4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
44 * dcache->d_inode->i_lock protects:
45 * - i_dentry, d_u.d_alias, d_inode of aliases
46 * dcache_hash_bucket lock protects:
47 * - the dcache hash table
48 * s_anon bl list spinlock protects:
49 * - the s_anon list (see __d_drop)
50 * dcache_lru_lock protects:
51 * - the dcache lru lists and counters
58 * - d_parent and d_subdirs
59 * - childrens' d_child and d_parent
60 * - d_u.d_alias, d_inode
63 * dentry->d_inode->i_lock
66 * dcache_hash_bucket lock
69 * If there is an ancestor relationship:
70 * dentry->d_parent->...->d_parent->d_lock
72 * dentry->d_parent->d_lock
75 * If no ancestor relationship:
76 * if (dentry1 < dentry2)
80 int sysctl_vfs_cache_pressure __read_mostly
= 100;
81 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
83 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
84 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
86 EXPORT_SYMBOL(rename_lock
);
88 static struct kmem_cache
*dentry_cache __read_mostly
;
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
98 #define D_HASHBITS d_hash_shift
99 #define D_HASHMASK d_hash_mask
101 static unsigned int d_hash_mask __read_mostly
;
102 static unsigned int d_hash_shift __read_mostly
;
104 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
106 static inline struct hlist_bl_head
*d_hash(struct dentry
*parent
,
109 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
110 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
111 return dentry_hashtable
+ (hash
& D_HASHMASK
);
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat
= {
119 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
122 static int get_nr_dentry(void)
126 for_each_possible_cpu(i
)
127 sum
+= per_cpu(nr_dentry
, i
);
128 return sum
< 0 ? 0 : sum
;
131 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
132 size_t *lenp
, loff_t
*ppos
)
134 dentry_stat
.nr_dentry
= get_nr_dentry();
135 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
139 static void __d_free(struct rcu_head
*head
)
141 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
143 if (dname_external(dentry
))
144 kfree(dentry
->d_name
.name
);
145 kmem_cache_free(dentry_cache
, dentry
);
151 static void d_free(struct dentry
*dentry
)
153 WARN_ON(!list_empty(&dentry
->d_u
.d_alias
));
154 BUG_ON(dentry
->d_count
);
155 this_cpu_dec(nr_dentry
);
156 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
157 dentry
->d_op
->d_release(dentry
);
159 /* if dentry was never visible to RCU, immediate free is OK */
160 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
161 __d_free(&dentry
->d_u
.d_rcu
);
163 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
167 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
168 * @dentry: the target dentry
169 * After this call, in-progress rcu-walk path lookup will fail. This
170 * should be called after unhashing, and after changing d_inode (if
171 * the dentry has not already been unhashed).
173 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
175 assert_spin_locked(&dentry
->d_lock
);
176 /* Go through a barrier */
177 write_seqcount_barrier(&dentry
->d_seq
);
181 * Release the dentry's inode, using the filesystem
182 * d_iput() operation if defined. Dentry has no refcount
185 static void dentry_iput(struct dentry
* dentry
)
186 __releases(dentry
->d_lock
)
187 __releases(dentry
->d_inode
->i_lock
)
189 struct inode
*inode
= dentry
->d_inode
;
191 dentry
->d_inode
= NULL
;
192 list_del_init(&dentry
->d_u
.d_alias
);
193 spin_unlock(&dentry
->d_lock
);
194 spin_unlock(&inode
->i_lock
);
196 fsnotify_inoderemove(inode
);
197 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
198 dentry
->d_op
->d_iput(dentry
, inode
);
202 spin_unlock(&dentry
->d_lock
);
207 * Release the dentry's inode, using the filesystem
208 * d_iput() operation if defined. dentry remains in-use.
210 static void dentry_unlink_inode(struct dentry
* dentry
)
211 __releases(dentry
->d_lock
)
212 __releases(dentry
->d_inode
->i_lock
)
214 struct inode
*inode
= dentry
->d_inode
;
215 dentry
->d_inode
= NULL
;
216 list_del_init(&dentry
->d_u
.d_alias
);
217 dentry_rcuwalk_barrier(dentry
);
218 spin_unlock(&dentry
->d_lock
);
219 spin_unlock(&inode
->i_lock
);
221 fsnotify_inoderemove(inode
);
222 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
223 dentry
->d_op
->d_iput(dentry
, inode
);
229 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
231 static void dentry_lru_add(struct dentry
*dentry
)
233 if (list_empty(&dentry
->d_lru
)) {
234 spin_lock(&dcache_lru_lock
);
235 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
236 dentry
->d_sb
->s_nr_dentry_unused
++;
237 dentry_stat
.nr_unused
++;
238 spin_unlock(&dcache_lru_lock
);
242 static void __dentry_lru_del(struct dentry
*dentry
)
244 list_del_init(&dentry
->d_lru
);
245 dentry
->d_flags
&= ~DCACHE_SHRINK_LIST
;
246 dentry
->d_sb
->s_nr_dentry_unused
--;
247 dentry_stat
.nr_unused
--;
251 * Remove a dentry with references from the LRU.
253 static void dentry_lru_del(struct dentry
*dentry
)
255 if (!list_empty(&dentry
->d_lru
)) {
256 spin_lock(&dcache_lru_lock
);
257 __dentry_lru_del(dentry
);
258 spin_unlock(&dcache_lru_lock
);
263 * Remove a dentry that is unreferenced and about to be pruned
264 * (unhashed and destroyed) from the LRU, and inform the file system.
265 * This wrapper should be called _prior_ to unhashing a victim dentry.
267 static void dentry_lru_prune(struct dentry
*dentry
)
269 if (!list_empty(&dentry
->d_lru
)) {
270 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
271 dentry
->d_op
->d_prune(dentry
);
273 spin_lock(&dcache_lru_lock
);
274 __dentry_lru_del(dentry
);
275 spin_unlock(&dcache_lru_lock
);
279 static void dentry_lru_move_list(struct dentry
*dentry
, struct list_head
*list
)
281 spin_lock(&dcache_lru_lock
);
282 if (list_empty(&dentry
->d_lru
)) {
283 list_add_tail(&dentry
->d_lru
, list
);
284 dentry
->d_sb
->s_nr_dentry_unused
++;
285 dentry_stat
.nr_unused
++;
287 list_move_tail(&dentry
->d_lru
, list
);
289 spin_unlock(&dcache_lru_lock
);
293 * d_kill - kill dentry and return parent
294 * @dentry: dentry to kill
295 * @parent: parent dentry
297 * The dentry must already be unhashed and removed from the LRU.
299 * If this is the root of the dentry tree, return NULL.
301 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
304 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
305 __releases(dentry
->d_lock
)
306 __releases(parent
->d_lock
)
307 __releases(dentry
->d_inode
->i_lock
)
309 __list_del_entry(&dentry
->d_child
);
311 * Inform ascending readers that we are no longer attached to the
314 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
316 spin_unlock(&parent
->d_lock
);
319 * dentry_iput drops the locks, at which point nobody (except
320 * transient RCU lookups) can reach this dentry.
327 * Unhash a dentry without inserting an RCU walk barrier or checking that
328 * dentry->d_lock is locked. The caller must take care of that, if
331 static void __d_shrink(struct dentry
*dentry
)
333 if (!d_unhashed(dentry
)) {
334 struct hlist_bl_head
*b
;
335 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
336 b
= &dentry
->d_sb
->s_anon
;
338 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
341 __hlist_bl_del(&dentry
->d_hash
);
342 dentry
->d_hash
.pprev
= NULL
;
348 * d_drop - drop a dentry
349 * @dentry: dentry to drop
351 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
352 * be found through a VFS lookup any more. Note that this is different from
353 * deleting the dentry - d_delete will try to mark the dentry negative if
354 * possible, giving a successful _negative_ lookup, while d_drop will
355 * just make the cache lookup fail.
357 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
358 * reason (NFS timeouts or autofs deletes).
360 * __d_drop requires dentry->d_lock.
362 void __d_drop(struct dentry
*dentry
)
364 if (!d_unhashed(dentry
)) {
366 dentry_rcuwalk_barrier(dentry
);
369 EXPORT_SYMBOL(__d_drop
);
371 void d_drop(struct dentry
*dentry
)
373 spin_lock(&dentry
->d_lock
);
375 spin_unlock(&dentry
->d_lock
);
377 EXPORT_SYMBOL(d_drop
);
380 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
381 * @dentry: dentry to drop
383 * This is called when we do a lookup on a placeholder dentry that needed to be
384 * looked up. The dentry should have been hashed in order for it to be found by
385 * the lookup code, but now needs to be unhashed while we do the actual lookup
386 * and clear the DCACHE_NEED_LOOKUP flag.
388 void d_clear_need_lookup(struct dentry
*dentry
)
390 spin_lock(&dentry
->d_lock
);
392 dentry
->d_flags
&= ~DCACHE_NEED_LOOKUP
;
393 spin_unlock(&dentry
->d_lock
);
395 EXPORT_SYMBOL(d_clear_need_lookup
);
398 * Finish off a dentry we've decided to kill.
