2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
31 #include "xfs_log_priv.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_inode.h"
34 #include "xfs_trace.h"
35 #include "xfs_fsops.h"
36 #include "xfs_cksum.h"
38 kmem_zone_t
*xfs_log_ticket_zone
;
40 /* Local miscellaneous function prototypes */
44 struct xlog_ticket
*ticket
,
45 struct xlog_in_core
**iclog
,
46 xfs_lsn_t
*commitlsnp
);
51 struct xfs_buftarg
*log_target
,
52 xfs_daddr_t blk_offset
,
61 struct xlog_in_core
*iclog
);
66 /* local state machine functions */
67 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
69 xlog_state_do_callback(
72 struct xlog_in_core
*iclog
);
74 xlog_state_get_iclog_space(
77 struct xlog_in_core
**iclog
,
78 struct xlog_ticket
*ticket
,
82 xlog_state_release_iclog(
84 struct xlog_in_core
*iclog
);
86 xlog_state_switch_iclogs(
88 struct xlog_in_core
*iclog
,
93 struct xlog_in_core
*iclog
);
100 xlog_regrant_reserve_log_space(
102 struct xlog_ticket
*ticket
);
104 xlog_ungrant_log_space(
106 struct xlog_ticket
*ticket
);
110 xlog_verify_dest_ptr(
114 xlog_verify_grant_tail(
119 struct xlog_in_core
*iclog
,
123 xlog_verify_tail_lsn(
125 struct xlog_in_core
*iclog
,
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
139 xlog_grant_sub_space(
144 int64_t head_val
= atomic64_read(head
);
150 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
154 space
+= log
->l_logsize
;
159 new = xlog_assign_grant_head_val(cycle
, space
);
160 head_val
= atomic64_cmpxchg(head
, old
, new);
161 } while (head_val
!= old
);
165 xlog_grant_add_space(
170 int64_t head_val
= atomic64_read(head
);
177 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
179 tmp
= log
->l_logsize
- space
;
188 new = xlog_assign_grant_head_val(cycle
, space
);
189 head_val
= atomic64_cmpxchg(head
, old
, new);
190 } while (head_val
!= old
);
194 xlog_grant_head_init(
195 struct xlog_grant_head
*head
)
197 xlog_assign_grant_head(&head
->grant
, 1, 0);
198 INIT_LIST_HEAD(&head
->waiters
);
199 spin_lock_init(&head
->lock
);
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head
*head
)
206 struct xlog_ticket
*tic
;
208 spin_lock(&head
->lock
);
209 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
210 wake_up_process(tic
->t_task
);
211 spin_unlock(&head
->lock
);
215 xlog_ticket_reservation(
217 struct xlog_grant_head
*head
,
218 struct xlog_ticket
*tic
)
220 if (head
== &log
->l_write_head
) {
221 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
222 return tic
->t_unit_res
;
224 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
225 return tic
->t_unit_res
* tic
->t_cnt
;
227 return tic
->t_unit_res
;
232 xlog_grant_head_wake(
234 struct xlog_grant_head
*head
,
237 struct xlog_ticket
*tic
;
240 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
241 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
242 if (*free_bytes
< need_bytes
)
245 *free_bytes
-= need_bytes
;
246 trace_xfs_log_grant_wake_up(log
, tic
);
247 wake_up_process(tic
->t_task
);
254 xlog_grant_head_wait(
256 struct xlog_grant_head
*head
,
257 struct xlog_ticket
*tic
,
258 int need_bytes
) __releases(&head
->lock
)
259 __acquires(&head
->lock
)
261 list_add_tail(&tic
->t_queue
, &head
->waiters
);
264 if (XLOG_FORCED_SHUTDOWN(log
))
266 xlog_grant_push_ail(log
, need_bytes
);
268 __set_current_state(TASK_UNINTERRUPTIBLE
);
269 spin_unlock(&head
->lock
);
271 XFS_STATS_INC(xs_sleep_logspace
);
273 trace_xfs_log_grant_sleep(log
, tic
);
275 trace_xfs_log_grant_wake(log
, tic
);
277 spin_lock(&head
->lock
);
278 if (XLOG_FORCED_SHUTDOWN(log
))
280 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
282 list_del_init(&tic
->t_queue
);
285 list_del_init(&tic
->t_queue
);
286 return XFS_ERROR(EIO
);
290 * Atomically get the log space required for a log ticket.
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
307 xlog_grant_head_check(
309 struct xlog_grant_head
*head
,
310 struct xlog_ticket
*tic
,
316 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
324 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
325 free_bytes
= xlog_space_left(log
, &head
->grant
);
326 if (!list_empty_careful(&head
->waiters
)) {
327 spin_lock(&head
->lock
);
328 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
329 free_bytes
< *need_bytes
) {
330 error
= xlog_grant_head_wait(log
, head
, tic
,
333 spin_unlock(&head
->lock
);
334 } else if (free_bytes
< *need_bytes
) {
335 spin_lock(&head
->lock
);
336 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
337 spin_unlock(&head
->lock
);
344 xlog_tic_reset_res(xlog_ticket_t
*tic
)
347 tic
->t_res_arr_sum
= 0;
348 tic
->t_res_num_ophdrs
= 0;
352 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
354 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
355 /* add to overflow and start again */
356 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
358 tic
->t_res_arr_sum
= 0;
361 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
362 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
363 tic
->t_res_arr_sum
+= len
;
368 * Replenish the byte reservation required by moving the grant write head.
372 struct xfs_mount
*mp
,
373 struct xlog_ticket
*tic
)
375 struct xlog
*log
= mp
->m_log
;
379 if (XLOG_FORCED_SHUTDOWN(log
))
380 return XFS_ERROR(EIO
);
382 XFS_STATS_INC(xs_try_logspace
);
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
392 xlog_grant_push_ail(log
, tic
->t_unit_res
);
394 tic
->t_curr_res
= tic
->t_unit_res
;
395 xlog_tic_reset_res(tic
);
400 trace_xfs_log_regrant(log
, tic
);
402 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
407 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
408 trace_xfs_log_regrant_exit(log
, tic
);
409 xlog_verify_grant_tail(log
);
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
419 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
424 * Reserve log space and return a ticket corresponding the reservation.
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
433 struct xfs_mount
*mp
,
436 struct xlog_ticket
**ticp
,
441 struct xlog
*log
= mp
->m_log
;
442 struct xlog_ticket
*tic
;
446 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
448 if (XLOG_FORCED_SHUTDOWN(log
))
449 return XFS_ERROR(EIO
);
451 XFS_STATS_INC(xs_try_logspace
);
453 ASSERT(*ticp
== NULL
);
454 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
,
455 KM_SLEEP
| KM_MAYFAIL
);
457 return XFS_ERROR(ENOMEM
);
459 tic
->t_trans_type
= t_type
;
462 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
465 trace_xfs_log_reserve(log
, tic
);
467 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
472 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
473 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
474 trace_xfs_log_reserve_exit(log
, tic
);
475 xlog_verify_grant_tail(log
);
480 * If we are failing, make sure the ticket doesn't have any current
481 * reservations. We don't want to add this back when the ticket/
482 * transaction gets cancelled.
485 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
493 * 1. currblock field gets updated at startup and after in-core logs
494 * marked as with WANT_SYNC.
498 * This routine is called when a user of a log manager ticket is done with
499 * the reservation. If the ticket was ever used, then a commit record for
500 * the associated transaction is written out as a log operation header with
501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
502 * a given ticket. If the ticket was one with a permanent reservation, then
503 * a few operations are done differently. Permanent reservation tickets by
504 * default don't release the reservation. They just commit the current
505 * transaction with the belief that the reservation is still needed. A flag
506 * must be passed in before permanent reservations are actually released.
507 * When these type of tickets are not released, they need to be set into
508 * the inited state again. By doing this, a start record will be written
509 * out when the next write occurs.
513 struct xfs_mount
*mp
,
514 struct xlog_ticket
*ticket
,
515 struct xlog_in_core
**iclog
,
518 struct xlog
*log
= mp
->m_log
;
521 if (XLOG_FORCED_SHUTDOWN(log
) ||
523 * If nothing was ever written, don't write out commit record.
524 * If we get an error, just continue and give back the log ticket.
526 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
527 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
528 lsn
= (xfs_lsn_t
) -1;
529 if (ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) {
530 flags
|= XFS_LOG_REL_PERM_RESERV
;
535 if ((ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) == 0 ||
536 (flags
& XFS_LOG_REL_PERM_RESERV
)) {
537 trace_xfs_log_done_nonperm(log
, ticket
);
540 * Release ticket if not permanent reservation or a specific
541 * request has been made to release a permanent reservation.
543 xlog_ungrant_log_space(log
, ticket
);
544 xfs_log_ticket_put(ticket
);
546 trace_xfs_log_done_perm(log
, ticket
);
548 xlog_regrant_reserve_log_space(log
, ticket
);
549 /* If this ticket was a permanent reservation and we aren't
550 * trying to release it, reset the inited flags; so next time
551 * we write, a start record will be written out.
553 ticket
->t_flags
|= XLOG_TIC_INITED
;
560 * Attaches a new iclog I/O completion callback routine during
561 * transaction commit. If the log is in error state, a non-zero
562 * return code is handed back and the caller is responsible for
563 * executing the callback at an appropriate time.
567 struct xfs_mount
*mp
,
568 struct xlog_in_core
*iclog
,
569 xfs_log_callback_t
*cb
)
573 spin_lock(&iclog
->ic_callback_lock
);
574 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
576 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
577 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
579 *(iclog
->ic_callback_tail
) = cb
;
580 iclog
->ic_callback_tail
= &(cb
->cb_next
);
582 spin_unlock(&iclog
->ic_callback_lock
);
587 xfs_log_release_iclog(
588 struct xfs_mount
*mp
,
589 struct xlog_in_core
*iclog
)
591 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
592 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
600 * Mount a log filesystem
602 * mp - ubiquitous xfs mount point structure
603 * log_target - buftarg of on-disk log device
604 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
605 * num_bblocks - Number of BBSIZE blocks in on-disk log
607 * Return error or zero.
612 xfs_buftarg_t
*log_target
,
613 xfs_daddr_t blk_offset
,
619 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
620 xfs_notice(mp
, "Mounting V%d Filesystem",
621 XFS_SB_VERSION_NUM(&mp
->m_sb
));
624 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
625 XFS_SB_VERSION_NUM(&mp
->m_sb
));
626 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
629 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
630 if (IS_ERR(mp
->m_log
)) {
631 error
= -PTR_ERR(mp
->m_log
);
636 * Validate the given log space and drop a critical message via syslog
637 * if the log size is too small that would lead to some unexpected
638 * situations in transaction log space reservation stage.
640 * Note: we can't just reject the mount if the validation fails. This
641 * would mean that people would have to downgrade their kernel just to
642 * remedy the situation as there is no way to grow the log (short of
643 * black magic surgery with xfs_db).
645 * We can, however, reject mounts for CRC format filesystems, as the
646 * mkfs binary being used to make the filesystem should never create a
647 * filesystem with a log that is too small.
