Linux 3.16-rc2
[linux/fpc-iii.git] / fs / xfs / xfs_inode.c
bloba6115fe1ac948a4b57efb6bf00830bb9a4845ed6
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_inum.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_inode.h"
31 #include "xfs_da_format.h"
32 #include "xfs_da_btree.h"
33 #include "xfs_dir2.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_attr.h"
36 #include "xfs_trans_space.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_bmap_util.h"
43 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_cksum.h"
47 #include "xfs_trace.h"
48 #include "xfs_icache.h"
49 #include "xfs_symlink.h"
50 #include "xfs_trans_priv.h"
51 #include "xfs_log.h"
52 #include "xfs_bmap_btree.h"
54 kmem_zone_t *xfs_inode_zone;
57 * Used in xfs_itruncate_extents(). This is the maximum number of extents
58 * freed from a file in a single transaction.
60 #define XFS_ITRUNC_MAX_EXTENTS 2
62 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
64 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
67 * helper function to extract extent size hint from inode
69 xfs_extlen_t
70 xfs_get_extsz_hint(
71 struct xfs_inode *ip)
73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 return ip->i_d.di_extsize;
75 if (XFS_IS_REALTIME_INODE(ip))
76 return ip->i_mount->m_sb.sb_rextsize;
77 return 0;
81 * These two are wrapper routines around the xfs_ilock() routine used to
82 * centralize some grungy code. They are used in places that wish to lock the
83 * inode solely for reading the extents. The reason these places can't just
84 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
85 * bringing in of the extents from disk for a file in b-tree format. If the
86 * inode is in b-tree format, then we need to lock the inode exclusively until
87 * the extents are read in. Locking it exclusively all the time would limit
88 * our parallelism unnecessarily, though. What we do instead is check to see
89 * if the extents have been read in yet, and only lock the inode exclusively
90 * if they have not.
92 * The functions return a value which should be given to the corresponding
93 * xfs_iunlock() call.
95 uint
96 xfs_ilock_data_map_shared(
97 struct xfs_inode *ip)
99 uint lock_mode = XFS_ILOCK_SHARED;
101 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
102 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
103 lock_mode = XFS_ILOCK_EXCL;
104 xfs_ilock(ip, lock_mode);
105 return lock_mode;
108 uint
109 xfs_ilock_attr_map_shared(
110 struct xfs_inode *ip)
112 uint lock_mode = XFS_ILOCK_SHARED;
114 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
115 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
116 lock_mode = XFS_ILOCK_EXCL;
117 xfs_ilock(ip, lock_mode);
118 return lock_mode;
122 * The xfs inode contains 2 locks: a multi-reader lock called the
123 * i_iolock and a multi-reader lock called the i_lock. This routine
124 * allows either or both of the locks to be obtained.
126 * The 2 locks should always be ordered so that the IO lock is
127 * obtained first in order to prevent deadlock.
129 * ip -- the inode being locked
130 * lock_flags -- this parameter indicates the inode's locks
131 * to be locked. It can be:
132 * XFS_IOLOCK_SHARED,
133 * XFS_IOLOCK_EXCL,
134 * XFS_ILOCK_SHARED,
135 * XFS_ILOCK_EXCL,
136 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
137 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
138 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
139 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
141 void
142 xfs_ilock(
143 xfs_inode_t *ip,
144 uint lock_flags)
146 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
149 * You can't set both SHARED and EXCL for the same lock,
150 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
151 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
153 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
154 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
155 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
156 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
157 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
159 if (lock_flags & XFS_IOLOCK_EXCL)
160 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
161 else if (lock_flags & XFS_IOLOCK_SHARED)
162 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
164 if (lock_flags & XFS_ILOCK_EXCL)
165 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 else if (lock_flags & XFS_ILOCK_SHARED)
167 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
171 * This is just like xfs_ilock(), except that the caller
172 * is guaranteed not to sleep. It returns 1 if it gets
173 * the requested locks and 0 otherwise. If the IO lock is
174 * obtained but the inode lock cannot be, then the IO lock
175 * is dropped before returning.
177 * ip -- the inode being locked
178 * lock_flags -- this parameter indicates the inode's locks to be
179 * to be locked. See the comment for xfs_ilock() for a list
180 * of valid values.
183 xfs_ilock_nowait(
184 xfs_inode_t *ip,
185 uint lock_flags)
187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
190 * You can't set both SHARED and EXCL for the same lock,
191 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
192 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
194 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
195 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
196 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
197 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
198 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
200 if (lock_flags & XFS_IOLOCK_EXCL) {
201 if (!mrtryupdate(&ip->i_iolock))
202 goto out;
203 } else if (lock_flags & XFS_IOLOCK_SHARED) {
204 if (!mrtryaccess(&ip->i_iolock))
205 goto out;
207 if (lock_flags & XFS_ILOCK_EXCL) {
208 if (!mrtryupdate(&ip->i_lock))
209 goto out_undo_iolock;
210 } else if (lock_flags & XFS_ILOCK_SHARED) {
211 if (!mrtryaccess(&ip->i_lock))
212 goto out_undo_iolock;
214 return 1;
216 out_undo_iolock:
217 if (lock_flags & XFS_IOLOCK_EXCL)
218 mrunlock_excl(&ip->i_iolock);
219 else if (lock_flags & XFS_IOLOCK_SHARED)
220 mrunlock_shared(&ip->i_iolock);
221 out:
222 return 0;
226 * xfs_iunlock() is used to drop the inode locks acquired with
227 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
228 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
229 * that we know which locks to drop.
231 * ip -- the inode being unlocked
232 * lock_flags -- this parameter indicates the inode's locks to be
233 * to be unlocked. See the comment for xfs_ilock() for a list
234 * of valid values for this parameter.
237 void
238 xfs_iunlock(
239 xfs_inode_t *ip,
240 uint lock_flags)
243 * You can't set both SHARED and EXCL for the same lock,
244 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
245 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
247 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
248 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
249 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
250 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
251 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
252 ASSERT(lock_flags != 0);
254 if (lock_flags & XFS_IOLOCK_EXCL)
255 mrunlock_excl(&ip->i_iolock);
256 else if (lock_flags & XFS_IOLOCK_SHARED)
257 mrunlock_shared(&ip->i_iolock);
259 if (lock_flags & XFS_ILOCK_EXCL)
260 mrunlock_excl(&ip->i_lock);
261 else if (lock_flags & XFS_ILOCK_SHARED)
262 mrunlock_shared(&ip->i_lock);
264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
268 * give up write locks. the i/o lock cannot be held nested
269 * if it is being demoted.
271 void
272 xfs_ilock_demote(
273 xfs_inode_t *ip,
274 uint lock_flags)
276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
277 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
279 if (lock_flags & XFS_ILOCK_EXCL)
280 mrdemote(&ip->i_lock);
281 if (lock_flags & XFS_IOLOCK_EXCL)
282 mrdemote(&ip->i_iolock);
284 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
287 #if defined(DEBUG) || defined(XFS_WARN)
289 xfs_isilocked(
290 xfs_inode_t *ip,
291 uint lock_flags)
293 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
294 if (!(lock_flags & XFS_ILOCK_SHARED))
295 return !!ip->i_lock.mr_writer;
296 return rwsem_is_locked(&ip->i_lock.mr_lock);
299 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
300 if (!(lock_flags & XFS_IOLOCK_SHARED))
301 return !!ip->i_iolock.mr_writer;
302 return rwsem_is_locked(&ip->i_iolock.mr_lock);
305 ASSERT(0);
306 return 0;
308 #endif
310 #ifdef DEBUG
311 int xfs_locked_n;
312 int xfs_small_retries;
313 int xfs_middle_retries;
314 int xfs_lots_retries;
315 int xfs_lock_delays;
316 #endif
319 * Bump the subclass so xfs_lock_inodes() acquires each lock with
320 * a different value
322 static inline int
323 xfs_lock_inumorder(int lock_mode, int subclass)
325 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
327 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
328 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
330 return lock_mode;
334 * The following routine will lock n inodes in exclusive mode.
335 * We assume the caller calls us with the inodes in i_ino order.
337 * We need to detect deadlock where an inode that we lock
338 * is in the AIL and we start waiting for another inode that is locked
339 * by a thread in a long running transaction (such as truncate). This can
340 * result in deadlock since the long running trans might need to wait
341 * for the inode we just locked in order to push the tail and free space
342 * in the log.
344 void
345 xfs_lock_inodes(
346 xfs_inode_t **ips,
347 int inodes,
348 uint lock_mode)
350 int attempts = 0, i, j, try_lock;
351 xfs_log_item_t *lp;
353 ASSERT(ips && (inodes >= 2)); /* we need at least two */
355 try_lock = 0;
356 i = 0;
358 again:
359 for (; i < inodes; i++) {
360 ASSERT(ips[i]);
362 if (i && (ips[i] == ips[i-1])) /* Already locked */
363 continue;
366 * If try_lock is not set yet, make sure all locked inodes
367 * are not in the AIL.
368 * If any are, set try_lock to be used later.
371 if (!try_lock) {
372 for (j = (i - 1); j >= 0 && !try_lock; j--) {
373 lp = (xfs_log_item_t *)ips[j]->i_itemp;
374 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
375 try_lock++;
381 * If any of the previous locks we have locked is in the AIL,
382 * we must TRY to get the second and subsequent locks. If
383 * we can't get any, we must release all we have
384 * and try again.
387 if (try_lock) {
388 /* try_lock must be 0 if i is 0. */
390 * try_lock means we have an inode locked
391 * that is in the AIL.
393 ASSERT(i != 0);
394 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
395 attempts++;
398 * Unlock all previous guys and try again.
399 * xfs_iunlock will try to push the tail
400 * if the inode is in the AIL.
403 for(j = i - 1; j >= 0; j--) {
406 * Check to see if we've already
407 * unlocked this one.
408 * Not the first one going back,
409 * and the inode ptr is the same.
411 if ((j != (i - 1)) && ips[j] ==
412 ips[j+1])
413 continue;
415 xfs_iunlock(ips[j], lock_mode);
418 if ((attempts % 5) == 0) {
419 delay(1); /* Don't just spin the CPU */
420 #ifdef DEBUG
421 xfs_lock_delays++;
422 #endif
424 i = 0;
425 try_lock = 0;
426 goto again;
428 } else {
429 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
433 #ifdef DEBUG
434 if (attempts) {
435 if (attempts < 5) xfs_small_retries++;
436 else if (attempts < 100) xfs_middle_retries++;
437 else xfs_lots_retries++;
438 } else {
439 xfs_locked_n++;
441 #endif
445 * xfs_lock_two_inodes() can only be used to lock one type of lock
446 * at a time - the iolock or the ilock, but not both at once. If
447 * we lock both at once, lockdep will report false positives saying
448 * we have violated locking orders.
450 void
451 xfs_lock_two_inodes(
452 xfs_inode_t *ip0,
453 xfs_inode_t *ip1,
454 uint lock_mode)
456 xfs_inode_t *temp;
457 int attempts = 0;
458 xfs_log_item_t *lp;
460 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
461 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
462 ASSERT(ip0->i_ino != ip1->i_ino);
464 if (ip0->i_ino > ip1->i_ino) {
465 temp = ip0;
466 ip0 = ip1;
467 ip1 = temp;
470 again:
471 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
474 * If the first lock we have locked is in the AIL, we must TRY to get
475 * the second lock. If we can't get it, we must release the first one
476 * and try again.