399 * dentry->d_lock must be held, returns with it unlocked.
400 * If ref is non-zero, then decrement the refcount too.
401 * Returns dentry requiring refcount drop, or NULL if we're done.
403 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
404 __releases(dentry
->d_lock
)
407 struct dentry
*parent
;
409 inode
= dentry
->d_inode
;
410 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
412 spin_unlock(&dentry
->d_lock
);
414 return dentry
; /* try again with same dentry */
419 parent
= dentry
->d_parent
;
420 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
422 spin_unlock(&inode
->i_lock
);
429 * if dentry was on the d_lru list delete it from there.
430 * inform the fs via d_prune that this dentry is about to be
431 * unhashed and destroyed.
433 dentry_lru_prune(dentry
);
434 /* if it was on the hash then remove it */
436 return d_kill(dentry
, parent
);
442 * This is complicated by the fact that we do not want to put
443 * dentries that are no longer on any hash chain on the unused
444 * list: we'd much rather just get rid of them immediately.
446 * However, that implies that we have to traverse the dentry
447 * tree upwards to the parents which might _also_ now be
448 * scheduled for deletion (it may have been only waiting for
449 * its last child to go away).
451 * This tail recursion is done by hand as we don't want to depend
452 * on the compiler to always get this right (gcc generally doesn't).
453 * Real recursion would eat up our stack space.
457 * dput - release a dentry
458 * @dentry: dentry to release
460 * Release a dentry. This will drop the usage count and if appropriate
461 * call the dentry unlink method as well as removing it from the queues and
462 * releasing its resources. If the parent dentries were scheduled for release
463 * they too may now get deleted.
465 void dput(struct dentry
*dentry
)
471 if (dentry
->d_count
== 1)
473 spin_lock(&dentry
->d_lock
);
474 BUG_ON(!dentry
->d_count
);
475 if (dentry
->d_count
> 1) {
477 spin_unlock(&dentry
->d_lock
);
481 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
482 if (dentry
->d_op
->d_delete(dentry
))
486 /* Unreachable? Get rid of it */
487 if (d_unhashed(dentry
))
491 * If this dentry needs lookup, don't set the referenced flag so that it
492 * is more likely to be cleaned up by the dcache shrinker in case of
495 if (!d_need_lookup(dentry
))
496 dentry
->d_flags
|= DCACHE_REFERENCED
;
497 dentry_lru_add(dentry
);
500 spin_unlock(&dentry
->d_lock
);
504 dentry
= dentry_kill(dentry
, 1);
511 * d_invalidate - invalidate a dentry
512 * @dentry: dentry to invalidate
514 * Try to invalidate the dentry if it turns out to be
515 * possible. If there are other dentries that can be
516 * reached through this one we can't delete it and we
517 * return -EBUSY. On success we return 0.
522 int d_invalidate(struct dentry
* dentry
)
525 * If it's already been dropped, return OK.
527 spin_lock(&dentry
->d_lock
);
528 if (d_unhashed(dentry
)) {
529 spin_unlock(&dentry
->d_lock
);
533 * Check whether to do a partial shrink_dcache
534 * to get rid of unused child entries.
536 if (!list_empty(&dentry
->d_subdirs
)) {
537 spin_unlock(&dentry
->d_lock
);
538 shrink_dcache_parent(dentry
);
539 spin_lock(&dentry
->d_lock
);
543 * Somebody else still using it?
545 * If it's a directory, we can't drop it
546 * for fear of somebody re-populating it
547 * with children (even though dropping it
548 * would make it unreachable from the root,
549 * we might still populate it if it was a
550 * working directory or similar).
551 * We also need to leave mountpoints alone,
554 if (dentry
->d_count
> 1 && dentry
->d_inode
) {
555 if (S_ISDIR(dentry
->d_inode
->i_mode
) || d_mountpoint(dentry
)) {
556 spin_unlock(&dentry
->d_lock
);
562 spin_unlock(&dentry
->d_lock
);
565 EXPORT_SYMBOL(d_invalidate
);
567 /* This must be called with d_lock held */
568 static inline void __dget_dlock(struct dentry
*dentry
)
573 static inline void __dget(struct dentry
*dentry
)
575 spin_lock(&dentry
->d_lock
);
576 __dget_dlock(dentry
);
577 spin_unlock(&dentry
->d_lock
);
580 struct dentry
*dget_parent(struct dentry
*dentry
)
586 * Don't need rcu_dereference because we re-check it was correct under
590 ret
= dentry
->d_parent
;
591 spin_lock(&ret
->d_lock
);
592 if (unlikely(ret
!= dentry
->d_parent
)) {
593 spin_unlock(&ret
->d_lock
);
598 BUG_ON(!ret
->d_count
);
600 spin_unlock(&ret
->d_lock
);
603 EXPORT_SYMBOL(dget_parent
);
606 * d_find_alias - grab a hashed alias of inode
607 * @inode: inode in question
608 * @want_discon: flag, used by d_splice_alias, to request
609 * that only a DISCONNECTED alias be returned.
611 * If inode has a hashed alias, or is a directory and has any alias,
612 * acquire the reference to alias and return it. Otherwise return NULL.
613 * Notice that if inode is a directory there can be only one alias and
614 * it can be unhashed only if it has no children, or if it is the root
617 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
618 * any other hashed alias over that one unless @want_discon is set,
619 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
621 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
623 struct dentry
*alias
, *discon_alias
;
627 list_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
628 spin_lock(&alias
->d_lock
);
629 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
630 if (IS_ROOT(alias
) &&
631 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
632 discon_alias
= alias
;
633 } else if (!want_discon
) {
635 spin_unlock(&alias
->d_lock
);
639 spin_unlock(&alias
->d_lock
);
642 alias
= discon_alias
;
643 spin_lock(&alias
->d_lock
);
644 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
645 if (IS_ROOT(alias
) &&
646 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
648 spin_unlock(&alias
->d_lock
);
652 spin_unlock(&alias
->d_lock
);
658 struct dentry
*d_find_alias(struct inode
*inode
)
660 struct dentry
*de
= NULL
;
662 if (!list_empty(&inode
->i_dentry
)) {
663 spin_lock(&inode
->i_lock
);
664 de
= __d_find_alias(inode
, 0);
665 spin_unlock(&inode
->i_lock
);
669 EXPORT_SYMBOL(d_find_alias
);
672 * Try to kill dentries associated with this inode.
673 * WARNING: you must own a reference to inode.
675 void d_prune_aliases(struct inode
*inode
)
677 struct dentry
*dentry
;
679 spin_lock(&inode
->i_lock
);
680 list_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
681 spin_lock(&dentry
->d_lock
);
682 if (!dentry
->d_count
) {
683 __dget_dlock(dentry
);
685 spin_unlock(&dentry
->d_lock
);
686 spin_unlock(&inode
->i_lock
);
690 spin_unlock(&dentry
->d_lock
);
692 spin_unlock(&inode
->i_lock
);
694 EXPORT_SYMBOL(d_prune_aliases
);
697 * Try to throw away a dentry - free the inode, dput the parent.
698 * Requires dentry->d_lock is held, and dentry->d_count == 0.
699 * Releases dentry->d_lock.
701 * This may fail if locks cannot be acquired no problem, just try again.
703 static void try_prune_one_dentry(struct dentry
*dentry
)
704 __releases(dentry
->d_lock
)
706 struct dentry
*parent
;
708 parent
= dentry_kill(dentry
, 0);
710 * If dentry_kill returns NULL, we have nothing more to do.
711 * if it returns the same dentry, trylocks failed. In either
712 * case, just loop again.
714 * Otherwise, we need to prune ancestors too. This is necessary
715 * to prevent quadratic behavior of shrink_dcache_parent(), but
716 * is also expected to be beneficial in reducing dentry cache
721 if (parent
== dentry
)
724 /* Prune ancestors. */
727 spin_lock(&dentry
->d_lock
);
728 if (dentry
->d_count
> 1) {
730 spin_unlock(&dentry
->d_lock
);
733 dentry
= dentry_kill(dentry
, 1);
737 static void shrink_dentry_list(struct list_head
*list
)
739 struct dentry
*dentry
;
743 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
744 if (&dentry
->d_lru
== list
)
746 spin_lock(&dentry
->d_lock
);
747 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
748 spin_unlock(&dentry
->d_lock
);
753 * We found an inuse dentry which was not removed from
754 * the LRU because of laziness during lookup. Do not free
755 * it - just keep it off the LRU list.