649 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
651 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
653 "Log size %d blocks too small, minimum size is %d blocks",
654 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
656 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
658 "Log size %d blocks too large, maximum size is %lld blocks",
659 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
661 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
663 "log size %lld bytes too large, maximum size is %lld bytes",
664 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
669 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
670 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
675 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
676 "experienced then please report this message in the bug report.");
680 * Initialize the AIL now we have a log.
682 error
= xfs_trans_ail_init(mp
);
684 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
687 mp
->m_log
->l_ailp
= mp
->m_ail
;
690 * skip log recovery on a norecovery mount. pretend it all
693 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
694 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
697 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
699 error
= xlog_recover(mp
->m_log
);
702 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
704 xfs_warn(mp
, "log mount/recovery failed: error %d",
706 goto out_destroy_ail
;
710 /* Normal transactions can now occur */
711 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
714 * Now the log has been fully initialised and we know were our
715 * space grant counters are, we can initialise the permanent ticket
716 * needed for delayed logging to work.
718 xlog_cil_init_post_recovery(mp
->m_log
);
723 xfs_trans_ail_destroy(mp
);
725 xlog_dealloc_log(mp
->m_log
);
731 * Finish the recovery of the file system. This is separate from the
732 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
733 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
736 * If we finish recovery successfully, start the background log work. If we are
737 * not doing recovery, then we have a RO filesystem and we don't need to start
741 xfs_log_mount_finish(xfs_mount_t
*mp
)
745 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
746 error
= xlog_recover_finish(mp
->m_log
);
748 xfs_log_work_queue(mp
);
750 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
758 * Final log writes as part of unmount.
760 * Mark the filesystem clean as unmount happens. Note that during relocation
761 * this routine needs to be executed as part of source-bag while the
762 * deallocation must not be done until source-end.
766 * Unmount record used to have a string "Unmount filesystem--" in the
767 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
768 * We just write the magic number now since that particular field isn't
769 * currently architecture converted and "Unmount" is a bit foo.
770 * As far as I know, there weren't any dependencies on the old behaviour.
774 xfs_log_unmount_write(xfs_mount_t
*mp
)
776 struct xlog
*log
= mp
->m_log
;
777 xlog_in_core_t
*iclog
;
779 xlog_in_core_t
*first_iclog
;
781 xlog_ticket_t
*tic
= NULL
;
786 * Don't write out unmount record on read-only mounts.
787 * Or, if we are doing a forced umount (typically because of IO errors).
789 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
792 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
793 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
796 first_iclog
= iclog
= log
->l_iclog
;
798 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
799 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
800 ASSERT(iclog
->ic_offset
== 0);
802 iclog
= iclog
->ic_next
;
803 } while (iclog
!= first_iclog
);
805 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
806 error
= xfs_log_reserve(mp
, 600, 1, &tic
,
807 XFS_LOG
, 0, XLOG_UNMOUNT_REC_TYPE
);
809 /* the data section must be 32 bit size aligned */
813 __uint32_t pad2
; /* may as well make it 64 bits */
815 .magic
= XLOG_UNMOUNT_TYPE
,
817 struct xfs_log_iovec reg
= {
819 .i_len
= sizeof(magic
),
820 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
822 struct xfs_log_vec vec
= {
827 /* remove inited flag, and account for space used */
829 tic
->t_curr_res
-= sizeof(magic
);
830 error
= xlog_write(log
, &vec
, tic
, &lsn
,
831 NULL
, XLOG_UNMOUNT_TRANS
);
833 * At this point, we're umounting anyway,
834 * so there's no point in transitioning log state
835 * to IOERROR. Just continue...
840 xfs_alert(mp
, "%s: unmount record failed", __func__
);
843 spin_lock(&log
->l_icloglock
);
844 iclog
= log
->l_iclog
;
845 atomic_inc(&iclog
->ic_refcnt
);
846 xlog_state_want_sync(log
, iclog
);
847 spin_unlock(&log
->l_icloglock
);
848 error
= xlog_state_release_iclog(log
, iclog
);
850 spin_lock(&log
->l_icloglock
);
851 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
852 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
853 if (!XLOG_FORCED_SHUTDOWN(log
)) {
854 xlog_wait(&iclog
->ic_force_wait
,
857 spin_unlock(&log
->l_icloglock
);
860 spin_unlock(&log
->l_icloglock
);
863 trace_xfs_log_umount_write(log
, tic
);
864 xlog_ungrant_log_space(log
, tic
);
865 xfs_log_ticket_put(tic
);
869 * We're already in forced_shutdown mode, couldn't
870 * even attempt to write out the unmount transaction.
872 * Go through the motions of sync'ing and releasing
873 * the iclog, even though no I/O will actually happen,
874 * we need to wait for other log I/Os that may already
875 * be in progress. Do this as a separate section of
876 * code so we'll know if we ever get stuck here that
877 * we're in this odd situation of trying to unmount
878 * a file system that went into forced_shutdown as
879 * the result of an unmount..
881 spin_lock(&log
->l_icloglock
);
882 iclog
= log
->l_iclog
;
883 atomic_inc(&iclog
->ic_refcnt
);
885 xlog_state_want_sync(log
, iclog
);
886 spin_unlock(&log
->l_icloglock
);
887 error
= xlog_state_release_iclog(log
, iclog
);
889 spin_lock(&log
->l_icloglock
);
891 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
892 || iclog
->ic_state
== XLOG_STATE_DIRTY
893 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
895 xlog_wait(&iclog
->ic_force_wait
,
898 spin_unlock(&log
->l_icloglock
);
903 } /* xfs_log_unmount_write */
906 * Empty the log for unmount/freeze.
908 * To do this, we first need to shut down the background log work so it is not
909 * trying to cover the log as we clean up. We then need to unpin all objects in
910 * the log so we can then flush them out. Once they have completed their IO and
911 * run the callbacks removing themselves from the AIL, we can write the unmount
916 struct xfs_mount
*mp
)
918 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
919 xfs_log_force(mp
, XFS_LOG_SYNC
);
922 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
923 * will push it, xfs_wait_buftarg() will not wait for it. Further,
924 * xfs_buf_iowait() cannot be used because it was pushed with the
925 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
926 * the IO to complete.
928 xfs_ail_push_all_sync(mp
->m_ail
);
929 xfs_wait_buftarg(mp
->m_ddev_targp
);
930 xfs_buf_lock(mp
->m_sb_bp
);
931 xfs_buf_unlock(mp
->m_sb_bp
);
933 xfs_log_unmount_write(mp
);
937 * Shut down and release the AIL and Log.
939 * During unmount, we need to ensure we flush all the dirty metadata objects
940 * from the AIL so that the log is empty before we write the unmount record to
941 * the log. Once this is done, we can tear down the AIL and the log.
945 struct xfs_mount
*mp
)
949 xfs_trans_ail_destroy(mp
);
950 xlog_dealloc_log(mp
->m_log
);
955 struct xfs_mount
*mp
,
956 struct xfs_log_item
*item
,
958 const struct xfs_item_ops
*ops
)
960 item
->li_mountp
= mp
;
961 item
->li_ailp
= mp
->m_ail
;
962 item
->li_type
= type
;
966 INIT_LIST_HEAD(&item
->li_ail
);
967 INIT_LIST_HEAD(&item
->li_cil
);
971 * Wake up processes waiting for log space after we have moved the log tail.
975 struct xfs_mount
*mp
)
977 struct xlog
*log
= mp
->m_log
;
980 if (XLOG_FORCED_SHUTDOWN(log
))
983 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
984 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
986 spin_lock(&log
->l_write_head
.lock
);
987 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
988 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
989 spin_unlock(&log
->l_write_head
.lock
);
992 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
993 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
995 spin_lock(&log
->l_reserve_head
.lock
);
996 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
997 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
998 spin_unlock(&log
->l_reserve_head
.lock
);
1003 * Determine if we have a transaction that has gone to disk that needs to be
1004 * covered. To begin the transition to the idle state firstly the log needs to
1005 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1006 * we start attempting to cover the log.
1008 * Only if we are then in a state where covering is needed, the caller is
1009 * informed that dummy transactions are required to move the log into the idle
1012 * If there are any items in the AIl or CIL, then we do not want to attempt to
1013 * cover the log as we may be in a situation where there isn't log space
1014 * available to run a dummy transaction and this can lead to deadlocks when the
1015 * tail of the log is pinned by an item that is modified in the CIL. Hence
1016 * there's no point in running a dummy transaction at this point because we
1017 * can't start trying to idle the log until both the CIL and AIL are empty.
1020 xfs_log_need_covered(xfs_mount_t
*mp
)
1022 struct xlog
*log
= mp
->m_log
;
1025 if (!xfs_fs_writable(mp
))
1028 if (!xlog_cil_empty(log
))
1031 spin_lock(&log
->l_icloglock
);
1032 switch (log
->l_covered_state
) {
1033 case XLOG_STATE_COVER_DONE
:
1034 case XLOG_STATE_COVER_DONE2
:
1035 case XLOG_STATE_COVER_IDLE
:
1037 case XLOG_STATE_COVER_NEED
:
1038 case XLOG_STATE_COVER_NEED2
:
1039 if (xfs_ail_min_lsn(log
->l_ailp
))
1041 if (!xlog_iclogs_empty(log
))
1045 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1046 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1048 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1054 spin_unlock(&log
->l_icloglock
);
1059 * We may be holding the log iclog lock upon entering this routine.
1062 xlog_assign_tail_lsn_locked(
1063 struct xfs_mount
*mp
)
1065 struct xlog
*log
= mp
->m_log
;
1066 struct xfs_log_item
*lip
;
1069 assert_spin_locked(&mp
->m_ail
->xa_lock
);
1072 * To make sure we always have a valid LSN for the log tail we keep
1073 * track of the last LSN which was committed in log->l_last_sync_lsn,
1074 * and use that when the AIL was empty.
1076 lip
= xfs_ail_min(mp
->m_ail
);
1078 tail_lsn
= lip
->li_lsn
;
1080 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1081 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1082 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1087 xlog_assign_tail_lsn(
1088 struct xfs_mount
*mp
)
1092 spin_lock(&mp
->m_ail
->xa_lock
);
1093 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1094 spin_unlock(&mp
->m_ail
->xa_lock
);
1100 * Return the space in the log between the tail and the head. The head
1101 * is passed in the cycle/bytes formal parms. In the special case where
1102 * the reserve head has wrapped passed the tail, this calculation is no
1103 * longer valid. In this case, just return 0 which means there is no space
1104 * in the log. This works for all places where this function is called
1105 * with the reserve head. Of course, if the write head were to ever
1106 * wrap the tail, we should blow up. Rather than catch this case here,
1107 * we depend on other ASSERTions in other parts of the code. XXXmiken
1109 * This code also handles the case where the reservation head is behind
1110 * the tail. The details of this case are described below, but the end
1111 * result is that we return the size of the log as the amount of space left.
1124 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1125 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1126 tail_bytes
= BBTOB(tail_bytes
);
1127 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1128 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1129 else if (tail_cycle
+ 1 < head_cycle
)
1131 else if (tail_cycle
< head_cycle
) {
1132 ASSERT(tail_cycle
== (head_cycle
- 1));
1133 free_bytes
= tail_bytes
- head_bytes
;
1136 * The reservation head is behind the tail.
1137 * In this case we just want to return the size of the
1138 * log as the amount of space left.
