2 * NXP LPC32XX NAND SLC driver
5 * Kevin Wells <kevin.wells@nxp.com>
6 * Roland Stigge <stigge@antcom.de>
8 * Copyright © 2011 NXP Semiconductors
9 * Copyright © 2012 Roland Stigge
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
22 #include <linux/slab.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/nand.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/clk.h>
29 #include <linux/err.h>
30 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmaengine.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/gpio.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mtd/lpc32xx_slc.h>
41 #define LPC32XX_MODNAME "lpc32xx-nand"
43 /**********************************************************************
44 * SLC NAND controller register offsets
45 **********************************************************************/
47 #define SLC_DATA(x) (x + 0x000)
48 #define SLC_ADDR(x) (x + 0x004)
49 #define SLC_CMD(x) (x + 0x008)
50 #define SLC_STOP(x) (x + 0x00C)
51 #define SLC_CTRL(x) (x + 0x010)
52 #define SLC_CFG(x) (x + 0x014)
53 #define SLC_STAT(x) (x + 0x018)
54 #define SLC_INT_STAT(x) (x + 0x01C)
55 #define SLC_IEN(x) (x + 0x020)
56 #define SLC_ISR(x) (x + 0x024)
57 #define SLC_ICR(x) (x + 0x028)
58 #define SLC_TAC(x) (x + 0x02C)
59 #define SLC_TC(x) (x + 0x030)
60 #define SLC_ECC(x) (x + 0x034)
61 #define SLC_DMA_DATA(x) (x + 0x038)
63 /**********************************************************************
64 * slc_ctrl register definitions
65 **********************************************************************/
66 #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
67 #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
68 #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
70 /**********************************************************************
71 * slc_cfg register definitions
72 **********************************************************************/
73 #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
74 #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
75 #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
76 #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
77 #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
78 #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
80 /**********************************************************************
81 * slc_stat register definitions
82 **********************************************************************/
83 #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
84 #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
85 #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
87 /**********************************************************************
88 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
89 **********************************************************************/
90 #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
91 #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
93 /**********************************************************************
94 * slc_tac register definitions
95 **********************************************************************/
96 /* Computation of clock cycles on basis of controller and device clock rates */
97 #define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
99 /* Clock setting for RDY write sample wait time in 2*n clocks */
100 #define SLCTAC_WDR(n) (((n) & 0xF) << 28)
101 /* Write pulse width in clock cycles, 1 to 16 clocks */
102 #define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24))
103 /* Write hold time of control and data signals, 1 to 16 clocks */
104 #define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20))
105 /* Write setup time of control and data signals, 1 to 16 clocks */
106 #define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16))
107 /* Clock setting for RDY read sample wait time in 2*n clocks */
108 #define SLCTAC_RDR(n) (((n) & 0xF) << 12)
109 /* Read pulse width in clock cycles, 1 to 16 clocks */
110 #define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8))
111 /* Read hold time of control and data signals, 1 to 16 clocks */
112 #define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4))
113 /* Read setup time of control and data signals, 1 to 16 clocks */
114 #define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0))
116 /**********************************************************************
117 * slc_ecc register definitions
118 **********************************************************************/
119 /* ECC line party fetch macro */
120 #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
121 #define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
124 * DMA requires storage space for the DMA local buffer and the hardware ECC
125 * storage area. The DMA local buffer is only used if DMA mapping fails
128 #define LPC32XX_DMA_DATA_SIZE 4096
129 #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
131 /* Number of bytes used for ECC stored in NAND per 256 bytes */
132 #define LPC32XX_SLC_DEV_ECC_BYTES 3
135 * If the NAND base clock frequency can't be fetched, this frequency will be
136 * used instead as the base. This rate is used to setup the timing registers
137 * used for NAND accesses.