757 if (dentry
->d_count
) {
758 dentry_lru_del(dentry
);
759 spin_unlock(&dentry
->d_lock
);
765 try_prune_one_dentry(dentry
);
773 * prune_dcache_sb - shrink the dcache
775 * @count: number of entries to try to free
777 * Attempt to shrink the superblock dcache LRU by @count entries. This is
778 * done when we need more memory an called from the superblock shrinker
781 * This function may fail to free any resources if all the dentries are in
784 void prune_dcache_sb(struct super_block
*sb
, int count
)
786 struct dentry
*dentry
;
787 LIST_HEAD(referenced
);
791 spin_lock(&dcache_lru_lock
);
792 while (!list_empty(&sb
->s_dentry_lru
)) {
793 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
794 struct dentry
, d_lru
);
795 BUG_ON(dentry
->d_sb
!= sb
);
797 if (!spin_trylock(&dentry
->d_lock
)) {
798 spin_unlock(&dcache_lru_lock
);
803 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
804 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
805 list_move(&dentry
->d_lru
, &referenced
);
806 spin_unlock(&dentry
->d_lock
);
808 list_move_tail(&dentry
->d_lru
, &tmp
);
809 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
810 spin_unlock(&dentry
->d_lock
);
814 cond_resched_lock(&dcache_lru_lock
);
816 if (!list_empty(&referenced
))
817 list_splice(&referenced
, &sb
->s_dentry_lru
);
818 spin_unlock(&dcache_lru_lock
);
820 shrink_dentry_list(&tmp
);
824 * shrink_dcache_sb - shrink dcache for a superblock
827 * Shrink the dcache for the specified super block. This is used to free
828 * the dcache before unmounting a file system.
830 void shrink_dcache_sb(struct super_block
*sb
)
834 spin_lock(&dcache_lru_lock
);
835 while (!list_empty(&sb
->s_dentry_lru
)) {
836 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
837 spin_unlock(&dcache_lru_lock
);
838 shrink_dentry_list(&tmp
);
839 spin_lock(&dcache_lru_lock
);
841 spin_unlock(&dcache_lru_lock
);
843 EXPORT_SYMBOL(shrink_dcache_sb
);
846 * destroy a single subtree of dentries for unmount
847 * - see the comments on shrink_dcache_for_umount() for a description of the
850 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
852 struct dentry
*parent
;
854 BUG_ON(!IS_ROOT(dentry
));
857 /* descend to the first leaf in the current subtree */
858 while (!list_empty(&dentry
->d_subdirs
))
859 dentry
= list_entry(dentry
->d_subdirs
.next
,
860 struct dentry
, d_child
);
862 /* consume the dentries from this leaf up through its parents
863 * until we find one with children or run out altogether */
868 * remove the dentry from the lru, and inform
869 * the fs that this dentry is about to be
870 * unhashed and destroyed.
872 dentry_lru_prune(dentry
);
875 if (dentry
->d_count
!= 0) {
877 "BUG: Dentry %p{i=%lx,n=%s}"
879 " [unmount of %s %s]\n",
882 dentry
->d_inode
->i_ino
: 0UL,
885 dentry
->d_sb
->s_type
->name
,
890 if (IS_ROOT(dentry
)) {
892 list_del(&dentry
->d_child
);
894 parent
= dentry
->d_parent
;
896 list_del(&dentry
->d_child
);
899 inode
= dentry
->d_inode
;
901 dentry
->d_inode
= NULL
;
902 list_del_init(&dentry
->d_u
.d_alias
);
903 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
904 dentry
->d_op
->d_iput(dentry
, inode
);
911 /* finished when we fall off the top of the tree,
912 * otherwise we ascend to the parent and move to the
913 * next sibling if there is one */
917 } while (list_empty(&dentry
->d_subdirs
));
919 dentry
= list_entry(dentry
->d_subdirs
.next
,
920 struct dentry
, d_child
);
925 * destroy the dentries attached to a superblock on unmounting
926 * - we don't need to use dentry->d_lock because:
927 * - the superblock is detached from all mountings and open files, so the
928 * dentry trees will not be rearranged by the VFS
929 * - s_umount is write-locked, so the memory pressure shrinker will ignore
930 * any dentries belonging to this superblock that it comes across
931 * - the filesystem itself is no longer permitted to rearrange the dentries
934 void shrink_dcache_for_umount(struct super_block
*sb
)
936 struct dentry
*dentry
;
938 if (down_read_trylock(&sb
->s_umount
))
944 shrink_dcache_for_umount_subtree(dentry
);
946 while (!hlist_bl_empty(&sb
->s_anon
)) {
947 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
948 shrink_dcache_for_umount_subtree(dentry
);
954 * Search for at least 1 mount point in the dentry's subdirs.
955 * We descend to the next level whenever the d_subdirs
956 * list is non-empty and continue searching.
960 * have_submounts - check for mounts over a dentry
961 * @parent: dentry to check.
963 * Return true if the parent or its subdirectories contain
966 int have_submounts(struct dentry
*parent
)
968 struct dentry
*this_parent
;
969 struct list_head
*next
;
973 seq
= read_seqbegin(&rename_lock
);
975 this_parent
= parent
;
977 if (d_mountpoint(parent
))
979 spin_lock(&this_parent
->d_lock
);
981 next
= this_parent
->d_subdirs
.next
;
983 while (next
!= &this_parent
->d_subdirs
) {
984 struct list_head
*tmp
= next
;
985 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
988 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
989 /* Have we found a mount point ? */
990 if (d_mountpoint(dentry
)) {
991 spin_unlock(&dentry
->d_lock
);
992 spin_unlock(&this_parent
->d_lock
);
995 if (!list_empty(&dentry
->d_subdirs
)) {
996 spin_unlock(&this_parent
->d_lock
);
997 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
998 this_parent
= dentry
;
999 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1002 spin_unlock(&dentry
->d_lock
);
1005 * All done at this level ... ascend and resume the search.
1009 if (this_parent
!= parent
) {
1010 struct dentry
*child
= this_parent
;
1011 this_parent
= child
->d_parent
;
1013 spin_unlock(&child
->d_lock
);
1014 spin_lock(&this_parent
->d_lock
);
1016 /* might go back up the wrong parent if we have had a rename */
1017 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1019 /* go into the first sibling still alive */
1021 next
= child
->d_child
.next
;
1022 if (next
== &this_parent
->d_subdirs
)
1024 child
= list_entry(next
, struct dentry
, d_child
);
1025 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1029 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1031 spin_unlock(&this_parent
->d_lock
);
1034 write_sequnlock(&rename_lock
);
1035 return 0; /* No mount points found in tree */
1037 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1038 goto rename_retry_unlocked
;
1040 write_sequnlock(&rename_lock
);
1044 spin_unlock(&this_parent
->d_lock
);
1048 rename_retry_unlocked
:
1050 write_seqlock(&rename_lock
);
1053 EXPORT_SYMBOL(have_submounts
);
1056 * Search the dentry child list for the specified parent,
1057 * and move any unused dentries to the end of the unused
1058 * list for prune_dcache(). We descend to the next level
1059 * whenever the d_subdirs list is non-empty and continue
1062 * It returns zero iff there are no unused children,
1063 * otherwise it returns the number of children moved to
1064 * the end of the unused list. This may not be the total
1065 * number of unused children, because select_parent can
1066 * drop the lock and return early due to latency
1069 static int select_parent(struct dentry
*parent
, struct list_head
*dispose
)
1071 struct dentry
*this_parent
;
1072 struct list_head
*next
;
1077 seq
= read_seqbegin(&rename_lock
);
1079 this_parent
= parent
;
1080 spin_lock(&this_parent
->d_lock
);
1082 next
= this_parent
->d_subdirs
.next
;
1084 while (next
!= &this_parent
->d_subdirs
) {
1085 struct list_head
*tmp
= next
;
1086 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1089 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1092 * move only zero ref count dentries to the dispose list.
1094 * Those which are presently on the shrink list, being processed
1095 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1096 * loop in shrink_dcache_parent() might not make any progress
1099 if (dentry
->d_count
) {
1100 dentry_lru_del(dentry
);
1101 } else if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
1102 dentry_lru_move_list(dentry
, dispose
);
1103 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
1107 * We can return to the caller if we have found some (this
1108 * ensures forward progress). We'll be coming back to find
1111 if (found
&& need_resched()) {
1112 spin_unlock(&dentry
->d_lock
);
1118 * Descend a level if the d_subdirs list is non-empty.
1120 if (!list_empty(&dentry
->d_subdirs
)) {
1121 spin_unlock(&this_parent
->d_lock
);
1122 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1123 this_parent
= dentry
;
1124 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1128 spin_unlock(&dentry
->d_lock
);
1131 * All done at this level ... ascend and resume the search.
1135 if (this_parent
!= parent
) {
1136 struct dentry
*child
= this_parent
;
1137 this_parent
= child
->d_parent
;
1139 spin_unlock(&child
->d_lock
);
1140 spin_lock(&this_parent
->d_lock
);
1142 /* might go back up the wrong parent if we have had a rename */
1143 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1145 /* go into the first sibling still alive */
1147 next
= child
->d_child
.next
;
1148 if (next
== &this_parent
->d_subdirs
)
1150 child
= list_entry(next
, struct dentry
, d_child
);
1151 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1156 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1158 spin_unlock(&this_parent
->d_lock
);
1161 write_sequnlock(&rename_lock
);
1165 spin_unlock(&this_parent
->d_lock
);
1172 write_seqlock(&rename_lock
);
1177 * shrink_dcache_parent - prune dcache
1178 * @parent: parent of entries to prune
1180 * Prune the dcache to remove unused children of the parent dentry.