1140 xfs_alert(log
->l_mp
,
1141 "xlog_space_left: head behind tail\n"
1142 " tail_cycle = %d, tail_bytes = %d\n"
1143 " GH cycle = %d, GH bytes = %d",
1144 tail_cycle
, tail_bytes
, head_cycle
, head_bytes
);
1146 free_bytes
= log
->l_logsize
;
1153 * Log function which is called when an io completes.
1155 * The log manager needs its own routine, in order to control what
1156 * happens with the buffer after the write completes.
1159 xlog_iodone(xfs_buf_t
*bp
)
1161 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1162 struct xlog
*l
= iclog
->ic_log
;
1166 * Race to shutdown the filesystem if we see an error.
1168 if (XFS_TEST_ERROR(bp
->b_error
, l
->l_mp
,
1169 XFS_ERRTAG_IODONE_IOERR
, XFS_RANDOM_IODONE_IOERR
)) {
1170 xfs_buf_ioerror_alert(bp
, __func__
);
1172 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1174 * This flag will be propagated to the trans-committed
1175 * callback routines to let them know that the log-commit
1178 aborted
= XFS_LI_ABORTED
;
1179 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1180 aborted
= XFS_LI_ABORTED
;
1183 /* log I/O is always issued ASYNC */
1184 ASSERT(XFS_BUF_ISASYNC(bp
));
1185 xlog_state_done_syncing(iclog
, aborted
);
1188 * drop the buffer lock now that we are done. Nothing references
1189 * the buffer after this, so an unmount waiting on this lock can now
1190 * tear it down safely. As such, it is unsafe to reference the buffer
1191 * (bp) after the unlock as we could race with it being freed.
1197 * Return size of each in-core log record buffer.
1199 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1201 * If the filesystem blocksize is too large, we may need to choose a
1202 * larger size since the directory code currently logs entire blocks.
1206 xlog_get_iclog_buffer_size(
1207 struct xfs_mount
*mp
,
1213 if (mp
->m_logbufs
<= 0)
1214 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1216 log
->l_iclog_bufs
= mp
->m_logbufs
;
1219 * Buffer size passed in from mount system call.
1221 if (mp
->m_logbsize
> 0) {
1222 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1223 log
->l_iclog_size_log
= 0;
1225 log
->l_iclog_size_log
++;
1229 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1230 /* # headers = size / 32k
1231 * one header holds cycles from 32k of data
1234 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1235 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1237 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1238 log
->l_iclog_heads
= xhdrs
;
1240 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1241 log
->l_iclog_hsize
= BBSIZE
;
1242 log
->l_iclog_heads
= 1;
1247 /* All machines use 32kB buffers by default. */
1248 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1249 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1251 /* the default log size is 16k or 32k which is one header sector */
1252 log
->l_iclog_hsize
= BBSIZE
;
1253 log
->l_iclog_heads
= 1;
1256 /* are we being asked to make the sizes selected above visible? */
1257 if (mp
->m_logbufs
== 0)
1258 mp
->m_logbufs
= log
->l_iclog_bufs
;
1259 if (mp
->m_logbsize
== 0)
1260 mp
->m_logbsize
= log
->l_iclog_size
;
1261 } /* xlog_get_iclog_buffer_size */
1266 struct xfs_mount
*mp
)
1268 queue_delayed_work(mp
->m_log_workqueue
, &mp
->m_log
->l_work
,
1269 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1273 * Every sync period we need to unpin all items in the AIL and push them to
1274 * disk. If there is nothing dirty, then we might need to cover the log to
1275 * indicate that the filesystem is idle.
1279 struct work_struct
*work
)
1281 struct xlog
*log
= container_of(to_delayed_work(work
),
1282 struct xlog
, l_work
);
1283 struct xfs_mount
*mp
= log
->l_mp
;
1285 /* dgc: errors ignored - not fatal and nowhere to report them */
1286 if (xfs_log_need_covered(mp
))
1287 xfs_fs_log_dummy(mp
);
1289 xfs_log_force(mp
, 0);
1291 /* start pushing all the metadata that is currently dirty */
1292 xfs_ail_push_all(mp
->m_ail
);
1294 /* queue us up again */
1295 xfs_log_work_queue(mp
);
1299 * This routine initializes some of the log structure for a given mount point.
1300 * Its primary purpose is to fill in enough, so recovery can occur. However,
1301 * some other stuff may be filled in too.
1303 STATIC
struct xlog
*
1305 struct xfs_mount
*mp
,
1306 struct xfs_buftarg
*log_target
,
1307 xfs_daddr_t blk_offset
,
1311 xlog_rec_header_t
*head
;
1312 xlog_in_core_t
**iclogp
;
1313 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1319 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1321 xfs_warn(mp
, "Log allocation failed: No memory!");
1326 log
->l_targ
= log_target
;
1327 log
->l_logsize
= BBTOB(num_bblks
);
1328 log
->l_logBBstart
= blk_offset
;
1329 log
->l_logBBsize
= num_bblks
;
1330 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1331 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1332 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1334 log
->l_prev_block
= -1;
1335 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1336 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1337 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1338 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1340 xlog_grant_head_init(&log
->l_reserve_head
);
1341 xlog_grant_head_init(&log
->l_write_head
);
1343 error
= EFSCORRUPTED
;
1344 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1345 log2_size
= mp
->m_sb
.sb_logsectlog
;
1346 if (log2_size
< BBSHIFT
) {
1347 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1348 log2_size
, BBSHIFT
);
1352 log2_size
-= BBSHIFT
;
1353 if (log2_size
> mp
->m_sectbb_log
) {
1354 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1355 log2_size
, mp
->m_sectbb_log
);
1359 /* for larger sector sizes, must have v2 or external log */
1360 if (log2_size
&& log
->l_logBBstart
> 0 &&
1361 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1363 "log sector size (0x%x) invalid for configuration.",
1368 log
->l_sectBBsize
= 1 << log2_size
;
1370 xlog_get_iclog_buffer_size(mp
, log
);
1373 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, 0, BTOBB(log
->l_iclog_size
), 0);
1378 * The iclogbuf buffer locks are held over IO but we are not going to do
1379 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1380 * when appropriately.
1382 ASSERT(xfs_buf_islocked(bp
));
1385 bp
->b_iodone
= xlog_iodone
;
1388 spin_lock_init(&log
->l_icloglock
);
1389 init_waitqueue_head(&log
->l_flush_wait
);
1391 iclogp
= &log
->l_iclog
;
1393 * The amount of memory to allocate for the iclog structure is
1394 * rather funky due to the way the structure is defined. It is
1395 * done this way so that we can use different sizes for machines
1396 * with different amounts of memory. See the definition of
1397 * xlog_in_core_t in xfs_log_priv.h for details.
1399 ASSERT(log
->l_iclog_size
>= 4096);
1400 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1401 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1403 goto out_free_iclog
;
1406 iclog
->ic_prev
= prev_iclog
;
1409 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1410 BTOBB(log
->l_iclog_size
), 0);
1412 goto out_free_iclog
;
1414 ASSERT(xfs_buf_islocked(bp
));
1417 bp
->b_iodone
= xlog_iodone
;
1419 iclog
->ic_data
= bp
->b_addr
;
1421 log
->l_iclog_bak
[i
] = (xfs_caddr_t
)&(iclog
->ic_header
);
1423 head
= &iclog
->ic_header
;
1424 memset(head
, 0, sizeof(xlog_rec_header_t
));
1425 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1426 head
->h_version
= cpu_to_be32(
1427 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1428 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1430 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1431 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1433 iclog
->ic_size
= BBTOB(bp
->b_length
) - log
->l_iclog_hsize
;
1434 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1435 iclog
->ic_log
= log
;
1436 atomic_set(&iclog
->ic_refcnt
, 0);
1437 spin_lock_init(&iclog
->ic_callback_lock
);
1438 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1439 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1441 init_waitqueue_head(&iclog
->ic_force_wait
);
1442 init_waitqueue_head(&iclog
->ic_write_wait
);
1444 iclogp
= &iclog
->ic_next
;
1446 *iclogp
= log
->l_iclog
; /* complete ring */
1447 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1449 error
= xlog_cil_init(log
);
1451 goto out_free_iclog
;
1455 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1456 prev_iclog
= iclog
->ic_next
;
1458 xfs_buf_free(iclog
->ic_bp
);
1461 spinlock_destroy(&log
->l_icloglock
);
1462 xfs_buf_free(log
->l_xbuf
);
1466 return ERR_PTR(-error
);
1467 } /* xlog_alloc_log */
1471 * Write out the commit record of a transaction associated with the given
1472 * ticket. Return the lsn of the commit record.
1477 struct xlog_ticket
*ticket
,
1478 struct xlog_in_core
**iclog
,
1479 xfs_lsn_t
*commitlsnp
)
1481 struct xfs_mount
*mp
= log
->l_mp
;
1483 struct xfs_log_iovec reg
= {
1486 .i_type
= XLOG_REG_TYPE_COMMIT
,
1488 struct xfs_log_vec vec
= {
1493 ASSERT_ALWAYS(iclog
);
1494 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1497 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1502 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1503 * log space. This code pushes on the lsn which would supposedly free up
1504 * the 25% which we want to leave free. We may need to adopt a policy which
1505 * pushes on an lsn which is further along in the log once we reach the high
1506 * water mark. In this manner, we would be creating a low water mark.
1509 xlog_grant_push_ail(
1513 xfs_lsn_t threshold_lsn
= 0;
1514 xfs_lsn_t last_sync_lsn
;
1517 int threshold_block
;
1518 int threshold_cycle
;
1521 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1523 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1524 free_blocks
= BTOBBT(free_bytes
);
1527 * Set the threshold for the minimum number of free blocks in the
1528 * log to the maximum of what the caller needs, one quarter of the
1529 * log, and 256 blocks.
1531 free_threshold
= BTOBB(need_bytes
);
1532 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1533 free_threshold
= MAX(free_threshold
, 256);
1534 if (free_blocks
>= free_threshold
)
1537 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1539 threshold_block
+= free_threshold
;
1540 if (threshold_block
>= log
->l_logBBsize
) {
1541 threshold_block
-= log
->l_logBBsize
;
1542 threshold_cycle
+= 1;
1544 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1547 * Don't pass in an lsn greater than the lsn of the last
1548 * log record known to be on disk. Use a snapshot of the last sync lsn
1549 * so that it doesn't change between the compare and the set.
1551 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1552 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1553 threshold_lsn
= last_sync_lsn
;
1556 * Get the transaction layer to kick the dirty buffers out to
1557 * disk asynchronously. No point in trying to do this if
1558 * the filesystem is shutting down.
1560 if (!XLOG_FORCED_SHUTDOWN(log
))
1561 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1565 * Stamp cycle number in every block
1570 struct xlog_in_core
*iclog
,
1574 int size
= iclog
->ic_offset
+ roundoff
;
1578 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1580 dp
= iclog
->ic_datap
;
1581 for (i
= 0; i
< BTOBB(size
); i
++) {
1582 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1584 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1585 *(__be32
*)dp
= cycle_lsn
;
1589 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1590 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1592 for ( ; i
< BTOBB(size
); i
++) {
1593 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1594 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1595 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1596 *(__be32
*)dp
= cycle_lsn
;
1600 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1601 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1606 * Calculate the checksum for a log buffer.