139 #define LPC32XX_DEF_BUS_RATE 133250000
141 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
142 #define LPC32XX_DMA_TIMEOUT 100
145 * NAND ECC Layout for small page NAND devices
146 * Note: For large and huge page devices, the default layouts are used
148 static int lpc32xx_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
149 struct mtd_oob_region
*oobregion
)
154 oobregion
->length
= 6;
155 oobregion
->offset
= 10;
160 static int lpc32xx_ooblayout_free(struct mtd_info
*mtd
, int section
,
161 struct mtd_oob_region
*oobregion
)
167 oobregion
->offset
= 0;
168 oobregion
->length
= 4;
170 oobregion
->offset
= 6;
171 oobregion
->length
= 4;
177 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops
= {
178 .ecc
= lpc32xx_ooblayout_ecc
,
179 .free
= lpc32xx_ooblayout_free
,
182 static u8 bbt_pattern
[] = {'B', 'b', 't', '0' };
183 static u8 mirror_pattern
[] = {'1', 't', 'b', 'B' };
186 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
187 * Note: Large page devices used the default layout
189 static struct nand_bbt_descr bbt_smallpage_main_descr
= {
190 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
191 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
196 .pattern
= bbt_pattern
199 static struct nand_bbt_descr bbt_smallpage_mirror_descr
= {
200 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
201 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
206 .pattern
= mirror_pattern
210 * NAND platform configuration structure
212 struct lpc32xx_nand_cfg_slc
{
222 struct mtd_partition
*parts
;
226 struct lpc32xx_nand_host
{
227 struct nand_chip nand_chip
;
228 struct lpc32xx_slc_platform_data
*pdata
;
230 void __iomem
*io_base
;
231 struct lpc32xx_nand_cfg_slc
*ncfg
;
233 struct completion comp
;
234 struct dma_chan
*dma_chan
;
235 uint32_t dma_buf_len
;
236 struct dma_slave_config dma_slave_config
;
237 struct scatterlist sgl
;
240 * DMA and CPU addresses of ECC work area and data buffer
244 dma_addr_t io_base_dma
;
247 static void lpc32xx_nand_setup(struct lpc32xx_nand_host
*host
)
249 uint32_t clkrate
, tmp
;
251 /* Reset SLC controller */
252 writel(SLCCTRL_SW_RESET
, SLC_CTRL(host
->io_base
));
256 writel(0, SLC_CFG(host
->io_base
));
257 writel(0, SLC_IEN(host
->io_base
));
258 writel((SLCSTAT_INT_TC
| SLCSTAT_INT_RDY_EN
),
259 SLC_ICR(host
->io_base
));
261 /* Get base clock for SLC block */
262 clkrate
= clk_get_rate(host
->clk
);
264 clkrate
= LPC32XX_DEF_BUS_RATE
;
266 /* Compute clock setup values */
267 tmp
= SLCTAC_WDR(host
->ncfg
->wdr_clks
) |
268 SLCTAC_WWIDTH(clkrate
, host
->ncfg
->wwidth
) |
269 SLCTAC_WHOLD(clkrate
, host
->ncfg
->whold
) |
270 SLCTAC_WSETUP(clkrate
, host
->ncfg
->wsetup
) |
271 SLCTAC_RDR(host
->ncfg
->rdr_clks
) |
272 SLCTAC_RWIDTH(clkrate
, host
->ncfg
->rwidth
) |
273 SLCTAC_RHOLD(clkrate
, host
->ncfg
->rhold
) |
274 SLCTAC_RSETUP(clkrate
, host
->ncfg
->rsetup
);
275 writel(tmp
, SLC_TAC(host
->io_base
));
279 * Hardware specific access to control lines
281 static void lpc32xx_nand_cmd_ctrl(struct mtd_info
*mtd
, int cmd
,
285 struct nand_chip
*chip
= mtd_to_nand(mtd
);
286 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
288 /* Does CE state need to be changed? */
289 tmp
= readl(SLC_CFG(host
->io_base
));
291 tmp
|= SLCCFG_CE_LOW
;
293 tmp
&= ~SLCCFG_CE_LOW
;
294 writel(tmp
, SLC_CFG(host
->io_base
));
296 if (cmd
!= NAND_CMD_NONE
) {
298 writel(cmd
, SLC_CMD(host
->io_base
));
300 writel(cmd
, SLC_ADDR(host
->io_base
));
305 * Read the Device Ready pin
307 static int lpc32xx_nand_device_ready(struct mtd_info
*mtd
)
309 struct nand_chip
*chip
= mtd_to_nand(mtd
);
310 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
313 if ((readl(SLC_STAT(host
->io_base
)) & SLCSTAT_NAND_READY
) != 0)
320 * Enable NAND write protect
322 static void lpc32xx_wp_enable(struct lpc32xx_nand_host
*host
)
324 if (gpio_is_valid(host
->ncfg
->wp_gpio
))
325 gpio_set_value(host
->ncfg
->wp_gpio
, 0);
329 * Disable NAND write protect
331 static void lpc32xx_wp_disable(struct lpc32xx_nand_host
*host
)
333 if (gpio_is_valid(host
->ncfg
->wp_gpio
))
334 gpio_set_value(host
->ncfg
->wp_gpio
, 1);
338 * Prepares SLC for transfers with H/W ECC enabled
340 static void lpc32xx_nand_ecc_enable(struct mtd_info
*mtd
, int mode
)
342 /* Hardware ECC is enabled automatically in hardware as needed */
346 * Calculates the ECC for the data
348 static int lpc32xx_nand_ecc_calculate(struct mtd_info
*mtd
,
349 const unsigned char *buf
,
353 * ECC is calculated automatically in hardware during syndrome read
354 * and write operations, so it doesn't need to be calculated here.