1182 void shrink_dcache_parent(struct dentry
* parent
)
1187 while ((found
= select_parent(parent
, &dispose
)) != 0) {
1188 shrink_dentry_list(&dispose
);
1192 EXPORT_SYMBOL(shrink_dcache_parent
);
1195 * __d_alloc - allocate a dcache entry
1196 * @sb: filesystem it will belong to
1197 * @name: qstr of the name
1199 * Allocates a dentry. It returns %NULL if there is insufficient memory
1200 * available. On a success the dentry is returned. The name passed in is
1201 * copied and the copy passed in may be reused after this call.
1204 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1206 struct dentry
*dentry
;
1209 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1213 if (name
->len
> DNAME_INLINE_LEN
-1) {
1214 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1216 kmem_cache_free(dentry_cache
, dentry
);
1220 dname
= dentry
->d_iname
;
1222 dentry
->d_name
.name
= dname
;
1224 dentry
->d_name
.len
= name
->len
;
1225 dentry
->d_name
.hash
= name
->hash
;
1226 memcpy(dname
, name
->name
, name
->len
);
1227 dname
[name
->len
] = 0;
1229 dentry
->d_count
= 1;
1230 dentry
->d_flags
= 0;
1231 spin_lock_init(&dentry
->d_lock
);
1232 seqcount_init(&dentry
->d_seq
);
1233 dentry
->d_inode
= NULL
;
1234 dentry
->d_parent
= dentry
;
1236 dentry
->d_op
= NULL
;
1237 dentry
->d_fsdata
= NULL
;
1238 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1239 INIT_LIST_HEAD(&dentry
->d_lru
);
1240 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1241 INIT_LIST_HEAD(&dentry
->d_u
.d_alias
);
1242 INIT_LIST_HEAD(&dentry
->d_child
);
1243 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1245 this_cpu_inc(nr_dentry
);
1251 * d_alloc - allocate a dcache entry
1252 * @parent: parent of entry to allocate
1253 * @name: qstr of the name
1255 * Allocates a dentry. It returns %NULL if there is insufficient memory
1256 * available. On a success the dentry is returned. The name passed in is
1257 * copied and the copy passed in may be reused after this call.
1259 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1261 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1264 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1265 spin_lock(&parent
->d_lock
);
1267 * don't need child lock because it is not subject
1268 * to concurrency here
1270 __dget_dlock(parent
);
1271 dentry
->d_parent
= parent
;
1272 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1273 spin_unlock(&parent
->d_lock
);
1277 EXPORT_SYMBOL(d_alloc
);
1279 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1281 struct dentry
*dentry
= __d_alloc(sb
, name
);
1283 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1286 EXPORT_SYMBOL(d_alloc_pseudo
);
1288 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1293 q
.len
= strlen(name
);
1294 q
.hash
= full_name_hash(q
.name
, q
.len
);
1295 return d_alloc(parent
, &q
);
1297 EXPORT_SYMBOL(d_alloc_name
);
1299 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1301 WARN_ON_ONCE(dentry
->d_op
);
1302 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1304 DCACHE_OP_REVALIDATE
|
1305 DCACHE_OP_DELETE
));
1310 dentry
->d_flags
|= DCACHE_OP_HASH
;
1312 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1313 if (op
->d_revalidate
)
1314 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1316 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1318 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1321 EXPORT_SYMBOL(d_set_d_op
);
1323 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1325 spin_lock(&dentry
->d_lock
);
1327 if (unlikely(IS_AUTOMOUNT(inode
)))
1328 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1329 list_add(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1331 dentry
->d_inode
= inode
;
1332 dentry_rcuwalk_barrier(dentry
);
1333 spin_unlock(&dentry
->d_lock
);
1334 fsnotify_d_instantiate(dentry
, inode
);
1338 * d_instantiate - fill in inode information for a dentry
1339 * @entry: dentry to complete
1340 * @inode: inode to attach to this dentry
1342 * Fill in inode information in the entry.
1344 * This turns negative dentries into productive full members
1347 * NOTE! This assumes that the inode count has been incremented
1348 * (or otherwise set) by the caller to indicate that it is now
1349 * in use by the dcache.
1352 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1354 BUG_ON(!list_empty(&entry
->d_u
.d_alias
));
1356 spin_lock(&inode
->i_lock
);
1357 __d_instantiate(entry
, inode
);
1359 spin_unlock(&inode
->i_lock
);
1360 security_d_instantiate(entry
, inode
);
1362 EXPORT_SYMBOL(d_instantiate
);
1365 * d_instantiate_unique - instantiate a non-aliased dentry
1366 * @entry: dentry to instantiate
1367 * @inode: inode to attach to this dentry
1369 * Fill in inode information in the entry. On success, it returns NULL.
1370 * If an unhashed alias of "entry" already exists, then we return the
1371 * aliased dentry instead and drop one reference to inode.
1373 * Note that in order to avoid conflicts with rename() etc, the caller
1374 * had better be holding the parent directory semaphore.
1376 * This also assumes that the inode count has been incremented
1377 * (or otherwise set) by the caller to indicate that it is now
1378 * in use by the dcache.
1380 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1381 struct inode
*inode
)
1383 struct dentry
*alias
;
1384 int len
= entry
->d_name
.len
;
1385 const char *name
= entry
->d_name
.name
;
1386 unsigned int hash
= entry
->d_name
.hash
;
1389 __d_instantiate(entry
, NULL
);
1393 list_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
1394 struct qstr
*qstr
= &alias
->d_name
;
1397 * Don't need alias->d_lock here, because aliases with
1398 * d_parent == entry->d_parent are not subject to name or
1399 * parent changes, because the parent inode i_mutex is held.
1401 if (qstr
->hash
!= hash
)
1403 if (alias
->d_parent
!= entry
->d_parent
)
1405 if (dentry_cmp(qstr
->name
, qstr
->len
, name
, len
))
1411 __d_instantiate(entry
, inode
);
1415 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1417 struct dentry
*result
;
1419 BUG_ON(!list_empty(&entry
->d_u
.d_alias
));
1422 spin_lock(&inode
->i_lock
);
1423 result
= __d_instantiate_unique(entry
, inode
);
1425 spin_unlock(&inode
->i_lock
);
1428 security_d_instantiate(entry
, inode
);
1432 BUG_ON(!d_unhashed(result
));
1437 EXPORT_SYMBOL(d_instantiate_unique
);
1440 * d_alloc_root - allocate root dentry
1441 * @root_inode: inode to allocate the root for
1443 * Allocate a root ("/") dentry for the inode given. The inode is
1444 * instantiated and returned. %NULL is returned if there is insufficient
1445 * memory or the inode passed is %NULL.
1448 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1450 struct dentry
*res
= NULL
;
1453 static const struct qstr name
= { .name
= "/", .len
= 1 };
1455 res
= __d_alloc(root_inode
->i_sb
, &name
);
1457 d_instantiate(res
, root_inode
);
1461 EXPORT_SYMBOL(d_alloc_root
);
1463 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1465 struct dentry
*alias
;
1467 if (list_empty(&inode
->i_dentry
))
1469 alias
= list_first_entry(&inode
->i_dentry
, struct dentry
, d_u
.d_alias
);
1474 static struct dentry
* d_find_any_alias(struct inode
*inode
)
1478 spin_lock(&inode
->i_lock
);
1479 de
= __d_find_any_alias(inode
);
1480 spin_unlock(&inode
->i_lock
);
1486 * d_obtain_alias - find or allocate a dentry for a given inode
1487 * @inode: inode to allocate the dentry for
1489 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1490 * similar open by handle operations. The returned dentry may be anonymous,
1491 * or may have a full name (if the inode was already in the cache).
1493 * When called on a directory inode, we must ensure that the inode only ever
1494 * has one dentry. If a dentry is found, that is returned instead of
1495 * allocating a new one.
1497 * On successful return, the reference to the inode has been transferred
1498 * to the dentry. In case of an error the reference on the inode is released.
1499 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1500 * be passed in and will be the error will be propagate to the return value,
1501 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1503 struct dentry
*d_obtain_alias(struct inode
*inode
)
1505 static const struct qstr anonstring
= { .name
= "/", .len
= 1 };
1510 return ERR_PTR(-ESTALE
);
1512 return ERR_CAST(inode
);
1514 res
= d_find_any_alias(inode
);
1518 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1520 res
= ERR_PTR(-ENOMEM
);
1524 spin_lock(&inode
->i_lock
);
1525 res
= __d_find_any_alias(inode
);
1527 spin_unlock(&inode
->i_lock
);
1532 /* attach a disconnected dentry */
1533 spin_lock(&tmp
->d_lock
);
1534 tmp
->d_inode
= inode
;
1535 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1536 list_add(&tmp
->d_u
.d_alias
, &inode
->i_dentry
);
1537 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1538 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1539 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1540 spin_unlock(&tmp
->d_lock
);
1541 spin_unlock(&inode
->i_lock
);
1542 security_d_instantiate(tmp
, inode
);
1547 if (res
&& !IS_ERR(res
))
1548 security_d_instantiate(res
, inode
);
1552 EXPORT_SYMBOL(d_obtain_alias
);
1555 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1556 * @inode: the inode which may have a disconnected dentry
1557 * @dentry: a negative dentry which we want to point to the inode.