478 lp = (xfs_log_item_t *)ip0->i_itemp;
479 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
480 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
481 xfs_iunlock(ip0, lock_mode);
482 if ((++attempts % 5) == 0)
483 delay(1); /* Don't just spin the CPU */
484 goto again;
486 } else {
487 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
492 void
493 __xfs_iflock(
494 struct xfs_inode *ip)
496 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
497 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
499 do {
500 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
501 if (xfs_isiflocked(ip))
502 io_schedule();
503 } while (!xfs_iflock_nowait(ip));
505 finish_wait(wq, &wait.wait);
508 STATIC uint
509 _xfs_dic2xflags(
510 __uint16_t di_flags)
512 uint flags = 0;
514 if (di_flags & XFS_DIFLAG_ANY) {
515 if (di_flags & XFS_DIFLAG_REALTIME)
516 flags |= XFS_XFLAG_REALTIME;
517 if (di_flags & XFS_DIFLAG_PREALLOC)
518 flags |= XFS_XFLAG_PREALLOC;
519 if (di_flags & XFS_DIFLAG_IMMUTABLE)
520 flags |= XFS_XFLAG_IMMUTABLE;
521 if (di_flags & XFS_DIFLAG_APPEND)
522 flags |= XFS_XFLAG_APPEND;
523 if (di_flags & XFS_DIFLAG_SYNC)
524 flags |= XFS_XFLAG_SYNC;
525 if (di_flags & XFS_DIFLAG_NOATIME)
526 flags |= XFS_XFLAG_NOATIME;
527 if (di_flags & XFS_DIFLAG_NODUMP)
528 flags |= XFS_XFLAG_NODUMP;
529 if (di_flags & XFS_DIFLAG_RTINHERIT)
530 flags |= XFS_XFLAG_RTINHERIT;
531 if (di_flags & XFS_DIFLAG_PROJINHERIT)
532 flags |= XFS_XFLAG_PROJINHERIT;
533 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
534 flags |= XFS_XFLAG_NOSYMLINKS;
535 if (di_flags & XFS_DIFLAG_EXTSIZE)
536 flags |= XFS_XFLAG_EXTSIZE;
537 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
538 flags |= XFS_XFLAG_EXTSZINHERIT;
539 if (di_flags & XFS_DIFLAG_NODEFRAG)
540 flags |= XFS_XFLAG_NODEFRAG;
541 if (di_flags & XFS_DIFLAG_FILESTREAM)
542 flags |= XFS_XFLAG_FILESTREAM;
545 return flags;
548 uint
549 xfs_ip2xflags(
550 xfs_inode_t *ip)
552 xfs_icdinode_t *dic = &ip->i_d;
554 return _xfs_dic2xflags(dic->di_flags) |
555 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
558 uint
559 xfs_dic2xflags(
560 xfs_dinode_t *dip)
562 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
563 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
567 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
568 * is allowed, otherwise it has to be an exact match. If a CI match is found,
569 * ci_name->name will point to a the actual name (caller must free) or
570 * will be set to NULL if an exact match is found.
573 xfs_lookup(
574 xfs_inode_t *dp,
575 struct xfs_name *name,
576 xfs_inode_t **ipp,
577 struct xfs_name *ci_name)
579 xfs_ino_t inum;
580 int error;
581 uint lock_mode;
583 trace_xfs_lookup(dp, name);
585 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
586 return XFS_ERROR(EIO);
588 lock_mode = xfs_ilock_data_map_shared(dp);
589 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
590 xfs_iunlock(dp, lock_mode);
592 if (error)
593 goto out;
595 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
596 if (error)
597 goto out_free_name;
599 return 0;
601 out_free_name:
602 if (ci_name)
603 kmem_free(ci_name->name);
604 out:
605 *ipp = NULL;
606 return error;
610 * Allocate an inode on disk and return a copy of its in-core version.
611 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
612 * appropriately within the inode. The uid and gid for the inode are
613 * set according to the contents of the given cred structure.
615 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
616 * has a free inode available, call xfs_iget() to obtain the in-core
617 * version of the allocated inode. Finally, fill in the inode and
618 * log its initial contents. In this case, ialloc_context would be
619 * set to NULL.
621 * If xfs_dialloc() does not have an available inode, it will replenish
622 * its supply by doing an allocation. Since we can only do one
623 * allocation within a transaction without deadlocks, we must commit
624 * the current transaction before returning the inode itself.
625 * In this case, therefore, we will set ialloc_context and return.
626 * The caller should then commit the current transaction, start a new
627 * transaction, and call xfs_ialloc() again to actually get the inode.
629 * To ensure that some other process does not grab the inode that
630 * was allocated during the first call to xfs_ialloc(), this routine
631 * also returns the [locked] bp pointing to the head of the freelist
632 * as ialloc_context. The caller should hold this buffer across
633 * the commit and pass it back into this routine on the second call.
635 * If we are allocating quota inodes, we do not have a parent inode
636 * to attach to or associate with (i.e. pip == NULL) because they
637 * are not linked into the directory structure - they are attached
638 * directly to the superblock - and so have no parent.
641 xfs_ialloc(
642 xfs_trans_t *tp,
643 xfs_inode_t *pip,
644 umode_t mode,
645 xfs_nlink_t nlink,
646 xfs_dev_t rdev,
647 prid_t prid,
648 int okalloc,
649 xfs_buf_t **ialloc_context,
650 xfs_inode_t **ipp)
652 struct xfs_mount *mp = tp->t_mountp;
653 xfs_ino_t ino;
654 xfs_inode_t *ip;
655 uint flags;
656 int error;
657 timespec_t tv;
660 * Call the space management code to pick
661 * the on-disk inode to be allocated.
663 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
664 ialloc_context, &ino);
665 if (error)
666 return error;
667 if (*ialloc_context || ino == NULLFSINO) {
668 *ipp = NULL;
669 return 0;
671 ASSERT(*ialloc_context == NULL);
674 * Get the in-core inode with the lock held exclusively.
675 * This is because we're setting fields here we need
676 * to prevent others from looking at until we're done.
678 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
679 XFS_ILOCK_EXCL, &ip);
680 if (error)
681 return error;
682 ASSERT(ip != NULL);
685 * We always convert v1 inodes to v2 now - we only support filesystems
686 * with >= v2 inode capability, so there is no reason for ever leaving
687 * an inode in v1 format.
689 if (ip->i_d.di_version == 1)
690 ip->i_d.di_version = 2;
692 ip->i_d.di_mode = mode;
693 ip->i_d.di_onlink = 0;
694 ip->i_d.di_nlink = nlink;
695 ASSERT(ip->i_d.di_nlink == nlink);
696 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
697 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
698 xfs_set_projid(ip, prid);
699 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
701 if (pip && XFS_INHERIT_GID(pip)) {
702 ip->i_d.di_gid = pip->i_d.di_gid;
703 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
704 ip->i_d.di_mode |= S_ISGID;
709 * If the group ID of the new file does not match the effective group
710 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
711 * (and only if the irix_sgid_inherit compatibility variable is set).
713 if ((irix_sgid_inherit) &&
714 (ip->i_d.di_mode & S_ISGID) &&
715 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
716 ip->i_d.di_mode &= ~S_ISGID;
719 ip->i_d.di_size = 0;
720 ip->i_d.di_nextents = 0;
721 ASSERT(ip->i_d.di_nblocks == 0);
723 nanotime(&tv);
724 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
725 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
726 ip->i_d.di_atime = ip->i_d.di_mtime;
727 ip->i_d.di_ctime = ip->i_d.di_mtime;
730 * di_gen will have been taken care of in xfs_iread.
732 ip->i_d.di_extsize = 0;
733 ip->i_d.di_dmevmask = 0;
734 ip->i_d.di_dmstate = 0;
735 ip->i_d.di_flags = 0;
737 if (ip->i_d.di_version == 3) {
738 ASSERT(ip->i_d.di_ino == ino);
739 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
740 ip->i_d.di_crc = 0;
741 ip->i_d.di_changecount = 1;
742 ip->i_d.di_lsn = 0;
743 ip->i_d.di_flags2 = 0;
744 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
745 ip->i_d.di_crtime = ip->i_d.di_mtime;
749 flags = XFS_ILOG_CORE;
750 switch (mode & S_IFMT) {
751 case S_IFIFO:
752 case S_IFCHR:
753 case S_IFBLK:
754 case S_IFSOCK:
755 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
756 ip->i_df.if_u2.if_rdev = rdev;
757 ip->i_df.if_flags = 0;
758 flags |= XFS_ILOG_DEV;
759 break;
760 case S_IFREG:
761 case S_IFDIR:
762 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
763 uint di_flags = 0;
765 if (S_ISDIR(mode)) {
766 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
767 di_flags |= XFS_DIFLAG_RTINHERIT;
768 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
769 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
770 ip->i_d.di_extsize = pip->i_d.di_extsize;
772 } else if (S_ISREG(mode)) {
773 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
774 di_flags |= XFS_DIFLAG_REALTIME;
775 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
776 di_flags |= XFS_DIFLAG_EXTSIZE;
777 ip->i_d.di_extsize = pip->i_d.di_extsize;
780 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
781 xfs_inherit_noatime)
782 di_flags |= XFS_DIFLAG_NOATIME;
783 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
784 xfs_inherit_nodump)
785 di_flags |= XFS_DIFLAG_NODUMP;
786 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
787 xfs_inherit_sync)
788 di_flags |= XFS_DIFLAG_SYNC;
789 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
790 xfs_inherit_nosymlinks)
791 di_flags |= XFS_DIFLAG_NOSYMLINKS;
792 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
793 di_flags |= XFS_DIFLAG_PROJINHERIT;
794 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
795 xfs_inherit_nodefrag)
796 di_flags |= XFS_DIFLAG_NODEFRAG;
797 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
798 di_flags |= XFS_DIFLAG_FILESTREAM;
799 ip->i_d.di_flags |= di_flags;
801 /* FALLTHROUGH */
802 case S_IFLNK:
803 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
804 ip->i_df.if_flags = XFS_IFEXTENTS;
805 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
806 ip->i_df.if_u1.if_extents = NULL;
807 break;
808 default:
809 ASSERT(0);
812 * Attribute fork settings for new inode.
814 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
815 ip->i_d.di_anextents = 0;
818 * Log the new values stuffed into the inode.
820 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
821 xfs_trans_log_inode(tp, ip, flags);
823 /* now that we have an i_mode we can setup inode ops and unlock */
824 xfs_setup_inode(ip);
826 *ipp = ip;
827 return 0;
831 * Allocates a new inode from disk and return a pointer to the
832 * incore copy. This routine will internally commit the current
833 * transaction and allocate a new one if the Space Manager needed
834 * to do an allocation to replenish the inode free-list.
836 * This routine is designed to be called from xfs_create and
837 * xfs_create_dir.
