs_trans
*tp
,
728 struct xfs_buf
*agbp
,
732 struct xfs_mount
*mp
= tp
->t_mountp
;
733 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
734 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
735 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
736 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
737 struct xfs_perag
*pag
;
738 struct xfs_btree_cur
*cur
, *tcur
;
739 struct xfs_inobt_rec_incore rec
, trec
;
745 pag
= xfs_perag_get(mp
, agno
);
747 ASSERT(pag
->pagi_init
);
748 ASSERT(pag
->pagi_inodeok
);
749 ASSERT(pag
->pagi_freecount
> 0);
752 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
754 * If pagino is 0 (this is the root inode allocation) use newino.
755 * This must work because we've just allocated some.
758 pagino
= be32_to_cpu(agi
->agi_newino
);
760 error
= xfs_check_agi_freecount(cur
, agi
);
765 * If in the same AG as the parent, try to get near the parent.
768 int doneleft
; /* done, to the left */
769 int doneright
; /* done, to the right */
770 int searchdistance
= 10;
772 error
= xfs_inobt_lookup(cur
, pagino
, XFS_LOOKUP_LE
, &i
);
775 XFS_WANT_CORRUPTED_GOTO(i
== 1, error0
);
777 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
780 XFS_WANT_CORRUPTED_GOTO(j
== 1, error0
);
782 if (rec
.ir_freecount
> 0) {
784 * Found a free inode in the same chunk
785 * as the parent, done.
792 * In the same AG as parent, but parent's chunk is full.
795 /* duplicate the cursor, search left & right simultaneously */
796 error
= xfs_btree_dup_cursor(cur
, &tcur
);
801 * Skip to last blocks looked up if same parent inode.
803 if (pagino
!= NULLAGINO
&&
804 pag
->pagl_pagino
== pagino
&&
805 pag
->pagl_leftrec
!= NULLAGINO
&&
806 pag
->pagl_rightrec
!= NULLAGINO
) {
807 error
= xfs_ialloc_get_rec(tcur
, pag
->pagl_leftrec
,
812 error
= xfs_ialloc_get_rec(cur
, pag
->pagl_rightrec
,
817 /* search left with tcur, back up 1 record */
818 error
= xfs_ialloc_next_rec(tcur
, &trec
, &doneleft
, 1);
822 /* search right with cur, go forward 1 record. */
823 error
= xfs_ialloc_next_rec(cur
, &rec
, &doneright
, 0);
829 * Loop until we find an inode chunk with a free inode.
831 while (!doneleft
|| !doneright
) {
832 int useleft
; /* using left inode chunk this time */
834 if (!--searchdistance
) {
836 * Not in range - save last search
837 * location and allocate a new inode
839 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
840 pag
->pagl_leftrec
= trec
.ir_startino
;
841 pag
->pagl_rightrec
= rec
.ir_startino
;
842 pag
->pagl_pagino
= pagino
;
846 /* figure out the closer block if both are valid. */
847 if (!doneleft
&& !doneright
) {
849 (trec
.ir_startino
+ XFS_INODES_PER_CHUNK
- 1) <
850 rec
.ir_startino
- pagino
;
855 /* free inodes to the left? */
856 if (useleft
&& trec
.ir_freecount
) {
858 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
861 pag
->pagl_leftrec
= trec
.ir_startino
;
862 pag
->pagl_rightrec
= rec
.ir_startino
;
863 pag
->pagl_pagino
= pagino
;
867 /* free inodes to the right? */
868 if (!useleft
&& rec
.ir_freecount
) {
869 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
871 pag
->pagl_leftrec
= trec
.ir_startino
;
872 pag
->pagl_rightrec
= rec
.ir_startino
;
873 pag
->pagl_pagino
= pagino
;
877 /* get next record to check */
879 error
= xfs_ialloc_next_rec(tcur
, &trec
,
882 error
= xfs_ialloc_next_rec(cur
, &rec
,
890 * We've reached the end of the btree. because
891 * we are only searching a small chunk of the
892 * btree each search, there is obviously free
893 * inodes closer to the parent inode than we
894 * are now. restart the search again.
896 pag
->pagl_pagino
= NULLAGINO
;
897 pag
->pagl_leftrec
= NULLAGINO
;
898 pag
->pagl_rightrec
= NULLAGINO
;
899 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
900 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
905 * In a different AG from the parent.
906 * See if the most recently allocated block has any free.
909 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
910 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
916 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
920 if (j
== 1 && rec
.ir_freecount
> 0) {
922 * The last chunk allocated in the group
923 * still has a free inode.