1559 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1560 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1561 * and return it, else simply d_add the inode to the dentry and return NULL.
1563 * This is needed in the lookup routine of any filesystem that is exportable
1564 * (via knfsd) so that we can build dcache paths to directories effectively.
1566 * If a dentry was found and moved, then it is returned. Otherwise NULL
1567 * is returned. This matches the expected return value of ->lookup.
1570 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1572 struct dentry
*new = NULL
;
1575 return ERR_CAST(inode
);
1577 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1578 spin_lock(&inode
->i_lock
);
1579 new = __d_find_alias(inode
, 1);
1581 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1582 spin_unlock(&inode
->i_lock
);
1583 security_d_instantiate(new, inode
);
1584 d_move(new, dentry
);
1587 /* already taking inode->i_lock, so d_add() by hand */
1588 __d_instantiate(dentry
, inode
);
1589 spin_unlock(&inode
->i_lock
);
1590 security_d_instantiate(dentry
, inode
);
1594 d_add(dentry
, inode
);
1597 EXPORT_SYMBOL(d_splice_alias
);
1600 * d_add_ci - lookup or allocate new dentry with case-exact name
1601 * @inode: the inode case-insensitive lookup has found
1602 * @dentry: the negative dentry that was passed to the parent's lookup func
1603 * @name: the case-exact name to be associated with the returned dentry
1605 * This is to avoid filling the dcache with case-insensitive names to the
1606 * same inode, only the actual correct case is stored in the dcache for
1607 * case-insensitive filesystems.
1609 * For a case-insensitive lookup match and if the the case-exact dentry
1610 * already exists in in the dcache, use it and return it.
1612 * If no entry exists with the exact case name, allocate new dentry with
1613 * the exact case, and return the spliced entry.
1615 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1619 struct dentry
*found
;
1623 * First check if a dentry matching the name already exists,
1624 * if not go ahead and create it now.
1626 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1628 new = d_alloc(dentry
->d_parent
, name
);
1634 found
= d_splice_alias(inode
, new);
1643 * If a matching dentry exists, and it's not negative use it.
1645 * Decrement the reference count to balance the iget() done
1648 if (found
->d_inode
) {
1649 if (unlikely(found
->d_inode
!= inode
)) {
1650 /* This can't happen because bad inodes are unhashed. */
1651 BUG_ON(!is_bad_inode(inode
));
1652 BUG_ON(!is_bad_inode(found
->d_inode
));
1659 * We are going to instantiate this dentry, unhash it and clear the
1660 * lookup flag so we can do that.
1662 if (unlikely(d_need_lookup(found
)))
1663 d_clear_need_lookup(found
);
1666 * Negative dentry: instantiate it unless the inode is a directory and
1667 * already has a dentry.
1669 new = d_splice_alias(inode
, found
);
1678 return ERR_PTR(error
);
1680 EXPORT_SYMBOL(d_add_ci
);
1683 * __d_lookup_rcu - search for a dentry (racy, store-free)
1684 * @parent: parent dentry
1685 * @name: qstr of name we wish to find
1686 * @seq: returns d_seq value at the point where the dentry was found
1687 * @inode: returns dentry->d_inode when the inode was found valid.
1688 * Returns: dentry, or NULL
1690 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1691 * resolution (store-free path walking) design described in
1692 * Documentation/filesystems/path-lookup.txt.
1694 * This is not to be used outside core vfs.
1696 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1697 * held, and rcu_read_lock held. The returned dentry must not be stored into
1698 * without taking d_lock and checking d_seq sequence count against @seq
1701 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1704 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1705 * the returned dentry, so long as its parent's seqlock is checked after the
1706 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1707 * is formed, giving integrity down the path walk.
1709 struct dentry
*__d_lookup_rcu(struct dentry
*parent
, struct qstr
*name
,
1710 unsigned *seq
, struct inode
**inode
)
1712 unsigned int len
= name
->len
;
1713 unsigned int hash
= name
->hash
;
1714 const unsigned char *str
= name
->name
;
1715 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1716 struct hlist_bl_node
*node
;
1717 struct dentry
*dentry
;
1720 * Note: There is significant duplication with __d_lookup_rcu which is
1721 * required to prevent single threaded performance regressions
1722 * especially on architectures where smp_rmb (in seqcounts) are costly.
1723 * Keep the two functions in sync.
1727 * The hash list is protected using RCU.
1729 * Carefully use d_seq when comparing a candidate dentry, to avoid
1730 * races with d_move().
1732 * It is possible that concurrent renames can mess up our list
1733 * walk here and result in missing our dentry, resulting in the
1734 * false-negative result. d_lookup() protects against concurrent
1735 * renames using rename_lock seqlock.
1737 * See Documentation/filesystems/path-lookup.txt for more details.
1739 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1744 if (dentry
->d_name
.hash
!= hash
)
1748 *seq
= read_seqcount_begin(&dentry
->d_seq
);
1749 if (dentry
->d_parent
!= parent
)
1751 if (d_unhashed(dentry
))
1753 tlen
= dentry
->d_name
.len
;
1754 tname
= dentry
->d_name
.name
;
1755 i
= dentry
->d_inode
;
1758 * This seqcount check is required to ensure name and
1759 * len are loaded atomically, so as not to walk off the
1760 * edge of memory when walking. If we could load this
1761 * atomically some other way, we could drop this check.
1763 if (read_seqcount_retry(&dentry
->d_seq
, *seq
))
1765 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
1766 if (parent
->d_op
->d_compare(parent
, *inode
,
1771 if (dentry_cmp(tname
, tlen
, str
, len
))
1775 * No extra seqcount check is required after the name
1776 * compare. The caller must perform a seqcount check in
1777 * order to do anything useful with the returned dentry
1787 * d_lookup - search for a dentry
1788 * @parent: parent dentry
1789 * @name: qstr of name we wish to find
1790 * Returns: dentry, or NULL
1792 * d_lookup searches the children of the parent dentry for the name in
1793 * question. If the dentry is found its reference count is incremented and the
1794 * dentry is returned. The caller must use dput to free the entry when it has
1795 * finished using it. %NULL is returned if the dentry does not exist.
1797 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1799 struct dentry
*dentry
;
1803 seq
= read_seqbegin(&rename_lock
);
1804 dentry
= __d_lookup(parent
, name
);
1807 } while (read_seqretry(&rename_lock
, seq
));
1810 EXPORT_SYMBOL(d_lookup
);
1813 * __d_lookup - search for a dentry (racy)
1814 * @parent: parent dentry
1815 * @name: qstr of name we wish to find
1816 * Returns: dentry, or NULL
1818 * __d_lookup is like d_lookup, however it may (rarely) return a
1819 * false-negative result due to unrelated rename activity.
1821 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1822 * however it must be used carefully, eg. with a following d_lookup in
1823 * the case of failure.
1825 * __d_lookup callers must be commented.
1827 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1829 unsigned int len
= name
->len
;
1830 unsigned int hash
= name
->hash
;
1831 const unsigned char *str
= name
->name
;
1832 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1833 struct hlist_bl_node
*node
;
1834 struct dentry
*found
= NULL
;
1835 struct dentry
*dentry
;
1838 * Note: There is significant duplication with __d_lookup_rcu which is
1839 * required to prevent single threaded performance regressions
1840 * especially on architectures where smp_rmb (in seqcounts) are costly.
1841 * Keep the two functions in sync.
1845 * The hash list is protected using RCU.
1847 * Take d_lock when comparing a candidate dentry, to avoid races
1850 * It is possible that concurrent renames can mess up our list
1851 * walk here and result in missing our dentry, resulting in the
1852 * false-negative result. d_lookup() protects against concurrent
1853 * renames using rename_lock seqlock.
1855 * See Documentation/filesystems/path-lookup.txt for more details.
1859 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1863 if (dentry
->d_name
.hash
!= hash
)
1866 spin_lock(&dentry
->d_lock
);
1867 if (dentry
->d_parent
!= parent
)
1869 if (d_unhashed(dentry
))
1873 * It is safe to compare names since d_move() cannot
1874 * change the qstr (protected by d_lock).
1876 tlen
= dentry
->d_name
.len
;
1877 tname
= dentry
->d_name
.name
;
1878 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1879 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1880 dentry
, dentry
->d_inode
,
1884 if (dentry_cmp(tname
, tlen
, str
, len
))
1890 spin_unlock(&dentry
->d_lock
);
1893 spin_unlock(&dentry
->d_lock
);
1901 * d_hash_and_lookup - hash the qstr then search for a dentry
1902 * @dir: Directory to search in
1903 * @name: qstr of name we wish to find
1905 * On hash failure or on lookup failure NULL is returned.
1907 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1909 struct dentry
*dentry
= NULL
;
1912 * Check for a fs-specific hash function. Note that we must
1913 * calculate the standard hash first, as the d_op->d_hash()
1914 * routine may choose to leave the hash value unchanged.