841 xfs_dir_ialloc(
842 xfs_trans_t **tpp, /* input: current transaction;
843 output: may be a new transaction. */
844 xfs_inode_t *dp, /* directory within whose allocate
845 the inode. */
846 umode_t mode,
847 xfs_nlink_t nlink,
848 xfs_dev_t rdev,
849 prid_t prid, /* project id */
850 int okalloc, /* ok to allocate new space */
851 xfs_inode_t **ipp, /* pointer to inode; it will be
852 locked. */
853 int *committed)
856 xfs_trans_t *tp;
857 xfs_trans_t *ntp;
858 xfs_inode_t *ip;
859 xfs_buf_t *ialloc_context = NULL;
860 int code;
861 void *dqinfo;
862 uint tflags;
864 tp = *tpp;
865 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
868 * xfs_ialloc will return a pointer to an incore inode if
869 * the Space Manager has an available inode on the free
870 * list. Otherwise, it will do an allocation and replenish
871 * the freelist. Since we can only do one allocation per
872 * transaction without deadlocks, we will need to commit the
873 * current transaction and start a new one. We will then
874 * need to call xfs_ialloc again to get the inode.
876 * If xfs_ialloc did an allocation to replenish the freelist,
877 * it returns the bp containing the head of the freelist as
878 * ialloc_context. We will hold a lock on it across the
879 * transaction commit so that no other process can steal
880 * the inode(s) that we've just allocated.
882 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
883 &ialloc_context, &ip);
886 * Return an error if we were unable to allocate a new inode.
887 * This should only happen if we run out of space on disk or
888 * encounter a disk error.
890 if (code) {
891 *ipp = NULL;
892 return code;
894 if (!ialloc_context && !ip) {
895 *ipp = NULL;
896 return XFS_ERROR(ENOSPC);
900 * If the AGI buffer is non-NULL, then we were unable to get an
901 * inode in one operation. We need to commit the current
902 * transaction and call xfs_ialloc() again. It is guaranteed
903 * to succeed the second time.
905 if (ialloc_context) {
906 struct xfs_trans_res tres;
909 * Normally, xfs_trans_commit releases all the locks.
910 * We call bhold to hang on to the ialloc_context across
911 * the commit. Holding this buffer prevents any other
912 * processes from doing any allocations in this
913 * allocation group.
915 xfs_trans_bhold(tp, ialloc_context);
917 * Save the log reservation so we can use
918 * them in the next transaction.
920 tres.tr_logres = xfs_trans_get_log_res(tp);
921 tres.tr_logcount = xfs_trans_get_log_count(tp);
924 * We want the quota changes to be associated with the next
925 * transaction, NOT this one. So, detach the dqinfo from this
926 * and attach it to the next transaction.
928 dqinfo = NULL;
929 tflags = 0;
930 if (tp->t_dqinfo) {
931 dqinfo = (void *)tp->t_dqinfo;
932 tp->t_dqinfo = NULL;
933 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
934 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
937 ntp = xfs_trans_dup(tp);
938 code = xfs_trans_commit(tp, 0);
939 tp = ntp;
940 if (committed != NULL) {
941 *committed = 1;
944 * If we get an error during the commit processing,
945 * release the buffer that is still held and return
946 * to the caller.
948 if (code) {
949 xfs_buf_relse(ialloc_context);
950 if (dqinfo) {
951 tp->t_dqinfo = dqinfo;
952 xfs_trans_free_dqinfo(tp);
954 *tpp = ntp;
955 *ipp = NULL;
956 return code;
960 * transaction commit worked ok so we can drop the extra ticket
961 * reference that we gained in xfs_trans_dup()
963 xfs_log_ticket_put(tp->t_ticket);
964 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
965 code = xfs_trans_reserve(tp, &tres, 0, 0);
968 * Re-attach the quota info that we detached from prev trx.
970 if (dqinfo) {
971 tp->t_dqinfo = dqinfo;
972 tp->t_flags |= tflags;
975 if (code) {
976 xfs_buf_relse(ialloc_context);
977 *tpp = ntp;
978 *ipp = NULL;
979 return code;
981 xfs_trans_bjoin(tp, ialloc_context);
984 * Call ialloc again. Since we've locked out all
985 * other allocations in this allocation group,
986 * this call should always succeed.
988 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
989 okalloc, &ialloc_context, &ip);
992 * If we get an error at this point, return to the caller
993 * so that the current transaction can be aborted.
995 if (code) {
996 *tpp = tp;
997 *ipp = NULL;
998 return code;
1000 ASSERT(!ialloc_context && ip);
1002 } else {
1003 if (committed != NULL)
1004 *committed = 0;
1007 *ipp = ip;
1008 *tpp = tp;
1010 return 0;
1014 * Decrement the link count on an inode & log the change.
1015 * If this causes the link count to go to zero, initiate the
1016 * logging activity required to truncate a file.
1018 int /* error */
1019 xfs_droplink(
1020 xfs_trans_t *tp,
1021 xfs_inode_t *ip)
1023 int error;
1025 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1027 ASSERT (ip->i_d.di_nlink > 0);
1028 ip->i_d.di_nlink--;
1029 drop_nlink(VFS_I(ip));
1030 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1032 error = 0;
1033 if (ip->i_d.di_nlink == 0) {
1035 * We're dropping the last link to this file.
1036 * Move the on-disk inode to the AGI unlinked list.
1037 * From xfs_inactive() we will pull the inode from
1038 * the list and free it.
1040 error = xfs_iunlink(tp, ip);
1042 return error;
1046 * Increment the link count on an inode & log the change.
1049 xfs_bumplink(
1050 xfs_trans_t *tp,
1051 xfs_inode_t *ip)
1053 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1055 ASSERT(ip->i_d.di_version > 1);
1056 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1057 ip->i_d.di_nlink++;
1058 inc_nlink(VFS_I(ip));
1059 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1060 return 0;
1064 xfs_create(
1065 xfs_inode_t *dp,
1066 struct xfs_name *name,
1067 umode_t mode,
1068 xfs_dev_t rdev,
1069 xfs_inode_t **ipp)
1071 int is_dir = S_ISDIR(mode);
1072 struct xfs_mount *mp = dp->i_mount;
1073 struct xfs_inode *ip = NULL;
1074 struct xfs_trans *tp = NULL;
1075 int error;
1076 xfs_bmap_free_t free_list;
1077 xfs_fsblock_t first_block;
1078 bool unlock_dp_on_error = false;
1079 uint cancel_flags;
1080 int committed;
1081 prid_t prid;
1082 struct xfs_dquot *udqp = NULL;
1083 struct xfs_dquot *gdqp = NULL;
1084 struct xfs_dquot *pdqp = NULL;
1085 struct xfs_trans_res tres;
1086 uint resblks;
1088 trace_xfs_create(dp, name);
1090 if (XFS_FORCED_SHUTDOWN(mp))
1091 return XFS_ERROR(EIO);
1093 prid = xfs_get_initial_prid(dp);
1096 * Make sure that we have allocated dquot(s) on disk.
1098 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1099 xfs_kgid_to_gid(current_fsgid()), prid,
1100 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1101 &udqp, &gdqp, &pdqp);
1102 if (error)
1103 return error;
1105 if (is_dir) {
1106 rdev = 0;
1107 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1108 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1109 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
1110 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1111 } else {
1112 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1113 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1114 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
1115 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1118 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1121 * Initially assume that the file does not exist and
1122 * reserve the resources for that case. If that is not
1123 * the case we'll drop the one we have and get a more
1124 * appropriate transaction later.
1126 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1127 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1128 if (error == ENOSPC) {
1129 /* flush outstanding delalloc blocks and retry */
1130 xfs_flush_inodes(mp);
1131 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1133 if (error == ENOSPC) {
1134 /* No space at all so try a "no-allocation" reservation */
1135 resblks = 0;
1136 error = xfs_trans_reserve(tp, &tres, 0, 0);
1138 if (error) {
1139 cancel_flags = 0;
1140 goto out_trans_cancel;
1143 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1144 unlock_dp_on_error = true;
1146 xfs_bmap_init(&free_list, &first_block);
1149 * Reserve disk quota and the inode.
1151 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1152 pdqp, resblks, 1, 0);
1153 if (error)
1154 goto out_trans_cancel;
1156 error = xfs_dir_canenter(tp, dp, name, resblks);
1157 if (error)
1158 goto out_trans_cancel;
1161 * A newly created regular or special file just has one directory
1162 * entry pointing to them, but a directory also the "." entry
1163 * pointing to itself.
1165 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1166 prid, resblks > 0, &ip, &committed);
1167 if (error) {
1168 if (error == ENOSPC)
1169 goto out_trans_cancel;
1170 goto out_trans_abort;
1174 * Now we join the directory inode to the transaction. We do not do it
1175 * earlier because xfs_dir_ialloc might commit the previous transaction
1176 * (and release all the locks). An error from here on will result in
1177 * the transaction cancel unlocking dp so don't do it explicitly in the
1178 * error path.
1180 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1181 unlock_dp_on_error = false;
1183 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1184 &first_block, &free_list, resblks ?
1185 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1186 if (error) {
1187 ASSERT(error != ENOSPC);
1188 goto out_trans_abort;
1190 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1191 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1193 if (is_dir) {
1194 error = xfs_dir_init(tp, ip, dp);
1195 if (error)
1196 goto out_bmap_cancel;
1198 error = xfs_bumplink(tp, dp);
1199 if (error)
1200 goto out_bmap_cancel;
1204 * If this is a synchronous mount, make sure that the
1205 * create transaction goes to disk before returning to
1206 * the user.
1208 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1209 xfs_trans_set_sync(tp);
1212 * Attach the dquot(s) to the inodes and modify them incore.
1213 * These ids of the inode couldn't have changed since the new
1214 * inode has been locked ever since it was created.
1216 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1218 error = xfs_bmap_finish(&tp, &free_list, &committed);
1219 if (error)
1220 goto out_bmap_cancel;
1222 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1223 if (error)
1224 goto out_release_inode;
1226 xfs_qm_dqrele(udqp);
1227 xfs_qm_dqrele(gdqp);
1228 xfs_qm_dqrele(pdqp);
1230 *ipp = ip;
1231 return 0;
1233 out_bmap_cancel:
1234 xfs_bmap_cancel(&free_list);
1235 out_trans_abort:
1236 cancel_flags |= XFS_TRANS_ABORT;
1237 out_trans_cancel:
1238 xfs_trans_cancel(tp, cancel_flags);
1239 out_release_inode:
1241 * Wait until after the current transaction is aborted to
1242 * release the inode. This prevents recursive transactions
1243 * and deadlocks from xfs_inactive.
1245 if (ip)
1246 IRELE(ip);
1248 xfs_qm_dqrele(udqp);
1249 xfs_qm_dqrele(gdqp);
1250 xfs_qm_dqrele(pdqp);
1252 if (unlock_dp_on_error)
1253 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1254 return error;
1258 xfs_create_tmpfile(
1259 struct xfs_inode *dp,
1260 struct dentry *dentry,
1261 umode_t mode,
1262 struct xfs_inode **ipp)
1264 struct xfs_mount *mp = dp->i_mount;
1265 struct xfs_inode *ip = NULL;
1266 struct xfs_trans *tp = NULL;
1267 int error;
1268 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1269 prid_t prid;
1270 struct xfs_dquot *udqp = NULL;
1271 struct xfs_dquot *gdqp = NULL;
1272 struct xfs_dquot *pdqp = NULL;
1273 struct xfs_trans_res *tres;
1274 uint resblks;
1276 if (XFS_FORCED_SHUTDOWN(mp))
1277 return XFS_ERROR(EIO);
1279 prid = xfs_get_initial_prid(dp);
1282 * Make sure that we have allocated dquot(s) on disk.