1608 * This is a little more complicated than it should be because the various
1609 * headers and the actual data are non-contiguous.
1614 struct xlog_rec_header
*rhead
,
1620 /* first generate the crc for the record header ... */
1621 crc
= xfs_start_cksum((char *)rhead
,
1622 sizeof(struct xlog_rec_header
),
1623 offsetof(struct xlog_rec_header
, h_crc
));
1625 /* ... then for additional cycle data for v2 logs ... */
1626 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1627 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1630 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
1631 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1632 sizeof(struct xlog_rec_ext_header
));
1636 /* ... and finally for the payload */
1637 crc
= crc32c(crc
, dp
, size
);
1639 return xfs_end_cksum(crc
);
1643 * The bdstrat callback function for log bufs. This gives us a central
1644 * place to trap bufs in case we get hit by a log I/O error and need to
1645 * shutdown. Actually, in practice, even when we didn't get a log error,
1646 * we transition the iclogs to IOERROR state *after* flushing all existing
1647 * iclogs to disk. This is because we don't want anymore new transactions to be
1648 * started or completed afterwards.
1650 * We lock the iclogbufs here so that we can serialise against IO completion
1651 * during unmount. We might be processing a shutdown triggered during unmount,
1652 * and that can occur asynchronously to the unmount thread, and hence we need to
1653 * ensure that completes before tearing down the iclogbufs. Hence we need to
1654 * hold the buffer lock across the log IO to acheive that.
1660 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1663 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1664 xfs_buf_ioerror(bp
, EIO
);
1666 xfs_buf_ioend(bp
, 0);
1668 * It would seem logical to return EIO here, but we rely on
1669 * the log state machine to propagate I/O errors instead of
1670 * doing it here. Similarly, IO completion will unlock the
1671 * buffer, so we don't do it here.
1676 xfs_buf_iorequest(bp
);
1681 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1682 * fashion. Previously, we should have moved the current iclog
1683 * ptr in the log to point to the next available iclog. This allows further
1684 * write to continue while this code syncs out an iclog ready to go.
1685 * Before an in-core log can be written out, the data section must be scanned
1686 * to save away the 1st word of each BBSIZE block into the header. We replace
1687 * it with the current cycle count. Each BBSIZE block is tagged with the
1688 * cycle count because there in an implicit assumption that drives will
1689 * guarantee that entire 512 byte blocks get written at once. In other words,
1690 * we can't have part of a 512 byte block written and part not written. By
1691 * tagging each block, we will know which blocks are valid when recovering
1692 * after an unclean shutdown.
1694 * This routine is single threaded on the iclog. No other thread can be in
1695 * this routine with the same iclog. Changing contents of iclog can there-
1696 * fore be done without grabbing the state machine lock. Updating the global
1697 * log will require grabbing the lock though.
1699 * The entire log manager uses a logical block numbering scheme. Only
1700 * log_sync (and then only bwrite()) know about the fact that the log may
1701 * not start with block zero on a given device. The log block start offset
1702 * is added immediately before calling bwrite().
1708 struct xlog_in_core
*iclog
)
1712 uint count
; /* byte count of bwrite */
1713 uint count_init
; /* initial count before roundup */
1714 int roundoff
; /* roundoff to BB or stripe */
1715 int split
= 0; /* split write into two regions */
1717 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1720 XFS_STATS_INC(xs_log_writes
);
1721 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1723 /* Add for LR header */
1724 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1726 /* Round out the log write size */
1727 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1728 /* we have a v2 stripe unit to use */
1729 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1731 count
= BBTOB(BTOBB(count_init
));
1733 roundoff
= count
- count_init
;
1734 ASSERT(roundoff
>= 0);
1735 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1736 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1738 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1739 roundoff
< BBTOB(1)));
1741 /* move grant heads by roundoff in sync */
1742 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1743 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1745 /* put cycle number in every block */
1746 xlog_pack_data(log
, iclog
, roundoff
);
1748 /* real byte length */
1749 size
= iclog
->ic_offset
;
1752 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1755 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1757 XFS_STATS_ADD(xs_log_blocks
, BTOBB(count
));
1759 /* Do we need to split this write into 2 parts? */
1760 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1763 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1764 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1765 iclog
->ic_bwritecnt
= 2;
1768 * Bump the cycle numbers at the start of each block in the
1769 * part of the iclog that ends up in the buffer that gets
1770 * written to the start of the log.
1772 * Watch out for the header magic number case, though.
1774 dptr
= (char *)&iclog
->ic_header
+ count
;
1775 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1776 __uint32_t cycle
= be32_to_cpu(*(__be32
*)dptr
);
1777 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1779 *(__be32
*)dptr
= cpu_to_be32(cycle
);
1784 iclog
->ic_bwritecnt
= 1;
1787 /* calculcate the checksum */
1788 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1789 iclog
->ic_datap
, size
);
1791 bp
->b_io_length
= BTOBB(count
);
1792 bp
->b_fspriv
= iclog
;
1793 XFS_BUF_ZEROFLAGS(bp
);
1795 bp
->b_flags
|= XBF_SYNCIO
;
1797 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
) {
1798 bp
->b_flags
|= XBF_FUA
;
1801 * Flush the data device before flushing the log to make
1802 * sure all meta data written back from the AIL actually made
1803 * it to disk before stamping the new log tail LSN into the
1804 * log buffer. For an external log we need to issue the
1805 * flush explicitly, and unfortunately synchronously here;
1806 * for an internal log we can simply use the block layer
1807 * state machine for preflushes.
1809 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1810 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1812 bp
->b_flags
|= XBF_FLUSH
;
1815 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1816 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1818 xlog_verify_iclog(log
, iclog
, count
, true);
1820 /* account for log which doesn't start at block #0 */
1821 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1823 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1828 error
= xlog_bdstrat(bp
);
1830 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1834 bp
= iclog
->ic_log
->l_xbuf
;
1835 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1836 xfs_buf_associate_memory(bp
,
1837 (char *)&iclog
->ic_header
+ count
, split
);
1838 bp
->b_fspriv
= iclog
;
1839 XFS_BUF_ZEROFLAGS(bp
);
1841 bp
->b_flags
|= XBF_SYNCIO
;
1842 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
)
1843 bp
->b_flags
|= XBF_FUA
;
1845 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1846 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1848 /* account for internal log which doesn't start at block #0 */
1849 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1851 error
= xlog_bdstrat(bp
);
1853 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1861 * Deallocate a log structure
1867 xlog_in_core_t
*iclog
, *next_iclog
;
1870 xlog_cil_destroy(log
);
1873 * Cycle all the iclogbuf locks to make sure all log IO completion
1874 * is done before we tear down these buffers.
1876 iclog
= log
->l_iclog
;
1877 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1878 xfs_buf_lock(iclog
->ic_bp
);
1879 xfs_buf_unlock(iclog
->ic_bp
);
1880 iclog
= iclog
->ic_next
;
1884 * Always need to ensure that the extra buffer does not point to memory
1885 * owned by another log buffer before we free it. Also, cycle the lock
1886 * first to ensure we've completed IO on it.
1888 xfs_buf_lock(log
->l_xbuf
);
1889 xfs_buf_unlock(log
->l_xbuf
);
1890 xfs_buf_set_empty(log
->l_xbuf
, BTOBB(log
->l_iclog_size
));
1891 xfs_buf_free(log
->l_xbuf
);
1893 iclog
= log
->l_iclog
;
1894 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1895 xfs_buf_free(iclog
->ic_bp
);
1896 next_iclog
= iclog
->ic_next
;
1900 spinlock_destroy(&log
->l_icloglock
);
1902 log
->l_mp
->m_log
= NULL
;
1904 } /* xlog_dealloc_log */
1907 * Update counters atomically now that memcpy is done.
1911 xlog_state_finish_copy(
1913 struct xlog_in_core
*iclog
,
1917 spin_lock(&log
->l_icloglock
);
1919 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
1920 iclog
->ic_offset
+= copy_bytes
;
1922 spin_unlock(&log
->l_icloglock
);
1923 } /* xlog_state_finish_copy */
1929 * print out info relating to regions written which consume
1934 struct xfs_mount
*mp
,
1935 struct xlog_ticket
*ticket
)
1938 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
1940 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1941 static char *res_type_str
[XLOG_REG_TYPE_MAX
] = {
1962 static char *trans_type_str
[XFS_TRANS_TYPE_MAX
] = {
2006 "xlog_write: reservation summary:\n"
2007 " trans type = %s (%u)\n"
2008 " unit res = %d bytes\n"
2009 " current res = %d bytes\n"
2010 " total reg = %u bytes (o/flow = %u bytes)\n"
2011 " ophdrs = %u (ophdr space = %u bytes)\n"
2012 " ophdr + reg = %u bytes\n"
2013 " num regions = %u\n",
2014 ((ticket
->t_trans_type
<= 0 ||
2015 ticket
->t_trans_type
> XFS_TRANS_TYPE_MAX
) ?
2016 "bad-trans-type" : trans_type_str
[ticket
->t_trans_type
-1]),
2017 ticket
->t_trans_type
,
2020 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
,
2021 ticket
->t_res_num_ophdrs
, ophdr_spc
,
2022 ticket
->t_res_arr_sum
+
2023 ticket
->t_res_o_flow
+ ophdr_spc
,
2026 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
2027 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
2028 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
2029 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
2030 "bad-rtype" : res_type_str
[r_type
-1]),
2031 ticket
->t_res_arr
[i
].r_len
);
2034 xfs_alert_tag(mp
, XFS_PTAG_LOGRES
,
2035 "xlog_write: reservation ran out. Need to up reservation");
2036 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
2040 * Calculate the potential space needed by the log vector. Each region gets
2041 * its own xlog_op_header_t and may need to be double word aligned.
2044 xlog_write_calc_vec_length(
2045 struct xlog_ticket
*ticket
,
2046 struct xfs_log_vec
*log_vector
)
2048 struct xfs_log_vec
*lv
;
2053 /* acct for start rec of xact */
2054 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2057 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2058 /* we don't write ordered log vectors */
2059 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2062 headers
+= lv
->lv_niovecs
;
2064 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2065 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2068 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2072 ticket
->t_res_num_ophdrs
+= headers
;
2073 len
+= headers
* sizeof(struct xlog_op_header
);
2079 * If first write for transaction, insert start record We can't be trying to
2080 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2083 xlog_write_start_rec(
2084 struct xlog_op_header
*ophdr
,
2085 struct xlog_ticket
*ticket
)
2087 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2090 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2091 ophdr
->oh_clientid
= ticket
->t_clientid
;
2093 ophdr
->oh_flags
= XLOG_START_TRANS
;
2096 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2098 return sizeof(struct xlog_op_header
);
2101 static xlog_op_header_t
*
2102 xlog_write_setup_ophdr(
2104 struct xlog_op_header
*ophdr
,
2105 struct xlog_ticket
*ticket
,
2108 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2109 ophdr
->oh_clientid
= ticket
->t_clientid
;
2112 /* are we copying a commit or unmount record? */
2113 ophdr
->oh_flags
= flags
;
2116 * We've seen logs corrupted with bad transaction client ids. This
2117 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2118 * and shut down the filesystem.
