Linux 3.2.93
[linux/fpc-iii.git] / fs / dcache.c
blob01c68ae3129c952336cb3b8e367ffe84d8ccc43a
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
43 * Usage:
44 * dcache->d_inode->i_lock protects:
45 * - i_dentry, d_u.d_alias, d_inode of aliases
46 * dcache_hash_bucket lock protects:
47 * - the dcache hash table
48 * s_anon bl list spinlock protects:
49 * - the s_anon list (see __d_drop)
50 * dcache_lru_lock protects:
51 * - the dcache lru lists and counters
52 * d_lock protects:
53 * - d_flags
54 * - d_name
55 * - d_lru
56 * - d_count
57 * - d_unhashed()
58 * - d_parent and d_subdirs
59 * - childrens' d_child and d_parent
60 * - d_u.d_alias, d_inode
62 * Ordering:
63 * dentry->d_inode->i_lock
64 * dentry->d_lock
65 * dcache_lru_lock
66 * dcache_hash_bucket lock
67 * s_anon lock
69 * If there is an ancestor relationship:
70 * dentry->d_parent->...->d_parent->d_lock
71 * ...
72 * dentry->d_parent->d_lock
73 * dentry->d_lock
75 * If no ancestor relationship:
76 * if (dentry1 < dentry2)
77 * dentry1->d_lock
78 * dentry2->d_lock
80 int sysctl_vfs_cache_pressure __read_mostly = 100;
81 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 EXPORT_SYMBOL(rename_lock);
88 static struct kmem_cache *dentry_cache __read_mostly;
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
98 #define D_HASHBITS d_hash_shift
99 #define D_HASHMASK d_hash_mask
101 static unsigned int d_hash_mask __read_mostly;
102 static unsigned int d_hash_shift __read_mostly;
104 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
107 unsigned long hash)
109 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
110 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
111 return dentry_hashtable + (hash & D_HASHMASK);
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 .age_limit = 45,
119 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
122 static int get_nr_dentry(void)
124 int i;
125 int sum = 0;
126 for_each_possible_cpu(i)
127 sum += per_cpu(nr_dentry, i);
128 return sum < 0 ? 0 : sum;
131 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
132 size_t *lenp, loff_t *ppos)
134 dentry_stat.nr_dentry = get_nr_dentry();
135 return proc_dointvec(table, write, buffer, lenp, ppos);
137 #endif
139 static void __d_free(struct rcu_head *head)
141 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
149 * no locks, please.
151 static void d_free(struct dentry *dentry)
153 WARN_ON(!list_empty(&dentry->d_u.d_alias));
154 BUG_ON(dentry->d_count);
155 this_cpu_dec(nr_dentry);
156 if (dentry->d_op && dentry->d_op->d_release)
157 dentry->d_op->d_release(dentry);
159 /* if dentry was never visible to RCU, immediate free is OK */
160 if (!(dentry->d_flags & DCACHE_RCUACCESS))
161 __d_free(&dentry->d_u.d_rcu);
162 else
163 call_rcu(&dentry->d_u.d_rcu, __d_free);
167 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
168 * @dentry: the target dentry
169 * After this call, in-progress rcu-walk path lookup will fail. This
170 * should be called after unhashing, and after changing d_inode (if
171 * the dentry has not already been unhashed).
173 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
175 assert_spin_locked(&dentry->d_lock);
176 /* Go through a barrier */
177 write_seqcount_barrier(&dentry->d_seq);
181 * Release the dentry's inode, using the filesystem
182 * d_iput() operation if defined. Dentry has no refcount
183 * and is unhashed.
185 static void dentry_iput(struct dentry * dentry)
186 __releases(dentry->d_lock)
187 __releases(dentry->d_inode->i_lock)
189 struct inode *inode = dentry->d_inode;
190 if (inode) {
191 dentry->d_inode = NULL;
192 list_del_init(&dentry->d_u.d_alias);
193 spin_unlock(&dentry->d_lock);
194 spin_unlock(&inode->i_lock);
195 if (!inode->i_nlink)
196 fsnotify_inoderemove(inode);
197 if (dentry->d_op && dentry->d_op->d_iput)
198 dentry->d_op->d_iput(dentry, inode);
199 else
200 iput(inode);
201 } else {
202 spin_unlock(&dentry->d_lock);
207 * Release the dentry's inode, using the filesystem
208 * d_iput() operation if defined. dentry remains in-use.
210 static void dentry_unlink_inode(struct dentry * dentry)
211 __releases(dentry->d_lock)
212 __releases(dentry->d_inode->i_lock)
214 struct inode *inode = dentry->d_inode;
215 dentry->d_inode = NULL;
216 list_del_init(&dentry->d_u.d_alias);
217 dentry_rcuwalk_barrier(dentry);
218 spin_unlock(&dentry->d_lock);
219 spin_unlock(&inode->i_lock);
220 if (!inode->i_nlink)
221 fsnotify_inoderemove(inode);
222 if (dentry->d_op && dentry->d_op->d_iput)
223 dentry->d_op->d_iput(dentry, inode);
224 else
225 iput(inode);
229 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
231 static void dentry_lru_add(struct dentry *dentry)
233 if (list_empty(&dentry->d_lru)) {
234 spin_lock(&dcache_lru_lock);
235 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
236 dentry->d_sb->s_nr_dentry_unused++;
237 dentry_stat.nr_unused++;
238 spin_unlock(&dcache_lru_lock);
242 static void __dentry_lru_del(struct dentry *dentry)
244 list_del_init(&dentry->d_lru);
245 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
246 dentry->d_sb->s_nr_dentry_unused--;
247 dentry_stat.nr_unused--;
251 * Remove a dentry with references from the LRU.
253 static void dentry_lru_del(struct dentry *dentry)
255 if (!list_empty(&dentry->d_lru)) {
256 spin_lock(&dcache_lru_lock);
257 __dentry_lru_del(dentry);
258 spin_unlock(&dcache_lru_lock);
263 * Remove a dentry that is unreferenced and about to be pruned
264 * (unhashed and destroyed) from the LRU, and inform the file system.
265 * This wrapper should be called _prior_ to unhashing a victim dentry.
267 static void dentry_lru_prune(struct dentry *dentry)
269 if (!list_empty(&dentry->d_lru)) {
270 if (dentry->d_flags & DCACHE_OP_PRUNE)
271 dentry->d_op->d_prune(dentry);
273 spin_lock(&dcache_lru_lock);
274 __dentry_lru_del(dentry);
275 spin_unlock(&dcache_lru_lock);
279 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
281 spin_lock(&dcache_lru_lock);
282 if (list_empty(&dentry->d_lru)) {
283 list_add_tail(&dentry->d_lru, list);
284 dentry->d_sb->s_nr_dentry_unused++;
285 dentry_stat.nr_unused++;
286 } else {
287 list_move_tail(&dentry->d_lru, list);
289 spin_unlock(&dcache_lru_lock);
293 * d_kill - kill dentry and return parent
294 * @dentry: dentry to kill
295 * @parent: parent dentry
297 * The dentry must already be unhashed and removed from the LRU.
299 * If this is the root of the dentry tree, return NULL.
301 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
302 * d_kill.
304 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
305 __releases(dentry->d_lock)
306 __releases(parent->d_lock)
307 __releases(dentry->d_inode->i_lock)
309 __list_del_entry(&dentry->d_child);
311 * Inform ascending readers that we are no longer attached to the
312 * dentry tree
314 dentry->d_flags |= DCACHE_DENTRY_KILLED;
315 if (parent)
316 spin_unlock(&parent->d_lock);
317 dentry_iput(dentry);
319 * dentry_iput drops the locks, at which point nobody (except
320 * transient RCU lookups) can reach this dentry.
322 d_free(dentry);
323 return parent;
327 * Unhash a dentry without inserting an RCU walk barrier or checking that
328 * dentry->d_lock is locked. The caller must take care of that, if
329 * appropriate.
331 static void __d_shrink(struct dentry *dentry)
333 if (!d_unhashed(dentry)) {
334 struct hlist_bl_head *b;
335 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
336 b = &dentry->d_sb->s_anon;
337 else
338 b = d_hash(dentry->d_parent, dentry->d_name.hash);
340 hlist_bl_lock(b);
341 __hlist_bl_del(&dentry->d_hash);
342 dentry->d_hash.pprev = NULL;
343 hlist_bl_unlock(b);
348 * d_drop - drop a dentry
349 * @dentry: dentry to drop
351 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
352 * be found through a VFS lookup any more. Note that this is different from
353 * deleting the dentry - d_delete will try to mark the dentry negative if
354 * possible, giving a successful _negative_ lookup, while d_drop will
355 * just make the cache lookup fail.
357 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
358 * reason (NFS timeouts or autofs deletes).
360 * __d_drop requires dentry->d_lock.
362 void __d_drop(struct dentry *dentry)
364 if (!d_unhashed(dentry)) {
365 __d_shrink(dentry);
366 dentry_rcuwalk_barrier(dentry);
369 EXPORT_SYMBOL(__d_drop);
371 void d_drop(struct dentry *dentry)
373 spin_lock(&dentry->d_lock);
374 __d_drop(dentry);
375 spin_unlock(&dentry->d_lock);
377 EXPORT_SYMBOL(d_drop);
380 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
381 * @dentry: dentry to drop
383 * This is called when we do a lookup on a placeholder dentry that needed to be
384 * looked up. The dentry should have been hashed in order for it to be found by
385 * the lookup code, but now needs to be unhashed while we do the actual lookup
386 * and clear the DCACHE_NEED_LOOKUP flag.
388 void d_clear_need_lookup(struct dentry *dentry)
390 spin_lock(&dentry->d_lock);
391 __d_drop(dentry);
392 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
393 spin_unlock(&dentry->d_lock);
395 EXPORT_SYMBOL(d_clear_need_lookup);
398 * Finish off a dentry we've decided to kill.
399 * dentry->d_lock must be held, returns with it unlocked.
400 * If ref is non-zero, then decrement the refcount too.
401 * Returns dentry requiring refcount drop, or NULL if we're done.
403 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
404 __releases(dentry->d_lock)
406 struct inode *inode;
407 struct dentry *parent;
409 inode = dentry->d_inode;
410 if (inode && !spin_trylock(&inode->i_lock)) {
411 relock:
412 spin_unlock(&dentry->d_lock);
413 cpu_relax();
414 return dentry; /* try again with same dentry */
416 if (IS_ROOT(dentry))
417 parent = NULL;
418 else
419 parent = dentry->d_parent;
420 if (parent && !spin_trylock(&parent->d_lock)) {
421 if (inode)
422 spin_unlock(&inode->i_lock);
423 goto relock;
426 if (ref)
427 dentry->d_count--;
429 * if dentry was on the d_lru list delete it from there.
430 * inform the fs via d_prune that this dentry is about to be
431 * unhashed and destroyed.