931 * None left in the last group, search the whole AG
933 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
936 XFS_WANT_CORRUPTED_GOTO(i
== 1, error0
);
939 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
942 XFS_WANT_CORRUPTED_GOTO(i
== 1, error0
);
943 if (rec
.ir_freecount
> 0)
945 error
= xfs_btree_increment(cur
, 0, &i
);
948 XFS_WANT_CORRUPTED_GOTO(i
== 1, error0
);
952 offset
= xfs_lowbit64(rec
.ir_free
);
954 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
955 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
956 XFS_INODES_PER_CHUNK
) == 0);
957 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
958 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
960 error
= xfs_inobt_update(cur
, &rec
);
963 be32_add_cpu(&agi
->agi_freecount
, -1);
964 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
965 pag
->pagi_freecount
--;
967 error
= xfs_check_agi_freecount(cur
, agi
);
971 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
972 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
977 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
979 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
985 * Use the free inode btree to allocate an inode based on distance from the
986 * parent. Note that the provided cursor may be deleted and replaced.
989 xfs_dialloc_ag_finobt_near(
991 struct xfs_btree_cur
**ocur
,
992 struct xfs_inobt_rec_incore
*rec
)
994 struct xfs_btree_cur
*lcur
= *ocur
; /* left search cursor */
995 struct xfs_btree_cur
*rcur
; /* right search cursor */
996 struct xfs_inobt_rec_incore rrec
;
1000 error
= xfs_inobt_lookup(lcur
, pagino
, XFS_LOOKUP_LE
, &i
);
1005 error
= xfs_inobt_get_rec(lcur
, rec
, &i
);
1008 XFS_WANT_CORRUPTED_RETURN(i
== 1);
1011 * See if we've landed in the parent inode record. The finobt
1012 * only tracks chunks with at least one free inode, so record
1013 * existence is enough.
1015 if (pagino
>= rec
->ir_startino
&&
1016 pagino
< (rec
->ir_startino
+ XFS_INODES_PER_CHUNK
))
1020 error
= xfs_btree_dup_cursor(lcur
, &rcur
);
1024 error
= xfs_inobt_lookup(rcur
, pagino
, XFS_LOOKUP_GE
, &j
);
1028 error
= xfs_inobt_get_rec(rcur
, &rrec
, &j
);
1031 XFS_WANT_CORRUPTED_GOTO(j
== 1, error_rcur
);
1034 XFS_WANT_CORRUPTED_GOTO(i
== 1 || j
== 1, error_rcur
);
1035 if (i
== 1 && j
== 1) {
1037 * Both the left and right records are valid. Choose the closer
1038 * inode chunk to the target.
1040 if ((pagino
- rec
->ir_startino
+ XFS_INODES_PER_CHUNK
- 1) >
1041 (rrec
.ir_startino
- pagino
)) {
1043 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1046 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1048 } else if (j
== 1) {
1049 /* only the right record is valid */
1051 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1053 } else if (i
== 1) {
1054 /* only the left record is valid */
1055 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1061 xfs_btree_del_cursor(rcur
, XFS_BTREE_ERROR
);
1066 * Use the free inode btree to find a free inode based on a newino hint. If
1067 * the hint is NULL, find the first free inode in the AG.
1070 xfs_dialloc_ag_finobt_newino(
1071 struct xfs_agi
*agi
,
1072 struct xfs_btree_cur
*cur
,
1073 struct xfs_inobt_rec_incore
*rec
)
1078 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1079 error
= xfs_inobt_lookup(cur
, agi
->agi_newino
, XFS_LOOKUP_EQ
,
1084 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1087 XFS_WANT_CORRUPTED_RETURN(i
== 1);
1094 * Find the first inode available in the AG.
1096 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1099 XFS_WANT_CORRUPTED_RETURN(i
== 1);
1101 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1104 XFS_WANT_CORRUPTED_RETURN(i
== 1);
1110 * Update the inobt based on a modification made to the finobt. Also ensure that
1111 * the records from both trees are equivalent post-modification.
1114 xfs_dialloc_ag_update_inobt(
1115 struct xfs_btree_cur
*cur
, /* inobt cursor */
1116 struct xfs_inobt_rec_incore
*frec
, /* finobt record */
1117 int offset
) /* inode offset */
1119 struct xfs_inobt_rec_incore rec
;
1123 error
= xfs_inobt_lookup(cur
, frec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
1126 XFS_WANT_CORRUPTED_RETURN(i
== 1);
1128 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1131 XFS_WANT_CORRUPTED_RETURN(i
== 1);
1132 ASSERT((XFS_AGINO_TO_OFFSET(cur
->bc_mp
, rec
.ir_startino
) %
1133 XFS_INODES_PER_CHUNK
) == 0);
1135 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1138 XFS_WANT_CORRUPTED_RETURN((rec
.ir_free
== frec
->ir_free
) &&
1139 (rec
.ir_freecount
== frec
->ir_freecount
));
1141 error
= xfs_inobt_update(cur
, &rec
);
1149 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1150 * back to the inobt search algorithm.