1284 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1285 xfs_kgid_to_gid(current_fsgid()), prid,
1286 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1287 &udqp, &gdqp, &pdqp);
1288 if (error)
1289 return error;
1291 resblks = XFS_IALLOC_SPACE_RES(mp);
1292 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1294 tres = &M_RES(mp)->tr_create_tmpfile;
1295 error = xfs_trans_reserve(tp, tres, resblks, 0);
1296 if (error == ENOSPC) {
1297 /* No space at all so try a "no-allocation" reservation */
1298 resblks = 0;
1299 error = xfs_trans_reserve(tp, tres, 0, 0);
1301 if (error) {
1302 cancel_flags = 0;
1303 goto out_trans_cancel;
1306 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1307 pdqp, resblks, 1, 0);
1308 if (error)
1309 goto out_trans_cancel;
1311 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1312 prid, resblks > 0, &ip, NULL);
1313 if (error) {
1314 if (error == ENOSPC)
1315 goto out_trans_cancel;
1316 goto out_trans_abort;
1319 if (mp->m_flags & XFS_MOUNT_WSYNC)
1320 xfs_trans_set_sync(tp);
1323 * Attach the dquot(s) to the inodes and modify them incore.
1324 * These ids of the inode couldn't have changed since the new
1325 * inode has been locked ever since it was created.
1327 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1329 ip->i_d.di_nlink--;
1330 error = xfs_iunlink(tp, ip);
1331 if (error)
1332 goto out_trans_abort;
1334 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1335 if (error)
1336 goto out_release_inode;
1338 xfs_qm_dqrele(udqp);
1339 xfs_qm_dqrele(gdqp);
1340 xfs_qm_dqrele(pdqp);
1342 *ipp = ip;
1343 return 0;
1345 out_trans_abort:
1346 cancel_flags |= XFS_TRANS_ABORT;
1347 out_trans_cancel:
1348 xfs_trans_cancel(tp, cancel_flags);
1349 out_release_inode:
1351 * Wait until after the current transaction is aborted to
1352 * release the inode. This prevents recursive transactions
1353 * and deadlocks from xfs_inactive.
1355 if (ip)
1356 IRELE(ip);
1358 xfs_qm_dqrele(udqp);
1359 xfs_qm_dqrele(gdqp);
1360 xfs_qm_dqrele(pdqp);
1362 return error;
1366 xfs_link(
1367 xfs_inode_t *tdp,
1368 xfs_inode_t *sip,
1369 struct xfs_name *target_name)
1371 xfs_mount_t *mp = tdp->i_mount;
1372 xfs_trans_t *tp;
1373 int error;
1374 xfs_bmap_free_t free_list;
1375 xfs_fsblock_t first_block;
1376 int cancel_flags;
1377 int committed;
1378 int resblks;
1380 trace_xfs_link(tdp, target_name);
1382 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1384 if (XFS_FORCED_SHUTDOWN(mp))
1385 return XFS_ERROR(EIO);
1387 error = xfs_qm_dqattach(sip, 0);
1388 if (error)
1389 goto std_return;
1391 error = xfs_qm_dqattach(tdp, 0);
1392 if (error)
1393 goto std_return;
1395 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1396 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1397 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1398 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1399 if (error == ENOSPC) {
1400 resblks = 0;
1401 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1403 if (error) {
1404 cancel_flags = 0;
1405 goto error_return;
1408 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1410 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1411 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1414 * If we are using project inheritance, we only allow hard link
1415 * creation in our tree when the project IDs are the same; else
1416 * the tree quota mechanism could be circumvented.
1418 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1419 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1420 error = XFS_ERROR(EXDEV);
1421 goto error_return;
1424 error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1425 if (error)
1426 goto error_return;
1428 xfs_bmap_init(&free_list, &first_block);
1430 if (sip->i_d.di_nlink == 0) {
1431 error = xfs_iunlink_remove(tp, sip);
1432 if (error)
1433 goto abort_return;
1436 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1437 &first_block, &free_list, resblks);
1438 if (error)
1439 goto abort_return;
1440 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1441 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1443 error = xfs_bumplink(tp, sip);
1444 if (error)
1445 goto abort_return;
1448 * If this is a synchronous mount, make sure that the
1449 * link transaction goes to disk before returning to
1450 * the user.
1452 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1453 xfs_trans_set_sync(tp);
1456 error = xfs_bmap_finish (&tp, &free_list, &committed);
1457 if (error) {
1458 xfs_bmap_cancel(&free_list);
1459 goto abort_return;
1462 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1464 abort_return:
1465 cancel_flags |= XFS_TRANS_ABORT;
1466 error_return:
1467 xfs_trans_cancel(tp, cancel_flags);
1468 std_return:
1469 return error;
1473 * Free up the underlying blocks past new_size. The new size must be smaller
1474 * than the current size. This routine can be used both for the attribute and
1475 * data fork, and does not modify the inode size, which is left to the caller.
1477 * The transaction passed to this routine must have made a permanent log
1478 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1479 * given transaction and start new ones, so make sure everything involved in
1480 * the transaction is tidy before calling here. Some transaction will be
1481 * returned to the caller to be committed. The incoming transaction must
1482 * already include the inode, and both inode locks must be held exclusively.
1483 * The inode must also be "held" within the transaction. On return the inode
1484 * will be "held" within the returned transaction. This routine does NOT
1485 * require any disk space to be reserved for it within the transaction.
1487 * If we get an error, we must return with the inode locked and linked into the
1488 * current transaction. This keeps things simple for the higher level code,
1489 * because it always knows that the inode is locked and held in the transaction
1490 * that returns to it whether errors occur or not. We don't mark the inode
1491 * dirty on error so that transactions can be easily aborted if possible.
1494 xfs_itruncate_extents(
1495 struct xfs_trans **tpp,
1496 struct xfs_inode *ip,
1497 int whichfork,
1498 xfs_fsize_t new_size)
1500 struct xfs_mount *mp = ip->i_mount;
1501 struct xfs_trans *tp = *tpp;
1502 struct xfs_trans *ntp;
1503 xfs_bmap_free_t free_list;
1504 xfs_fsblock_t first_block;
1505 xfs_fileoff_t first_unmap_block;
1506 xfs_fileoff_t last_block;
1507 xfs_filblks_t unmap_len;
1508 int committed;
1509 int error = 0;
1510 int done = 0;
1512 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1513 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1514 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1515 ASSERT(new_size <= XFS_ISIZE(ip));
1516 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1517 ASSERT(ip->i_itemp != NULL);
1518 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1519 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1521 trace_xfs_itruncate_extents_start(ip, new_size);
1524 * Since it is possible for space to become allocated beyond
1525 * the end of the file (in a crash where the space is allocated
1526 * but the inode size is not yet updated), simply remove any
1527 * blocks which show up between the new EOF and the maximum
1528 * possible file size. If the first block to be removed is
1529 * beyond the maximum file size (ie it is the same as last_block),
1530 * then there is nothing to do.
1532 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1533 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1534 if (first_unmap_block == last_block)
1535 return 0;
1537 ASSERT(first_unmap_block < last_block);
1538 unmap_len = last_block - first_unmap_block + 1;
1539 while (!done) {
1540 xfs_bmap_init(&free_list, &first_block);
1541 error = xfs_bunmapi(tp, ip,
1542 first_unmap_block, unmap_len,
1543 xfs_bmapi_aflag(whichfork),
1544 XFS_ITRUNC_MAX_EXTENTS,
1545 &first_block, &free_list,
1546 &done);
1547 if (error)
1548 goto out_bmap_cancel;
1551 * Duplicate the transaction that has the permanent
1552 * reservation and commit the old transaction.
1554 error = xfs_bmap_finish(&tp, &free_list, &committed);
1555 if (committed)
1556 xfs_trans_ijoin(tp, ip, 0);
1557 if (error)
1558 goto out_bmap_cancel;
1560 if (committed) {
1562 * Mark the inode dirty so it will be logged and
1563 * moved forward in the log as part of every commit.
1565 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1568 ntp = xfs_trans_dup(tp);
1569 error = xfs_trans_commit(tp, 0);
1570 tp = ntp;
1572 xfs_trans_ijoin(tp, ip, 0);
1574 if (error)
1575 goto out;
1578 * Transaction commit worked ok so we can drop the extra ticket
1579 * reference that we gained in xfs_trans_dup()
1581 xfs_log_ticket_put(tp->t_ticket);
1582 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1583 if (error)
1584 goto out;
1588 * Always re-log the inode so that our permanent transaction can keep
1589 * on rolling it forward in the log.
1591 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1593 trace_xfs_itruncate_extents_end(ip, new_size);
1595 out:
1596 *tpp = tp;
1597 return error;
1598 out_bmap_cancel:
1600 * If the bunmapi call encounters an error, return to the caller where
1601 * the transaction can be properly aborted. We just need to make sure
1602 * we're not holding any resources that we were not when we came in.
1604 xfs_bmap_cancel(&free_list);
1605 goto out;
1609 xfs_release(
1610 xfs_inode_t *ip)
1612 xfs_mount_t *mp = ip->i_mount;
1613 int error;
1615 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1616 return 0;
1618 /* If this is a read-only mount, don't do this (would generate I/O) */
1619 if (mp->m_flags & XFS_MOUNT_RDONLY)
1620 return 0;
1622 if (!XFS_FORCED_SHUTDOWN(mp)) {
1623 int truncated;
1626 * If we previously truncated this file and removed old data
1627 * in the process, we want to initiate "early" writeout on
1628 * the last close. This is an attempt to combat the notorious
1629 * NULL files problem which is particularly noticeable from a
1630 * truncate down, buffered (re-)write (delalloc), followed by
1631 * a crash. What we are effectively doing here is
1632 * significantly reducing the time window where we'd otherwise
1633 * be exposed to that problem.
1635 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1636 if (truncated) {
1637 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1638 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1639 error = -filemap_flush(VFS_I(ip)->i_mapping);
1640 if (error)
1641 return error;
1646 if (ip->i_d.di_nlink == 0)
1647 return 0;
1649 if (xfs_can_free_eofblocks(ip, false)) {
1652 * If we can't get the iolock just skip truncating the blocks
1653 * past EOF because we could deadlock with the mmap_sem
1654 * otherwise. We'll get another chance to drop them once the
1655 * last reference to the inode is dropped, so we'll never leak
1656 * blocks permanently.
1658 * Further, check if the inode is being opened, written and
1659 * closed frequently and we have delayed allocation blocks
1660 * outstanding (e.g. streaming writes from the NFS server),
1661 * truncating the blocks past EOF will cause fragmentation to
1662 * occur.
1664 * In this case don't do the truncation, either, but we have to
1665 * be careful how we detect this case. Blocks beyond EOF show
1666 * up as i_delayed_blks even when the inode is clean, so we
1667 * need to truncate them away first before checking for a dirty
1668 * release. Hence on the first dirty close we will still remove
1669 * the speculative allocation, but after that we will leave it
1670 * in place.
1672 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1673 return 0;
1675 error = xfs_free_eofblocks(mp, ip, true);
1676 if (error && error != EAGAIN)
1677 return error;
1679 /* delalloc blocks after truncation means it really is dirty */
1680 if (ip->i_delayed_blks)
1681 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1683 return 0;
1687 * xfs_inactive_truncate
1689 * Called to perform a truncate when an inode becomes unlinked.