360 * Read a single byte from NAND device
362 static uint8_t lpc32xx_nand_read_byte(struct mtd_info
*mtd
)
364 struct nand_chip
*chip
= mtd_to_nand(mtd
);
365 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
367 return (uint8_t)readl(SLC_DATA(host
->io_base
));
371 * Simple device read without ECC
373 static void lpc32xx_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
375 struct nand_chip
*chip
= mtd_to_nand(mtd
);
376 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
378 /* Direct device read with no ECC */
380 *buf
++ = (uint8_t)readl(SLC_DATA(host
->io_base
));
384 * Simple device write without ECC
386 static void lpc32xx_nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
388 struct nand_chip
*chip
= mtd_to_nand(mtd
);
389 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
391 /* Direct device write with no ECC */
393 writel((uint32_t)*buf
++, SLC_DATA(host
->io_base
));
397 * Read the OOB data from the device without ECC using FIFO method
399 static int lpc32xx_nand_read_oob_syndrome(struct mtd_info
*mtd
,
400 struct nand_chip
*chip
, int page
)
402 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
403 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
409 * Write the OOB data to the device without ECC using FIFO method
411 static int lpc32xx_nand_write_oob_syndrome(struct mtd_info
*mtd
,
412 struct nand_chip
*chip
, int page
)
416 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
417 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
419 /* Send command to program the OOB data */
420 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
422 status
= chip
->waitfunc(mtd
, chip
);
424 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
428 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
430 static void lpc32xx_slc_ecc_copy(uint8_t *spare
, const uint32_t *ecc
, int count
)
434 for (i
= 0; i
< (count
* 3); i
+= 3) {
435 uint32_t ce
= ecc
[i
/ 3];
436 ce
= ~(ce
<< 2) & 0xFFFFFF;
437 spare
[i
+ 2] = (uint8_t)(ce
& 0xFF);
439 spare
[i
+ 1] = (uint8_t)(ce
& 0xFF);
441 spare
[i
] = (uint8_t)(ce
& 0xFF);
445 static void lpc32xx_dma_complete_func(void *completion
)
447 complete(completion
);
450 static int lpc32xx_xmit_dma(struct mtd_info
*mtd
, dma_addr_t dma
,
451 void *mem
, int len
, enum dma_transfer_direction dir
)
453 struct nand_chip
*chip
= mtd_to_nand(mtd
);
454 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
455 struct dma_async_tx_descriptor
*desc
;
456 int flags
= DMA_CTRL_ACK
| DMA_PREP_INTERRUPT
;
459 host
->dma_slave_config
.direction
= dir
;
460 host
->dma_slave_config
.src_addr
= dma
;
461 host
->dma_slave_config
.dst_addr
= dma
;
462 host
->dma_slave_config
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
463 host
->dma_slave_config
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
464 host
->dma_slave_config
.src_maxburst
= 4;
465 host
->dma_slave_config
.dst_maxburst
= 4;
466 /* DMA controller does flow control: */
467 host
->dma_slave_config
.device_fc
= false;
468 if (dmaengine_slave_config(host
->dma_chan
, &host
->dma_slave_config
)) {
469 dev_err(mtd
->dev
.parent
, "Failed to setup DMA slave\n");
473 sg_init_one(&host
->sgl
, mem
, len
);
475 res
= dma_map_sg(host
->dma_chan
->device
->dev
, &host
->sgl
, 1,
478 dev_err(mtd
->dev
.parent
, "Failed to map sg list\n");
481 desc
= dmaengine_prep_slave_sg(host
->dma_chan
, &host
->sgl
, 1, dir
,
484 dev_err(mtd