1152 * The caller selected an AG for us, and made sure that free inodes are
1157 struct xfs_trans
*tp
,
1158 struct xfs_buf
*agbp
,
1162 struct xfs_mount
*mp
= tp
->t_mountp
;
1163 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1164 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1165 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1166 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1167 struct xfs_perag
*pag
;
1168 struct xfs_btree_cur
*cur
; /* finobt cursor */
1169 struct xfs_btree_cur
*icur
; /* inobt cursor */
1170 struct xfs_inobt_rec_incore rec
;
1176 if (!xfs_sb_version_hasfinobt(&mp
->m_sb
))
1177 return xfs_dialloc_ag_inobt(tp
, agbp
, parent
, inop
);
1179 pag
= xfs_perag_get(mp
, agno
);
1182 * If pagino is 0 (this is the root inode allocation) use newino.
1183 * This must work because we've just allocated some.
1186 pagino
= be32_to_cpu(agi
->agi_newino
);
1188 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
1190 error
= xfs_check_agi_freecount(cur
, agi
);
1195 * The search algorithm depends on whether we're in the same AG as the
1196 * parent. If so, find the closest available inode to the parent. If
1197 * not, consider the agi hint or find the first free inode in the AG.
1200 error
= xfs_dialloc_ag_finobt_near(pagino
, &cur
, &rec
);
1202 error
= xfs_dialloc_ag_finobt_newino(agi
, cur
, &rec
);
1206 offset
= xfs_lowbit64(rec
.ir_free
);
1207 ASSERT(offset
>= 0);
1208 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1209 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1210 XFS_INODES_PER_CHUNK
) == 0);
1211 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1214 * Modify or remove the finobt record.
1216 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1218 if (rec
.ir_freecount
)
1219 error
= xfs_inobt_update(cur
, &rec
);
1221 error
= xfs_btree_delete(cur
, &i
);
1226 * The finobt has now been updated appropriately. We haven't updated the
1227 * agi and superblock yet, so we can create an inobt cursor and validate
1228 * the original freecount. If all is well, make the equivalent update to
1229 * the inobt using the finobt record and offset information.
1231 icur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1233 error
= xfs_check_agi_freecount(icur
, agi
);
1237 error
= xfs_dialloc_ag_update_inobt(icur
, &rec
, offset
);
1242 * Both trees have now been updated. We must update the perag and
1243 * superblock before we can check the freecount for each btree.
1245 be32_add_cpu(&agi
->agi_freecount
, -1);
1246 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1247 pag
->pagi_freecount
--;
1249 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1251 error
= xfs_check_agi_freecount(icur
, agi
);
1254 error
= xfs_check_agi_freecount(cur
, agi
);
1258 xfs_btree_del_cursor(icur
, XFS_BTREE_NOERROR
);
1259 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1265 xfs_btree_del_cursor(icur
, XFS_BTREE_ERROR
);
1267 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1273 * Allocate an inode on disk.
1275 * Mode is used to tell whether the new inode will need space, and whether it
1278 * This function is designed to be called twice if it has to do an allocation
1279 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1280 * If an inode is available without having to performn an allocation, an inode
1281 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1282 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1283 * The caller should then commit the current transaction, allocate a
1284 * new transaction, and call xfs_dialloc() again, passing in the previous value
1285 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1286 * buffer is locked across the two calls, the second call is guaranteed to have
1287 * a free inode available.
1289 * Once we successfully pick an inode its number is returned and the on-disk
1290 * data structures are updated. The inode itself is not read in, since doing so
1291 * would break ordering constraints with xfs_reclaim.
1295 struct xfs_trans
*tp
,
1299 struct xfs_buf
**IO_agbp
,
1302 struct xfs_mount
*mp
= tp
->t_mountp
;
1303 struct xfs_buf
*agbp
;
1304 xfs_agnumber_t agno
;
1308 xfs_agnumber_t start_agno
;
1309 struct xfs_perag
*pag
;
1313 * If the caller passes in a pointer to the AGI buffer,
1314 * continue where we left off before. In this case, we
1315 * know that the allocation group has free inodes.
1322 * We do not have an agbp, so select an initial allocation
1323 * group for inode allocation.
1325 start_agno
= xfs_ialloc_ag_select(tp
, parent
, mode
, okalloc
);
1326 if (start_agno
== NULLAGNUMBER
) {
1332 * If we have already hit the ceiling of inode blocks then clear
1333 * okalloc so we scan all available agi structures for a free
1336 if (mp
->m_maxicount
&&
1337 mp
->m_sb
.sb_icount
+ mp
->m_ialloc_inos
> mp
->m_maxicount
) {
1343 * Loop until we find an allocation group that either has free inodes
1344 * or in which we can allocate some inodes. Iterate through the
1345 * allocation groups upward, wrapping at the end.