433 dentry_lru_prune(dentry);
434 /* if it was on the hash then remove it */
435 __d_drop(dentry);
436 return d_kill(dentry, parent);
440 * This is dput
442 * This is complicated by the fact that we do not want to put
443 * dentries that are no longer on any hash chain on the unused
444 * list: we'd much rather just get rid of them immediately.
446 * However, that implies that we have to traverse the dentry
447 * tree upwards to the parents which might _also_ now be
448 * scheduled for deletion (it may have been only waiting for
449 * its last child to go away).
451 * This tail recursion is done by hand as we don't want to depend
452 * on the compiler to always get this right (gcc generally doesn't).
453 * Real recursion would eat up our stack space.
457 * dput - release a dentry
458 * @dentry: dentry to release
460 * Release a dentry. This will drop the usage count and if appropriate
461 * call the dentry unlink method as well as removing it from the queues and
462 * releasing its resources. If the parent dentries were scheduled for release
463 * they too may now get deleted.
465 void dput(struct dentry *dentry)
467 if (!dentry)
468 return;
470 repeat:
471 if (dentry->d_count == 1)
472 might_sleep();
473 spin_lock(&dentry->d_lock);
474 BUG_ON(!dentry->d_count);
475 if (dentry->d_count > 1) {
476 dentry->d_count--;
477 spin_unlock(&dentry->d_lock);
478 return;
481 if (dentry->d_flags & DCACHE_OP_DELETE) {
482 if (dentry->d_op->d_delete(dentry))
483 goto kill_it;
486 /* Unreachable? Get rid of it */
487 if (d_unhashed(dentry))
488 goto kill_it;
491 * If this dentry needs lookup, don't set the referenced flag so that it
492 * is more likely to be cleaned up by the dcache shrinker in case of
493 * memory pressure.
495 if (!d_need_lookup(dentry))
496 dentry->d_flags |= DCACHE_REFERENCED;
497 dentry_lru_add(dentry);
499 dentry->d_count--;
500 spin_unlock(&dentry->d_lock);
501 return;
503 kill_it:
504 dentry = dentry_kill(dentry, 1);
505 if (dentry)
506 goto repeat;
508 EXPORT_SYMBOL(dput);
511 * d_invalidate - invalidate a dentry
512 * @dentry: dentry to invalidate
514 * Try to invalidate the dentry if it turns out to be
515 * possible. If there are other dentries that can be
516 * reached through this one we can't delete it and we
517 * return -EBUSY. On success we return 0.
519 * no dcache lock.
522 int d_invalidate(struct dentry * dentry)
525 * If it's already been dropped, return OK.
527 spin_lock(&dentry->d_lock);
528 if (d_unhashed(dentry)) {
529 spin_unlock(&dentry->d_lock);
530 return 0;
533 * Check whether to do a partial shrink_dcache
534 * to get rid of unused child entries.
536 if (!list_empty(&dentry->d_subdirs)) {
537 spin_unlock(&dentry->d_lock);
538 shrink_dcache_parent(dentry);
539 spin_lock(&dentry->d_lock);
543 * Somebody else still using it?
545 * If it's a directory, we can't drop it
546 * for fear of somebody re-populating it
547 * with children (even though dropping it
548 * would make it unreachable from the root,
549 * we might still populate it if it was a
550 * working directory or similar).
551 * We also need to leave mountpoints alone,
552 * directory or not.
554 if (dentry->d_count > 1 && dentry->d_inode) {
555 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
556 spin_unlock(&dentry->d_lock);
557 return -EBUSY;
561 __d_drop(dentry);
562 spin_unlock(&dentry->d_lock);
563 return 0;
565 EXPORT_SYMBOL(d_invalidate);
567 /* This must be called with d_lock held */
568 static inline void __dget_dlock(struct dentry *dentry)
570 dentry->d_count++;
573 static inline void __dget(struct dentry *dentry)
575 spin_lock(&dentry->d_lock);
576 __dget_dlock(dentry);
577 spin_unlock(&dentry->d_lock);
580 struct dentry *dget_parent(struct dentry *dentry)
582 struct dentry *ret;
584 repeat:
586 * Don't need rcu_dereference because we re-check it was correct under
587 * the lock.
589 rcu_read_lock();
590 ret = dentry->d_parent;
591 spin_lock(&ret->d_lock);
592 if (unlikely(ret != dentry->d_parent)) {
593 spin_unlock(&ret->d_lock);
594 rcu_read_unlock();
595 goto repeat;
597 rcu_read_unlock();
598 BUG_ON(!ret->d_count);
599 ret->d_count++;
600 spin_unlock(&ret->d_lock);
601 return ret;
603 EXPORT_SYMBOL(dget_parent);
606 * d_find_alias - grab a hashed alias of inode
607 * @inode: inode in question
608 * @want_discon: flag, used by d_splice_alias, to request
609 * that only a DISCONNECTED alias be returned.
611 * If inode has a hashed alias, or is a directory and has any alias,
612 * acquire the reference to alias and return it. Otherwise return NULL.
613 * Notice that if inode is a directory there can be only one alias and
614 * it can be unhashed only if it has no children, or if it is the root
615 * of a filesystem.
617 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
618 * any other hashed alias over that one unless @want_discon is set,
619 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
621 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
623 struct dentry *alias, *discon_alias;
625 again:
626 discon_alias = NULL;
627 list_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
628 spin_lock(&alias->d_lock);
629 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
630 if (IS_ROOT(alias) &&
631 (alias->d_flags & DCACHE_DISCONNECTED)) {
632 discon_alias = alias;
633 } else if (!want_discon) {
634 __dget_dlock(alias);
635 spin_unlock(&alias->d_lock);
636 return alias;
639 spin_unlock(&alias->d_lock);
641 if (discon_alias) {
642 alias = discon_alias;
643 spin_lock(&alias->d_lock);
644 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
645 if (IS_ROOT(alias) &&
646 (alias->d_flags & DCACHE_DISCONNECTED)) {
647 __dget_dlock(alias);
648 spin_unlock(&alias->d_lock);
649 return alias;
652 spin_unlock(&alias->d_lock);
653 goto again;
655 return NULL;
658 struct dentry *d_find_alias(struct inode *inode)
660 struct dentry *de = NULL;
662 if (!list_empty(&inode->i_dentry)) {
663 spin_lock(&inode->i_lock);
664 de = __d_find_alias(inode, 0);
665 spin_unlock(&inode->i_lock);
667 return de;
669 EXPORT_SYMBOL(d_find_alias);
672 * Try to kill dentries associated with this inode.
673 * WARNING: you must own a reference to inode.
675 void d_prune_aliases(struct inode *inode)
677 struct dentry *dentry;
678 restart:
679 spin_lock(&inode->i_lock);
680 list_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
681 spin_lock(&dentry->d_lock);
682 if (!dentry->d_count) {
683 __dget_dlock(dentry);
684 __d_drop(dentry);
685 spin_unlock(&dentry->d_lock);
686 spin_unlock(&inode->i_lock);
687 dput(dentry);
688 goto restart;
690 spin_unlock(&dentry->d_lock);
692 spin_unlock(&inode->i_lock);
694 EXPORT_SYMBOL(d_prune_aliases);
697 * Try to throw away a dentry - free the inode, dput the parent.
698 * Requires dentry->d_lock is held, and dentry->d_count == 0.
699 * Releases dentry->d_lock.
701 * This may fail if locks cannot be acquired no problem, just try again.
703 static void try_prune_one_dentry(struct dentry *dentry)
704 __releases(dentry->d_lock)
706 struct dentry *parent;
708 parent = dentry_kill(dentry, 0);
710 * If dentry_kill returns NULL, we have nothing more to do.
711 * if it returns the same dentry, trylocks failed. In either
712 * case, just loop again.
714 * Otherwise, we need to prune ancestors too. This is necessary
715 * to prevent quadratic behavior of shrink_dcache_parent(), but
716 * is also expected to be beneficial in reducing dentry cache
717 * fragmentation.
719 if (!parent)
720 return;
721 if (parent == dentry)
722 return;
724 /* Prune ancestors. */
725 dentry = parent;
726 while (dentry) {
727 spin_lock(&dentry->d_lock);
728 if (dentry->d_count > 1) {
729 dentry->d_count--;
730 spin_unlock(&dentry->d_lock);
731 return;
733 dentry = dentry_kill(dentry, 1);
737 static void shrink_dentry_list(struct list_head *list)
739 struct dentry *dentry;
741 rcu_read_lock();
742 for (;;) {
743 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
744 if (&dentry->d_lru == list)
745 break; /* empty */
746 spin_lock(&dentry->d_lock);
747 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
748 spin_unlock(&dentry->d_lock);
749 continue;
753 * We found an inuse dentry which was not removed from
754 * the LRU because of laziness during lookup. Do not free
755 * it - just keep it off the LRU list.
757 if (dentry->d_count) {
758 dentry_lru_del(dentry);
759 spin_unlock(&dentry->d_lock);
760 continue;
763 rcu_read_unlock();
765 try_prune_one_dentry(dentry);
767 rcu_read_lock();
769 rcu_read_unlock();
773 * prune_dcache_sb - shrink the dcache
774 * @sb: superblock
775 * @count: number of entries to try to free
777 * Attempt to shrink the superblock dcache LRU by @count entries. This is
778 * done when we need more memory an called from the superblock shrinker
779 * function.
781 * This function may fail to free any resources if all the dentries are in
782 * use.
784 void prune_dcache_sb(struct super_block *sb, int count)
786 struct dentry *dentry;
787 LIST_HEAD(referenced);
788 LIST_HEAD(tmp);
790 relock:
791 spin_lock(&dcache_lru_lock);
792 while (!list_empty(&sb->s_dentry_lru)) {
793 dentry = list_entry(sb->s_dentry_lru.prev,
794 struct dentry, d_lru);
795 BUG_ON(dentry->d_sb != sb);
797 if (!spin_trylock(&dentry->d_lock)) {
798 spin_unlock(&dcache_lru_lock);
799 cpu_relax();
800 goto relock;
803 if (dentry->d_flags & DCACHE_REFERENCED) {
804 dentry->d_flags &= ~DCACHE_REFERENCED;
805 list_move(&dentry->d_lru, &referenced);
806 spin_unlock(&dentry->d_lock);
807 } else {
808 list_move_tail(&dentry->d_lru, &tmp);
809 dentry->d_flags |= DCACHE_SHRINK_LIST;
810 spin_unlock(&dentry->d_lock);
811 if (!--count)
812 break;
814 cond_resched_lock(&dcache_lru_lock);
816 if (!list_empty(&referenced))
817 list_splice(&referenced, &sb->s_dentry_lru);
818 spin_unlock(&dcache_lru_lock);
820 shrink_dentry_list(&tmp);
824 * shrink_dcache_sb - shrink dcache for a superblock
825 * @sb: superblock
827 * Shrink the dcache for the specified super block. This is used to free
828 * the dcache before unmounting a file system.