1691 STATIC int
1692 xfs_inactive_truncate(
1693 struct xfs_inode *ip)
1695 struct xfs_mount *mp = ip->i_mount;
1696 struct xfs_trans *tp;
1697 int error;
1699 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1700 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1701 if (error) {
1702 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1703 xfs_trans_cancel(tp, 0);
1704 return error;
1707 xfs_ilock(ip, XFS_ILOCK_EXCL);
1708 xfs_trans_ijoin(tp, ip, 0);
1711 * Log the inode size first to prevent stale data exposure in the event
1712 * of a system crash before the truncate completes. See the related
1713 * comment in xfs_setattr_size() for details.
1715 ip->i_d.di_size = 0;
1716 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1718 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1719 if (error)
1720 goto error_trans_cancel;
1722 ASSERT(ip->i_d.di_nextents == 0);
1724 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1725 if (error)
1726 goto error_unlock;
1728 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1729 return 0;
1731 error_trans_cancel:
1732 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1733 error_unlock:
1734 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1735 return error;
1739 * xfs_inactive_ifree()
1741 * Perform the inode free when an inode is unlinked.
1743 STATIC int
1744 xfs_inactive_ifree(
1745 struct xfs_inode *ip)
1747 xfs_bmap_free_t free_list;
1748 xfs_fsblock_t first_block;
1749 int committed;
1750 struct xfs_mount *mp = ip->i_mount;
1751 struct xfs_trans *tp;
1752 int error;
1754 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1757 * The ifree transaction might need to allocate blocks for record
1758 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1759 * allow ifree to dip into the reserved block pool if necessary.
1761 * Freeing large sets of inodes generally means freeing inode chunks,
1762 * directory and file data blocks, so this should be relatively safe.
1763 * Only under severe circumstances should it be possible to free enough
1764 * inodes to exhaust the reserve block pool via finobt expansion while
1765 * at the same time not creating free space in the filesystem.
1767 * Send a warning if the reservation does happen to fail, as the inode
1768 * now remains allocated and sits on the unlinked list until the fs is
1769 * repaired.
1771 tp->t_flags |= XFS_TRANS_RESERVE;
1772 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1773 XFS_IFREE_SPACE_RES(mp), 0);
1774 if (error) {
1775 if (error == ENOSPC) {
1776 xfs_warn_ratelimited(mp,
1777 "Failed to remove inode(s) from unlinked list. "
1778 "Please free space, unmount and run xfs_repair.");
1779 } else {
1780 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1782 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1783 return error;
1786 xfs_ilock(ip, XFS_ILOCK_EXCL);
1787 xfs_trans_ijoin(tp, ip, 0);
1789 xfs_bmap_init(&free_list, &first_block);
1790 error = xfs_ifree(tp, ip, &free_list);
1791 if (error) {
1793 * If we fail to free the inode, shut down. The cancel
1794 * might do that, we need to make sure. Otherwise the
1795 * inode might be lost for a long time or forever.
1797 if (!XFS_FORCED_SHUTDOWN(mp)) {
1798 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1799 __func__, error);
1800 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1802 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1803 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1804 return error;
1808 * Credit the quota account(s). The inode is gone.
1810 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1813 * Just ignore errors at this point. There is nothing we can
1814 * do except to try to keep going. Make sure it's not a silent
1815 * error.
1817 error = xfs_bmap_finish(&tp, &free_list, &committed);
1818 if (error)
1819 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1820 __func__, error);
1821 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1822 if (error)
1823 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1824 __func__, error);
1826 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1827 return 0;
1831 * xfs_inactive
1833 * This is called when the vnode reference count for the vnode
1834 * goes to zero. If the file has been unlinked, then it must
1835 * now be truncated. Also, we clear all of the read-ahead state
1836 * kept for the inode here since the file is now closed.
1838 void
1839 xfs_inactive(
1840 xfs_inode_t *ip)
1842 struct xfs_mount *mp;
1843 int error;
1844 int truncate = 0;
1847 * If the inode is already free, then there can be nothing
1848 * to clean up here.
1850 if (ip->i_d.di_mode == 0) {
1851 ASSERT(ip->i_df.if_real_bytes == 0);
1852 ASSERT(ip->i_df.if_broot_bytes == 0);
1853 return;
1856 mp = ip->i_mount;
1858 /* If this is a read-only mount, don't do this (would generate I/O) */
1859 if (mp->m_flags & XFS_MOUNT_RDONLY)
1860 return;
1862 if (ip->i_d.di_nlink != 0) {
1864 * force is true because we are evicting an inode from the
1865 * cache. Post-eof blocks must be freed, lest we end up with
1866 * broken free space accounting.
1868 if (xfs_can_free_eofblocks(ip, true))
1869 xfs_free_eofblocks(mp, ip, false);
1871 return;
1874 if (S_ISREG(ip->i_d.di_mode) &&
1875 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1876 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1877 truncate = 1;
1879 error = xfs_qm_dqattach(ip, 0);
1880 if (error)
1881 return;
1883 if (S_ISLNK(ip->i_d.di_mode))
1884 error = xfs_inactive_symlink(ip);
1885 else if (truncate)
1886 error = xfs_inactive_truncate(ip);
1887 if (error)
1888 return;
1891 * If there are attributes associated with the file then blow them away
1892 * now. The code calls a routine that recursively deconstructs the
1893 * attribute fork. We need to just commit the current transaction
1894 * because we can't use it for xfs_attr_inactive().
1896 if (ip->i_d.di_anextents > 0) {
1897 ASSERT(ip->i_d.di_forkoff != 0);
1899 error = xfs_attr_inactive(ip);
1900 if (error)
1901 return;
1904 if (ip->i_afp)
1905 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1907 ASSERT(ip->i_d.di_anextents == 0);
1910 * Free the inode.
1912 error = xfs_inactive_ifree(ip);
1913 if (error)
1914 return;
1917 * Release the dquots held by inode, if any.
1919 xfs_qm_dqdetach(ip);
1923 * This is called when the inode's link count goes to 0.
1924 * We place the on-disk inode on a list in the AGI. It
1925 * will be pulled from this list when the inode is freed.
1928 xfs_iunlink(
1929 xfs_trans_t *tp,
1930 xfs_inode_t *ip)
1932 xfs_mount_t *mp;
1933 xfs_agi_t *agi;
1934 xfs_dinode_t *dip;
1935 xfs_buf_t *agibp;
1936 xfs_buf_t *ibp;
1937 xfs_agino_t agino;
1938 short bucket_index;
1939 int offset;
1940 int error;
1942 ASSERT(ip->i_d.di_nlink == 0);
1943 ASSERT(ip->i_d.di_mode != 0);
1945 mp = tp->t_mountp;
1948 * Get the agi buffer first. It ensures lock ordering
1949 * on the list.
1951 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1952 if (error)
1953 return error;
1954 agi = XFS_BUF_TO_AGI(agibp);
1957 * Get the index into the agi hash table for the
1958 * list this inode will go on.
1960 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1961 ASSERT(agino != 0);
1962 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1963 ASSERT(agi->agi_unlinked[bucket_index]);
1964 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1966 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1968 * There is already another inode in the bucket we need
1969 * to add ourselves to. Add us at the front of the list.
1970 * Here we put the head pointer into our next pointer,
1971 * and then we fall through to point the head at us.
1973 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1974 0, 0);
1975 if (error)
1976 return error;
1978 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1979 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1980 offset = ip->i_imap.im_boffset +
1981 offsetof(xfs_dinode_t, di_next_unlinked);
1983 /* need to recalc the inode CRC if appropriate */
1984 xfs_dinode_calc_crc(mp, dip);
1986 xfs_trans_inode_buf(tp, ibp);
1987 xfs_trans_log_buf(tp, ibp, offset,
1988 (offset + sizeof(xfs_agino_t) - 1));
1989 xfs_inobp_check(mp, ibp);
1993 * Point the bucket head pointer at the inode being inserted.
1995 ASSERT(agino != 0);
1996 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1997 offset = offsetof(xfs_agi_t, agi_unlinked) +
1998 (sizeof(xfs_agino_t) * bucket_index);
1999 xfs_trans_log_buf(tp, agibp, offset,
2000 (offset + sizeof(xfs_agino_t) - 1));
2001 return 0;
2005 * Pull the on-disk inode from the AGI unlinked list.
2007 STATIC int
2008 xfs_iunlink_remove(
2009 xfs_trans_t *tp,
2010 xfs_inode_t *ip)
2012 xfs_ino_t next_ino;
2013 xfs_mount_t *mp;
2014 xfs_agi_t *agi;
2015 xfs_dinode_t *dip;
2016 xfs_buf_t *agibp;
2017 xfs_buf_t *ibp;
2018 xfs_agnumber_t agno;
2019 xfs_agino_t agino;
2020 xfs_agino_t next_agino;
2021 xfs_buf_t *last_ibp;
2022 xfs_dinode_t *last_dip = NULL;
2023 short bucket_index;
2024 int offset, last_offset = 0;
2025 int error;
2027 mp = tp->t_mountp;
2028 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2031 * Get the agi buffer first. It ensures lock ordering
2032 * on the list.
2034 error = xfs_read_agi(mp, tp, agno, &agibp);
2035 if (error)
2036 return error;
2038 agi = XFS_BUF_TO_AGI(agibp);
2041 * Get the index into the agi hash table for the
2042 * list this inode will go on.
2044 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2045 ASSERT(agino != 0);
2046 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2047 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2048 ASSERT(agi->agi_unlinked[bucket_index]);
2050 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2052 * We're at the head of the list. Get the inode's on-disk
2053 * buffer to see if there is anyone after us on the list.
2054 * Only modify our next pointer if it is not already NULLAGINO.
2055 * This saves us the overhead of dealing with the buffer when
2056 * there is no need to change it.
2058 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2059 0, 0);
2060 if (error) {
2061 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2062 __func__, error);
2063 return error;
2065 next_agino = be32_to_cpu(dip->di_next_unlinked);
2066 ASSERT(next_agino != 0);
2067 if (next_agino != NULLAGINO) {
2068 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2069 offset = ip->i_imap.im_boffset +
2070 offsetof(xfs_dinode_t, di_next_unlinked);
2072 /* need to recalc the inode CRC if appropriate */
2073 xfs_dinode_calc_crc(mp, dip);
2075 xfs_trans_inode_buf(tp, ibp);
2076 xfs_trans_log_buf(tp, ibp, offset,
2077 (offset + sizeof(xfs_agino_t) - 1));
2078 xfs_inobp_check(mp, ibp);
2079 } else {
2080 xfs_trans_brelse(tp, ibp);
2083 * Point the bucket head pointer at the next inode.
2085 ASSERT(next_agino != 0);
2086 ASSERT(next_agino != agino);
2087 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2088 offset = offsetof(xfs_agi_t, agi_unlinked) +
2089 (sizeof(xfs_agino_t) * bucket_index);
2090 xfs_trans_log_buf(tp, agibp, offset,
2091 (offset + sizeof(xfs_agino_t) - 1));
2092 } else {
2094 * We need to search the list for the inode being freed.