->dev
.parent
, "Failed to prepare slave sg\n");
488 init_completion(&host
->comp
);
489 desc
->callback
= lpc32xx_dma_complete_func
;
490 desc
->callback_param
= &host
->comp
;
492 dmaengine_submit(desc
);
493 dma_async_issue_pending(host
->dma_chan
);
495 wait_for_completion_timeout(&host
->comp
, msecs_to_jiffies(1000));
497 dma_unmap_sg(host
->dma_chan
->device
->dev
, &host
->sgl
, 1,
502 dma_unmap_sg(host
->dma_chan
->device
->dev
, &host
->sgl
, 1,
508 * DMA read/write transfers with ECC support
510 static int lpc32xx_xfer(struct mtd_info
*mtd
, uint8_t *buf
, int eccsubpages
,
513 struct nand_chip
*chip
= mtd_to_nand(mtd
);
514 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
516 unsigned long timeout
;
518 enum dma_transfer_direction dir
=
519 read
? DMA_DEV_TO_MEM
: DMA_MEM_TO_DEV
;
523 if ((void *)buf
<= high_memory
) {
527 dma_buf
= host
->data_buf
;
530 memcpy(host
->data_buf
, buf
, mtd
->writesize
);
534 writel(readl(SLC_CFG(host
->io_base
)) |
535 SLCCFG_DMA_DIR
| SLCCFG_ECC_EN
| SLCCFG_DMA_ECC
|
536 SLCCFG_DMA_BURST
, SLC_CFG(host
->io_base
));
538 writel((readl(SLC_CFG(host
->io_base
)) |
539 SLCCFG_ECC_EN
| SLCCFG_DMA_ECC
| SLCCFG_DMA_BURST
) &
541 SLC_CFG(host
->io_base
));
544 /* Clear initial ECC */
545 writel(SLCCTRL_ECC_CLEAR
, SLC_CTRL(host
->io_base
));
547 /* Transfer size is data area only */
548 writel(mtd
->writesize
, SLC_TC(host
->io_base
));
550 /* Start transfer in the NAND controller */
551 writel(readl(SLC_CTRL(host
->io_base
)) | SLCCTRL_DMA_START
,
552 SLC_CTRL(host
->io_base
));
554 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
556 res
= lpc32xx_xmit_dma(mtd
, SLC_DMA_DATA(host
->io_base_dma
),
557 dma_buf
+ i
* chip
->ecc
.size
,
558 mtd
->writesize
/ chip
->ecc
.steps
, dir
);
562 /* Always _read_ ECC */
563 if (i
== chip
->ecc
.steps
- 1)
565 if (!read
) /* ECC availability delayed on write */
567 res
= lpc32xx_xmit_dma(mtd
, SLC_ECC(host
->io_base_dma
),
568 &host
->ecc_buf
[i
], 4, DMA_DEV_TO_MEM
);
574 * According to NXP, the DMA can be finished here, but the NAND
575 * controller may still have buffered data. After porting to using the
576 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
577 * appears to be always true, according to tests. Keeping the check for
578 * safety reasons for now.
580 if (readl(SLC_STAT(host
->io_base
)) & SLCSTAT_DMA_FIFO
) {
581 dev_warn(mtd
->dev
.parent
, "FIFO not empty!\n");
582 timeout
= jiffies
+ msecs_to_jiffies(LPC32XX_DMA_TIMEOUT
);
583 while ((readl(SLC_STAT(host
->io_base
)) & SLCSTAT_DMA_FIFO
) &&
584 time_before(jiffies
, timeout
))
586 if (!time_before(jiffies
, timeout
)) {
587 dev_err(mtd
->dev
.parent
, "FIFO held data too long\n");
592 /* Read last calculated ECC value */
595 host
->ecc_buf
[chip
->ecc
.steps
- 1] =
596 readl(SLC_ECC(host
->io_base
));
599 dmaengine_terminate_all(host
->dma_chan
);
601 if (readl(SLC_STAT(host
->io_base
)) & SLCSTAT_DMA_FIFO
||
602 readl(SLC_TC(host
->io_base
))) {
603 /* Something is left in the FIFO, something is wrong */
604 dev_err(mtd
->dev
.parent
, "DMA FIFO failure\n");
608 /* Stop DMA & HW ECC */
609 writel(readl(SLC_CTRL(host
->io_base
)) & ~SLCCTRL_DMA_START
,
610 SLC_CTRL(host
->io_base
));
611 writel(readl(SLC_CFG(host
->io_base
)) &
612 ~(SLCCFG_DMA_DIR
| SLCCFG_ECC_EN
| SLCCFG_DMA_ECC
|
613 SLCCFG_DMA_BURST
), SLC_CFG(host
->io_base
));
615 if (!dma_mapped
&& read
)