830 void shrink_dcache_sb(struct super_block *sb)
832 LIST_HEAD(tmp);
834 spin_lock(&dcache_lru_lock);
835 while (!list_empty(&sb->s_dentry_lru)) {
836 list_splice_init(&sb->s_dentry_lru, &tmp);
837 spin_unlock(&dcache_lru_lock);
838 shrink_dentry_list(&tmp);
839 spin_lock(&dcache_lru_lock);
841 spin_unlock(&dcache_lru_lock);
843 EXPORT_SYMBOL(shrink_dcache_sb);
846 * destroy a single subtree of dentries for unmount
847 * - see the comments on shrink_dcache_for_umount() for a description of the
848 * locking
850 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
852 struct dentry *parent;
854 BUG_ON(!IS_ROOT(dentry));
856 for (;;) {
857 /* descend to the first leaf in the current subtree */
858 while (!list_empty(&dentry->d_subdirs))
859 dentry = list_entry(dentry->d_subdirs.next,
860 struct dentry, d_child);
862 /* consume the dentries from this leaf up through its parents
863 * until we find one with children or run out altogether */
864 do {
865 struct inode *inode;
868 * remove the dentry from the lru, and inform
869 * the fs that this dentry is about to be
870 * unhashed and destroyed.
872 dentry_lru_prune(dentry);
873 __d_shrink(dentry);
875 if (dentry->d_count != 0) {
876 printk(KERN_ERR
877 "BUG: Dentry %p{i=%lx,n=%s}"
878 " still in use (%d)"
879 " [unmount of %s %s]\n",
880 dentry,
881 dentry->d_inode ?
882 dentry->d_inode->i_ino : 0UL,
883 dentry->d_name.name,
884 dentry->d_count,
885 dentry->d_sb->s_type->name,
886 dentry->d_sb->s_id);
887 BUG();
890 if (IS_ROOT(dentry)) {
891 parent = NULL;
892 list_del(&dentry->d_child);
893 } else {
894 parent = dentry->d_parent;
895 parent->d_count--;
896 list_del(&dentry->d_child);
899 inode = dentry->d_inode;
900 if (inode) {
901 dentry->d_inode = NULL;
902 list_del_init(&dentry->d_u.d_alias);
903 if (dentry->d_op && dentry->d_op->d_iput)
904 dentry->d_op->d_iput(dentry, inode);
905 else
906 iput(inode);
909 d_free(dentry);
911 /* finished when we fall off the top of the tree,
912 * otherwise we ascend to the parent and move to the
913 * next sibling if there is one */
914 if (!parent)
915 return;
916 dentry = parent;
917 } while (list_empty(&dentry->d_subdirs));
919 dentry = list_entry(dentry->d_subdirs.next,
920 struct dentry, d_child);
925 * destroy the dentries attached to a superblock on unmounting
926 * - we don't need to use dentry->d_lock because:
927 * - the superblock is detached from all mountings and open files, so the
928 * dentry trees will not be rearranged by the VFS
929 * - s_umount is write-locked, so the memory pressure shrinker will ignore
930 * any dentries belonging to this superblock that it comes across
931 * - the filesystem itself is no longer permitted to rearrange the dentries
932 * in this superblock
934 void shrink_dcache_for_umount(struct super_block *sb)
936 struct dentry *dentry;
938 if (down_read_trylock(&sb->s_umount))
939 BUG();
941 dentry = sb->s_root;
942 sb->s_root = NULL;
943 dentry->d_count--;
944 shrink_dcache_for_umount_subtree(dentry);
946 while (!hlist_bl_empty(&sb->s_anon)) {
947 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
948 shrink_dcache_for_umount_subtree(dentry);
954 * Search for at least 1 mount point in the dentry's subdirs.
955 * We descend to the next level whenever the d_subdirs
956 * list is non-empty and continue searching.
960 * have_submounts - check for mounts over a dentry
961 * @parent: dentry to check.
963 * Return true if the parent or its subdirectories contain
964 * a mount point
966 int have_submounts(struct dentry *parent)
968 struct dentry *this_parent;
969 struct list_head *next;
970 unsigned seq;
971 int locked = 0;
973 seq = read_seqbegin(&rename_lock);
974 again:
975 this_parent = parent;
977 if (d_mountpoint(parent))
978 goto positive;
979 spin_lock(&this_parent->d_lock);
980 repeat:
981 next = this_parent->d_subdirs.next;
982 resume:
983 while (next != &this_parent->d_subdirs) {
984 struct list_head *tmp = next;
985 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
986 next = tmp->next;
988 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
989 /* Have we found a mount point ? */
990 if (d_mountpoint(dentry)) {
991 spin_unlock(&dentry->d_lock);
992 spin_unlock(&this_parent->d_lock);
993 goto positive;
995 if (!list_empty(&dentry->d_subdirs)) {
996 spin_unlock(&this_parent->d_lock);
997 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
998 this_parent = dentry;
999 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1000 goto repeat;
1002 spin_unlock(&dentry->d_lock);
1005 * All done at this level ... ascend and resume the search.
1007 rcu_read_lock();
1008 ascend:
1009 if (this_parent != parent) {
1010 struct dentry *child = this_parent;
1011 this_parent = child->d_parent;
1013 spin_unlock(&child->d_lock);
1014 spin_lock(&this_parent->d_lock);
1016 /* might go back up the wrong parent if we have had a rename */
1017 if (!locked && read_seqretry(&rename_lock, seq))
1018 goto rename_retry;
1019 /* go into the first sibling still alive */
1020 do {
1021 next = child->d_child.next;
1022 if (next == &this_parent->d_subdirs)
1023 goto ascend;
1024 child = list_entry(next, struct dentry, d_child);
1025 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1026 rcu_read_unlock();
1027 goto resume;
1029 if (!locked && read_seqretry(&rename_lock, seq))
1030 goto rename_retry;
1031 spin_unlock(&this_parent->d_lock);
1032 rcu_read_unlock();
1033 if (locked)
1034 write_sequnlock(&rename_lock);
1035 return 0; /* No mount points found in tree */
1036 positive:
1037 if (!locked && read_seqretry(&rename_lock, seq))
1038 goto rename_retry_unlocked;
1039 if (locked)
1040 write_sequnlock(&rename_lock);
1041 return 1;
1043 rename_retry:
1044 spin_unlock(&this_parent->d_lock);
1045 rcu_read_unlock();
1046 if (locked)
1047 goto again;
1048 rename_retry_unlocked:
1049 locked = 1;
1050 write_seqlock(&rename_lock);
1051 goto again;
1053 EXPORT_SYMBOL(have_submounts);
1056 * Search the dentry child list for the specified parent,
1057 * and move any unused dentries to the end of the unused
1058 * list for prune_dcache(). We descend to the next level
1059 * whenever the d_subdirs list is non-empty and continue
1060 * searching.
1062 * It returns zero iff there are no unused children,
1063 * otherwise it returns the number of children moved to
1064 * the end of the unused list. This may not be the total
1065 * number of unused children, because select_parent can
1066 * drop the lock and return early due to latency
1067 * constraints.
1069 static int select_parent(struct dentry *parent, struct list_head *dispose)
1071 struct dentry *this_parent;
1072 struct list_head *next;
1073 unsigned seq;
1074 int found = 0;
1075 int locked = 0;
1077 seq = read_seqbegin(&rename_lock);
1078 again:
1079 this_parent = parent;
1080 spin_lock(&this_parent->d_lock);
1081 repeat:
1082 next = this_parent->d_subdirs.next;
1083 resume:
1084 while (next != &this_parent->d_subdirs) {
1085 struct list_head *tmp = next;
1086 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1087 next = tmp->next;
1089 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1092 * move only zero ref count dentries to the dispose list.
1094 * Those which are presently on the shrink list, being processed
1095 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1096 * loop in shrink_dcache_parent() might not make any progress
1097 * and loop forever.
1099 if (dentry->d_count) {
1100 dentry_lru_del(dentry);
1101 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1102 dentry_lru_move_list(dentry, dispose);
1103 dentry->d_flags |= DCACHE_SHRINK_LIST;
1104 found++;
1107 * We can return to the caller if we have found some (this
1108 * ensures forward progress). We'll be coming back to find
1109 * the rest.
1111 if (found && need_resched()) {
1112 spin_unlock(&dentry->d_lock);
1113 rcu_read_lock();
1114 goto out;
1118 * Descend a level if the d_subdirs list is non-empty.
1120 if (!list_empty(&dentry->d_subdirs)) {
1121 spin_unlock(&this_parent->d_lock);
1122 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1123 this_parent = dentry;
1124 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1125 goto repeat;
1128 spin_unlock(&dentry->d_lock);
1131 * All done at this level ... ascend and resume the search.
1133 rcu_read_lock();
1134 ascend:
1135 if (this_parent != parent) {
1136 struct dentry *child = this_parent;
1137 this_parent = child->d_parent;
1139 spin_unlock(&child->d_lock);
1140 spin_lock(&this_parent->d_lock);
1142 /* might go back up the wrong parent if we have had a rename */
1143 if (!locked && read_seqretry(&rename_lock, seq))
1144 goto rename_retry;
1145 /* go into the first sibling still alive */
1146 do {
1147 next = child->d_child.next;
1148 if (next == &this_parent->d_subdirs)
1149 goto ascend;
1150 child = list_entry(next, struct dentry, d_child);
1151 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1152 rcu_read_unlock();
1153 goto resume;
1155 out:
1156 if (!locked && read_seqretry(&rename_lock, seq))
1157 goto rename_retry;
1158 spin_unlock(&this_parent->d_lock);
1159 rcu_read_unlock();
1160 if (locked)
1161 write_sequnlock(&rename_lock);
1162 return found;
1164 rename_retry:
1165 spin_unlock(&this_parent->d_lock);
1166 rcu_read_unlock();
1167 if (found)
1168 return found;
1169 if (locked)
1170 goto again;
1171 locked = 1;
1172 write_seqlock(&rename_lock);
1173 goto again;
1177 * shrink_dcache_parent - prune dcache
1178 * @parent: parent of entries to prune
1180 * Prune the dcache to remove unused children of the parent dentry.
1182 void shrink_dcache_parent(struct dentry * parent)
1184 LIST_HEAD(dispose);
1185 int found;
1187 while ((found = select_parent(parent, &dispose)) != 0) {
1188 shrink_dentry_list(&dispose);
1189 cond_resched();
1192 EXPORT_SYMBOL(shrink_dcache_parent);
1195 * __d_alloc - allocate a dcache entry
1196 * @sb: filesystem it will belong to
1197 * @name: qstr of the name
1199 * Allocates a dentry. It returns %NULL if there is insufficient memory
1200 * available. On a success the dentry is returned. The name passed in is
1201 * copied and the copy passed in may be reused after this call.