2096 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2097 last_ibp = NULL;
2098 while (next_agino != agino) {
2099 struct xfs_imap imap;
2101 if (last_ibp)
2102 xfs_trans_brelse(tp, last_ibp);
2104 imap.im_blkno = 0;
2105 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2107 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2108 if (error) {
2109 xfs_warn(mp,
2110 "%s: xfs_imap returned error %d.",
2111 __func__, error);
2112 return error;
2115 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2116 &last_ibp, 0, 0);
2117 if (error) {
2118 xfs_warn(mp,
2119 "%s: xfs_imap_to_bp returned error %d.",
2120 __func__, error);
2121 return error;
2124 last_offset = imap.im_boffset;
2125 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2126 ASSERT(next_agino != NULLAGINO);
2127 ASSERT(next_agino != 0);
2131 * Now last_ibp points to the buffer previous to us on the
2132 * unlinked list. Pull us from the list.
2134 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2135 0, 0);
2136 if (error) {
2137 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2138 __func__, error);
2139 return error;
2141 next_agino = be32_to_cpu(dip->di_next_unlinked);
2142 ASSERT(next_agino != 0);
2143 ASSERT(next_agino != agino);
2144 if (next_agino != NULLAGINO) {
2145 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2146 offset = ip->i_imap.im_boffset +
2147 offsetof(xfs_dinode_t, di_next_unlinked);
2149 /* need to recalc the inode CRC if appropriate */
2150 xfs_dinode_calc_crc(mp, dip);
2152 xfs_trans_inode_buf(tp, ibp);
2153 xfs_trans_log_buf(tp, ibp, offset,
2154 (offset + sizeof(xfs_agino_t) - 1));
2155 xfs_inobp_check(mp, ibp);
2156 } else {
2157 xfs_trans_brelse(tp, ibp);
2160 * Point the previous inode on the list to the next inode.
2162 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2163 ASSERT(next_agino != 0);
2164 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2166 /* need to recalc the inode CRC if appropriate */
2167 xfs_dinode_calc_crc(mp, last_dip);
2169 xfs_trans_inode_buf(tp, last_ibp);
2170 xfs_trans_log_buf(tp, last_ibp, offset,
2171 (offset + sizeof(xfs_agino_t) - 1));
2172 xfs_inobp_check(mp, last_ibp);
2174 return 0;
2178 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2179 * inodes that are in memory - they all must be marked stale and attached to
2180 * the cluster buffer.
2182 STATIC int
2183 xfs_ifree_cluster(
2184 xfs_inode_t *free_ip,
2185 xfs_trans_t *tp,
2186 xfs_ino_t inum)
2188 xfs_mount_t *mp = free_ip->i_mount;
2189 int blks_per_cluster;
2190 int inodes_per_cluster;
2191 int nbufs;
2192 int i, j;
2193 xfs_daddr_t blkno;
2194 xfs_buf_t *bp;
2195 xfs_inode_t *ip;
2196 xfs_inode_log_item_t *iip;
2197 xfs_log_item_t *lip;
2198 struct xfs_perag *pag;
2200 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2201 blks_per_cluster = xfs_icluster_size_fsb(mp);
2202 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2203 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2205 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2206 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2207 XFS_INO_TO_AGBNO(mp, inum));
2210 * We obtain and lock the backing buffer first in the process
2211 * here, as we have to ensure that any dirty inode that we
2212 * can't get the flush lock on is attached to the buffer.
2213 * If we scan the in-memory inodes first, then buffer IO can
2214 * complete before we get a lock on it, and hence we may fail
2215 * to mark all the active inodes on the buffer stale.
2217 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2218 mp->m_bsize * blks_per_cluster,
2219 XBF_UNMAPPED);
2221 if (!bp)
2222 return ENOMEM;
2225 * This buffer may not have been correctly initialised as we
2226 * didn't read it from disk. That's not important because we are
2227 * only using to mark the buffer as stale in the log, and to
2228 * attach stale cached inodes on it. That means it will never be
2229 * dispatched for IO. If it is, we want to know about it, and we
2230 * want it to fail. We can acheive this by adding a write
2231 * verifier to the buffer.
2233 bp->b_ops = &xfs_inode_buf_ops;
2236 * Walk the inodes already attached to the buffer and mark them
2237 * stale. These will all have the flush locks held, so an
2238 * in-memory inode walk can't lock them. By marking them all
2239 * stale first, we will not attempt to lock them in the loop
2240 * below as the XFS_ISTALE flag will be set.
2242 lip = bp->b_fspriv;
2243 while (lip) {
2244 if (lip->li_type == XFS_LI_INODE) {
2245 iip = (xfs_inode_log_item_t *)lip;
2246 ASSERT(iip->ili_logged == 1);
2247 lip->li_cb = xfs_istale_done;
2248 xfs_trans_ail_copy_lsn(mp->m_ail,
2249 &iip->ili_flush_lsn,
2250 &iip->ili_item.li_lsn);
2251 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2253 lip = lip->li_bio_list;
2258 * For each inode in memory attempt to add it to the inode
2259 * buffer and set it up for being staled on buffer IO
2260 * completion. This is safe as we've locked out tail pushing
2261 * and flushing by locking the buffer.
2263 * We have already marked every inode that was part of a
2264 * transaction stale above, which means there is no point in
2265 * even trying to lock them.
2267 for (i = 0; i < inodes_per_cluster; i++) {
2268 retry:
2269 rcu_read_lock();
2270 ip = radix_tree_lookup(&pag->pag_ici_root,
2271 XFS_INO_TO_AGINO(mp, (inum + i)));
2273 /* Inode not in memory, nothing to do */
2274 if (!ip) {
2275 rcu_read_unlock();
2276 continue;
2280 * because this is an RCU protected lookup, we could
2281 * find a recently freed or even reallocated inode
2282 * during the lookup. We need to check under the
2283 * i_flags_lock for a valid inode here. Skip it if it
2284 * is not valid, the wrong inode or stale.
2286 spin_lock(&ip->i_flags_lock);
2287 if (ip->i_ino != inum + i ||
2288 __xfs_iflags_test(ip, XFS_ISTALE)) {
2289 spin_unlock(&ip->i_flags_lock);
2290 rcu_read_unlock();
2291 continue;
2293 spin_unlock(&ip->i_flags_lock);
2296 * Don't try to lock/unlock the current inode, but we
2297 * _cannot_ skip the other inodes that we did not find
2298 * in the list attached to the buffer and are not
2299 * already marked stale. If we can't lock it, back off
2300 * and retry.
2302 if (ip != free_ip &&
2303 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2304 rcu_read_unlock();
2305 delay(1);
2306 goto retry;
2308 rcu_read_unlock();
2310 xfs_iflock(ip);
2311 xfs_iflags_set(ip, XFS_ISTALE);
2314 * we don't need to attach clean inodes or those only
2315 * with unlogged changes (which we throw away, anyway).
2317 iip = ip->i_itemp;
2318 if (!iip || xfs_inode_clean(ip)) {
2319 ASSERT(ip != free_ip);
2320 xfs_ifunlock(ip);
2321 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2322 continue;
2325 iip->ili_last_fields = iip->ili_fields;
2326 iip->ili_fields = 0;
2327 iip->ili_logged = 1;
2328 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2329 &iip->ili_item.li_lsn);
2331 xfs_buf_attach_iodone(bp, xfs_istale_done,
2332 &iip->ili_item);
2334 if (ip != free_ip)
2335 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2338 xfs_trans_stale_inode_buf(tp, bp);
2339 xfs_trans_binval(tp, bp);
2342 xfs_perag_put(pag);
2343 return 0;
2347 * This is called to return an inode to the inode free list.
2348 * The inode should already be truncated to 0 length and have
2349 * no pages associated with it. This routine also assumes that
2350 * the inode is already a part of the transaction.
2352 * The on-disk copy of the inode will have been added to the list
2353 * of unlinked inodes in the AGI. We need to remove the inode from
2354 * that list atomically with respect to freeing it here.
2357 xfs_ifree(
2358 xfs_trans_t *tp,
2359 xfs_inode_t *ip,
2360 xfs_bmap_free_t *flist)
2362 int error;
2363 int delete;
2364 xfs_ino_t first_ino;
2366 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2367 ASSERT(ip->i_d.di_nlink == 0);
2368 ASSERT(ip->i_d.di_nextents == 0);
2369 ASSERT(ip->i_d.di_anextents == 0);
2370 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2371 ASSERT(ip->i_d.di_nblocks == 0);
2374 * Pull the on-disk inode from the AGI unlinked list.
2376 error = xfs_iunlink_remove(tp, ip);
2377 if (error)
2378 return error;
2380 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2381 if (error)
2382 return error;
2384 ip->i_d.di_mode = 0; /* mark incore inode as free */
2385 ip->i_d.di_flags = 0;
2386 ip->i_d.di_dmevmask = 0;
2387 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2388 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2389 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2391 * Bump the generation count so no one will be confused
2392 * by reincarnations of this inode.
2394 ip->i_d.di_gen++;
2395 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2397 if (delete)
2398 error = xfs_ifree_cluster(ip, tp, first_ino);
2400 return error;
2404 * This is called to unpin an inode. The caller must have the inode locked
2405 * in at least shared mode so that the buffer cannot be subsequently pinned
2406 * once someone is waiting for it to be unpinned.
2408 static void
2409 xfs_iunpin(
2410 struct xfs_inode *ip)
2412 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2414 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2416 /* Give the log a push to start the unpinning I/O */
2417 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2421 static void
2422 __xfs_iunpin_wait(
2423 struct xfs_inode *ip)
2425 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2426 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2428 xfs_iunpin(ip);
2430 do {
2431 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2432 if (xfs_ipincount(ip))
2433 io_schedule();
2434 } while (xfs_ipincount(ip));
2435 finish_wait(wq, &wait.wait);
2438 void
2439 xfs_iunpin_wait(
2440 struct xfs_inode *ip)
2442 if (xfs_ipincount(ip))
2443 __xfs_iunpin_wait(ip);
2447 * Removing an inode from the namespace involves removing the directory entry
2448 * and dropping the link count on the inode. Removing the directory entry can
2449 * result in locking an AGF (directory blocks were freed) and removing a link
2450 * count can result in placing the inode on an unlinked list which results in
2451 * locking an AGI.
2453 * The big problem here is that we have an ordering constraint on AGF and AGI
2454 * locking - inode allocation locks the AGI, then can allocate a new extent for
2455 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2456 * removes the inode from the unlinked list, requiring that we lock the AGI
2457 * first, and then freeing the inode can result in an inode chunk being freed
2458 * and hence freeing disk space requiring that we lock an AGF.
2460 * Hence the ordering that is imposed by other parts of the code is AGI before
2461 * AGF. This means we cannot remove the directory entry before we drop the inode
2462 * reference count and put it on the unlinked list as this results in a lock
2463 * order of AGF then AGI, and this can deadlock against inode allocation and
2464 * freeing. Therefore we must drop the link counts before we remove the
2465 * directory entry.
2467 * This is still safe from a transactional point of view - it is not until we
2468 * get to xfs_bmap_finish() that we have the possibility of multiple
2469 * transactions in this operation. Hence as long as we remove the directory
2470 * entry and drop the link count in the first transaction of the remove
2471 * operation, there are no transactional constraints on the ordering here.