2120 switch (ophdr
->oh_clientid
) {
2121 case XFS_TRANSACTION
:
2127 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2128 ophdr
->oh_clientid
, ticket
);
2136 * Set up the parameters of the region copy into the log. This has
2137 * to handle region write split across multiple log buffers - this
2138 * state is kept external to this function so that this code can
2139 * be written in an obvious, self documenting manner.
2142 xlog_write_setup_copy(
2143 struct xlog_ticket
*ticket
,
2144 struct xlog_op_header
*ophdr
,
2145 int space_available
,
2149 int *last_was_partial_copy
,
2150 int *bytes_consumed
)
2154 still_to_copy
= space_required
- *bytes_consumed
;
2155 *copy_off
= *bytes_consumed
;
2157 if (still_to_copy
<= space_available
) {
2158 /* write of region completes here */
2159 *copy_len
= still_to_copy
;
2160 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2161 if (*last_was_partial_copy
)
2162 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2163 *last_was_partial_copy
= 0;
2164 *bytes_consumed
= 0;
2168 /* partial write of region, needs extra log op header reservation */
2169 *copy_len
= space_available
;
2170 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2171 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2172 if (*last_was_partial_copy
)
2173 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2174 *bytes_consumed
+= *copy_len
;
2175 (*last_was_partial_copy
)++;
2177 /* account for new log op header */
2178 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2179 ticket
->t_res_num_ophdrs
++;
2181 return sizeof(struct xlog_op_header
);
2185 xlog_write_copy_finish(
2187 struct xlog_in_core
*iclog
,
2192 int *partial_copy_len
,
2194 struct xlog_in_core
**commit_iclog
)
2196 if (*partial_copy
) {
2198 * This iclog has already been marked WANT_SYNC by
2199 * xlog_state_get_iclog_space.
2201 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2204 return xlog_state_release_iclog(log
, iclog
);
2208 *partial_copy_len
= 0;
2210 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2211 /* no more space in this iclog - push it. */
2212 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2216 spin_lock(&log
->l_icloglock
);
2217 xlog_state_want_sync(log
, iclog
);
2218 spin_unlock(&log
->l_icloglock
);
2221 return xlog_state_release_iclog(log
, iclog
);
2222 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2223 *commit_iclog
= iclog
;
2230 * Write some region out to in-core log
2232 * This will be called when writing externally provided regions or when
2233 * writing out a commit record for a given transaction.
2235 * General algorithm:
2236 * 1. Find total length of this write. This may include adding to the
2237 * lengths passed in.
2238 * 2. Check whether we violate the tickets reservation.
2239 * 3. While writing to this iclog
2240 * A. Reserve as much space in this iclog as can get
2241 * B. If this is first write, save away start lsn
2242 * C. While writing this region:
2243 * 1. If first write of transaction, write start record
2244 * 2. Write log operation header (header per region)
2245 * 3. Find out if we can fit entire region into this iclog
2246 * 4. Potentially, verify destination memcpy ptr
2247 * 5. Memcpy (partial) region
2248 * 6. If partial copy, release iclog; otherwise, continue
2249 * copying more regions into current iclog
2250 * 4. Mark want sync bit (in simulation mode)
2251 * 5. Release iclog for potential flush to on-disk log.
2254 * 1. Panic if reservation is overrun. This should never happen since
2255 * reservation amounts are generated internal to the filesystem.
2257 * 1. Tickets are single threaded data structures.
2258 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2259 * syncing routine. When a single log_write region needs to span
2260 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2261 * on all log operation writes which don't contain the end of the
2262 * region. The XLOG_END_TRANS bit is used for the in-core log
2263 * operation which contains the end of the continued log_write region.
2264 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2265 * we don't really know exactly how much space will be used. As a result,
2266 * we don't update ic_offset until the end when we know exactly how many
2267 * bytes have been written out.
2272 struct xfs_log_vec
*log_vector
,
2273 struct xlog_ticket
*ticket
,
2274 xfs_lsn_t
*start_lsn
,
2275 struct xlog_in_core
**commit_iclog
,
2278 struct xlog_in_core
*iclog
= NULL
;
2279 struct xfs_log_iovec
*vecp
;
2280 struct xfs_log_vec
*lv
;
2283 int partial_copy
= 0;
2284 int partial_copy_len
= 0;
2292 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2295 * Region headers and bytes are already accounted for.
2296 * We only need to take into account start records and
2297 * split regions in this function.
2299 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2300 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2303 * Commit record headers need to be accounted for. These
2304 * come in as separate writes so are easy to detect.
2306 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2307 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2309 if (ticket
->t_curr_res
< 0)
2310 xlog_print_tic_res(log
->l_mp
, ticket
);
2314 vecp
= lv
->lv_iovecp
;
2315 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2319 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2320 &contwr
, &log_offset
);
2324 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2325 ptr
= iclog
->ic_datap
+ log_offset
;
2327 /* start_lsn is the first lsn written to. That's all we need. */
2329 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2332 * This loop writes out as many regions as can fit in the amount
2333 * of space which was allocated by xlog_state_get_iclog_space().
2335 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2336 struct xfs_log_iovec
*reg
;
2337 struct xlog_op_header
*ophdr
;
2341 bool ordered
= false;
2343 /* ordered log vectors have no regions to write */
2344 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2345 ASSERT(lv
->lv_niovecs
== 0);
2351 ASSERT(reg
->i_len
% sizeof(__int32_t
) == 0);
2352 ASSERT((unsigned long)ptr
% sizeof(__int32_t
) == 0);
2354 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2355 if (start_rec_copy
) {
2357 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2361 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2363 return XFS_ERROR(EIO
);
2365 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2366 sizeof(struct xlog_op_header
));
2368 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2369 iclog
->ic_size
-log_offset
,
2371 ©_off
, ©_len
,
2374 xlog_verify_dest_ptr(log
, ptr
);
2377 ASSERT(copy_len
>= 0);
2378 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2379 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
, copy_len
);
2381 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2383 data_cnt
+= contwr
? copy_len
: 0;
2385 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2386 &record_cnt
, &data_cnt
,
2395 * if we had a partial copy, we need to get more iclog
2396 * space but we don't want to increment the region
2397 * index because there is still more is this region to
2400 * If we completed writing this region, and we flushed
2401 * the iclog (indicated by resetting of the record
2402 * count), then we also need to get more log space. If
2403 * this was the last record, though, we are done and
2409 if (++index
== lv
->lv_niovecs
) {
2414 vecp
= lv
->lv_iovecp
;
2416 if (record_cnt
== 0 && ordered
== false) {
2426 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2428 return xlog_state_release_iclog(log
, iclog
);
2430 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2431 *commit_iclog
= iclog
;
2436 /*****************************************************************************
2438 * State Machine functions
2440 *****************************************************************************
2443 /* Clean iclogs starting from the head. This ordering must be
2444 * maintained, so an iclog doesn't become ACTIVE beyond one that
2445 * is SYNCING. This is also required to maintain the notion that we use
2446 * a ordered wait queue to hold off would be writers to the log when every
2447 * iclog is trying to sync to disk.
2449 * State Change: DIRTY -> ACTIVE
2452 xlog_state_clean_log(
2455 xlog_in_core_t
*iclog
;
2458 iclog
= log
->l_iclog
;
2460 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2461 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2462 iclog
->ic_offset
= 0;
2463 ASSERT(iclog
->ic_callback
== NULL
);
2465 * If the number of ops in this iclog indicate it just
2466 * contains the dummy transaction, we can
2467 * change state into IDLE (the second time around).
2468 * Otherwise we should change the state into
2470 * We don't need to cover the dummy.
2473 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2478 * We have two dirty iclogs so start over
2479 * This could also be num of ops indicates
2480 * this is not the dummy going out.
2484 iclog
->ic_header
.h_num_logops
= 0;
2485 memset(iclog
->ic_header
.h_cycle_data
, 0,
2486 sizeof(iclog
->ic_header
.h_cycle_data
));
2487 iclog
->ic_header
.h_lsn
= 0;
2488 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2491 break; /* stop cleaning */
2492 iclog
= iclog
->ic_next
;
2493 } while (iclog
!= log
->l_iclog
);
2495 /* log is locked when we are called */
2497 * Change state for the dummy log recording.
2498 * We usually go to NEED. But we go to NEED2 if the changed indicates
2499 * we are done writing the dummy record.
2500 * If we are done with the second dummy recored (DONE2), then
2504 switch (log
->l_covered_state
) {
2505 case XLOG_STATE_COVER_IDLE
:
2506 case XLOG_STATE_COVER_NEED
:
2507 case XLOG_STATE_COVER_NEED2
:
2508 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2511 case XLOG_STATE_COVER_DONE
:
2513 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2515 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2518 case XLOG_STATE_COVER_DONE2
:
2520 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2522 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2529 } /* xlog_state_clean_log */
2532 xlog_get_lowest_lsn(
2535 xlog_in_core_t
*lsn_log
;
2536 xfs_lsn_t lowest_lsn
, lsn
;
2538 lsn_log
= log
->l_iclog
;
2541 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2542 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2543 if ((lsn
&& !lowest_lsn
) ||
2544 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2548 lsn_log
= lsn_log
->ic_next
;
2549 } while (lsn_log
!= log
->l_iclog
);
2555 xlog_state_do_callback(
2558 struct xlog_in_core
*ciclog
)
2560 xlog_in_core_t
*iclog
;
2561 xlog_in_core_t
*first_iclog
; /* used to know when we've
2562 * processed all iclogs once */
2563 xfs_log_callback_t
*cb
, *cb_next
;
2565 xfs_lsn_t lowest_lsn
;
2566 int ioerrors
; /* counter: iclogs with errors */
2567 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2568 int funcdidcallbacks
; /* flag: function did callbacks */
2569 int repeats
; /* for issuing console warnings if
2570 * looping too many times */
2573 spin_lock(&log
->l_icloglock
);
2574 first_iclog
= iclog
= log
->l_iclog
;
2576 funcdidcallbacks
= 0;
2581 * Scan all iclogs starting with the one pointed to by the
2582 * log. Reset this starting point each time the log is
2583 * unlocked (during callbacks).
2585 * Keep looping through iclogs until one full pass is made
2586 * without running any callbacks.
2588 first_iclog
= log
->l_iclog
;
2589 iclog
= log
->l_iclog
;
2590 loopdidcallbacks
= 0;
2595 /* skip all iclogs in the ACTIVE & DIRTY states */
2596 if (iclog
->ic_state
&
2597 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2598 iclog
= iclog
->ic_next
;
2603 * Between marking a filesystem SHUTDOWN and stopping
2604 * the log, we do flush all iclogs to disk (if there
2605 * wasn't a log I/O error). So, we do want things to
2606 * go smoothly in case of just a SHUTDOWN w/o a
2609 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2611 * Can only perform callbacks in order. Since
2612 * this iclog is not in the DONE_SYNC/
2613 * DO_CALLBACK state, we skip the rest and
2614 * just try to clean up. If we set our iclog
2615 * to DO_CALLBACK, we will not process it when
2616 * we retry since a previous iclog is in the
2617 * CALLBACK and the state cannot change since
2618 * we are holding the l_icloglock.