1349 pag
= xfs_perag_get(mp
, agno
);
1350 if (!pag
->pagi_inodeok
) {
1351 xfs_ialloc_next_ag(mp
);
1355 if (!pag
->pagi_init
) {
1356 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
1362 * Do a first racy fast path check if this AG is usable.
1364 if (!pag
->pagi_freecount
&& !okalloc
)
1368 * Then read in the AGI buffer and recheck with the AGI buffer
1371 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
1375 if (pag
->pagi_freecount
) {
1381 goto nextag_relse_buffer
;
1384 error
= xfs_ialloc_ag_alloc(tp
, agbp
, &ialloced
);
1386 xfs_trans_brelse(tp
, agbp
);
1388 if (error
!= ENOSPC
)
1398 * We successfully allocated some inodes, return
1399 * the current context to the caller so that it
1400 * can commit the current transaction and call
1401 * us again where we left off.
1403 ASSERT(pag
->pagi_freecount
> 0);
1411 nextag_relse_buffer
:
1412 xfs_trans_brelse(tp
, agbp
);
1415 if (++agno
== mp
->m_sb
.sb_agcount
)
1417 if (agno
== start_agno
) {
1419 return noroom
? ENOSPC
: 0;
1425 return xfs_dialloc_ag(tp
, agbp
, parent
, inop
);
1428 return XFS_ERROR(error
);
1433 struct xfs_mount
*mp
,
1434 struct xfs_trans
*tp
,
1435 struct xfs_buf
*agbp
,
1437 struct xfs_bmap_free
*flist
,
1439 xfs_ino_t
*first_ino
,
1440 struct xfs_inobt_rec_incore
*orec
)
1442 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1443 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1444 struct xfs_perag
*pag
;
1445 struct xfs_btree_cur
*cur
;
1446 struct xfs_inobt_rec_incore rec
;
1452 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
1453 ASSERT(XFS_AGINO_TO_AGBNO(mp
, agino
) < be32_to_cpu(agi
->agi_length
));
1456 * Initialize the cursor.
1458 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1460 error
= xfs_check_agi_freecount(cur
, agi
);
1465 * Look for the entry describing this inode.
1467 if ((error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
))) {
1468 xfs_warn(mp
, "%s: xfs_inobt_lookup() returned error %d.",
1472 XFS_WANT_CORRUPTED_GOTO(i
== 1, error0
);
1473 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1475 xfs_warn(mp
, "%s: xfs_inobt_get_rec() returned error %d.",
1479 XFS_WANT_CORRUPTED_GOTO(i
== 1, error0
);
1481 * Get the offset in the inode chunk.
1483 off
= agino
- rec
.ir_startino
;
1484 ASSERT(off
>= 0 && off
< XFS_INODES_PER_CHUNK
);
1485 ASSERT(!(rec
.ir_free
& XFS_INOBT_MASK(off
)));
1487 * Mark the inode free & increment the count.
1489 rec
.ir_free
|= XFS_INOBT_MASK(off
);
1493 * When an inode cluster is free, it becomes eligible for removal
1495 if (!(mp
->m_flags
& XFS_MOUNT_IKEEP
) &&
1496 (rec
.ir_freecount
== mp
->m_ialloc_inos
)) {
1499 *first_ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
);
1502 * Remove the inode cluster from the AGI B+Tree, adjust the
1503 * AGI and Superblock inode counts, and mark the disk space
1504 * to be freed when the transaction is committed.
1506 ilen
= mp
->m_ialloc_inos
;
1507 be32_add_cpu(&agi
->agi_count
, -ilen
);
1508 be32_add_cpu(&agi
->agi_freecount
, -(ilen
- 1));
1509 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
);
1510 pag
= xfs_perag_get(mp
, agno
);
1511 pag
->pagi_freecount
-= ilen
- 1;
1513 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, -ilen
);
1514 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -(ilen
- 1));
1516 if ((error
= xfs_btree_delete(cur
, &i
))) {
1517 xfs_warn(mp
, "%s: xfs_btree_delete returned error %d.",
1522 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp
, agno
,
1523 XFS_AGINO_TO_AGBNO(mp
, rec
.ir_startino
)),
1524 mp
->m_ialloc_blks
, flist
, mp
);
1528 error
= xfs_inobt_update(cur
, &rec
);
1530 xfs_warn(mp
, "%s: xfs_inobt_update returned error %d.",
1536 * Change the inode free counts and log the ag/sb changes.
1538 be32_add_cpu(&agi
->agi_freecount
, 1);
1539 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1540 pag
= xfs_perag_get(mp
, agno
);
1541 pag
->pagi_freecount
++;
1543 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, 1);
1546 error
= xfs_check_agi_freecount(cur
, agi
);
1551 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1555 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1560 * Free an inode in the free inode btree.