1204 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1206 struct dentry *dentry;
1207 char *dname;
1209 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1210 if (!dentry)
1211 return NULL;
1213 if (name->len > DNAME_INLINE_LEN-1) {
1214 dname = kmalloc(name->len + 1, GFP_KERNEL);
1215 if (!dname) {
1216 kmem_cache_free(dentry_cache, dentry);
1217 return NULL;
1219 } else {
1220 dname = dentry->d_iname;
1222 dentry->d_name.name = dname;
1224 dentry->d_name.len = name->len;
1225 dentry->d_name.hash = name->hash;
1226 memcpy(dname, name->name, name->len);
1227 dname[name->len] = 0;
1229 dentry->d_count = 1;
1230 dentry->d_flags = 0;
1231 spin_lock_init(&dentry->d_lock);
1232 seqcount_init(&dentry->d_seq);
1233 dentry->d_inode = NULL;
1234 dentry->d_parent = dentry;
1235 dentry->d_sb = sb;
1236 dentry->d_op = NULL;
1237 dentry->d_fsdata = NULL;
1238 INIT_HLIST_BL_NODE(&dentry->d_hash);
1239 INIT_LIST_HEAD(&dentry->d_lru);
1240 INIT_LIST_HEAD(&dentry->d_subdirs);
1241 INIT_LIST_HEAD(&dentry->d_u.d_alias);
1242 INIT_LIST_HEAD(&dentry->d_child);
1243 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1245 this_cpu_inc(nr_dentry);
1247 return dentry;
1251 * d_alloc - allocate a dcache entry
1252 * @parent: parent of entry to allocate
1253 * @name: qstr of the name
1255 * Allocates a dentry. It returns %NULL if there is insufficient memory
1256 * available. On a success the dentry is returned. The name passed in is
1257 * copied and the copy passed in may be reused after this call.
1259 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1261 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1262 if (!dentry)
1263 return NULL;
1264 dentry->d_flags |= DCACHE_RCUACCESS;
1265 spin_lock(&parent->d_lock);
1267 * don't need child lock because it is not subject
1268 * to concurrency here
1270 __dget_dlock(parent);
1271 dentry->d_parent = parent;
1272 list_add(&dentry->d_child, &parent->d_subdirs);
1273 spin_unlock(&parent->d_lock);
1275 return dentry;
1277 EXPORT_SYMBOL(d_alloc);
1279 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1281 struct dentry *dentry = __d_alloc(sb, name);
1282 if (dentry)
1283 dentry->d_flags |= DCACHE_DISCONNECTED;
1284 return dentry;
1286 EXPORT_SYMBOL(d_alloc_pseudo);
1288 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1290 struct qstr q;
1292 q.name = name;
1293 q.len = strlen(name);
1294 q.hash = full_name_hash(q.name, q.len);
1295 return d_alloc(parent, &q);
1297 EXPORT_SYMBOL(d_alloc_name);
1299 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1301 WARN_ON_ONCE(dentry->d_op);
1302 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1303 DCACHE_OP_COMPARE |
1304 DCACHE_OP_REVALIDATE |
1305 DCACHE_OP_DELETE ));
1306 dentry->d_op = op;
1307 if (!op)
1308 return;
1309 if (op->d_hash)
1310 dentry->d_flags |= DCACHE_OP_HASH;
1311 if (op->d_compare)
1312 dentry->d_flags |= DCACHE_OP_COMPARE;
1313 if (op->d_revalidate)
1314 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1315 if (op->d_delete)
1316 dentry->d_flags |= DCACHE_OP_DELETE;
1317 if (op->d_prune)
1318 dentry->d_flags |= DCACHE_OP_PRUNE;
1321 EXPORT_SYMBOL(d_set_d_op);
1323 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1325 spin_lock(&dentry->d_lock);
1326 if (inode) {
1327 if (unlikely(IS_AUTOMOUNT(inode)))
1328 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1329 list_add(&dentry->d_u.d_alias, &inode->i_dentry);
1331 dentry->d_inode = inode;
1332 dentry_rcuwalk_barrier(dentry);
1333 spin_unlock(&dentry->d_lock);
1334 fsnotify_d_instantiate(dentry, inode);
1338 * d_instantiate - fill in inode information for a dentry
1339 * @entry: dentry to complete
1340 * @inode: inode to attach to this dentry
1342 * Fill in inode information in the entry.
1344 * This turns negative dentries into productive full members
1345 * of society.
1347 * NOTE! This assumes that the inode count has been incremented
1348 * (or otherwise set) by the caller to indicate that it is now
1349 * in use by the dcache.
1352 void d_instantiate(struct dentry *entry, struct inode * inode)
1354 BUG_ON(!list_empty(&entry->d_u.d_alias));
1355 if (inode)
1356 spin_lock(&inode->i_lock);
1357 __d_instantiate(entry, inode);
1358 if (inode)
1359 spin_unlock(&inode->i_lock);
1360 security_d_instantiate(entry, inode);
1362 EXPORT_SYMBOL(d_instantiate);
1365 * d_instantiate_unique - instantiate a non-aliased dentry
1366 * @entry: dentry to instantiate
1367 * @inode: inode to attach to this dentry
1369 * Fill in inode information in the entry. On success, it returns NULL.
1370 * If an unhashed alias of "entry" already exists, then we return the
1371 * aliased dentry instead and drop one reference to inode.
1373 * Note that in order to avoid conflicts with rename() etc, the caller
1374 * had better be holding the parent directory semaphore.
1376 * This also assumes that the inode count has been incremented
1377 * (or otherwise set) by the caller to indicate that it is now
1378 * in use by the dcache.
1380 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1381 struct inode *inode)
1383 struct dentry *alias;
1384 int len = entry->d_name.len;
1385 const char *name = entry->d_name.name;
1386 unsigned int hash = entry->d_name.hash;
1388 if (!inode) {
1389 __d_instantiate(entry, NULL);
1390 return NULL;
1393 list_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1394 struct qstr *qstr = &alias->d_name;
1397 * Don't need alias->d_lock here, because aliases with
1398 * d_parent == entry->d_parent are not subject to name or
1399 * parent changes, because the parent inode i_mutex is held.
1401 if (qstr->hash != hash)
1402 continue;
1403 if (alias->d_parent != entry->d_parent)
1404 continue;
1405 if (dentry_cmp(qstr->name, qstr->len, name, len))
1406 continue;
1407 __dget(alias);
1408 return alias;
1411 __d_instantiate(entry, inode);
1412 return NULL;
1415 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1417 struct dentry *result;
1419 BUG_ON(!list_empty(&entry->d_u.d_alias));
1421 if (inode)
1422 spin_lock(&inode->i_lock);
1423 result = __d_instantiate_unique(entry, inode);
1424 if (inode)
1425 spin_unlock(&inode->i_lock);
1427 if (!result) {
1428 security_d_instantiate(entry, inode);
1429 return NULL;
1432 BUG_ON(!d_unhashed(result));
1433 iput(inode);
1434 return result;
1437 EXPORT_SYMBOL(d_instantiate_unique);
1440 * d_alloc_root - allocate root dentry
1441 * @root_inode: inode to allocate the root for
1443 * Allocate a root ("/") dentry for the inode given. The inode is
1444 * instantiated and returned. %NULL is returned if there is insufficient
1445 * memory or the inode passed is %NULL.
1448 struct dentry * d_alloc_root(struct inode * root_inode)
1450 struct dentry *res = NULL;
1452 if (root_inode) {
1453 static const struct qstr name = { .name = "/", .len = 1 };
1455 res = __d_alloc(root_inode->i_sb, &name);
1456 if (res)
1457 d_instantiate(res, root_inode);
1459 return res;
1461 EXPORT_SYMBOL(d_alloc_root);
1463 static struct dentry * __d_find_any_alias(struct inode *inode)
1465 struct dentry *alias;
1467 if (list_empty(&inode->i_dentry))
1468 return NULL;
1469 alias = list_first_entry(&inode->i_dentry, struct dentry, d_u.d_alias);
1470 __dget(alias);
1471 return alias;
1474 static struct dentry * d_find_any_alias(struct inode *inode)
1476 struct dentry *de;
1478 spin_lock(&inode->i_lock);
1479 de = __d_find_any_alias(inode);
1480 spin_unlock(&inode->i_lock);
1481 return de;
1486 * d_obtain_alias - find or allocate a dentry for a given inode
1487 * @inode: inode to allocate the dentry for
1489 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1490 * similar open by handle operations. The returned dentry may be anonymous,
1491 * or may have a full name (if the inode was already in the cache).
1493 * When called on a directory inode, we must ensure that the inode only ever
1494 * has one dentry. If a dentry is found, that is returned instead of
1495 * allocating a new one.
1497 * On successful return, the reference to the inode has been transferred
1498 * to the dentry. In case of an error the reference on the inode is released.
1499 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1500 * be passed in and will be the error will be propagate to the return value,
1501 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1503 struct dentry *d_obtain_alias(struct inode *inode)
1505 static const struct qstr anonstring = { .name = "/", .len = 1 };
1506 struct dentry *tmp;
1507 struct dentry *res;
1509 if (!inode)
1510 return ERR_PTR(-ESTALE);
1511 if (IS_ERR(inode))
1512 return ERR_CAST(inode);
1514 res = d_find_any_alias(inode);
1515 if (res)
1516 goto out_iput;
1518 tmp = __d_alloc(inode->i_sb, &anonstring);
1519 if (!tmp) {
1520 res = ERR_PTR(-ENOMEM);
1521 goto out_iput;
1524 spin_lock(&inode->i_lock);
1525 res = __d_find_any_alias(inode);
1526 if (res) {
1527 spin_unlock(&inode->i_lock);
1528 dput(tmp);
1529 goto out_iput;
1532 /* attach a disconnected dentry */
1533 spin_lock(&tmp->d_lock);
1534 tmp->d_inode = inode;
1535 tmp->d_flags |= DCACHE_DISCONNECTED;
1536 list_add(&tmp->d_u.d_alias, &inode->i_dentry);
1537 hlist_bl_lock(&tmp->d_sb->s_anon);
1538 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1539 hlist_bl_unlock(&tmp->d_sb->s_anon);
1540 spin_unlock(&tmp->d_lock);
1541 spin_unlock(&inode->i_lock);
1542 security_d_instantiate(tmp, inode);
1544 return tmp;
1546 out_iput:
1547 if (res && !IS_ERR(res))
1548 security_d_instantiate(res, inode);
1549 iput(inode);
1550 return res;
1552 EXPORT_SYMBOL(d_obtain_alias);
1555 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1556 * @inode: the inode which may have a disconnected dentry
1557 * @dentry: a negative dentry which we want to point to the inode.
1559 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1560 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1561 * and return it, else simply d_add the inode to the dentry and return NULL.
1563 * This is needed in the lookup routine of any filesystem that is exportable
1564 * (via knfsd) so that we can build dcache paths to directories effectively.