1916 name
->hash
= full_name_hash(name
->name
, name
->len
);
1917 if (dir
->d_flags
& DCACHE_OP_HASH
) {
1918 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
1921 dentry
= d_lookup(dir
, name
);
1927 * d_validate - verify dentry provided from insecure source (deprecated)
1928 * @dentry: The dentry alleged to be valid child of @dparent
1929 * @dparent: The parent dentry (known to be valid)
1931 * An insecure source has sent us a dentry, here we verify it and dget() it.
1932 * This is used by ncpfs in its readdir implementation.
1933 * Zero is returned in the dentry is invalid.
1935 * This function is slow for big directories, and deprecated, do not use it.
1937 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1939 struct dentry
*child
;
1941 spin_lock(&dparent
->d_lock
);
1942 list_for_each_entry(child
, &dparent
->d_subdirs
, d_child
) {
1943 if (dentry
== child
) {
1944 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1945 __dget_dlock(dentry
);
1946 spin_unlock(&dentry
->d_lock
);
1947 spin_unlock(&dparent
->d_lock
);
1951 spin_unlock(&dparent
->d_lock
);
1955 EXPORT_SYMBOL(d_validate
);
1958 * When a file is deleted, we have two options:
1959 * - turn this dentry into a negative dentry
1960 * - unhash this dentry and free it.
1962 * Usually, we want to just turn this into
1963 * a negative dentry, but if anybody else is
1964 * currently using the dentry or the inode
1965 * we can't do that and we fall back on removing
1966 * it from the hash queues and waiting for
1967 * it to be deleted later when it has no users
1971 * d_delete - delete a dentry
1972 * @dentry: The dentry to delete
1974 * Turn the dentry into a negative dentry if possible, otherwise
1975 * remove it from the hash queues so it can be deleted later
1978 void d_delete(struct dentry
* dentry
)
1980 struct inode
*inode
;
1983 * Are we the only user?
1986 spin_lock(&dentry
->d_lock
);
1987 inode
= dentry
->d_inode
;
1988 isdir
= S_ISDIR(inode
->i_mode
);
1989 if (dentry
->d_count
== 1) {
1990 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
1991 spin_unlock(&dentry
->d_lock
);
1995 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
1996 dentry_unlink_inode(dentry
);
1997 fsnotify_nameremove(dentry
, isdir
);
2001 if (!d_unhashed(dentry
))
2004 spin_unlock(&dentry
->d_lock
);
2006 fsnotify_nameremove(dentry
, isdir
);
2008 EXPORT_SYMBOL(d_delete
);
2010 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2012 BUG_ON(!d_unhashed(entry
));
2014 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2018 static void _d_rehash(struct dentry
* entry
)
2020 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2024 * d_rehash - add an entry back to the hash
2025 * @entry: dentry to add to the hash
2027 * Adds a dentry to the hash according to its name.
2030 void d_rehash(struct dentry
* entry
)
2032 spin_lock(&entry
->d_lock
);
2034 spin_unlock(&entry
->d_lock
);
2036 EXPORT_SYMBOL(d_rehash
);
2039 * dentry_update_name_case - update case insensitive dentry with a new name
2040 * @dentry: dentry to be updated
2043 * Update a case insensitive dentry with new case of name.
2045 * dentry must have been returned by d_lookup with name @name. Old and new
2046 * name lengths must match (ie. no d_compare which allows mismatched name
2049 * Parent inode i_mutex must be held over d_lookup and into this call (to
2050 * keep renames and concurrent inserts, and readdir(2) away).
2052 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2054 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2055 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2057 spin_lock(&dentry
->d_lock
);
2058 write_seqcount_begin(&dentry
->d_seq
);
2059 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2060 write_seqcount_end(&dentry
->d_seq
);
2061 spin_unlock(&dentry
->d_lock
);
2063 EXPORT_SYMBOL(dentry_update_name_case
);
2065 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2067 if (dname_external(target
)) {
2068 if (dname_external(dentry
)) {
2070 * Both external: swap the pointers
2072 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2075 * dentry:internal, target:external. Steal target's
2076 * storage and make target internal.
2078 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2079 dentry
->d_name
.len
+ 1);
2080 dentry
->d_name
.name
= target
->d_name
.name
;
2081 target
->d_name
.name
= target
->d_iname
;
2084 if (dname_external(dentry
)) {
2086 * dentry:external, target:internal. Give dentry's
2087 * storage to target and make dentry internal
2089 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2090 target
->d_name
.len
+ 1);
2091 target
->d_name
.name
= dentry
->d_name
.name
;
2092 dentry
->d_name
.name
= dentry
->d_iname
;
2095 * Both are internal. Just copy target to dentry
2097 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2098 target
->d_name
.len
+ 1);
2099 dentry
->d_name
.len
= target
->d_name
.len
;
2103 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2106 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2109 * XXXX: do we really need to take target->d_lock?
2111 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2112 spin_lock(&target
->d_parent
->d_lock
);
2114 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2115 spin_lock(&dentry
->d_parent
->d_lock
);
2116 spin_lock_nested(&target
->d_parent
->d_lock
,
2117 DENTRY_D_LOCK_NESTED
);
2119 spin_lock(&target
->d_parent
->d_lock
);
2120 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2121 DENTRY_D_LOCK_NESTED
);
2124 if (target
< dentry
) {
2125 spin_lock_nested(&target
->d_lock
, 2);
2126 spin_lock_nested(&dentry
->d_lock
, 3);
2128 spin_lock_nested(&dentry
->d_lock
, 2);
2129 spin_lock_nested(&target
->d_lock
, 3);
2133 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2134 struct dentry
*target
)
2136 if (target
->d_parent
!= dentry
->d_parent
)
2137 spin_unlock(&dentry
->d_parent
->d_lock
);
2138 if (target
->d_parent
!= target
)
2139 spin_unlock(&target
->d_parent
->d_lock
);
2143 * When switching names, the actual string doesn't strictly have to
2144 * be preserved in the target - because we're dropping the target
2145 * anyway. As such, we can just do a simple memcpy() to copy over
2146 * the new name before we switch.
2148 * Note that we have to be a lot more careful about getting the hash
2149 * switched - we have to switch the hash value properly even if it
2150 * then no longer matches the actual (corrupted) string of the target.
2151 * The hash value has to match the hash queue that the dentry is on..
2154 * __d_move - move a dentry
2155 * @dentry: entry to move
2156 * @target: new dentry
2158 * Update the dcache to reflect the move of a file name. Negative
2159 * dcache entries should not be moved in this way. Caller must hold
2160 * rename_lock, the i_mutex of the source and target directories,
2161 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2163 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2165 if (!dentry
->d_inode
)
2166 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2168 BUG_ON(d_ancestor(dentry
, target
));
2169 BUG_ON(d_ancestor(target
, dentry
));
2171 dentry_lock_for_move(dentry
, target
);
2173 write_seqcount_begin(&dentry
->d_seq
);
2174 write_seqcount_begin(&target
->d_seq
);
2176 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2179 * Move the dentry to the target hash queue. Don't bother checking
2180 * for the same hash queue because of how unlikely it is.
2183 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2185 /* Unhash the target: dput() will then get rid of it */
2188 list_del(&dentry
->d_child
);
2189 list_del(&target
->d_child
);
2191 /* Switch the names.. */
2192 switch_names(dentry
, target
);
2193 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2195 /* ... and switch the parents */
2196 if (IS_ROOT(dentry
)) {
2197 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2198 dentry
->d_parent
= target
->d_parent
;
2199 target
->d_parent
= target
;
2200 INIT_LIST_HEAD(&target
->d_child
);
2202 swap(dentry
->d_parent
, target
->d_parent
);
2204 /* And add them back to the (new) parent lists */
2205 list_add(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2208 list_add(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2210 write_seqcount_end(&target
->d_seq
);
2211 write_seqcount_end(&dentry
->d_seq
);
2213 dentry_unlock_parents_for_move(dentry
, target
);
2214 spin_unlock(&target
->d_lock
);
2215 fsnotify_d_move(dentry
);
2216 spin_unlock(&dentry
->d_lock
);
2220 * d_move - move a dentry
2221 * @dentry: entry to move
2222 * @target: new dentry
2224 * Update the dcache to reflect the move of a file name. Negative
2225 * dcache entries should not be moved in this way. See the locking
2226 * requirements for __d_move.
2228 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2230 write_seqlock(&rename_lock
);
2231 __d_move(dentry
, target
);
2232 write_sequnlock(&rename_lock
);
2234 EXPORT_SYMBOL(d_move
);
2237 * d_ancestor - search for an ancestor
2238 * @p1: ancestor dentry
2241 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2242 * an ancestor of p2, else NULL.
2244 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2248 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2249 if (p
->d_parent
== p1
)
2256 * This helper attempts to cope with remotely renamed directories
2258 * It assumes that the caller is already holding
2259 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2261 * Note: If ever the locking in lock_rename() changes, then please
2262 * remember to update this too...