1564 struct xfs_mount
*mp
,
1565 struct xfs_trans
*tp
,
1566 struct xfs_buf
*agbp
,
1568 struct xfs_inobt_rec_incore
*ibtrec
) /* inobt record */
1570 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1571 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1572 struct xfs_btree_cur
*cur
;
1573 struct xfs_inobt_rec_incore rec
;
1574 int offset
= agino
- ibtrec
->ir_startino
;
1578 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
1580 error
= xfs_inobt_lookup(cur
, ibtrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
1585 * If the record does not exist in the finobt, we must have just
1586 * freed an inode in a previously fully allocated chunk. If not,
1587 * something is out of sync.
1589 XFS_WANT_CORRUPTED_GOTO(ibtrec
->ir_freecount
== 1, error
);
1591 error
= xfs_inobt_insert_rec(cur
, ibtrec
->ir_freecount
,
1592 ibtrec
->ir_free
, &i
);
1601 * Read and update the existing record. We could just copy the ibtrec
1602 * across here, but that would defeat the purpose of having redundant
1603 * metadata. By making the modifications independently, we can catch
1604 * corruptions that we wouldn't see if we just copied from one record
1607 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1610 XFS_WANT_CORRUPTED_GOTO(i
== 1, error
);
1612 rec
.ir_free
|= XFS_INOBT_MASK(offset
);
1615 XFS_WANT_CORRUPTED_GOTO((rec
.ir_free
== ibtrec
->ir_free
) &&
1616 (rec
.ir_freecount
== ibtrec
->ir_freecount
),
1620 * The content of inobt records should always match between the inobt
1621 * and finobt. The lifecycle of records in the finobt is different from
1622 * the inobt in that the finobt only tracks records with at least one
1623 * free inode. Hence, if all of the inodes are free and we aren't
1624 * keeping inode chunks permanently on disk, remove the record.
1625 * Otherwise, update the record with the new information.
1627 if (rec
.ir_freecount
== mp
->m_ialloc_inos
&&
1628 !(mp
->m_flags
& XFS_MOUNT_IKEEP
)) {
1629 error
= xfs_btree_delete(cur
, &i
);
1634 error
= xfs_inobt_update(cur
, &rec
);
1640 error
= xfs_check_agi_freecount(cur
, agi
);
1644 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1648 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1653 * Free disk inode. Carefully avoids touching the incore inode, all
1654 * manipulations incore are the caller's responsibility.
1655 * The on-disk inode is not changed by this operation, only the
1656 * btree (free inode mask) is changed.
1660 struct xfs_trans
*tp
, /* transaction pointer */
1661 xfs_ino_t inode
, /* inode to be freed */
1662 struct xfs_bmap_free
*flist
, /* extents to free */
1663 int *deleted
,/* set if inode cluster was deleted */
1664 xfs_ino_t
*first_ino
)/* first inode in deleted cluster */
1667 xfs_agblock_t agbno
; /* block number containing inode */
1668 struct xfs_buf
*agbp
; /* buffer for allocation group header */
1669 xfs_agino_t agino
; /* allocation group inode number */
1670 xfs_agnumber_t agno
; /* allocation group number */
1671 int error
; /* error return value */
1672 struct xfs_mount
*mp
; /* mount structure for filesystem */
1673 struct xfs_inobt_rec_incore rec
;/* btree record */
1678 * Break up inode number into its components.
1680 agno
= XFS_INO_TO_AGNO(mp
, inode
);
1681 if (agno
>= mp
->m_sb
.sb_agcount
) {
1682 xfs_warn(mp
, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
1683 __func__
, agno
, mp
->m_sb
.sb_agcount
);
1685 return XFS_ERROR(EINVAL
);
1687 agino
= XFS_INO_TO_AGINO(mp
, inode
);
1688 if (inode
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
1689 xfs_warn(mp
, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
1690 __func__
, (unsigned long long)inode
,
1691 (unsigned long long)XFS_AGINO_TO_INO(mp
, agno
, agino
));
1693 return XFS_ERROR(EINVAL
);
1695 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
1696 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
1697 xfs_warn(mp
, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
1698 __func__
, agbno
, mp
->m_sb
.sb_agblocks
);
1700 return XFS_ERROR(EINVAL
);
1703 * Get the allocation group header.
1705 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
1707 xfs_warn(mp
, "%s: xfs_ialloc_read_agi() returned error %d.",
1713 * Fix up the inode allocation btree.
1715 error
= xfs_difree_inobt(mp
, tp
, agbp
, agino
, flist
, deleted
, first_ino
,
1721 * Fix up the free inode btree.