2474 xfs_remove(
2475 xfs_inode_t *dp,
2476 struct xfs_name *name,
2477 xfs_inode_t *ip)
2479 xfs_mount_t *mp = dp->i_mount;
2480 xfs_trans_t *tp = NULL;
2481 int is_dir = S_ISDIR(ip->i_d.di_mode);
2482 int error = 0;
2483 xfs_bmap_free_t free_list;
2484 xfs_fsblock_t first_block;
2485 int cancel_flags;
2486 int committed;
2487 int link_zero;
2488 uint resblks;
2489 uint log_count;
2491 trace_xfs_remove(dp, name);
2493 if (XFS_FORCED_SHUTDOWN(mp))
2494 return XFS_ERROR(EIO);
2496 error = xfs_qm_dqattach(dp, 0);
2497 if (error)
2498 goto std_return;
2500 error = xfs_qm_dqattach(ip, 0);
2501 if (error)
2502 goto std_return;
2504 if (is_dir) {
2505 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2506 log_count = XFS_DEFAULT_LOG_COUNT;
2507 } else {
2508 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2509 log_count = XFS_REMOVE_LOG_COUNT;
2511 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2514 * We try to get the real space reservation first,
2515 * allowing for directory btree deletion(s) implying
2516 * possible bmap insert(s). If we can't get the space
2517 * reservation then we use 0 instead, and avoid the bmap
2518 * btree insert(s) in the directory code by, if the bmap
2519 * insert tries to happen, instead trimming the LAST
2520 * block from the directory.
2522 resblks = XFS_REMOVE_SPACE_RES(mp);
2523 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2524 if (error == ENOSPC) {
2525 resblks = 0;
2526 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2528 if (error) {
2529 ASSERT(error != ENOSPC);
2530 cancel_flags = 0;
2531 goto out_trans_cancel;
2534 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2536 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2537 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2540 * If we're removing a directory perform some additional validation.
2542 cancel_flags |= XFS_TRANS_ABORT;
2543 if (is_dir) {
2544 ASSERT(ip->i_d.di_nlink >= 2);
2545 if (ip->i_d.di_nlink != 2) {
2546 error = XFS_ERROR(ENOTEMPTY);
2547 goto out_trans_cancel;
2549 if (!xfs_dir_isempty(ip)) {
2550 error = XFS_ERROR(ENOTEMPTY);
2551 goto out_trans_cancel;
2554 /* Drop the link from ip's "..". */
2555 error = xfs_droplink(tp, dp);
2556 if (error)
2557 goto out_trans_cancel;
2559 /* Drop the "." link from ip to self. */
2560 error = xfs_droplink(tp, ip);
2561 if (error)
2562 goto out_trans_cancel;
2563 } else {
2565 * When removing a non-directory we need to log the parent
2566 * inode here. For a directory this is done implicitly
2567 * by the xfs_droplink call for the ".." entry.
2569 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2571 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2573 /* Drop the link from dp to ip. */
2574 error = xfs_droplink(tp, ip);
2575 if (error)
2576 goto out_trans_cancel;
2578 /* Determine if this is the last link while the inode is locked */
2579 link_zero = (ip->i_d.di_nlink == 0);
2581 xfs_bmap_init(&free_list, &first_block);
2582 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2583 &first_block, &free_list, resblks);
2584 if (error) {
2585 ASSERT(error != ENOENT);
2586 goto out_bmap_cancel;
2590 * If this is a synchronous mount, make sure that the
2591 * remove transaction goes to disk before returning to
2592 * the user.
2594 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2595 xfs_trans_set_sync(tp);
2597 error = xfs_bmap_finish(&tp, &free_list, &committed);
2598 if (error)
2599 goto out_bmap_cancel;
2601 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2602 if (error)
2603 goto std_return;
2605 if (is_dir && xfs_inode_is_filestream(ip))
2606 xfs_filestream_deassociate(ip);
2608 return 0;
2610 out_bmap_cancel:
2611 xfs_bmap_cancel(&free_list);
2612 out_trans_cancel:
2613 xfs_trans_cancel(tp, cancel_flags);
2614 std_return:
2615 return error;
2619 * Enter all inodes for a rename transaction into a sorted array.
2621 STATIC void
2622 xfs_sort_for_rename(
2623 xfs_inode_t *dp1, /* in: old (source) directory inode */
2624 xfs_inode_t *dp2, /* in: new (target) directory inode */
2625 xfs_inode_t *ip1, /* in: inode of old entry */
2626 xfs_inode_t *ip2, /* in: inode of new entry, if it
2627 already exists, NULL otherwise. */
2628 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2629 int *num_inodes) /* out: number of inodes in array */
2631 xfs_inode_t *temp;
2632 int i, j;
2635 * i_tab contains a list of pointers to inodes. We initialize
2636 * the table here & we'll sort it. We will then use it to
2637 * order the acquisition of the inode locks.
2639 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2641 i_tab[0] = dp1;
2642 i_tab[1] = dp2;
2643 i_tab[2] = ip1;
2644 if (ip2) {
2645 *num_inodes = 4;
2646 i_tab[3] = ip2;
2647 } else {
2648 *num_inodes = 3;
2649 i_tab[3] = NULL;
2653 * Sort the elements via bubble sort. (Remember, there are at
2654 * most 4 elements to sort, so this is adequate.)
2656 for (i = 0; i < *num_inodes; i++) {
2657 for (j = 1; j < *num_inodes; j++) {
2658 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2659 temp = i_tab[j];
2660 i_tab[j] = i_tab[j-1];
2661 i_tab[j-1] = temp;
2668 * xfs_rename
2671 xfs_rename(
2672 xfs_inode_t *src_dp,
2673 struct xfs_name *src_name,
2674 xfs_inode_t *src_ip,
2675 xfs_inode_t *target_dp,
2676 struct xfs_name *target_name,
2677 xfs_inode_t *target_ip)
2679 xfs_trans_t *tp = NULL;
2680 xfs_mount_t *mp = src_dp->i_mount;
2681 int new_parent; /* moving to a new dir */
2682 int src_is_directory; /* src_name is a directory */
2683 int error;
2684 xfs_bmap_free_t free_list;
2685 xfs_fsblock_t first_block;
2686 int cancel_flags;
2687 int committed;
2688 xfs_inode_t *inodes[4];
2689 int spaceres;
2690 int num_inodes;
2692 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2694 new_parent = (src_dp != target_dp);
2695 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2697 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2698 inodes, &num_inodes);
2700 xfs_bmap_init(&free_list, &first_block);
2701 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2702 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2703 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2704 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2705 if (error == ENOSPC) {
2706 spaceres = 0;
2707 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2709 if (error) {
2710 xfs_trans_cancel(tp, 0);
2711 goto std_return;
2715 * Attach the dquots to the inodes
2717 error = xfs_qm_vop_rename_dqattach(inodes);
2718 if (error) {
2719 xfs_trans_cancel(tp, cancel_flags);
2720 goto std_return;
2724 * Lock all the participating inodes. Depending upon whether
2725 * the target_name exists in the target directory, and
2726 * whether the target directory is the same as the source
2727 * directory, we can lock from 2 to 4 inodes.
2729 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2732 * Join all the inodes to the transaction. From this point on,
2733 * we can rely on either trans_commit or trans_cancel to unlock
2734 * them.
2736 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2737 if (new_parent)
2738 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2739 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2740 if (target_ip)
2741 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2744 * If we are using project inheritance, we only allow renames
2745 * into our tree when the project IDs are the same; else the
2746 * tree quota mechanism would be circumvented.
2748 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2749 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2750 error = XFS_ERROR(EXDEV);
2751 goto error_return;
2755 * Set up the target.
2757 if (target_ip == NULL) {
2759 * If there's no space reservation, check the entry will
2760 * fit before actually inserting it.
2762 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2763 if (error)
2764 goto error_return;
2766 * If target does not exist and the rename crosses
2767 * directories, adjust the target directory link count
2768 * to account for the ".." reference from the new entry.
2770 error = xfs_dir_createname(tp, target_dp, target_name,
2771 src_ip->i_ino, &first_block,
2772 &free_list, spaceres);
2773 if (error == ENOSPC)
2774 goto error_return;
2775 if (error)
2776 goto abort_return;
2778 xfs_trans_ichgtime(tp, target_dp,
2779 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2781 if (new_parent && src_is_directory) {
2782 error = xfs_bumplink(tp, target_dp);
2783 if (error)
2784 goto abort_return;
2786 } else { /* target_ip != NULL */
2788 * If target exists and it's a directory, check that both
2789 * target and source are directories and that target can be
2790 * destroyed, or that neither is a directory.
2792 if (S_ISDIR(target_ip->i_d.di_mode)) {
2794 * Make sure target dir is empty.
2796 if (!(xfs_dir_isempty(target_ip)) ||
2797 (target_ip->i_d.di_nlink > 2)) {
2798 error = XFS_ERROR(EEXIST);
2799 goto error_return;
2804 * Link the source inode under the target name.
2805 * If the source inode is a directory and we are moving
2806 * it across directories, its ".." entry will be
2807 * inconsistent until we replace that down below.
2809 * In case there is already an entry with the same
2810 * name at the destination directory, remove it first.
2812 error = xfs_dir_replace(tp, target_dp, target_name,
2813 src_ip->i_ino,
2814 &first_block, &free_list, spaceres);
2815 if (error)
2816 goto abort_return;
2818 xfs_trans_ichgtime(tp, target_dp,
2819 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2822 * Decrement the link count on the target since the target
2823 * dir no longer points to it.
2825 error = xfs_droplink(tp, target_ip);
2826 if (error)
2827 goto abort_return;
2829 if (src_is_directory) {
2831 * Drop the link from the old "." entry.
2833 error = xfs_droplink(tp, target_ip);
2834 if (error)
2835 goto abort_return;
2837 } /* target_ip != NULL */
2840 * Remove the source.
2842 if (new_parent && src_is_directory) {
2844 * Rewrite the ".." entry to point to the new
2845 * directory.
2847 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2848 target_dp->i_ino,
2849 &first_block, &free_list, spaceres);
2850 ASSERT(error != EEXIST);
2851 if (error)
2852 goto abort_return;
2856 * We always want to hit the ctime on the source inode.
2858 * This isn't strictly required by the standards since the source
2859 * inode isn't really being changed, but old unix file systems did
2860 * it and some incremental backup programs won't work without it.
2862 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2863 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2866 * Adjust the link count on src_dp. This is necessary when
2867 * renaming a directory, either within one parent when
2868 * the target existed, or across two parent directories.
2870 if (src_is_directory && (new_parent || target_ip != NULL)) {
2873 * Decrement link count on src_directory since the
2874 * entry that's moved no longer points to it.
2876 error = xfs_droplink(tp, src_dp);
2877 if (error)
2878 goto abort_return;
2881 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2882 &first_block, &free_list, spaceres);
2883 if (error)
2884 goto abort_return;
2886 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2887 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2888 if (new_parent)
2889 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2892 * If this is a synchronous mount, make sure that the
2893 * rename transaction goes to disk before returning to
2894 * the user.
2896 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2897 xfs_trans_set_sync(tp);
2900 error = xfs_bmap_finish(&tp, &free_list, &committed);
2901 if (error) {
2902 xfs_bmap_cancel(&free_list);
2903 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2904 XFS_TRANS_ABORT));
2905 goto std_return;
2909 * trans_commit will unlock src_ip, target_ip & decrement
2910 * the vnode references.