2620 if (!(iclog
->ic_state
&
2621 (XLOG_STATE_DONE_SYNC
|
2622 XLOG_STATE_DO_CALLBACK
))) {
2623 if (ciclog
&& (ciclog
->ic_state
==
2624 XLOG_STATE_DONE_SYNC
)) {
2625 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2630 * We now have an iclog that is in either the
2631 * DO_CALLBACK or DONE_SYNC states. The other
2632 * states (WANT_SYNC, SYNCING, or CALLBACK were
2633 * caught by the above if and are going to
2634 * clean (i.e. we aren't doing their callbacks)
2639 * We will do one more check here to see if we
2640 * have chased our tail around.
2643 lowest_lsn
= xlog_get_lowest_lsn(log
);
2645 XFS_LSN_CMP(lowest_lsn
,
2646 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2647 iclog
= iclog
->ic_next
;
2648 continue; /* Leave this iclog for
2652 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2656 * Completion of a iclog IO does not imply that
2657 * a transaction has completed, as transactions
2658 * can be large enough to span many iclogs. We
2659 * cannot change the tail of the log half way
2660 * through a transaction as this may be the only
2661 * transaction in the log and moving th etail to
2662 * point to the middle of it will prevent
2663 * recovery from finding the start of the
2664 * transaction. Hence we should only update the
2665 * last_sync_lsn if this iclog contains
2666 * transaction completion callbacks on it.
2668 * We have to do this before we drop the
2669 * icloglock to ensure we are the only one that
2672 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2673 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2674 if (iclog
->ic_callback
)
2675 atomic64_set(&log
->l_last_sync_lsn
,
2676 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2681 spin_unlock(&log
->l_icloglock
);
2684 * Keep processing entries in the callback list until
2685 * we come around and it is empty. We need to
2686 * atomically see that the list is empty and change the
2687 * state to DIRTY so that we don't miss any more
2688 * callbacks being added.
2690 spin_lock(&iclog
->ic_callback_lock
);
2691 cb
= iclog
->ic_callback
;
2693 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2694 iclog
->ic_callback
= NULL
;
2695 spin_unlock(&iclog
->ic_callback_lock
);
2697 /* perform callbacks in the order given */
2698 for (; cb
; cb
= cb_next
) {
2699 cb_next
= cb
->cb_next
;
2700 cb
->cb_func(cb
->cb_arg
, aborted
);
2702 spin_lock(&iclog
->ic_callback_lock
);
2703 cb
= iclog
->ic_callback
;
2709 spin_lock(&log
->l_icloglock
);
2710 ASSERT(iclog
->ic_callback
== NULL
);
2711 spin_unlock(&iclog
->ic_callback_lock
);
2712 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2713 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2716 * Transition from DIRTY to ACTIVE if applicable.
2717 * NOP if STATE_IOERROR.
2719 xlog_state_clean_log(log
);
2721 /* wake up threads waiting in xfs_log_force() */
2722 wake_up_all(&iclog
->ic_force_wait
);
2724 iclog
= iclog
->ic_next
;
2725 } while (first_iclog
!= iclog
);
2727 if (repeats
> 5000) {
2728 flushcnt
+= repeats
;
2731 "%s: possible infinite loop (%d iterations)",
2732 __func__
, flushcnt
);
2734 } while (!ioerrors
&& loopdidcallbacks
);
2737 * make one last gasp attempt to see if iclogs are being left in
2741 if (funcdidcallbacks
) {
2742 first_iclog
= iclog
= log
->l_iclog
;
2744 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2746 * Terminate the loop if iclogs are found in states
2747 * which will cause other threads to clean up iclogs.
2749 * SYNCING - i/o completion will go through logs
2750 * DONE_SYNC - interrupt thread should be waiting for
2752 * IOERROR - give up hope all ye who enter here
2754 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2755 iclog
->ic_state
== XLOG_STATE_SYNCING
||
2756 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2757 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2759 iclog
= iclog
->ic_next
;
2760 } while (first_iclog
!= iclog
);
2764 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2766 spin_unlock(&log
->l_icloglock
);
2769 wake_up_all(&log
->l_flush_wait
);
2774 * Finish transitioning this iclog to the dirty state.
2776 * Make sure that we completely execute this routine only when this is
2777 * the last call to the iclog. There is a good chance that iclog flushes,
2778 * when we reach the end of the physical log, get turned into 2 separate
2779 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2780 * routine. By using the reference count bwritecnt, we guarantee that only
2781 * the second completion goes through.
2783 * Callbacks could take time, so they are done outside the scope of the
2784 * global state machine log lock.
2787 xlog_state_done_syncing(
2788 xlog_in_core_t
*iclog
,
2791 struct xlog
*log
= iclog
->ic_log
;
2793 spin_lock(&log
->l_icloglock
);
2795 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2796 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2797 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2798 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2802 * If we got an error, either on the first buffer, or in the case of
2803 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2804 * and none should ever be attempted to be written to disk
2807 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2808 if (--iclog
->ic_bwritecnt
== 1) {
2809 spin_unlock(&log
->l_icloglock
);
2812 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2816 * Someone could be sleeping prior to writing out the next
2817 * iclog buffer, we wake them all, one will get to do the
2818 * I/O, the others get to wait for the result.
2820 wake_up_all(&iclog
->ic_write_wait
);
2821 spin_unlock(&log
->l_icloglock
);
2822 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2823 } /* xlog_state_done_syncing */
2827 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2828 * sleep. We wait on the flush queue on the head iclog as that should be
2829 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2830 * we will wait here and all new writes will sleep until a sync completes.
2832 * The in-core logs are used in a circular fashion. They are not used
2833 * out-of-order even when an iclog past the head is free.
2836 * * log_offset where xlog_write() can start writing into the in-core
2838 * * in-core log pointer to which xlog_write() should write.
2839 * * boolean indicating this is a continued write to an in-core log.
2840 * If this is the last write, then the in-core log's offset field
2841 * needs to be incremented, depending on the amount of data which
2845 xlog_state_get_iclog_space(
2848 struct xlog_in_core
**iclogp
,
2849 struct xlog_ticket
*ticket
,
2850 int *continued_write
,
2854 xlog_rec_header_t
*head
;
2855 xlog_in_core_t
*iclog
;
2859 spin_lock(&log
->l_icloglock
);
2860 if (XLOG_FORCED_SHUTDOWN(log
)) {
2861 spin_unlock(&log
->l_icloglock
);
2862 return XFS_ERROR(EIO
);
2865 iclog
= log
->l_iclog
;
2866 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2867 XFS_STATS_INC(xs_log_noiclogs
);
2869 /* Wait for log writes to have flushed */
2870 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2874 head
= &iclog
->ic_header
;
2876 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2877 log_offset
= iclog
->ic_offset
;
2879 /* On the 1st write to an iclog, figure out lsn. This works
2880 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2881 * committing to. If the offset is set, that's how many blocks
2884 if (log_offset
== 0) {
2885 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
2886 xlog_tic_add_region(ticket
,
2888 XLOG_REG_TYPE_LRHEADER
);
2889 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
2890 head
->h_lsn
= cpu_to_be64(
2891 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
2892 ASSERT(log
->l_curr_block
>= 0);
2895 /* If there is enough room to write everything, then do it. Otherwise,
2896 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2897 * bit is on, so this will get flushed out. Don't update ic_offset
2898 * until you know exactly how many bytes get copied. Therefore, wait
2899 * until later to update ic_offset.
2901 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2902 * can fit into remaining data section.
2904 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
2905 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2908 * If I'm the only one writing to this iclog, sync it to disk.
2909 * We need to do an atomic compare and decrement here to avoid
2910 * racing with concurrent atomic_dec_and_lock() calls in
2911 * xlog_state_release_iclog() when there is more than one
2912 * reference to the iclog.
2914 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
2915 /* we are the only one */
2916 spin_unlock(&log
->l_icloglock
);
2917 error
= xlog_state_release_iclog(log
, iclog
);
2921 spin_unlock(&log
->l_icloglock
);
2926 /* Do we have enough room to write the full amount in the remainder
2927 * of this iclog? Or must we continue a write on the next iclog and
2928 * mark this iclog as completely taken? In the case where we switch
2929 * iclogs (to mark it taken), this particular iclog will release/sync
2930 * to disk in xlog_write().
2932 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
2933 *continued_write
= 0;
2934 iclog
->ic_offset
+= len
;
2936 *continued_write
= 1;
2937 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2941 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
2942 spin_unlock(&log
->l_icloglock
);
2944 *logoffsetp
= log_offset
;
2946 } /* xlog_state_get_iclog_space */
2948 /* The first cnt-1 times through here we don't need to
2949 * move the grant write head because the permanent
2950 * reservation has reserved cnt times the unit amount.
2951 * Release part of current permanent unit reservation and
2952 * reset current reservation to be one units worth. Also
2953 * move grant reservation head forward.
2956 xlog_regrant_reserve_log_space(
2958 struct xlog_ticket
*ticket
)
2960 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
2962 if (ticket
->t_cnt
> 0)
2965 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
2966 ticket
->t_curr_res
);
2967 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
2968 ticket
->t_curr_res
);
2969 ticket
->t_curr_res
= ticket
->t_unit_res
;
2970 xlog_tic_reset_res(ticket
);
2972 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
2974 /* just return if we still have some of the pre-reserved space */
2975 if (ticket
->t_cnt
> 0)
2978 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
2979 ticket
->t_unit_res
);
2981 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
2983 ticket
->t_curr_res
= ticket
->t_unit_res
;
2984 xlog_tic_reset_res(ticket
);
2985 } /* xlog_regrant_reserve_log_space */
2989 * Give back the space left from a reservation.
2991 * All the information we need to make a correct determination of space left
2992 * is present. For non-permanent reservations, things are quite easy. The
2993 * count should have been decremented to zero. We only need to deal with the
2994 * space remaining in the current reservation part of the ticket. If the
2995 * ticket contains a permanent reservation, there may be left over space which
2996 * needs to be released. A count of N means that N-1 refills of the current
2997 * reservation can be done before we need to ask for more space. The first
2998 * one goes to fill up the first current reservation. Once we run out of
2999 * space, the count will stay at zero and the only space remaining will be
3000 * in the current reservation field.
3003 xlog_ungrant_log_space(
3005 struct xlog_ticket
*ticket
)
3009 if (ticket
->t_cnt
> 0)
3012 trace_xfs_log_ungrant_enter(log
, ticket
);
3013 trace_xfs_log_ungrant_sub(log
, ticket
);
3016 * If this is a permanent reservation ticket, we may be able to free
3017 * up more space based on the remaining count.
3019 bytes
= ticket
->t_curr_res
;
3020 if (ticket
->t_cnt
> 0) {
3021 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
3022 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
3025 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
3026 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
3028 trace_xfs_log_ungrant_exit(log
, ticket
);
3030 xfs_log_space_wake(log
->l_mp
);
3034 * Flush iclog to disk if this is the last reference to the given iclog and
3035 * the WANT_SYNC bit is set.
3037 * When this function is entered, the iclog is not necessarily in the
3038 * WANT_SYNC state. It may be sitting around waiting to get filled.