1723 if (xfs_sb_version_hasfinobt(&mp
->m_sb
)) {
1724 error
= xfs_difree_finobt(mp
, tp
, agbp
, agino
, &rec
);
1737 struct xfs_mount
*mp
,
1738 struct xfs_trans
*tp
,
1739 xfs_agnumber_t agno
,
1741 xfs_agblock_t agbno
,
1742 xfs_agblock_t
*chunk_agbno
,
1743 xfs_agblock_t
*offset_agbno
,
1746 struct xfs_inobt_rec_incore rec
;
1747 struct xfs_btree_cur
*cur
;
1748 struct xfs_buf
*agbp
;
1752 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
1755 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
1756 __func__
, error
, agno
);
1761 * Lookup the inode record for the given agino. If the record cannot be
1762 * found, then it's an invalid inode number and we should abort. Once
1763 * we have a record, we need to ensure it contains the inode number
1764 * we are looking up.
1766 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1767 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
);
1770 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1771 if (!error
&& i
== 0)
1775 xfs_trans_brelse(tp
, agbp
);
1776 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1780 /* check that the returned record contains the required inode */
1781 if (rec
.ir_startino
> agino
||
1782 rec
.ir_startino
+ mp
->m_ialloc_inos
<= agino
)
1785 /* for untrusted inodes check it is allocated first */
1786 if ((flags
& XFS_IGET_UNTRUSTED
) &&
1787 (rec
.ir_free
& XFS_INOBT_MASK(agino
- rec
.ir_startino
)))
1790 *chunk_agbno
= XFS_AGINO_TO_AGBNO(mp
, rec
.ir_startino
);
1791 *offset_agbno
= agbno
- *chunk_agbno
;
1796 * Return the location of the inode in imap, for mapping it into a buffer.
1800 xfs_mount_t
*mp
, /* file system mount structure */
1801 xfs_trans_t
*tp
, /* transaction pointer */
1802 xfs_ino_t ino
, /* inode to locate */
1803 struct xfs_imap
*imap
, /* location map structure */
1804 uint flags
) /* flags for inode btree lookup */
1806 xfs_agblock_t agbno
; /* block number of inode in the alloc group */
1807 xfs_agino_t agino
; /* inode number within alloc group */
1808 xfs_agnumber_t agno
; /* allocation group number */
1809 int blks_per_cluster
; /* num blocks per inode cluster */
1810 xfs_agblock_t chunk_agbno
; /* first block in inode chunk */
1811 xfs_agblock_t cluster_agbno
; /* first block in inode cluster */
1812 int error
; /* error code */
1813 int offset
; /* index of inode in its buffer */
1814 xfs_agblock_t offset_agbno
; /* blks from chunk start to inode */
1816 ASSERT(ino
!= NULLFSINO
);
1819 * Split up the inode number into its parts.
1821 agno
= XFS_INO_TO_AGNO(mp
, ino
);
1822 agino
= XFS_INO_TO_AGINO(mp
, ino
);
1823 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
1824 if (agno
>= mp
->m_sb
.sb_agcount
|| agbno
>= mp
->m_sb
.sb_agblocks
||
1825 ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
1828 * Don't output diagnostic information for untrusted inodes
1829 * as they can be invalid without implying corruption.
1831 if (flags
& XFS_IGET_UNTRUSTED
)
1832 return XFS_ERROR(EINVAL
);
1833 if (agno
>= mp
->m_sb
.sb_agcount
) {
1835 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
1836 __func__
, agno
, mp
->m_sb
.sb_agcount
);
1838 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
1840 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
1841 __func__
, (unsigned long long)agbno
,
1842 (unsigned long)mp
->m_sb
.sb_agblocks
);
1844 if (ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
1846 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
1848 XFS_AGINO_TO_INO(mp
, agno
, agino
));
1852 return XFS_ERROR(EINVAL
);
1855 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
1858 * For bulkstat and handle lookups, we have an untrusted inode number
1859 * that we have to verify is valid. We cannot do this just by reading
1860 * the inode buffer as it may have been unlinked and removed leaving
1861 * inodes in stale state on disk. Hence we have to do a btree lookup
1862 * in all cases where an untrusted inode number is passed.
1864 if (flags
& XFS_IGET_UNTRUSTED
) {
1865 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
1866 &chunk_agbno
, &offset_agbno
, flags
);
1873 * If the inode cluster size is the same as the blocksize or
1874 * smaller we get to the buffer by simple arithmetics.
1876 if (blks_per_cluster
== 1) {
1877 offset
= XFS_INO_TO_OFFSET(mp
, ino
);
1878 ASSERT(offset
< mp
->m_sb
.sb_inopblock
);
1880 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
);
1881 imap
->im_len
= XFS_FSB_TO_BB(mp
, 1);
1882 imap
->im_boffset
= (ushort
)(offset
<< mp
->m_sb
.sb_inodelog
);
1887 * If the inode chunks are aligned then use simple maths to
1888 * find the location. Otherwise we have to do a btree
1889 * lookup to find the location.