1566 * If a dentry was found and moved, then it is returned. Otherwise NULL
1567 * is returned. This matches the expected return value of ->lookup.
1570 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1572 struct dentry *new = NULL;
1574 if (IS_ERR(inode))
1575 return ERR_CAST(inode);
1577 if (inode && S_ISDIR(inode->i_mode)) {
1578 spin_lock(&inode->i_lock);
1579 new = __d_find_alias(inode, 1);
1580 if (new) {
1581 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1582 spin_unlock(&inode->i_lock);
1583 security_d_instantiate(new, inode);
1584 d_move(new, dentry);
1585 iput(inode);
1586 } else {
1587 /* already taking inode->i_lock, so d_add() by hand */
1588 __d_instantiate(dentry, inode);
1589 spin_unlock(&inode->i_lock);
1590 security_d_instantiate(dentry, inode);
1591 d_rehash(dentry);
1593 } else
1594 d_add(dentry, inode);
1595 return new;
1597 EXPORT_SYMBOL(d_splice_alias);
1600 * d_add_ci - lookup or allocate new dentry with case-exact name
1601 * @inode: the inode case-insensitive lookup has found
1602 * @dentry: the negative dentry that was passed to the parent's lookup func
1603 * @name: the case-exact name to be associated with the returned dentry
1605 * This is to avoid filling the dcache with case-insensitive names to the
1606 * same inode, only the actual correct case is stored in the dcache for
1607 * case-insensitive filesystems.
1609 * For a case-insensitive lookup match and if the the case-exact dentry
1610 * already exists in in the dcache, use it and return it.
1612 * If no entry exists with the exact case name, allocate new dentry with
1613 * the exact case, and return the spliced entry.
1615 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1616 struct qstr *name)
1618 int error;
1619 struct dentry *found;
1620 struct dentry *new;
1623 * First check if a dentry matching the name already exists,
1624 * if not go ahead and create it now.
1626 found = d_hash_and_lookup(dentry->d_parent, name);
1627 if (!found) {
1628 new = d_alloc(dentry->d_parent, name);
1629 if (!new) {
1630 error = -ENOMEM;
1631 goto err_out;
1634 found = d_splice_alias(inode, new);
1635 if (found) {
1636 dput(new);
1637 return found;
1639 return new;
1643 * If a matching dentry exists, and it's not negative use it.
1645 * Decrement the reference count to balance the iget() done
1646 * earlier on.
1648 if (found->d_inode) {
1649 if (unlikely(found->d_inode != inode)) {
1650 /* This can't happen because bad inodes are unhashed. */
1651 BUG_ON(!is_bad_inode(inode));
1652 BUG_ON(!is_bad_inode(found->d_inode));
1654 iput(inode);
1655 return found;
1659 * We are going to instantiate this dentry, unhash it and clear the
1660 * lookup flag so we can do that.
1662 if (unlikely(d_need_lookup(found)))
1663 d_clear_need_lookup(found);
1666 * Negative dentry: instantiate it unless the inode is a directory and
1667 * already has a dentry.
1669 new = d_splice_alias(inode, found);
1670 if (new) {
1671 dput(found);
1672 found = new;
1674 return found;
1676 err_out:
1677 iput(inode);
1678 return ERR_PTR(error);
1680 EXPORT_SYMBOL(d_add_ci);
1683 * __d_lookup_rcu - search for a dentry (racy, store-free)
1684 * @parent: parent dentry
1685 * @name: qstr of name we wish to find
1686 * @seq: returns d_seq value at the point where the dentry was found
1687 * @inode: returns dentry->d_inode when the inode was found valid.
1688 * Returns: dentry, or NULL
1690 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1691 * resolution (store-free path walking) design described in
1692 * Documentation/filesystems/path-lookup.txt.
1694 * This is not to be used outside core vfs.
1696 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1697 * held, and rcu_read_lock held. The returned dentry must not be stored into
1698 * without taking d_lock and checking d_seq sequence count against @seq
1699 * returned here.
1701 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1702 * function.
1704 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1705 * the returned dentry, so long as its parent's seqlock is checked after the
1706 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1707 * is formed, giving integrity down the path walk.
1709 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1710 unsigned *seq, struct inode **inode)
1712 unsigned int len = name->len;
1713 unsigned int hash = name->hash;
1714 const unsigned char *str = name->name;
1715 struct hlist_bl_head *b = d_hash(parent, hash);
1716 struct hlist_bl_node *node;
1717 struct dentry *dentry;
1720 * Note: There is significant duplication with __d_lookup_rcu which is
1721 * required to prevent single threaded performance regressions
1722 * especially on architectures where smp_rmb (in seqcounts) are costly.
1723 * Keep the two functions in sync.
1727 * The hash list is protected using RCU.
1729 * Carefully use d_seq when comparing a candidate dentry, to avoid
1730 * races with d_move().
1732 * It is possible that concurrent renames can mess up our list
1733 * walk here and result in missing our dentry, resulting in the
1734 * false-negative result. d_lookup() protects against concurrent
1735 * renames using rename_lock seqlock.
1737 * See Documentation/filesystems/path-lookup.txt for more details.
1739 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1740 struct inode *i;
1741 const char *tname;
1742 int tlen;
1744 if (dentry->d_name.hash != hash)
1745 continue;
1747 seqretry:
1748 *seq = read_seqcount_begin(&dentry->d_seq);
1749 if (dentry->d_parent != parent)
1750 continue;
1751 if (d_unhashed(dentry))
1752 continue;
1753 tlen = dentry->d_name.len;
1754 tname = dentry->d_name.name;
1755 i = dentry->d_inode;
1756 prefetch(tname);
1758 * This seqcount check is required to ensure name and
1759 * len are loaded atomically, so as not to walk off the
1760 * edge of memory when walking. If we could load this
1761 * atomically some other way, we could drop this check.
1763 if (read_seqcount_retry(&dentry->d_seq, *seq))
1764 goto seqretry;
1765 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1766 if (parent->d_op->d_compare(parent, *inode,
1767 dentry, i,
1768 tlen, tname, name))
1769 continue;
1770 } else {
1771 if (dentry_cmp(tname, tlen, str, len))
1772 continue;
1775 * No extra seqcount check is required after the name
1776 * compare. The caller must perform a seqcount check in
1777 * order to do anything useful with the returned dentry
1778 * anyway.
1780 *inode = i;
1781 return dentry;
1783 return NULL;
1787 * d_lookup - search for a dentry
1788 * @parent: parent dentry
1789 * @name: qstr of name we wish to find
1790 * Returns: dentry, or NULL
1792 * d_lookup searches the children of the parent dentry for the name in
1793 * question. If the dentry is found its reference count is incremented and the
1794 * dentry is returned. The caller must use dput to free the entry when it has
1795 * finished using it. %NULL is returned if the dentry does not exist.
1797 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1799 struct dentry *dentry;
1800 unsigned seq;
1802 do {
1803 seq = read_seqbegin(&rename_lock);
1804 dentry = __d_lookup(parent, name);
1805 if (dentry)
1806 break;
1807 } while (read_seqretry(&rename_lock, seq));
1808 return dentry;
1810 EXPORT_SYMBOL(d_lookup);
1813 * __d_lookup - search for a dentry (racy)
1814 * @parent: parent dentry
1815 * @name: qstr of name we wish to find
1816 * Returns: dentry, or NULL
1818 * __d_lookup is like d_lookup, however it may (rarely) return a
1819 * false-negative result due to unrelated rename activity.
1821 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1822 * however it must be used carefully, eg. with a following d_lookup in
1823 * the case of failure.
1825 * __d_lookup callers must be commented.
1827 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1829 unsigned int len = name->len;
1830 unsigned int hash = name->hash;
1831 const unsigned char *str = name->name;
1832 struct hlist_bl_head *b = d_hash(parent, hash);
1833 struct hlist_bl_node *node;
1834 struct dentry *found = NULL;
1835 struct dentry *dentry;
1838 * Note: There is significant duplication with __d_lookup_rcu which is
1839 * required to prevent single threaded performance regressions
1840 * especially on architectures where smp_rmb (in seqcounts) are costly.
1841 * Keep the two functions in sync.
1845 * The hash list is protected using RCU.
1847 * Take d_lock when comparing a candidate dentry, to avoid races
1848 * with d_move().
1850 * It is possible that concurrent renames can mess up our list
1851 * walk here and result in missing our dentry, resulting in the
1852 * false-negative result. d_lookup() protects against concurrent
1853 * renames using rename_lock seqlock.
1855 * See Documentation/filesystems/path-lookup.txt for more details.
1857 rcu_read_lock();
1859 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1860 const char *tname;
1861 int tlen;
1863 if (dentry->d_name.hash != hash)
1864 continue;
1866 spin_lock(&dentry->d_lock);
1867 if (dentry->d_parent != parent)
1868 goto next;
1869 if (d_unhashed(dentry))
1870 goto next;
1873 * It is safe to compare names since d_move() cannot
1874 * change the qstr (protected by d_lock).
1876 tlen = dentry->d_name.len;
1877 tname = dentry->d_name.name;
1878 if (parent->d_flags & DCACHE_OP_COMPARE) {
1879 if (parent->d_op->d_compare(parent, parent->d_inode,
1880 dentry, dentry->d_inode,
1881 tlen, tname, name))
1882 goto next;
1883 } else {
1884 if (dentry_cmp(tname, tlen, str, len))
1885 goto next;
1888 dentry->d_count++;
1889 found = dentry;
1890 spin_unlock(&dentry->d_lock);
1891 break;
1892 next:
1893 spin_unlock(&dentry->d_lock);
1895 rcu_read_unlock();
1897 return found;
1901 * d_hash_and_lookup - hash the qstr then search for a dentry
1902 * @dir: Directory to search in
1903 * @name: qstr of name we wish to find
1905 * On hash failure or on lookup failure NULL is returned.
1907 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1909 struct dentry *dentry = NULL;
1912 * Check for a fs-specific hash function. Note that we must
1913 * calculate the standard hash first, as the d_op->d_hash()
1914 * routine may choose to leave the hash value unchanged.
1916 name->hash = full_name_hash(name->name, name->len);
1917 if (dir->d_flags & DCACHE_OP_HASH) {
1918 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1919 goto out;
1921 dentry = d_lookup(dir, name);
1922 out:
1923 return dentry;
1927 * d_validate - verify dentry provided from insecure source (deprecated)
1928 * @dentry: The dentry alleged to be valid child of @dparent
1929 * @dparent: The parent dentry (known to be valid)
1931 * An insecure source has sent us a dentry, here we verify it and dget() it.
1932 * This is used by ncpfs in its readdir implementation.
1933 * Zero is returned in the dentry is invalid.
1935 * This function is slow for big directories, and deprecated, do not use it.