3043 xlog_state_release_iclog(
3045 struct xlog_in_core
*iclog
)
3047 int sync
= 0; /* do we sync? */
3049 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3050 return XFS_ERROR(EIO
);
3052 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
3053 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
3056 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3057 spin_unlock(&log
->l_icloglock
);
3058 return XFS_ERROR(EIO
);
3060 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3061 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
3063 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
3064 /* update tail before writing to iclog */
3065 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
3067 iclog
->ic_state
= XLOG_STATE_SYNCING
;
3068 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
3069 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
3070 /* cycle incremented when incrementing curr_block */
3072 spin_unlock(&log
->l_icloglock
);
3075 * We let the log lock go, so it's possible that we hit a log I/O
3076 * error or some other SHUTDOWN condition that marks the iclog
3077 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3078 * this iclog has consistent data, so we ignore IOERROR
3079 * flags after this point.
3082 return xlog_sync(log
, iclog
);
3084 } /* xlog_state_release_iclog */
3088 * This routine will mark the current iclog in the ring as WANT_SYNC
3089 * and move the current iclog pointer to the next iclog in the ring.
3090 * When this routine is called from xlog_state_get_iclog_space(), the
3091 * exact size of the iclog has not yet been determined. All we know is
3092 * that every data block. We have run out of space in this log record.
3095 xlog_state_switch_iclogs(
3097 struct xlog_in_core
*iclog
,
3100 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3102 eventual_size
= iclog
->ic_offset
;
3103 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3104 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3105 log
->l_prev_block
= log
->l_curr_block
;
3106 log
->l_prev_cycle
= log
->l_curr_cycle
;
3108 /* roll log?: ic_offset changed later */
3109 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3111 /* Round up to next log-sunit */
3112 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3113 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3114 __uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3115 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3118 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3119 log
->l_curr_cycle
++;
3120 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3121 log
->l_curr_cycle
++;
3122 log
->l_curr_block
-= log
->l_logBBsize
;
3123 ASSERT(log
->l_curr_block
>= 0);
3125 ASSERT(iclog
== log
->l_iclog
);
3126 log
->l_iclog
= iclog
->ic_next
;
3127 } /* xlog_state_switch_iclogs */
3130 * Write out all data in the in-core log as of this exact moment in time.
3132 * Data may be written to the in-core log during this call. However,
3133 * we don't guarantee this data will be written out. A change from past
3134 * implementation means this routine will *not* write out zero length LRs.
3136 * Basically, we try and perform an intelligent scan of the in-core logs.
3137 * If we determine there is no flushable data, we just return. There is no
3138 * flushable data if:
3140 * 1. the current iclog is active and has no data; the previous iclog
3141 * is in the active or dirty state.
3142 * 2. the current iclog is drity, and the previous iclog is in the
3143 * active or dirty state.
3147 * 1. the current iclog is not in the active nor dirty state.
3148 * 2. the current iclog dirty, and the previous iclog is not in the
3149 * active nor dirty state.
3150 * 3. the current iclog is active, and there is another thread writing
3151 * to this particular iclog.
3152 * 4. a) the current iclog is active and has no other writers
3153 * b) when we return from flushing out this iclog, it is still
3154 * not in the active nor dirty state.
3158 struct xfs_mount
*mp
,
3162 struct xlog
*log
= mp
->m_log
;
3163 struct xlog_in_core
*iclog
;
3166 XFS_STATS_INC(xs_log_force
);
3168 xlog_cil_force(log
);
3170 spin_lock(&log
->l_icloglock
);
3172 iclog
= log
->l_iclog
;
3173 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3174 spin_unlock(&log
->l_icloglock
);
3175 return XFS_ERROR(EIO
);
3178 /* If the head iclog is not active nor dirty, we just attach
3179 * ourselves to the head and go to sleep.
3181 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3182 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3184 * If the head is dirty or (active and empty), then
3185 * we need to look at the previous iclog. If the previous
3186 * iclog is active or dirty we are done. There is nothing
3187 * to sync out. Otherwise, we attach ourselves to the
3188 * previous iclog and go to sleep.
3190 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3191 (atomic_read(&iclog
->ic_refcnt
) == 0
3192 && iclog
->ic_offset
== 0)) {
3193 iclog
= iclog
->ic_prev
;
3194 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3195 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3200 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3201 /* We are the only one with access to this
3202 * iclog. Flush it out now. There should
3203 * be a roundoff of zero to show that someone
3204 * has already taken care of the roundoff from
3205 * the previous sync.
3207 atomic_inc(&iclog
->ic_refcnt
);
3208 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3209 xlog_state_switch_iclogs(log
, iclog
, 0);
3210 spin_unlock(&log
->l_icloglock
);
3212 if (xlog_state_release_iclog(log
, iclog
))
3213 return XFS_ERROR(EIO
);
3217 spin_lock(&log
->l_icloglock
);
3218 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
3219 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
3224 /* Someone else is writing to this iclog.
3225 * Use its call to flush out the data. However,
3226 * the other thread may not force out this LR,
3227 * so we mark it WANT_SYNC.
3229 xlog_state_switch_iclogs(log
, iclog
, 0);
3235 /* By the time we come around again, the iclog could've been filled
3236 * which would give it another lsn. If we have a new lsn, just
3237 * return because the relevant data has been flushed.
3240 if (flags
& XFS_LOG_SYNC
) {
3242 * We must check if we're shutting down here, before
3243 * we wait, while we're holding the l_icloglock.
3244 * Then we check again after waking up, in case our
3245 * sleep was disturbed by a bad news.
3247 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3248 spin_unlock(&log
->l_icloglock
);
3249 return XFS_ERROR(EIO
);
3251 XFS_STATS_INC(xs_log_force_sleep
);
3252 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3254 * No need to grab the log lock here since we're
3255 * only deciding whether or not to return EIO
3256 * and the memory read should be atomic.
3258 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3259 return XFS_ERROR(EIO
);
3265 spin_unlock(&log
->l_icloglock
);
3271 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3272 * about errors or whether the log was flushed or not. This is the normal
3273 * interface to use when trying to unpin items or move the log forward.
3282 trace_xfs_log_force(mp
, 0);
3283 error
= _xfs_log_force(mp
, flags
, NULL
);
3285 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3289 * Force the in-core log to disk for a specific LSN.
3291 * Find in-core log with lsn.
3292 * If it is in the DIRTY state, just return.
3293 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3294 * state and go to sleep or return.
3295 * If it is in any other state, go to sleep or return.
3297 * Synchronous forces are implemented with a signal variable. All callers
3298 * to force a given lsn to disk will wait on a the sv attached to the
3299 * specific in-core log. When given in-core log finally completes its
3300 * write to disk, that thread will wake up all threads waiting on the
3305 struct xfs_mount
*mp
,
3310 struct xlog
*log
= mp
->m_log
;
3311 struct xlog_in_core
*iclog
;
3312 int already_slept
= 0;
3316 XFS_STATS_INC(xs_log_force
);
3318 lsn
= xlog_cil_force_lsn(log
, lsn
);
3319 if (lsn
== NULLCOMMITLSN
)
3323 spin_lock(&log
->l_icloglock
);
3324 iclog
= log
->l_iclog
;
3325 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3326 spin_unlock(&log
->l_icloglock
);
3327 return XFS_ERROR(EIO
);
3331 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3332 iclog
= iclog
->ic_next
;
3336 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3337 spin_unlock(&log
->l_icloglock
);
3341 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3343 * We sleep here if we haven't already slept (e.g.
3344 * this is the first time we've looked at the correct
3345 * iclog buf) and the buffer before us is going to
3346 * be sync'ed. The reason for this is that if we
3347 * are doing sync transactions here, by waiting for
3348 * the previous I/O to complete, we can allow a few
3349 * more transactions into this iclog before we close
3352 * Otherwise, we mark the buffer WANT_SYNC, and bump
3353 * up the refcnt so we can release the log (which
3354 * drops the ref count). The state switch keeps new
3355 * transaction commits from using this buffer. When
3356 * the current commits finish writing into the buffer,
3357 * the refcount will drop to zero and the buffer will
3360 if (!already_slept
&&
3361 (iclog
->ic_prev
->ic_state
&
3362 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3363 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3365 XFS_STATS_INC(xs_log_force_sleep
);
3367 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3374 atomic_inc(&iclog
->ic_refcnt
);
3375 xlog_state_switch_iclogs(log
, iclog
, 0);
3376 spin_unlock(&log
->l_icloglock
);
3377 if (xlog_state_release_iclog(log
, iclog
))
3378 return XFS_ERROR(EIO
);
3381 spin_lock(&log
->l_icloglock
);
3384 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3386 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3388 * Don't wait on completion if we know that we've
3389 * gotten a log write error.
3391 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3392 spin_unlock(&log
->l_icloglock
);
3393 return XFS_ERROR(EIO
);
3395 XFS_STATS_INC(xs_log_force_sleep
);
3396 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3398 * No need to grab the log lock here since we're
3399 * only deciding whether or not to return EIO
3400 * and the memory read should be atomic.
3402 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3403 return XFS_ERROR(EIO
);
3407 } else { /* just return */
3408 spin_unlock(&log
->l_icloglock
);
3412 } while (iclog
!= log
->l_iclog
);
3414 spin_unlock(&log
->l_icloglock
);
3419 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3420 * about errors or whether the log was flushed or not. This is the normal
3421 * interface to use when trying to unpin items or move the log forward.
3431 trace_xfs_log_force(mp
, lsn
);
3432 error
= _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3434 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3438 * Called when we want to mark the current iclog as being ready to sync to
3442 xlog_state_want_sync(
3444 struct xlog_in_core
*iclog
)
3446 assert_spin_locked(&log
->l_icloglock
);
3448 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3449 xlog_state_switch_iclogs(log
, iclog
, 0);
3451 ASSERT(iclog
->ic_state
&
3452 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3457 /*****************************************************************************
3461 *****************************************************************************
3465 * Free a used ticket when its refcount falls to zero.
3469 xlog_ticket_t
*ticket
)
3471 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3472 if (atomic_dec_and_test(&ticket
->t_ref
))
3473 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3478 xlog_ticket_t
*ticket
)
3480 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3481 atomic_inc(&ticket
->t_ref
);
3486 * Figure out the total log space unit (in bytes) that would be
3487 * required for a log ticket.
3490 xfs_log_calc_unit_res(
3491 struct xfs_mount
*mp
,
3494 struct xlog
*log
= mp
->m_log
;
3499 * Permanent reservations have up to 'cnt'-1 active log operations
3500 * in the log. A unit in this case is the amount of space for one
3501 * of these log operations. Normal reservations have a cnt of 1
3502 * and their unit amount is the total amount of space required.
3504 * The following lines of code account for non-transaction data
3505 * which occupy space in the on-disk log.
3507 * Normal form of a transaction is:
3508 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3509 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3511 * We need to account for all the leadup data and trailer data
3512 * around the transaction data.
3513 * And then we need to account for the worst case in terms of using
3515 * The worst case will happen if:
3516 * - the placement of the transaction happens to be such that the
3517 * roundoff is at its maximum
3518 * - the transaction data is synced before the commit record is synced
3519 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3520 * Therefore the commit record is in its own Log Record.
3521 * This can happen as the commit record is called with its
3522 * own region to xlog_write().