1891 if (mp
->m_inoalign_mask
) {
1892 offset_agbno
= agbno
& mp
->m_inoalign_mask
;
1893 chunk_agbno
= agbno
- offset_agbno
;
1895 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
1896 &chunk_agbno
, &offset_agbno
, flags
);
1902 ASSERT(agbno
>= chunk_agbno
);
1903 cluster_agbno
= chunk_agbno
+
1904 ((offset_agbno
/ blks_per_cluster
) * blks_per_cluster
);
1905 offset
= ((agbno
- cluster_agbno
) * mp
->m_sb
.sb_inopblock
) +
1906 XFS_INO_TO_OFFSET(mp
, ino
);
1908 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, cluster_agbno
);
1909 imap
->im_len
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
1910 imap
->im_boffset
= (ushort
)(offset
<< mp
->m_sb
.sb_inodelog
);
1913 * If the inode number maps to a block outside the bounds
1914 * of the file system then return NULL rather than calling
1915 * read_buf and panicing when we get an error from the
1918 if ((imap
->im_blkno
+ imap
->im_len
) >
1919 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
1921 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
1922 __func__
, (unsigned long long) imap
->im_blkno
,
1923 (unsigned long long) imap
->im_len
,
1924 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
1925 return XFS_ERROR(EINVAL
);
1931 * Compute and fill in value of m_in_maxlevels.
1934 xfs_ialloc_compute_maxlevels(
1935 xfs_mount_t
*mp
) /* file system mount structure */
1943 maxleafents
= (1LL << XFS_INO_AGINO_BITS(mp
)) >>
1944 XFS_INODES_PER_CHUNK_LOG
;
1945 minleafrecs
= mp
->m_alloc_mnr
[0];
1946 minnoderecs
= mp
->m_alloc_mnr
[1];
1947 maxblocks
= (maxleafents
+ minleafrecs
- 1) / minleafrecs
;
1948 for (level
= 1; maxblocks
> 1; level
++)
1949 maxblocks
= (maxblocks
+ minnoderecs
- 1) / minnoderecs
;
1950 mp
->m_in_maxlevels
= level
;
1954 * Log specified fields for the ag hdr (inode section). The growth of the agi
1955 * structure over time requires that we interpret the buffer as two logical
1956 * regions delineated by the end of the unlinked list. This is due to the size
1957 * of the hash table and its location in the middle of the agi.
1959 * For example, a request to log a field before agi_unlinked and a field after
1960 * agi_unlinked could cause us to log the entire hash table and use an excessive
1961 * amount of log space. To avoid this behavior, log the region up through
1962 * agi_unlinked in one call and the region after agi_unlinked through the end of
1963 * the structure in another.
1967 xfs_trans_t
*tp
, /* transaction pointer */
1968 xfs_buf_t
*bp
, /* allocation group header buffer */
1969 int fields
) /* bitmask of fields to log */
1971 int first
; /* first byte number */
1972 int last
; /* last byte number */
1973 static const short offsets
[] = { /* field starting offsets */
1974 /* keep in sync with bit definitions */
1975 offsetof(xfs_agi_t
, agi_magicnum
),
1976 offsetof(xfs_agi_t
, agi_versionnum
),
1977 offsetof(xfs_agi_t
, agi_seqno
),
1978 offsetof(xfs_agi_t
, agi_length
),
1979 offsetof(xfs_agi_t
, agi_count
),
1980 offsetof(xfs_agi_t
, agi_root
),
1981 offsetof(xfs_agi_t
, agi_level
),
1982 offsetof(xfs_agi_t
, agi_freecount
),
1983 offsetof(xfs_agi_t
, agi_newino
),
1984 offsetof(xfs_agi_t
, agi_dirino
),
1985 offsetof(xfs_agi_t
, agi_unlinked
),
1986 offsetof(xfs_agi_t
, agi_free_root
),
1987 offsetof(xfs_agi_t
, agi_free_level
),
1991 xfs_agi_t
*agi
; /* allocation group header */
1993 agi
= XFS_BUF_TO_AGI(bp
);
1994 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
1997 xfs_trans_buf_set_type(tp
, bp
, XFS_BLFT_AGI_BUF
);
2000 * Compute byte offsets for the first and last fields in the first
2001 * region and log the agi buffer. This only logs up through
2004 if (fields
& XFS_AGI_ALL_BITS_R1
) {
2005 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R1
,
2007 xfs_trans_log_buf(tp
, bp
, first
, last
);
2011 * Mask off the bits in the first region and calculate the first and
2012 * last field offsets for any bits in the second region.