2264 static struct dentry
*__d_unalias(struct inode
*inode
,
2265 struct dentry
*dentry
, struct dentry
*alias
)
2267 struct mutex
*m1
= NULL
, *m2
= NULL
;
2270 /* If alias and dentry share a parent, then no extra locks required */
2271 if (alias
->d_parent
== dentry
->d_parent
)
2274 /* See lock_rename() */
2275 ret
= ERR_PTR(-EBUSY
);
2276 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2278 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2279 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2281 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2283 __d_move(alias
, dentry
);
2286 spin_unlock(&inode
->i_lock
);
2295 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2296 * named dentry in place of the dentry to be replaced.
2297 * returns with anon->d_lock held!
2299 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2301 struct dentry
*dparent
, *aparent
;
2303 dentry_lock_for_move(anon
, dentry
);
2305 write_seqcount_begin(&dentry
->d_seq
);
2306 write_seqcount_begin(&anon
->d_seq
);
2308 dparent
= dentry
->d_parent
;
2309 aparent
= anon
->d_parent
;
2311 switch_names(dentry
, anon
);
2312 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2314 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2315 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2316 list_del(&dentry
->d_child
);
2317 if (!IS_ROOT(dentry
))
2318 list_add(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2320 INIT_LIST_HEAD(&dentry
->d_child
);
2322 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2323 list_del(&anon
->d_child
);
2325 list_add(&anon
->d_child
, &anon
->d_parent
->d_subdirs
);
2327 INIT_LIST_HEAD(&anon
->d_child
);
2329 write_seqcount_end(&dentry
->d_seq
);
2330 write_seqcount_end(&anon
->d_seq
);
2332 dentry_unlock_parents_for_move(anon
, dentry
);
2333 spin_unlock(&dentry
->d_lock
);
2335 /* anon->d_lock still locked, returns locked */
2336 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2340 * d_materialise_unique - introduce an inode into the tree
2341 * @dentry: candidate dentry
2342 * @inode: inode to bind to the dentry, to which aliases may be attached
2344 * Introduces an dentry into the tree, substituting an extant disconnected
2345 * root directory alias in its place if there is one. Caller must hold the
2346 * i_mutex of the parent directory.
2348 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2350 struct dentry
*actual
;
2352 BUG_ON(!d_unhashed(dentry
));
2356 __d_instantiate(dentry
, NULL
);
2361 spin_lock(&inode
->i_lock
);
2363 if (S_ISDIR(inode
->i_mode
)) {
2364 struct dentry
*alias
;
2366 /* Does an aliased dentry already exist? */
2367 alias
= __d_find_alias(inode
, 0);
2370 write_seqlock(&rename_lock
);
2372 if (d_ancestor(alias
, dentry
)) {
2373 /* Check for loops */
2374 actual
= ERR_PTR(-ELOOP
);
2375 spin_unlock(&inode
->i_lock
);
2376 } else if (IS_ROOT(alias
)) {
2377 /* Is this an anonymous mountpoint that we
2378 * could splice into our tree? */
2379 __d_materialise_dentry(dentry
, alias
);
2380 write_sequnlock(&rename_lock
);
2384 /* Nope, but we must(!) avoid directory
2385 * aliasing. This drops inode->i_lock */
2386 actual
= __d_unalias(inode
, dentry
, alias
);
2388 write_sequnlock(&rename_lock
);
2389 if (IS_ERR(actual
)) {
2390 if (PTR_ERR(actual
) == -ELOOP
)
2391 pr_warn_ratelimited(
2392 "VFS: Lookup of '%s' in %s %s"
2393 " would have caused loop\n",
2394 dentry
->d_name
.name
,
2395 inode
->i_sb
->s_type
->name
,
2403 /* Add a unique reference */
2404 actual
= __d_instantiate_unique(dentry
, inode
);
2408 BUG_ON(!d_unhashed(actual
));
2410 spin_lock(&actual
->d_lock
);
2413 spin_unlock(&actual
->d_lock
);
2414 spin_unlock(&inode
->i_lock
);
2416 if (actual
== dentry
) {
2417 security_d_instantiate(dentry
, inode
);
2424 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2426 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2430 return -ENAMETOOLONG
;
2432 memcpy(*buffer
, str
, namelen
);
2436 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2438 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2442 * prepend_path - Prepend path string to a buffer
2443 * @path: the dentry/vfsmount to report
2444 * @root: root vfsmnt/dentry
2445 * @buffer: pointer to the end of the buffer
2446 * @buflen: pointer to buffer length
2448 * Caller holds the rename_lock.
2450 static int prepend_path(const struct path
*path
,
2451 const struct path
*root
,
2452 char **buffer
, int *buflen
)
2454 struct dentry
*dentry
= path
->dentry
;
2455 struct vfsmount
*vfsmnt
= path
->mnt
;
2456 char *orig_buffer
= *buffer
;
2457 int orig_len
= *buflen
;
2461 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2462 struct dentry
* parent
;
2464 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2466 if (dentry
!= vfsmnt
->mnt_root
) {
2467 *buffer
= orig_buffer
;
2474 if (vfsmnt
->mnt_parent
== vfsmnt
) {
2477 dentry
= vfsmnt
->mnt_mountpoint
;
2478 vfsmnt
= vfsmnt
->mnt_parent
;
2481 parent
= dentry
->d_parent
;
2483 spin_lock(&dentry
->d_lock
);
2484 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2485 spin_unlock(&dentry
->d_lock
);
2487 error
= prepend(buffer
, buflen
, "/", 1);
2495 if (!error
&& !slash
)
2496 error
= prepend(buffer
, buflen
, "/", 1);
2502 * Filesystems needing to implement special "root names"
2503 * should do so with ->d_dname()
2505 if (IS_ROOT(dentry
) &&
2506 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2507 WARN(1, "Root dentry has weird name <%.*s>\n",
2508 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2511 error
= prepend(buffer
, buflen
, "/", 1);
2513 error
= vfsmnt
->mnt_ns
? 1 : 2;
2518 * __d_path - return the path of a dentry
2519 * @path: the dentry/vfsmount to report
2520 * @root: root vfsmnt/dentry
2521 * @buf: buffer to return value in
2522 * @buflen: buffer length
2524 * Convert a dentry into an ASCII path name.
2526 * Returns a pointer into the buffer or an error code if the
2527 * path was too long.
2529 * "buflen" should be positive.
2531 * If the path is not reachable from the supplied root, return %NULL.
2533 char *__d_path(const struct path
*path
,
2534 const struct path
*root
,
2535 char *buf
, int buflen
)
2537 char *res
= buf
+ buflen
;
2540 prepend(&res
, &buflen
, "\0", 1);
2541 br_read_lock(vfsmount_lock
);
2542 write_seqlock(&rename_lock
);
2543 error
= prepend_path(path
, root
, &res
, &buflen
);
2544 write_sequnlock(&rename_lock
);
2545 br_read_unlock(vfsmount_lock
);
2548 return ERR_PTR(error
);
2554 char *d_absolute_path(const struct path
*path
,
2555 char *buf
, int buflen
)
2557 struct path root
= {};
2558 char *res
= buf
+ buflen
;
2561 prepend(&res
, &buflen
, "\0", 1);
2562 br_read_lock(vfsmount_lock
);
2563 write_seqlock(&rename_lock
);
2564 error
= prepend_path(path
, &root
, &res
, &buflen
);
2565 write_sequnlock(&rename_lock
);
2566 br_read_unlock(vfsmount_lock
);
2571 return ERR_PTR(error
);
2576 * same as __d_path but appends "(deleted)" for unlinked files.
2578 static int path_with_deleted(const struct path
*path
,
2579 const struct path
*root
,
2580 char **buf
, int *buflen
)
2582 prepend(buf
, buflen
, "\0", 1);
2583 if (d_unlinked(path
->dentry
)) {
2584 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2589 return prepend_path(path
, root
, buf
, buflen
);
2592 static int prepend_unreachable(char **buffer
, int *buflen
)
2594 return prepend(buffer
, buflen
, "(unreachable)", 13);
2598 * d_path - return the path of a dentry
2599 * @path: path to report
2600 * @buf: buffer to return value in
2601 * @buflen: buffer length
2603 * Convert a dentry into an ASCII path name. If the entry has been deleted
2604 * the string " (deleted)" is appended. Note that this is ambiguous.
2606 * Returns a pointer into the buffer or an error code if the path was
2607 * too long. Note: Callers should use the returned pointer, not the passed
2608 * in buffer, to use the name! The implementation often starts at an offset
2609 * into the buffer, and may leave 0 bytes at the start.
2611 * "buflen" should be positive.