2912 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2914 abort_return:
2915 cancel_flags |= XFS_TRANS_ABORT;
2916 error_return:
2917 xfs_bmap_cancel(&free_list);
2918 xfs_trans_cancel(tp, cancel_flags);
2919 std_return:
2920 return error;
2923 STATIC int
2924 xfs_iflush_cluster(
2925 xfs_inode_t *ip,
2926 xfs_buf_t *bp)
2928 xfs_mount_t *mp = ip->i_mount;
2929 struct xfs_perag *pag;
2930 unsigned long first_index, mask;
2931 unsigned long inodes_per_cluster;
2932 int ilist_size;
2933 xfs_inode_t **ilist;
2934 xfs_inode_t *iq;
2935 int nr_found;
2936 int clcount = 0;
2937 int bufwasdelwri;
2938 int i;
2940 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2942 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
2943 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2944 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2945 if (!ilist)
2946 goto out_put;
2948 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
2949 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2950 rcu_read_lock();
2951 /* really need a gang lookup range call here */
2952 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2953 first_index, inodes_per_cluster);
2954 if (nr_found == 0)
2955 goto out_free;
2957 for (i = 0; i < nr_found; i++) {
2958 iq = ilist[i];
2959 if (iq == ip)
2960 continue;
2963 * because this is an RCU protected lookup, we could find a
2964 * recently freed or even reallocated inode during the lookup.
2965 * We need to check under the i_flags_lock for a valid inode
2966 * here. Skip it if it is not valid or the wrong inode.
2968 spin_lock(&ip->i_flags_lock);
2969 if (!ip->i_ino ||
2970 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2971 spin_unlock(&ip->i_flags_lock);
2972 continue;
2974 spin_unlock(&ip->i_flags_lock);
2977 * Do an un-protected check to see if the inode is dirty and
2978 * is a candidate for flushing. These checks will be repeated
2979 * later after the appropriate locks are acquired.
2981 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2982 continue;
2985 * Try to get locks. If any are unavailable or it is pinned,
2986 * then this inode cannot be flushed and is skipped.
2989 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2990 continue;
2991 if (!xfs_iflock_nowait(iq)) {
2992 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2993 continue;
2995 if (xfs_ipincount(iq)) {
2996 xfs_ifunlock(iq);
2997 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2998 continue;
3002 * arriving here means that this inode can be flushed. First
3003 * re-check that it's dirty before flushing.
3005 if (!xfs_inode_clean(iq)) {
3006 int error;
3007 error = xfs_iflush_int(iq, bp);
3008 if (error) {
3009 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3010 goto cluster_corrupt_out;
3012 clcount++;
3013 } else {
3014 xfs_ifunlock(iq);
3016 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3019 if (clcount) {
3020 XFS_STATS_INC(xs_icluster_flushcnt);
3021 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3024 out_free:
3025 rcu_read_unlock();
3026 kmem_free(ilist);
3027 out_put:
3028 xfs_perag_put(pag);
3029 return 0;
3032 cluster_corrupt_out:
3034 * Corruption detected in the clustering loop. Invalidate the
3035 * inode buffer and shut down the filesystem.
3037 rcu_read_unlock();
3039 * Clean up the buffer. If it was delwri, just release it --
3040 * brelse can handle it with no problems. If not, shut down the
3041 * filesystem before releasing the buffer.
3043 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3044 if (bufwasdelwri)
3045 xfs_buf_relse(bp);
3047 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3049 if (!bufwasdelwri) {
3051 * Just like incore_relse: if we have b_iodone functions,
3052 * mark the buffer as an error and call them. Otherwise
3053 * mark it as stale and brelse.
3055 if (bp->b_iodone) {
3056 XFS_BUF_UNDONE(bp);
3057 xfs_buf_stale(bp);
3058 xfs_buf_ioerror(bp, EIO);
3059 xfs_buf_ioend(bp, 0);
3060 } else {
3061 xfs_buf_stale(bp);
3062 xfs_buf_relse(bp);
3067 * Unlocks the flush lock
3069 xfs_iflush_abort(iq, false);
3070 kmem_free(ilist);
3071 xfs_perag_put(pag);
3072 return XFS_ERROR(EFSCORRUPTED);
3076 * Flush dirty inode metadata into the backing buffer.
3078 * The caller must have the inode lock and the inode flush lock held. The
3079 * inode lock will still be held upon return to the caller, and the inode
3080 * flush lock will be released after the inode has reached the disk.
3082 * The caller must write out the buffer returned in *bpp and release it.
3085 xfs_iflush(
3086 struct xfs_inode *ip,
3087 struct xfs_buf **bpp)
3089 struct xfs_mount *mp = ip->i_mount;
3090 struct xfs_buf *bp;
3091 struct xfs_dinode *dip;
3092 int error;
3094 XFS_STATS_INC(xs_iflush_count);
3096 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3097 ASSERT(xfs_isiflocked(ip));
3098 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3099 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3101 *bpp = NULL;
3103 xfs_iunpin_wait(ip);
3106 * For stale inodes we cannot rely on the backing buffer remaining
3107 * stale in cache for the remaining life of the stale inode and so
3108 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3109 * inodes below. We have to check this after ensuring the inode is
3110 * unpinned so that it is safe to reclaim the stale inode after the
3111 * flush call.
3113 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3114 xfs_ifunlock(ip);
3115 return 0;
3119 * This may have been unpinned because the filesystem is shutting
3120 * down forcibly. If that's the case we must not write this inode
3121 * to disk, because the log record didn't make it to disk.
3123 * We also have to remove the log item from the AIL in this case,
3124 * as we wait for an empty AIL as part of the unmount process.
3126 if (XFS_FORCED_SHUTDOWN(mp)) {
3127 error = XFS_ERROR(EIO);
3128 goto abort_out;
3132 * Get the buffer containing the on-disk inode.
3134 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3136 if (error || !bp) {
3137 xfs_ifunlock(ip);
3138 return error;
3142 * First flush out the inode that xfs_iflush was called with.
3144 error = xfs_iflush_int(ip, bp);
3145 if (error)
3146 goto corrupt_out;
3149 * If the buffer is pinned then push on the log now so we won't
3150 * get stuck waiting in the write for too long.
3152 if (xfs_buf_ispinned(bp))
3153 xfs_log_force(mp, 0);
3156 * inode clustering:
3157 * see if other inodes can be gathered into this write
3159 error = xfs_iflush_cluster(ip, bp);
3160 if (error)
3161 goto cluster_corrupt_out;
3163 *bpp = bp;
3164 return 0;
3166 corrupt_out:
3167 xfs_buf_relse(bp);
3168 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3169 cluster_corrupt_out:
3170 error = XFS_ERROR(EFSCORRUPTED);
3171 abort_out:
3173 * Unlocks the flush lock
3175 xfs_iflush_abort(ip, false);
3176 return error;
3179 STATIC int
3180 xfs_iflush_int(
3181 struct xfs_inode *ip,
3182 struct xfs_buf *bp)
3184 struct xfs_inode_log_item *iip = ip->i_itemp;
3185 struct xfs_dinode *dip;
3186 struct xfs_mount *mp = ip->i_mount;
3188 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3189 ASSERT(xfs_isiflocked(ip));
3190 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3191 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3192 ASSERT(iip != NULL && iip->ili_fields != 0);
3193 ASSERT(ip->i_d.di_version > 1);
3195 /* set *dip = inode's place in the buffer */
3196 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3198 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3199 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3200 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3201 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3202 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3203 goto corrupt_out;
3205 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3206 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3207 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3208 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3209 __func__, ip->i_ino, ip, ip->i_d.di_magic);
3210 goto corrupt_out;
3212 if (S_ISREG(ip->i_d.di_mode)) {
3213 if (XFS_TEST_ERROR(
3214 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3215 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3216 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3217 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3218 "%s: Bad regular inode %Lu, ptr 0x%p",
3219 __func__, ip->i_ino, ip);
3220 goto corrupt_out;
3222 } else if (S_ISDIR(ip->i_d.di_mode)) {
3223 if (XFS_TEST_ERROR(
3224 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3225 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3226 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3227 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3228 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3229 "%s: Bad directory inode %Lu, ptr 0x%p",
3230 __func__, ip->i_ino, ip);
3231 goto corrupt_out;
3234 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3235 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3236 XFS_RANDOM_IFLUSH_5)) {
3237 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3238 "%s: detected corrupt incore inode %Lu, "
3239 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3240 __func__, ip->i_ino,
3241 ip->i_d.di_nextents + ip->i_d.di_anextents,
3242 ip->i_d.di_nblocks, ip);
3243 goto corrupt_out;
3245 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3246 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3247 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3248 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3249 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3250 goto corrupt_out;
3254 * Inode item log recovery for v2 inodes are dependent on the
3255 * di_flushiter count for correct sequencing. We bump the flush
3256 * iteration count so we can detect flushes which postdate a log record
3257 * during recovery. This is redundant as we now log every change and
3258 * hence this can't happen but we need to still do it to ensure
3259 * backwards compatibility with old kernels that predate logging all
3260 * inode changes.
3262 if (ip->i_d.di_version < 3)
3263 ip->i_d.di_flushiter++;
3266 * Copy the dirty parts of the inode into the on-disk
3267 * inode. We always copy out the core of the inode,
3268 * because if the inode is dirty at all the core must
3269 * be.
3271 xfs_dinode_to_disk(dip, &ip->i_d);
3273 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3274 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3275 ip->i_d.di_flushiter = 0;
3277 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3278 if (XFS_IFORK_Q(ip))
3279 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3280 xfs_inobp_check(mp, bp);
3283 * We've recorded everything logged in the inode, so we'd like to clear
3284 * the ili_fields bits so we don't log and flush things unnecessarily.
3285 * However, we can't stop logging all this information until the data
3286 * we've copied into the disk buffer is written to disk. If we did we
3287 * might overwrite the copy of the inode in the log with all the data
3288 * after re-logging only part of it, and in the face of a crash we
3289 * wouldn't have all the data we need to recover.
3291 * What we do is move the bits to the ili_last_fields field. When
3292 * logging the inode, these bits are moved back to the ili_fields field.
3293 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3294 * know that the information those bits represent is permanently on
3295 * disk. As long as the flush completes before the inode is logged
3296 * again, then both ili_fields and ili_last_fields will be cleared.
3298 * We can play with the ili_fields bits here, because the inode lock
3299 * must be held exclusively in order to set bits there and the flush
3300 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3301 * done routine can tell whether or not to look in the AIL. Also, store
3302 * the current LSN of the inode so that we can tell whether the item has
3303 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3304 * need the AIL lock, because it is a 64 bit value that cannot be read
3305 * atomically.
3307 iip->ili_last_fields = iip->ili_fields;
3308 iip->ili_fields = 0;
3309 iip->ili_logged = 1;
3311 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3312 &iip->ili_item.li_lsn);
3315 * Attach the function xfs_iflush_done to the inode's
3316 * buffer. This will remove the inode from the AIL
3317 * and unlock the inode's flush lock when the inode is
3318 * completely written to disk.
3320 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3322 /* update the lsn in the on disk inode if required */
3323 if (ip->i_d.di_version == 3)
3324 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3326 /* generate the checksum. */
3327 xfs_dinode_calc_crc(mp, dip);
3329 ASSERT(bp->b_fspriv != NULL);
3330 ASSERT(bp->b_iodone != NULL);
3331 return 0;
3333 corrupt_out:
3334 return XFS_ERROR(EFSCORRUPTED);