616 memcpy(buf
, host
->data_buf
, mtd
->writesize
);
622 * Read the data and OOB data from the device, use ECC correction with the
623 * data, disable ECC for the OOB data
625 static int lpc32xx_nand_read_page_syndrome(struct mtd_info
*mtd
,
626 struct nand_chip
*chip
, uint8_t *buf
,
627 int oob_required
, int page
)
629 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
630 struct mtd_oob_region oobregion
= { };
631 int stat
, i
, status
, error
;
632 uint8_t *oobecc
, tmpecc
[LPC32XX_ECC_SAVE_SIZE
];
634 /* Issue read command */
635 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
637 /* Read data and oob, calculate ECC */
638 status
= lpc32xx_xfer(mtd
, buf
, chip
->ecc
.steps
, 1);
641 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
643 /* Convert to stored ECC format */
644 lpc32xx_slc_ecc_copy(tmpecc
, (uint32_t *) host
->ecc_buf
, chip
->ecc
.steps
);
646 /* Pointer to ECC data retrieved from NAND spare area */
647 error
= mtd_ooblayout_ecc(mtd
, 0, &oobregion
);
651 oobecc
= chip
->oob_poi
+ oobregion
.offset
;
653 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
654 stat
= chip
->ecc
.correct(mtd
, buf
, oobecc
,
655 &tmpecc
[i
* chip
->ecc
.bytes
]);
657 mtd
->ecc_stats
.failed
++;
659 mtd
->ecc_stats
.corrected
+= stat
;
661 buf
+= chip
->ecc
.size
;
662 oobecc
+= chip
->ecc
.bytes
;
669 * Read the data and OOB data from the device, no ECC correction with the
672 static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info
*mtd
,
673 struct nand_chip
*chip
,
674 uint8_t *buf
, int oob_required
,
677 /* Issue read command */
678 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
680 /* Raw reads can just use the FIFO interface */
681 chip
->read_buf(mtd
, buf
, chip
->ecc
.size
* chip
->ecc
.steps
);
682 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
688 * Write the data and OOB data to the device, use ECC with the data,
689 * disable ECC for the OOB data
691 static int lpc32xx_nand_write_page_syndrome(struct mtd_info
*mtd
,
692 struct nand_chip
*chip
,
694 int oob_required
, int page
)
696 struct lpc32xx_nand_host
*host
= nand_get_controller_data(chip
);
697 struct mtd_oob_region oobregion
= { };
701 /* Write data, calculate ECC on outbound data */
702 error
= lpc32xx_xfer(mtd
, (uint8_t *)buf
, chip
->ecc
.steps
, 0);
707 * The calculated ECC needs some manual work done to it before
708 * committing it to NAND. Process the calculated ECC and place
709 * the resultant values directly into the OOB buffer. */
710 error
= mtd_ooblayout_ecc(mtd
, 0, &oobregion
);
714 pb
= chip
->oob_poi
+ oobregion
.offset
;
715 lpc32xx_slc_ecc_copy(pb
, (uint32_t *)host
->ecc_buf
, chip
->ecc
.steps
);
717 /* Write ECC data to device */
718 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
723 * Write the data and OOB data to the device, no ECC correction with the
726 static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info
*mtd
,
727 struct nand_chip
*chip
,
729 int oob_required
, int page
)
731 /* Raw writes can just use the FIFO interface */
732 chip
->write_buf(mtd
, buf
, chip
->ecc
.size
* chip
->ecc
.steps
);
733 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
737 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host
*host
)
739 struct mtd_info
*mtd
= nand_to_mtd(&host
->nand_chip
);
742 if (!host
->pdata
|| !host
->pdata
->dma_filter
) {
743 dev_err(mtd
->dev
.parent
, "no DMA platform data\n");