2613 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2615 char *res
= buf
+ buflen
;
2620 * We have various synthetic filesystems that never get mounted. On
2621 * these filesystems dentries are never used for lookup purposes, and
2622 * thus don't need to be hashed. They also don't need a name until a
2623 * user wants to identify the object in /proc/pid/fd/. The little hack
2624 * below allows us to generate a name for these objects on demand:
2626 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2627 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2629 get_fs_root(current
->fs
, &root
);
2630 br_read_lock(vfsmount_lock
);
2631 write_seqlock(&rename_lock
);
2632 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2633 write_sequnlock(&rename_lock
);
2634 br_read_unlock(vfsmount_lock
);
2636 res
= ERR_PTR(error
);
2640 EXPORT_SYMBOL(d_path
);
2643 * d_path_with_unreachable - return the path of a dentry
2644 * @path: path to report
2645 * @buf: buffer to return value in
2646 * @buflen: buffer length
2648 * The difference from d_path() is that this prepends "(unreachable)"
2649 * to paths which are unreachable from the current process' root.
2651 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2653 char *res
= buf
+ buflen
;
2657 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2658 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2660 get_fs_root(current
->fs
, &root
);
2661 write_seqlock(&rename_lock
);
2662 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2664 error
= prepend_unreachable(&res
, &buflen
);
2665 write_sequnlock(&rename_lock
);
2668 res
= ERR_PTR(error
);
2674 * Helper function for dentry_operations.d_dname() members
2676 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2677 const char *fmt
, ...)
2683 va_start(args
, fmt
);
2684 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2687 if (sz
> sizeof(temp
) || sz
> buflen
)
2688 return ERR_PTR(-ENAMETOOLONG
);
2690 buffer
+= buflen
- sz
;
2691 return memcpy(buffer
, temp
, sz
);
2695 * Write full pathname from the root of the filesystem into the buffer.
2697 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2699 char *end
= buf
+ buflen
;
2702 prepend(&end
, &buflen
, "\0", 1);
2709 while (!IS_ROOT(dentry
)) {
2710 struct dentry
*parent
= dentry
->d_parent
;
2714 spin_lock(&dentry
->d_lock
);
2715 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2716 spin_unlock(&dentry
->d_lock
);
2717 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2725 return ERR_PTR(-ENAMETOOLONG
);
2728 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2732 write_seqlock(&rename_lock
);
2733 retval
= __dentry_path(dentry
, buf
, buflen
);
2734 write_sequnlock(&rename_lock
);
2738 EXPORT_SYMBOL(dentry_path_raw
);
2740 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2745 write_seqlock(&rename_lock
);
2746 if (d_unlinked(dentry
)) {
2748 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2752 retval
= __dentry_path(dentry
, buf
, buflen
);
2753 write_sequnlock(&rename_lock
);
2754 if (!IS_ERR(retval
) && p
)
2755 *p
= '/'; /* restore '/' overriden with '\0' */
2758 return ERR_PTR(-ENAMETOOLONG
);
2762 * NOTE! The user-level library version returns a
2763 * character pointer. The kernel system call just
2764 * returns the length of the buffer filled (which
2765 * includes the ending '\0' character), or a negative
2766 * error value. So libc would do something like
2768 * char *getcwd(char * buf, size_t size)
2772 * retval = sys_getcwd(buf, size);
2779 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2782 struct path pwd
, root
;
2783 char *page
= (char *) __get_free_page(GFP_USER
);
2788 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2791 br_read_lock(vfsmount_lock
);
2792 write_seqlock(&rename_lock
);
2793 if (!d_unlinked(pwd
.dentry
)) {
2795 char *cwd
= page
+ PAGE_SIZE
;
2796 int buflen
= PAGE_SIZE
;
2798 prepend(&cwd
, &buflen
, "\0", 1);
2799 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
2800 write_sequnlock(&rename_lock
);
2801 br_read_unlock(vfsmount_lock
);
2806 /* Unreachable from current root */
2808 error
= prepend_unreachable(&cwd
, &buflen
);
2814 len
= PAGE_SIZE
+ page
- cwd
;
2817 if (copy_to_user(buf
, cwd
, len
))
2821 write_sequnlock(&rename_lock
);
2822 br_read_unlock(vfsmount_lock
);
2828 free_page((unsigned long) page
);
2833 * Test whether new_dentry is a subdirectory of old_dentry.
2835 * Trivially implemented using the dcache structure
2839 * is_subdir - is new dentry a subdirectory of old_dentry
2840 * @new_dentry: new dentry
2841 * @old_dentry: old dentry
2843 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2844 * Returns 0 otherwise.
2845 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2848 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2853 if (new_dentry
== old_dentry
)
2857 /* for restarting inner loop in case of seq retry */
2858 seq
= read_seqbegin(&rename_lock
);
2860 * Need rcu_readlock to protect against the d_parent trashing
2864 if (d_ancestor(old_dentry
, new_dentry
))
2869 } while (read_seqretry(&rename_lock
, seq
));
2874 int path_is_under(struct path
*path1
, struct path
*path2
)
2876 struct vfsmount
*mnt
= path1
->mnt
;
2877 struct dentry
*dentry
= path1
->dentry
;
2880 br_read_lock(vfsmount_lock
);
2881 if (mnt
!= path2
->mnt
) {
2883 if (mnt
->mnt_parent
== mnt
) {
2884 br_read_unlock(vfsmount_lock
);
2887 if (mnt
->mnt_parent
== path2
->mnt
)
2889 mnt
= mnt
->mnt_parent
;
2891 dentry
= mnt
->mnt_mountpoint
;
2893 res
= is_subdir(dentry
, path2
->dentry
);
2894 br_read_unlock(vfsmount_lock
);
2897 EXPORT_SYMBOL(path_is_under
);
2899 void d_genocide(struct dentry
*root
)
2901 struct dentry
*this_parent
;
2902 struct list_head
*next
;
2906 seq
= read_seqbegin(&rename_lock
);
2909 spin_lock(&this_parent
->d_lock
);
2911 next
= this_parent
->d_subdirs
.next
;
2913 while (next
!= &this_parent
->d_subdirs
) {
2914 struct list_head
*tmp
= next
;
2915 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
2918 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2919 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2920 spin_unlock(&dentry
->d_lock
);
2923 if (!list_empty(&dentry
->d_subdirs
)) {
2924 spin_unlock(&this_parent
->d_lock
);
2925 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2926 this_parent
= dentry
;
2927 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2930 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2931 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2934 spin_unlock(&dentry
->d_lock
);
2938 if (this_parent
!= root
) {
2939 struct dentry
*child
= this_parent
;
2940 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2941 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2942 this_parent
->d_count
--;
2944 this_parent
= child
->d_parent
;
2946 spin_unlock(&child
->d_lock
);
2947 spin_lock(&this_parent
->d_lock
);
2949 /* might go back up the wrong parent if we have had a rename */
2950 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2952 /* go into the first sibling still alive */
2954 next
= child
->d_child
.next
;
2955 if (next
== &this_parent
->d_subdirs
)
2957 child
= list_entry(next
, struct dentry
, d_child
);
2958 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
2962 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2964 spin_unlock(&this_parent
->d_lock
);
2967 write_sequnlock(&rename_lock
);
2971 spin_unlock(&this_parent
->d_lock
);
2976 write_seqlock(&rename_lock
);
2981 * find_inode_number - check for dentry with name
2982 * @dir: directory to check
2983 * @name: Name to find.
2985 * Check whether a dentry already exists for the given name,
2986 * and return the inode number if it has an inode. Otherwise
2989 * This routine is used to post-process directory listings for
2990 * filesystems using synthetic inode numbers, and is necessary
2991 * to keep getcwd() working.
2994 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2996 struct dentry
* dentry
;
2999 dentry
= d_hash_and_lookup(dir
, name
);
3001 if (dentry
->d_inode
)
3002 ino
= dentry
->d_inode
->i_ino
;
3007 EXPORT_SYMBOL(find_inode_number
);
3009 static __initdata
unsigned long dhash_entries
;
3010 static int __init
set_dhash_entries(char *str
)
3014 dhash_entries
= simple_strtoul(str
, &str
, 0);
3017 __setup("dhash_entries=", set_dhash_entries
);
3019 static void __init
dcache_init_early(void)
3023 /* If hashes are distributed across NUMA nodes, defer
3024 * hash allocation until vmalloc space is available.
3030 alloc_large_system_hash("Dentry cache",
3031 sizeof(struct hlist_bl_head
),
3039 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3040 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3043 static void __init
dcache_init(void)
3048 * A constructor could be added for stable state like the lists,
3049 * but it is probably not worth it because of the cache nature
3052 dentry_cache
= KMEM_CACHE(dentry
,
3053 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3055 /* Hash may have been set up in dcache_init_early */
3060 alloc_large_system_hash("Dentry cache",
3061 sizeof(struct hlist_bl_head
),
3069 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3070 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3073 /* SLAB cache for __getname() consumers */
3074 struct kmem_cache
*names_cachep __read_mostly
;
3075 EXPORT_SYMBOL(names_cachep
);
3077 EXPORT_SYMBOL(d_genocide
);
3079 void __init
vfs_caches_init_early(void)
3081 dcache_init_early();
3085 void __init
vfs_caches_init(unsigned long mempages
)
3087 unsigned long reserve
;
3089 /* Base hash sizes on available memory, with a reserve equal to
3090 150% of current kernel size */
3092 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3093 mempages
-= reserve
;
3095 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3096 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3100 files_init(mempages
);