1937 int d_validate(struct dentry *dentry, struct dentry *dparent)
1939 struct dentry *child;
1941 spin_lock(&dparent->d_lock);
1942 list_for_each_entry(child, &dparent->d_subdirs, d_child) {
1943 if (dentry == child) {
1944 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1945 __dget_dlock(dentry);
1946 spin_unlock(&dentry->d_lock);
1947 spin_unlock(&dparent->d_lock);
1948 return 1;
1951 spin_unlock(&dparent->d_lock);
1953 return 0;
1955 EXPORT_SYMBOL(d_validate);
1958 * When a file is deleted, we have two options:
1959 * - turn this dentry into a negative dentry
1960 * - unhash this dentry and free it.
1962 * Usually, we want to just turn this into
1963 * a negative dentry, but if anybody else is
1964 * currently using the dentry or the inode
1965 * we can't do that and we fall back on removing
1966 * it from the hash queues and waiting for
1967 * it to be deleted later when it has no users
1971 * d_delete - delete a dentry
1972 * @dentry: The dentry to delete
1974 * Turn the dentry into a negative dentry if possible, otherwise
1975 * remove it from the hash queues so it can be deleted later
1978 void d_delete(struct dentry * dentry)
1980 struct inode *inode;
1981 int isdir = 0;
1983 * Are we the only user?
1985 again:
1986 spin_lock(&dentry->d_lock);
1987 inode = dentry->d_inode;
1988 isdir = S_ISDIR(inode->i_mode);
1989 if (dentry->d_count == 1) {
1990 if (inode && !spin_trylock(&inode->i_lock)) {
1991 spin_unlock(&dentry->d_lock);
1992 cpu_relax();
1993 goto again;
1995 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1996 dentry_unlink_inode(dentry);
1997 fsnotify_nameremove(dentry, isdir);
1998 return;
2001 if (!d_unhashed(dentry))
2002 __d_drop(dentry);
2004 spin_unlock(&dentry->d_lock);
2006 fsnotify_nameremove(dentry, isdir);
2008 EXPORT_SYMBOL(d_delete);
2010 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2012 BUG_ON(!d_unhashed(entry));
2013 hlist_bl_lock(b);
2014 hlist_bl_add_head_rcu(&entry->d_hash, b);
2015 hlist_bl_unlock(b);
2018 static void _d_rehash(struct dentry * entry)
2020 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2024 * d_rehash - add an entry back to the hash
2025 * @entry: dentry to add to the hash
2027 * Adds a dentry to the hash according to its name.
2030 void d_rehash(struct dentry * entry)
2032 spin_lock(&entry->d_lock);
2033 _d_rehash(entry);
2034 spin_unlock(&entry->d_lock);
2036 EXPORT_SYMBOL(d_rehash);
2039 * dentry_update_name_case - update case insensitive dentry with a new name
2040 * @dentry: dentry to be updated
2041 * @name: new name
2043 * Update a case insensitive dentry with new case of name.
2045 * dentry must have been returned by d_lookup with name @name. Old and new
2046 * name lengths must match (ie. no d_compare which allows mismatched name
2047 * lengths).
2049 * Parent inode i_mutex must be held over d_lookup and into this call (to
2050 * keep renames and concurrent inserts, and readdir(2) away).
2052 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2054 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2055 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2057 spin_lock(&dentry->d_lock);
2058 write_seqcount_begin(&dentry->d_seq);
2059 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2060 write_seqcount_end(&dentry->d_seq);
2061 spin_unlock(&dentry->d_lock);
2063 EXPORT_SYMBOL(dentry_update_name_case);
2065 static void switch_names(struct dentry *dentry, struct dentry *target)
2067 if (dname_external(target)) {
2068 if (dname_external(dentry)) {
2070 * Both external: swap the pointers
2072 swap(target->d_name.name, dentry->d_name.name);
2073 } else {
2075 * dentry:internal, target:external. Steal target's
2076 * storage and make target internal.
2078 memcpy(target->d_iname, dentry->d_name.name,
2079 dentry->d_name.len + 1);
2080 dentry->d_name.name = target->d_name.name;
2081 target->d_name.name = target->d_iname;
2083 } else {
2084 if (dname_external(dentry)) {
2086 * dentry:external, target:internal. Give dentry's
2087 * storage to target and make dentry internal
2089 memcpy(dentry->d_iname, target->d_name.name,
2090 target->d_name.len + 1);
2091 target->d_name.name = dentry->d_name.name;
2092 dentry->d_name.name = dentry->d_iname;
2093 } else {
2095 * Both are internal. Just copy target to dentry
2097 memcpy(dentry->d_iname, target->d_name.name,
2098 target->d_name.len + 1);
2099 dentry->d_name.len = target->d_name.len;
2100 return;
2103 swap(dentry->d_name.len, target->d_name.len);
2106 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2109 * XXXX: do we really need to take target->d_lock?
2111 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2112 spin_lock(&target->d_parent->d_lock);
2113 else {
2114 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2115 spin_lock(&dentry->d_parent->d_lock);
2116 spin_lock_nested(&target->d_parent->d_lock,
2117 DENTRY_D_LOCK_NESTED);
2118 } else {
2119 spin_lock(&target->d_parent->d_lock);
2120 spin_lock_nested(&dentry->d_parent->d_lock,
2121 DENTRY_D_LOCK_NESTED);
2124 if (target < dentry) {
2125 spin_lock_nested(&target->d_lock, 2);
2126 spin_lock_nested(&dentry->d_lock, 3);
2127 } else {
2128 spin_lock_nested(&dentry->d_lock, 2);
2129 spin_lock_nested(&target->d_lock, 3);
2133 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2134 struct dentry *target)
2136 if (target->d_parent != dentry->d_parent)
2137 spin_unlock(&dentry->d_parent->d_lock);
2138 if (target->d_parent != target)
2139 spin_unlock(&target->d_parent->d_lock);
2143 * When switching names, the actual string doesn't strictly have to
2144 * be preserved in the target - because we're dropping the target
2145 * anyway. As such, we can just do a simple memcpy() to copy over
2146 * the new name before we switch.
2148 * Note that we have to be a lot more careful about getting the hash
2149 * switched - we have to switch the hash value properly even if it
2150 * then no longer matches the actual (corrupted) string of the target.
2151 * The hash value has to match the hash queue that the dentry is on..
2154 * __d_move - move a dentry
2155 * @dentry: entry to move
2156 * @target: new dentry
2158 * Update the dcache to reflect the move of a file name. Negative
2159 * dcache entries should not be moved in this way. Caller must hold
2160 * rename_lock, the i_mutex of the source and target directories,
2161 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2163 static void __d_move(struct dentry * dentry, struct dentry * target)
2165 if (!dentry->d_inode)
2166 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2168 BUG_ON(d_ancestor(dentry, target));
2169 BUG_ON(d_ancestor(target, dentry));
2171 dentry_lock_for_move(dentry, target);
2173 write_seqcount_begin(&dentry->d_seq);
2174 write_seqcount_begin(&target->d_seq);
2176 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2179 * Move the dentry to the target hash queue. Don't bother checking
2180 * for the same hash queue because of how unlikely it is.
2182 __d_drop(dentry);
2183 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2185 /* Unhash the target: dput() will then get rid of it */
2186 __d_drop(target);
2188 list_del(&dentry->d_child);
2189 list_del(&target->d_child);
2191 /* Switch the names.. */
2192 switch_names(dentry, target);
2193 swap(dentry->d_name.hash, target->d_name.hash);
2195 /* ... and switch the parents */
2196 if (IS_ROOT(dentry)) {
2197 dentry->d_flags |= DCACHE_RCUACCESS;
2198 dentry->d_parent = target->d_parent;
2199 target->d_parent = target;
2200 INIT_LIST_HEAD(&target->d_child);
2201 } else {
2202 swap(dentry->d_parent, target->d_parent);
2204 /* And add them back to the (new) parent lists */
2205 list_add(&target->d_child, &target->d_parent->d_subdirs);
2208 list_add(&dentry->d_child, &dentry->d_parent->d_subdirs);
2210 write_seqcount_end(&target->d_seq);
2211 write_seqcount_end(&dentry->d_seq);
2213 dentry_unlock_parents_for_move(dentry, target);
2214 spin_unlock(&target->d_lock);
2215 fsnotify_d_move(dentry);
2216 spin_unlock(&dentry->d_lock);
2220 * d_move - move a dentry
2221 * @dentry: entry to move
2222 * @target: new dentry
2224 * Update the dcache to reflect the move of a file name. Negative
2225 * dcache entries should not be moved in this way. See the locking
2226 * requirements for __d_move.
2228 void d_move(struct dentry *dentry, struct dentry *target)
2230 write_seqlock(&rename_lock);
2231 __d_move(dentry, target);
2232 write_sequnlock(&rename_lock);
2234 EXPORT_SYMBOL(d_move);
2237 * d_ancestor - search for an ancestor
2238 * @p1: ancestor dentry
2239 * @p2: child dentry
2241 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2242 * an ancestor of p2, else NULL.
2244 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2246 struct dentry *p;
2248 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2249 if (p->d_parent == p1)
2250 return p;
2252 return NULL;
2256 * This helper attempts to cope with remotely renamed directories
2258 * It assumes that the caller is already holding
2259 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2261 * Note: If ever the locking in lock_rename() changes, then please
2262 * remember to update this too...
2264 static struct dentry *__d_unalias(struct inode *inode,
2265 struct dentry *dentry, struct dentry *alias)
2267 struct mutex *m1 = NULL, *m2 = NULL;
2268 struct dentry *ret;
2270 /* If alias and dentry share a parent, then no extra locks required */
2271 if (alias->d_parent == dentry->d_parent)
2272 goto out_unalias;
2274 /* See lock_rename() */
2275 ret = ERR_PTR(-EBUSY);
2276 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2277 goto out_err;
2278 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2279 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2280 goto out_err;
2281 m2 = &alias->d_parent->d_inode->i_mutex;
2282 out_unalias:
2283 __d_move(alias, dentry);
2284 ret = alias;
2285 out_err:
2286 spin_unlock(&inode->i_lock);
2287 if (m2)
2288 mutex_unlock(m2);
2289 if (m1)
2290 mutex_unlock(m1);
2291 return ret;
2295 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2296 * named dentry in place of the dentry to be replaced.
2297 * returns with anon->d_lock held!