3523 * This then means that in the worst case, roundoff can happen for
3524 * the commit-rec as well.
3525 * The commit-rec is smaller than padding in this scenario and so it is
3526 * not added separately.
3529 /* for trans header */
3530 unit_bytes
+= sizeof(xlog_op_header_t
);
3531 unit_bytes
+= sizeof(xfs_trans_header_t
);
3534 unit_bytes
+= sizeof(xlog_op_header_t
);
3537 * for LR headers - the space for data in an iclog is the size minus
3538 * the space used for the headers. If we use the iclog size, then we
3539 * undercalculate the number of headers required.
3541 * Furthermore - the addition of op headers for split-recs might
3542 * increase the space required enough to require more log and op
3543 * headers, so take that into account too.
3545 * IMPORTANT: This reservation makes the assumption that if this
3546 * transaction is the first in an iclog and hence has the LR headers
3547 * accounted to it, then the remaining space in the iclog is
3548 * exclusively for this transaction. i.e. if the transaction is larger
3549 * than the iclog, it will be the only thing in that iclog.
3550 * Fundamentally, this means we must pass the entire log vector to
3551 * xlog_write to guarantee this.
3553 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3554 num_headers
= howmany(unit_bytes
, iclog_space
);
3556 /* for split-recs - ophdrs added when data split over LRs */
3557 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3559 /* add extra header reservations if we overrun */
3560 while (!num_headers
||
3561 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3562 unit_bytes
+= sizeof(xlog_op_header_t
);
3565 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3567 /* for commit-rec LR header - note: padding will subsume the ophdr */
3568 unit_bytes
+= log
->l_iclog_hsize
;
3570 /* for roundoff padding for transaction data and one for commit record */
3571 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3572 /* log su roundoff */
3573 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3576 unit_bytes
+= 2 * BBSIZE
;
3583 * Allocate and initialise a new log ticket.
3585 struct xlog_ticket
*
3592 xfs_km_flags_t alloc_flags
)
3594 struct xlog_ticket
*tic
;
3597 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3601 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3603 atomic_set(&tic
->t_ref
, 1);
3604 tic
->t_task
= current
;
3605 INIT_LIST_HEAD(&tic
->t_queue
);
3606 tic
->t_unit_res
= unit_res
;
3607 tic
->t_curr_res
= unit_res
;
3610 tic
->t_tid
= prandom_u32();
3611 tic
->t_clientid
= client
;
3612 tic
->t_flags
= XLOG_TIC_INITED
;
3613 tic
->t_trans_type
= 0;
3615 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3617 xlog_tic_reset_res(tic
);
3623 /******************************************************************************
3625 * Log debug routines
3627 ******************************************************************************
3631 * Make sure that the destination ptr is within the valid data region of
3632 * one of the iclogs. This uses backup pointers stored in a different
3633 * part of the log in case we trash the log structure.
3636 xlog_verify_dest_ptr(
3643 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3644 if (ptr
>= log
->l_iclog_bak
[i
] &&
3645 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3650 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3654 * Check to make sure the grant write head didn't just over lap the tail. If
3655 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3656 * the cycles differ by exactly one and check the byte count.
3658 * This check is run unlocked, so can give false positives. Rather than assert
3659 * on failures, use a warn-once flag and a panic tag to allow the admin to
3660 * determine if they want to panic the machine when such an error occurs. For
3661 * debug kernels this will have the same effect as using an assert but, unlinke
3662 * an assert, it can be turned off at runtime.
3665 xlog_verify_grant_tail(
3668 int tail_cycle
, tail_blocks
;
3671 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3672 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3673 if (tail_cycle
!= cycle
) {
3674 if (cycle
- 1 != tail_cycle
&&
3675 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3676 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3677 "%s: cycle - 1 != tail_cycle", __func__
);
3678 log
->l_flags
|= XLOG_TAIL_WARN
;
3681 if (space
> BBTOB(tail_blocks
) &&
3682 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3683 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3684 "%s: space > BBTOB(tail_blocks)", __func__
);
3685 log
->l_flags
|= XLOG_TAIL_WARN
;
3690 /* check if it will fit */
3692 xlog_verify_tail_lsn(
3694 struct xlog_in_core
*iclog
,
3699 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3701 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3702 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3703 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3705 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3707 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3708 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3710 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3711 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3712 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3714 } /* xlog_verify_tail_lsn */
3717 * Perform a number of checks on the iclog before writing to disk.
3719 * 1. Make sure the iclogs are still circular
3720 * 2. Make sure we have a good magic number
3721 * 3. Make sure we don't have magic numbers in the data
3722 * 4. Check fields of each log operation header for:
3723 * A. Valid client identifier
3724 * B. tid ptr value falls in valid ptr space (user space code)
3725 * C. Length in log record header is correct according to the
3726 * individual operation headers within record.
3727 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3728 * log, check the preceding blocks of the physical log to make sure all
3729 * the cycle numbers agree with the current cycle number.
3734 struct xlog_in_core
*iclog
,
3738 xlog_op_header_t
*ophead
;
3739 xlog_in_core_t
*icptr
;
3740 xlog_in_core_2_t
*xhdr
;
3742 xfs_caddr_t base_ptr
;
3743 __psint_t field_offset
;
3745 int len
, i
, j
, k
, op_len
;
3748 /* check validity of iclog pointers */
3749 spin_lock(&log
->l_icloglock
);
3750 icptr
= log
->l_iclog
;
3751 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3754 if (icptr
!= log
->l_iclog
)
3755 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3756 spin_unlock(&log
->l_icloglock
);
3758 /* check log magic numbers */
3759 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3760 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3762 ptr
= (xfs_caddr_t
) &iclog
->ic_header
;
3763 for (ptr
+= BBSIZE
; ptr
< ((xfs_caddr_t
)&iclog
->ic_header
) + count
;
3765 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3766 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3771 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3772 ptr
= iclog
->ic_datap
;
3774 ophead
= (xlog_op_header_t
*)ptr
;
3775 xhdr
= iclog
->ic_data
;
3776 for (i
= 0; i
< len
; i
++) {
3777 ophead
= (xlog_op_header_t
*)ptr
;
3779 /* clientid is only 1 byte */
3780 field_offset
= (__psint_t
)
3781 ((xfs_caddr_t
)&(ophead
->oh_clientid
) - base_ptr
);
3782 if (!syncing
|| (field_offset
& 0x1ff)) {
3783 clientid
= ophead
->oh_clientid
;
3785 idx
= BTOBBT((xfs_caddr_t
)&(ophead
->oh_clientid
) - iclog
->ic_datap
);
3786 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3787 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3788 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3789 clientid
= xlog_get_client_id(
3790 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3792 clientid
= xlog_get_client_id(
3793 iclog
->ic_header
.h_cycle_data
[idx
]);
3796 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3798 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3799 __func__
, clientid
, ophead
,
3800 (unsigned long)field_offset
);
3803 field_offset
= (__psint_t
)
3804 ((xfs_caddr_t
)&(ophead
->oh_len
) - base_ptr
);
3805 if (!syncing
|| (field_offset
& 0x1ff)) {
3806 op_len
= be32_to_cpu(ophead
->oh_len
);
3808 idx
= BTOBBT((__psint_t
)&ophead
->oh_len
-
3809 (__psint_t
)iclog
->ic_datap
);
3810 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3811 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3812 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3813 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3815 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3818 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3820 } /* xlog_verify_iclog */
3824 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3830 xlog_in_core_t
*iclog
, *ic
;
3832 iclog
= log
->l_iclog
;
3833 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3835 * Mark all the incore logs IOERROR.
3836 * From now on, no log flushes will result.
3840 ic
->ic_state
= XLOG_STATE_IOERROR
;
3842 } while (ic
!= iclog
);
3846 * Return non-zero, if state transition has already happened.
3852 * This is called from xfs_force_shutdown, when we're forcibly
3853 * shutting down the filesystem, typically because of an IO error.
3854 * Our main objectives here are to make sure that:
3855 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3856 * parties to find out, 'atomically'.
3857 * b. those who're sleeping on log reservations, pinned objects and
3858 * other resources get woken up, and be told the bad news.
3859 * c. nothing new gets queued up after (a) and (b) are done.
3860 * d. if !logerror, flush the iclogs to disk, then seal them off
3863 * Note: for delayed logging the !logerror case needs to flush the regions
3864 * held in memory out to the iclogs before flushing them to disk. This needs
3865 * to be done before the log is marked as shutdown, otherwise the flush to the
3869 xfs_log_force_umount(
3870 struct xfs_mount
*mp
,
3879 * If this happens during log recovery, don't worry about
3880 * locking; the log isn't open for business yet.
3883 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3884 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3886 XFS_BUF_DONE(mp
->m_sb_bp
);
3891 * Somebody could've already done the hard work for us.
3892 * No need to get locks for this.
3894 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3895 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3901 * Flush the in memory commit item list before marking the log as
3902 * being shut down. We need to do it in this order to ensure all the
3903 * completed transactions are flushed to disk with the xfs_log_force()
3907 xlog_cil_force(log
);
3910 * mark the filesystem and the as in a shutdown state and wake
3911 * everybody up to tell them the bad news.
3913 spin_lock(&log
->l_icloglock
);
3914 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3916 XFS_BUF_DONE(mp
->m_sb_bp
);
3919 * This flag is sort of redundant because of the mount flag, but
3920 * it's good to maintain the separation between the log and the rest
3923 log
->l_flags
|= XLOG_IO_ERROR
;
3926 * If we hit a log error, we want to mark all the iclogs IOERROR
3927 * while we're still holding the loglock.
3930 retval
= xlog_state_ioerror(log
);
3931 spin_unlock(&log
->l_icloglock
);
3934 * We don't want anybody waiting for log reservations after this. That
3935 * means we have to wake up everybody queued up on reserveq as well as
3936 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3937 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3938 * action is protected by the grant locks.
3940 xlog_grant_head_wake_all(&log
->l_reserve_head
);
3941 xlog_grant_head_wake_all(&log
->l_write_head
);
3943 if (!(log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3946 * Force the incore logs to disk before shutting the
3947 * log down completely.
3949 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
3951 spin_lock(&log
->l_icloglock
);
3952 retval
= xlog_state_ioerror(log
);
3953 spin_unlock(&log
->l_icloglock
);
3957 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3958 * as if the log writes were completed. The abort handling in the log
3959 * item committed callback functions will do this again under lock to
3962 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
3963 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
3965 #ifdef XFSERRORDEBUG
3967 xlog_in_core_t
*iclog
;
3969 spin_lock(&log
->l_icloglock
);
3970 iclog
= log
->l_iclog
;
3972 ASSERT(iclog
->ic_callback
== 0);
3973 iclog
= iclog
->ic_next
;
3974 } while (iclog
!= log
->l_iclog
);
3975 spin_unlock(&log
->l_icloglock
);
3978 /* return non-zero if log IOERROR transition had already happened */
3986 xlog_in_core_t
*iclog
;
3988 iclog
= log
->l_iclog
;
3990 /* endianness does not matter here, zero is zero in
3993 if (iclog
->ic_header
.h_num_logops
)
3995 iclog
= iclog
->ic_next
;
3996 } while (iclog
!= log
->l_iclog
);