2014 fields
&= ~XFS_AGI_ALL_BITS_R1
;
2016 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R2
,
2018 xfs_trans_log_buf(tp
, bp
, first
, last
);
2024 xfs_check_agi_unlinked(
2025 struct xfs_agi
*agi
)
2029 for (i
= 0; i
< XFS_AGI_UNLINKED_BUCKETS
; i
++)
2030 ASSERT(agi
->agi_unlinked
[i
]);
2033 #define xfs_check_agi_unlinked(agi)
2040 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2041 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(bp
);
2043 if (xfs_sb_version_hascrc(&mp
->m_sb
) &&
2044 !uuid_equal(&agi
->agi_uuid
, &mp
->m_sb
.sb_uuid
))
2047 * Validate the magic number of the agi block.
2049 if (agi
->agi_magicnum
!= cpu_to_be32(XFS_AGI_MAGIC
))
2051 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
)))
2055 * during growfs operations, the perag is not fully initialised,
2056 * so we can't use it for any useful checking. growfs ensures we can't
2057 * use it by using uncached buffers that don't have the perag attached
2058 * so we can detect and avoid this problem.
2060 if (bp
->b_pag
&& be32_to_cpu(agi
->agi_seqno
) != bp
->b_pag
->pag_agno
)
2063 xfs_check_agi_unlinked(agi
);
2068 xfs_agi_read_verify(
2071 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2073 if (xfs_sb_version_hascrc(&mp
->m_sb
) &&
2074 !xfs_buf_verify_cksum(bp
, XFS_AGI_CRC_OFF
))
2075 xfs_buf_ioerror(bp
, EFSBADCRC
);
2076 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp
), mp
,
2077 XFS_ERRTAG_IALLOC_READ_AGI
,
2078 XFS_RANDOM_IALLOC_READ_AGI
))
2079 xfs_buf_ioerror(bp
, EFSCORRUPTED
);
2082 xfs_verifier_error(bp
);
2086 xfs_agi_write_verify(
2089 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2090 struct xfs_buf_log_item
*bip
= bp
->b_fspriv
;
2092 if (!xfs_agi_verify(bp
)) {
2093 xfs_buf_ioerror(bp
, EFSCORRUPTED
);
2094 xfs_verifier_error(bp
);
2098 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2102 XFS_BUF_TO_AGI(bp
)->agi_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
2103 xfs_buf_update_cksum(bp
, XFS_AGI_CRC_OFF
);
2106 const struct xfs_buf_ops xfs_agi_buf_ops
= {
2107 .verify_read
= xfs_agi_read_verify
,
2108 .verify_write
= xfs_agi_write_verify
,
2112 * Read in the allocation group header (inode allocation section)
2116 struct xfs_mount
*mp
, /* file system mount structure */
2117 struct xfs_trans
*tp
, /* transaction pointer */
2118 xfs_agnumber_t agno
, /* allocation group number */
2119 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2123 trace_xfs_read_agi(mp
, agno
);
2125 ASSERT(agno
!= NULLAGNUMBER
);
2126 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
,
2127 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)),
2128 XFS_FSS_TO_BB(mp
, 1), 0, bpp
, &xfs_agi_buf_ops
);
2132 xfs_buf_set_ref(*bpp
, XFS_AGI_REF
);
2137 xfs_ialloc_read_agi(
2138 struct xfs_mount
*mp
, /* file system mount structure */
2139 struct xfs_trans
*tp
, /* transaction pointer */
2140 xfs_agnumber_t agno
, /* allocation group number */
2141 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2143 struct xfs_agi
*agi
; /* allocation group header */
2144 struct xfs_perag
*pag
; /* per allocation group data */
2147 trace_xfs_ialloc_read_agi(mp
, agno
);
2149 error
= xfs_read_agi(mp
, tp
, agno
, bpp
);
2153 agi
= XFS_BUF_TO_AGI(*bpp
);
2154 pag
= xfs_perag_get(mp
, agno
);
2155 if (!pag
->pagi_init
) {
2156 pag
->pagi_freecount
= be32_to_cpu(agi
->agi_freecount
);
2157 pag
->pagi_count
= be32_to_cpu(agi
->agi_count
);
2162 * It's possible for these to be out of sync if
2163 * we are in the middle of a forced shutdown.
2165 ASSERT(pag
->pagi_freecount
== be32_to_cpu(agi
->agi_freecount
) ||
2166 XFS_FORCED_SHUTDOWN(mp
));
2172 * Read in the agi to initialise the per-ag data in the mount structure
2175 xfs_ialloc_pagi_init(
2176 xfs_mount_t
*mp
, /* file system mount structure */
2177 xfs_trans_t
*tp
, /* transaction pointer */
2178 xfs_agnumber_t agno
) /* allocation group number */
2180 xfs_buf_t
*bp
= NULL
;
2183 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &bp
);
2187 xfs_trans_brelse(tp
, bp
);