2299 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2301 struct dentry *dparent, *aparent;
2303 dentry_lock_for_move(anon, dentry);
2305 write_seqcount_begin(&dentry->d_seq);
2306 write_seqcount_begin(&anon->d_seq);
2308 dparent = dentry->d_parent;
2309 aparent = anon->d_parent;
2311 switch_names(dentry, anon);
2312 swap(dentry->d_name.hash, anon->d_name.hash);
2314 dentry->d_flags |= DCACHE_RCUACCESS;
2315 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2316 list_del(&dentry->d_child);
2317 if (!IS_ROOT(dentry))
2318 list_add(&dentry->d_child, &dentry->d_parent->d_subdirs);
2319 else
2320 INIT_LIST_HEAD(&dentry->d_child);
2322 anon->d_parent = (dparent == dentry) ? anon : dparent;
2323 list_del(&anon->d_child);
2324 if (!IS_ROOT(anon))
2325 list_add(&anon->d_child, &anon->d_parent->d_subdirs);
2326 else
2327 INIT_LIST_HEAD(&anon->d_child);
2329 write_seqcount_end(&dentry->d_seq);
2330 write_seqcount_end(&anon->d_seq);
2332 dentry_unlock_parents_for_move(anon, dentry);
2333 spin_unlock(&dentry->d_lock);
2335 /* anon->d_lock still locked, returns locked */
2336 anon->d_flags &= ~DCACHE_DISCONNECTED;
2340 * d_materialise_unique - introduce an inode into the tree
2341 * @dentry: candidate dentry
2342 * @inode: inode to bind to the dentry, to which aliases may be attached
2344 * Introduces an dentry into the tree, substituting an extant disconnected
2345 * root directory alias in its place if there is one. Caller must hold the
2346 * i_mutex of the parent directory.
2348 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2350 struct dentry *actual;
2352 BUG_ON(!d_unhashed(dentry));
2354 if (!inode) {
2355 actual = dentry;
2356 __d_instantiate(dentry, NULL);
2357 d_rehash(actual);
2358 goto out_nolock;
2361 spin_lock(&inode->i_lock);
2363 if (S_ISDIR(inode->i_mode)) {
2364 struct dentry *alias;
2366 /* Does an aliased dentry already exist? */
2367 alias = __d_find_alias(inode, 0);
2368 if (alias) {
2369 actual = alias;
2370 write_seqlock(&rename_lock);
2372 if (d_ancestor(alias, dentry)) {
2373 /* Check for loops */
2374 actual = ERR_PTR(-ELOOP);
2375 spin_unlock(&inode->i_lock);
2376 } else if (IS_ROOT(alias)) {
2377 /* Is this an anonymous mountpoint that we
2378 * could splice into our tree? */
2379 __d_materialise_dentry(dentry, alias);
2380 write_sequnlock(&rename_lock);
2381 __d_drop(alias);
2382 goto found;
2383 } else {
2384 /* Nope, but we must(!) avoid directory
2385 * aliasing. This drops inode->i_lock */
2386 actual = __d_unalias(inode, dentry, alias);
2388 write_sequnlock(&rename_lock);
2389 if (IS_ERR(actual)) {
2390 if (PTR_ERR(actual) == -ELOOP)
2391 pr_warn_ratelimited(
2392 "VFS: Lookup of '%s' in %s %s"
2393 " would have caused loop\n",
2394 dentry->d_name.name,
2395 inode->i_sb->s_type->name,
2396 inode->i_sb->s_id);
2397 dput(alias);
2399 goto out_nolock;
2403 /* Add a unique reference */
2404 actual = __d_instantiate_unique(dentry, inode);
2405 if (!actual)
2406 actual = dentry;
2407 else
2408 BUG_ON(!d_unhashed(actual));
2410 spin_lock(&actual->d_lock);
2411 found:
2412 _d_rehash(actual);
2413 spin_unlock(&actual->d_lock);
2414 spin_unlock(&inode->i_lock);
2415 out_nolock:
2416 if (actual == dentry) {
2417 security_d_instantiate(dentry, inode);
2418 return NULL;
2421 iput(inode);
2422 return actual;
2424 EXPORT_SYMBOL_GPL(d_materialise_unique);
2426 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2428 *buflen -= namelen;
2429 if (*buflen < 0)
2430 return -ENAMETOOLONG;
2431 *buffer -= namelen;
2432 memcpy(*buffer, str, namelen);
2433 return 0;
2436 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2438 return prepend(buffer, buflen, name->name, name->len);
2442 * prepend_path - Prepend path string to a buffer
2443 * @path: the dentry/vfsmount to report
2444 * @root: root vfsmnt/dentry
2445 * @buffer: pointer to the end of the buffer
2446 * @buflen: pointer to buffer length
2448 * Caller holds the rename_lock.
2450 static int prepend_path(const struct path *path,
2451 const struct path *root,
2452 char **buffer, int *buflen)
2454 struct dentry *dentry = path->dentry;
2455 struct vfsmount *vfsmnt = path->mnt;
2456 char *orig_buffer = *buffer;
2457 int orig_len = *buflen;
2458 bool slash = false;
2459 int error = 0;
2461 while (dentry != root->dentry || vfsmnt != root->mnt) {
2462 struct dentry * parent;
2464 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2465 /* Escaped? */
2466 if (dentry != vfsmnt->mnt_root) {
2467 *buffer = orig_buffer;
2468 *buflen = orig_len;
2469 slash = false;
2470 error = 3;
2471 goto global_root;
2473 /* Global root? */
2474 if (vfsmnt->mnt_parent == vfsmnt) {
2475 goto global_root;
2477 dentry = vfsmnt->mnt_mountpoint;
2478 vfsmnt = vfsmnt->mnt_parent;
2479 continue;
2481 parent = dentry->d_parent;
2482 prefetch(parent);
2483 spin_lock(&dentry->d_lock);
2484 error = prepend_name(buffer, buflen, &dentry->d_name);
2485 spin_unlock(&dentry->d_lock);
2486 if (!error)
2487 error = prepend(buffer, buflen, "/", 1);
2488 if (error)
2489 break;
2491 slash = true;
2492 dentry = parent;
2495 if (!error && !slash)
2496 error = prepend(buffer, buflen, "/", 1);
2498 return error;
2500 global_root:
2502 * Filesystems needing to implement special "root names"
2503 * should do so with ->d_dname()
2505 if (IS_ROOT(dentry) &&
2506 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2507 WARN(1, "Root dentry has weird name <%.*s>\n",
2508 (int) dentry->d_name.len, dentry->d_name.name);
2510 if (!slash)
2511 error = prepend(buffer, buflen, "/", 1);
2512 if (!error)
2513 error = vfsmnt->mnt_ns ? 1 : 2;
2514 return error;
2518 * __d_path - return the path of a dentry
2519 * @path: the dentry/vfsmount to report
2520 * @root: root vfsmnt/dentry
2521 * @buf: buffer to return value in
2522 * @buflen: buffer length
2524 * Convert a dentry into an ASCII path name.
2526 * Returns a pointer into the buffer or an error code if the
2527 * path was too long.
2529 * "buflen" should be positive.
2531 * If the path is not reachable from the supplied root, return %NULL.
2533 char *__d_path(const struct path *path,
2534 const struct path *root,
2535 char *buf, int buflen)
2537 char *res = buf + buflen;
2538 int error;
2540 prepend(&res, &buflen, "\0", 1);
2541 br_read_lock(vfsmount_lock);
2542 write_seqlock(&rename_lock);
2543 error = prepend_path(path, root, &res, &buflen);
2544 write_sequnlock(&rename_lock);
2545 br_read_unlock(vfsmount_lock);
2547 if (error < 0)
2548 return ERR_PTR(error);
2549 if (error > 0)
2550 return NULL;
2551 return res;
2554 char *d_absolute_path(const struct path *path,
2555 char *buf, int buflen)
2557 struct path root = {};
2558 char *res = buf + buflen;
2559 int error;
2561 prepend(&res, &buflen, "\0", 1);
2562 br_read_lock(vfsmount_lock);
2563 write_seqlock(&rename_lock);
2564 error = prepend_path(path, &root, &res, &buflen);
2565 write_sequnlock(&rename_lock);
2566 br_read_unlock(vfsmount_lock);
2568 if (error > 1)
2569 error = -EINVAL;
2570 if (error < 0)
2571 return ERR_PTR(error);
2572 return res;
2576 * same as __d_path but appends "(deleted)" for unlinked files.
2578 static int path_with_deleted(const struct path *path,
2579 const struct path *root,
2580 char **buf, int *buflen)
2582 prepend(buf, buflen, "\0", 1);
2583 if (d_unlinked(path->dentry)) {
2584 int error = prepend(buf, buflen, " (deleted)", 10);
2585 if (error)
2586 return error;
2589 return prepend_path(path, root, buf, buflen);
2592 static int prepend_unreachable(char **buffer, int *buflen)
2594 return prepend(buffer, buflen, "(unreachable)", 13);
2598 * d_path - return the path of a dentry
2599 * @path: path to report
2600 * @buf: buffer to return value in
2601 * @buflen: buffer length
2603 * Convert a dentry into an ASCII path name. If the entry has been deleted
2604 * the string " (deleted)" is appended. Note that this is ambiguous.
2606 * Returns a pointer into the buffer or an error code if the path was
2607 * too long. Note: Callers should use the returned pointer, not the passed
2608 * in buffer, to use the name! The implementation often starts at an offset
2609 * into the buffer, and may leave 0 bytes at the start.
2611 * "buflen" should be positive.
2613 char *d_path(const struct path *path, char *buf, int buflen)
2615 char *res = buf + buflen;
2616 struct path root;
2617 int error;
2620 * We have various synthetic filesystems that never get mounted. On
2621 * these filesystems dentries are never used for lookup purposes, and
2622 * thus don't need to be hashed. They also don't need a name until a
2623 * user wants to identify the object in /proc/pid/fd/. The little hack
2624 * below allows us to generate a name for these objects on demand:
2626 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2627 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2629 get_fs_root(current->fs, &root);
2630 br_read_lock(vfsmount_lock);
2631 write_seqlock(&rename_lock);
2632 error = path_with_deleted(path, &root, &res, &buflen);
2633 write_sequnlock(&rename_lock);
2634 br_read_unlock(vfsmount_lock);
2635 if (error < 0)
2636 res = ERR_PTR(error);
2637 path_put(&root);
2638 return res;
2640 EXPORT_SYMBOL(d_path);
2643 * d_path_with_unreachable - return the path of a dentry
2644 * @path: path to report
2645 * @buf: buffer to return value in
2646 * @buflen: buffer length
2648 * The difference from d_path() is that this prepends "(unreachable)"
2649 * to paths which are unreachable from the current process' root.
2651 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2653 char *res = buf + buflen;
2654 struct path root;
2655 int error;
2657 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2658 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2660 get_fs_root(current->fs, &root);
2661 write_seqlock(&rename_lock);
2662 error = path_with_deleted(path, &root, &res, &buflen);
2663 if (error > 0)
2664 error = prepend_unreachable(&res, &buflen);
2665 write_sequnlock(&rename_lock);
2666 path_put(&root);
2667 if (error)
2668 res = ERR_PTR(error);
2670 return res;
2674 * Helper function for dentry_operations.d_dname() members
2676 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2677 const char *fmt, ...)
2679 va_list args;
2680 char temp[64];
2681 int sz;
2683 va_start(args, fmt);
2684 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2685 va_end(args);
2687 if (sz > sizeof(temp) || sz > buflen)
2688 return ERR_PTR(-ENAMETOOLONG);
2690 buffer += buflen - sz;
2691 return memcpy(buffer, temp, sz);
2695 * Write full pathname from the root of the filesystem into the buffer.
2697 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2699 char *end = buf + buflen;
2700 char *retval;
2702 prepend(&end, &buflen, "\0", 1);
2703 if (buflen < 1)
2704 goto Elong;
2705 /* Get '/' right */
2706 retval = end-1;
2707 *retval = '/';
2709 while (!IS_ROOT(dentry)) {
2710 struct dentry *parent = dentry->d_parent;
2711 int error;
2713 prefetch(parent);
2714 spin_lock(&dentry->d_lock);
2715 error = prepend_name(&end, &buflen, &dentry->d_name);
2716 spin_unlock(&dentry->d_lock);
2717 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2718 goto Elong;
2720 retval = end;
2721 dentry = parent;
2723 return retval;
2724 Elong:
2725 return ERR_PTR(-ENAMETOOLONG);
2728 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2730 char *retval;
2732 write_seqlock(&rename_lock);
2733 retval = __dentry_path(dentry, buf, buflen);
2734 write_sequnlock(&rename_lock);
2736 return retval;
2738 EXPORT_SYMBOL(dentry_path_raw);
2740 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2742 char *p = NULL;
2743 char *retval;
2745 write_seqlock(&rename_lock);
2746 if (d_unlinked(dentry)) {
2747 p = buf + buflen;
2748 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2749 goto Elong;
2750 buflen++;
2752 retval = __dentry_path(dentry, buf, buflen);
2753 write_sequnlock(&rename_lock);
2754 if (!IS_ERR(retval) && p)
2755 *p = '/'; /* restore '/' overriden with '\0' */
2756 return retval;
2757 Elong:
2758 return ERR_PTR(-ENAMETOOLONG);
2762 * NOTE! The user-level library version returns a
2763 * character pointer. The kernel system call just
2764 * returns the length of the buffer filled (which
2765 * includes the ending '\0' character), or a negative
2766 * error value. So libc would do something like
2768 * char *getcwd(char * buf, size_t size)
2770 * int retval;
2772 * retval = sys_getcwd(buf, size);
2773 * if (retval >= 0)
2774 * return buf;
2775 * errno = -retval;
2776 * return NULL;
2779 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2781 int error;
2782 struct path pwd, root;
2783 char *page = (char *) __get_free_page(GFP_USER);
2785 if (!page)
2786 return -ENOMEM;
2788 get_fs_root_and_pwd(current->fs, &root, &pwd);
2790 error = -ENOENT;
2791 br_read_lock(vfsmount_lock);
2792 write_seqlock(&rename_lock);
2793 if (!d_unlinked(pwd.dentry)) {
2794 unsigned long len;
2795 char *cwd = page + PAGE_SIZE;
2796 int buflen = PAGE_SIZE;
2798 prepend(&cwd, &buflen, "\0", 1);
2799 error = prepend_path(&pwd, &root, &cwd, &buflen);
2800 write_sequnlock(&rename_lock);
2801 br_read_unlock(vfsmount_lock);
2803 if (error < 0)
2804 goto out;
2806 /* Unreachable from current root */
2807 if (error > 0) {
2808 error = prepend_unreachable(&cwd, &buflen);
2809 if (error)
2810 goto out;
2813 error = -ERANGE;
2814 len = PAGE_SIZE + page - cwd;
2815 if (len <= size) {
2816 error = len;
2817 if (copy_to_user(buf, cwd, len))
2818 error = -EFAULT;
2820 } else {
2821 write_sequnlock(&rename_lock);
2822 br_read_unlock(vfsmount_lock);
2825 out:
2826 path_put(&pwd);
2827 path_put(&root);
2828 free_page((unsigned long) page);
2829 return error;
2833 * Test whether new_dentry is a subdirectory of old_dentry.
2835 * Trivially implemented using the dcache structure
2839 * is_subdir - is new dentry a subdirectory of old_dentry
2840 * @new_dentry: new dentry
2841 * @old_dentry: old dentry
2843 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2844 * Returns 0 otherwise.
2845 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2848 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2850 int result;
2851 unsigned seq;
2853 if (new_dentry == old_dentry)
2854 return 1;
2856 do {
2857 /* for restarting inner loop in case of seq retry */
2858 seq = read_seqbegin(&rename_lock);
2860 * Need rcu_readlock to protect against the d_parent trashing
2861 * due to d_move
2863 rcu_read_lock();
2864 if (d_ancestor(old_dentry, new_dentry))
2865 result = 1;
2866 else
2867 result = 0;
2868 rcu_read_unlock();
2869 } while (read_seqretry(&rename_lock, seq));
2871 return result;
2874 int path_is_under(struct path *path1, struct path *path2)
2876 struct vfsmount *mnt = path1->mnt;
2877 struct dentry *dentry = path1->dentry;
2878 int res;
2880 br_read_lock(vfsmount_lock);
2881 if (mnt != path2->mnt) {
2882 for (;;) {
2883 if (mnt->mnt_parent == mnt) {
2884 br_read_unlock(vfsmount_lock);
2885 return 0;
2887 if (mnt->mnt_parent == path2->mnt)
2888 break;
2889 mnt = mnt->mnt_parent;
2891 dentry = mnt->mnt_mountpoint;
2893 res = is_subdir(dentry, path2->dentry);
2894 br_read_unlock(vfsmount_lock);
2895 return res;
2897 EXPORT_SYMBOL(path_is_under);
2899 void d_genocide(struct dentry *root)
2901 struct dentry *this_parent;
2902 struct list_head *next;
2903 unsigned seq;
2904 int locked = 0;
2906 seq = read_seqbegin(&rename_lock);
2907 again:
2908 this_parent = root;
2909 spin_lock(&this_parent->d_lock);
2910 repeat:
2911 next = this_parent->d_subdirs.next;
2912 resume:
2913 while (next != &this_parent->d_subdirs) {
2914 struct list_head *tmp = next;
2915 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
2916 next = tmp->next;
2918 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2919 if (d_unhashed(dentry) || !dentry->d_inode) {
2920 spin_unlock(&dentry->d_lock);
2921 continue;
2923 if (!list_empty(&dentry->d_subdirs)) {
2924 spin_unlock(&this_parent->d_lock);
2925 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2926 this_parent = dentry;
2927 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2928 goto repeat;
2930 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2931 dentry->d_flags |= DCACHE_GENOCIDE;
2932 dentry->d_count--;
2934 spin_unlock(&dentry->d_lock);
2936 rcu_read_lock();
2937 ascend:
2938 if (this_parent != root) {
2939 struct dentry *child = this_parent;
2940 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2941 this_parent->d_flags |= DCACHE_GENOCIDE;
2942 this_parent->d_count--;
2944 this_parent = child->d_parent;
2946 spin_unlock(&child->d_lock);
2947 spin_lock(&this_parent->d_lock);
2949 /* might go back up the wrong parent if we have had a rename */
2950 if (!locked && read_seqretry(&rename_lock, seq))
2951 goto rename_retry;
2952 /* go into the first sibling still alive */
2953 do {
2954 next = child->d_child.next;
2955 if (next == &this_parent->d_subdirs)
2956 goto ascend;
2957 child = list_entry(next, struct dentry, d_child);
2958 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
2959 rcu_read_unlock();
2960 goto resume;
2962 if (!locked && read_seqretry(&rename_lock, seq))
2963 goto rename_retry;
2964 spin_unlock(&this_parent->d_lock);
2965 rcu_read_unlock();
2966 if (locked)
2967 write_sequnlock(&rename_lock);
2968 return;
2970 rename_retry:
2971 spin_unlock(&this_parent->d_lock);
2972 rcu_read_unlock();
2973 if (locked)
2974 goto again;
2975 locked = 1;
2976 write_seqlock(&rename_lock);
2977 goto again;
2981 * find_inode_number - check for dentry with name
2982 * @dir: directory to check
2983 * @name: Name to find.
2985 * Check whether a dentry already exists for the given name,
2986 * and return the inode number if it has an inode. Otherwise
2987 * 0 is returned.
2989 * This routine is used to post-process directory listings for
2990 * filesystems using synthetic inode numbers, and is necessary
2991 * to keep getcwd() working.
2994 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2996 struct dentry * dentry;
2997 ino_t ino = 0;
2999 dentry = d_hash_and_lookup(dir, name);
3000 if (dentry) {
3001 if (dentry->d_inode)
3002 ino = dentry->d_inode->i_ino;
3003 dput(dentry);
3005 return ino;
3007 EXPORT_SYMBOL(find_inode_number);
3009 static __initdata unsigned long dhash_entries;
3010 static int __init set_dhash_entries(char *str)
3012 if (!str)
3013 return 0;
3014 dhash_entries = simple_strtoul(str, &str, 0);
3015 return 1;
3017 __setup("dhash_entries=", set_dhash_entries);
3019 static void __init dcache_init_early(void)
3021 int loop;
3023 /* If hashes are distributed across NUMA nodes, defer
3024 * hash allocation until vmalloc space is available.
3026 if (hashdist)
3027 return;
3029 dentry_hashtable =
3030 alloc_large_system_hash("Dentry cache",
3031 sizeof(struct hlist_bl_head),
3032 dhash_entries,
3034 HASH_EARLY,
3035 &d_hash_shift,
3036 &d_hash_mask,
3039 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3040 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3043 static void __init dcache_init(void)
3045 int loop;
3048 * A constructor could be added for stable state like the lists,
3049 * but it is probably not worth it because of the cache nature
3050 * of the dcache.
3052 dentry_cache = KMEM_CACHE(dentry,
3053 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3055 /* Hash may have been set up in dcache_init_early */
3056 if (!hashdist)
3057 return;
3059 dentry_hashtable =
3060 alloc_large_system_hash("Dentry cache",
3061 sizeof(struct hlist_bl_head),
3062 dhash_entries,
3065 &d_hash_shift,
3066 &d_hash_mask,
3069 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3070 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3073 /* SLAB cache for __getname() consumers */
3074 struct kmem_cache *names_cachep __read_mostly;
3075 EXPORT_SYMBOL(names_cachep);
3077 EXPORT_SYMBOL(d_genocide);
3079 void __init vfs_caches_init_early(void)
3081 dcache_init_early();
3082 inode_init_early();
3085 void __init vfs_caches_init(unsigned long mempages)
3087 unsigned long reserve;
3089 /* Base hash sizes on available memory, with a reserve equal to
3090 150% of current kernel size */
3092 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3093 mempages -= reserve;
3095 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3096 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3098 dcache_init();
3099 inode_init();
3100 files_init(mempages);
3101 mnt_init();
3102 bdev_cache_init();
3103 chrdev_init();