748 dma_cap_set(DMA_SLAVE
, mask
);
749 host
->dma_chan
= dma_request_channel(mask
, host
->pdata
->dma_filter
,
751 if (!host
->dma_chan
) {
752 dev_err(mtd
->dev
.parent
, "Failed to request DMA channel\n");
759 static struct lpc32xx_nand_cfg_slc
*lpc32xx_parse_dt(struct device
*dev
)
761 struct lpc32xx_nand_cfg_slc
*ncfg
;
762 struct device_node
*np
= dev
->of_node
;
764 ncfg
= devm_kzalloc(dev
, sizeof(*ncfg
), GFP_KERNEL
);
768 of_property_read_u32(np
, "nxp,wdr-clks", &ncfg
->wdr_clks
);
769 of_property_read_u32(np
, "nxp,wwidth", &ncfg
->wwidth
);
770 of_property_read_u32(np
, "nxp,whold", &ncfg
->whold
);
771 of_property_read_u32(np
, "nxp,wsetup", &ncfg
->wsetup
);
772 of_property_read_u32(np
, "nxp,rdr-clks", &ncfg
->rdr_clks
);
773 of_property_read_u32(np
, "nxp,rwidth", &ncfg
->rwidth
);
774 of_property_read_u32(np
, "nxp,rhold", &ncfg
->rhold
);
775 of_property_read_u32(np
, "nxp,rsetup", &ncfg
->rsetup
);
777 if (!ncfg
->wdr_clks
|| !ncfg
->wwidth
|| !ncfg
->whold
||
778 !ncfg
->wsetup
|| !ncfg
->rdr_clks
|| !ncfg
->rwidth
||
779 !ncfg
->rhold
|| !ncfg
->rsetup
) {
780 dev_err(dev
, "chip parameters not specified correctly\n");
784 ncfg
->wp_gpio
= of_get_named_gpio(np
, "gpios", 0);
790 * Probe for NAND controller
792 static int lpc32xx_nand_probe(struct platform_device
*pdev
)
794 struct lpc32xx_nand_host
*host
;
795 struct mtd_info
*mtd
;
796 struct nand_chip
*chip
;
800 rc
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
802 dev_err(&pdev
->dev
, "No memory resource found for device\n");
806 /* Allocate memory for the device structure (and zero it) */
807 host
= devm_kzalloc(&pdev
->dev
, sizeof(*host
), GFP_KERNEL
);
810 host
->io_base_dma
= rc
->start
;
812 host
->io_base
= devm_ioremap_resource(&pdev
->dev
, rc
);
813 if (IS_ERR(host
->io_base
))
814 return PTR_ERR(host
->io_base
);
816 if (pdev
->dev
.of_node
)
817 host
->ncfg
= lpc32xx_parse_dt(&pdev
->dev
);
820 "Missing or bad NAND config from device tree\n");
823 if (host
->ncfg
->wp_gpio
== -EPROBE_DEFER
)
824 return -EPROBE_DEFER
;
825 if (gpio_is_valid(host
->ncfg
->wp_gpio
) && devm_gpio_request(&pdev
->dev
,
826 host
->ncfg
->wp_gpio
, "NAND WP")) {
827 dev_err(&pdev
->dev
, "GPIO not available\n");
830 lpc32xx_wp_disable(host
);
832 host
->pdata
= dev_get_platdata(&pdev
->dev
);
834 chip
= &host
->nand_chip
;
835 mtd
= nand_to_mtd(chip
);
836 nand_set_controller_data(chip
, host
);
837 nand_set_flash_node(chip
, pdev
->dev
.of_node
);
838 mtd
->owner
= THIS_MODULE
;
839 mtd
->dev
.parent
= &pdev
->dev
;
842 host
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
843 if (IS_ERR(host
->clk
)) {
844 dev_err(&pdev
->dev
, "Clock failure\n");
848 clk_prepare_enable(host
->clk
);
850 /* Set NAND IO addresses and command/ready functions */
851 chip
->IO_ADDR_R
= SLC_DATA(host
->io_base
);
852 chip
->IO_ADDR_W
= SLC_DATA(host
->io_base
);
853 chip
->cmd_ctrl
= lpc32xx_nand_cmd_ctrl
;
854 chip
->dev_ready
= lpc32xx_nand_device_ready
;
855 chip
->chip_delay
= 20; /* 20us command delay time */
857 /* Init NAND controller */
858 lpc32xx_nand_setup(host
);
860 platform_set_drvdata(pdev
, host
);
862 /* NAND callbacks for LPC32xx SLC hardware */
863 chip
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
864 chip
->read_byte
= lpc32xx_nand_read_byte
;
865 chip
->read_buf
= lpc32xx_nand_read_buf
;
866 chip
->write_buf
= lpc32xx_nand_write_buf
;
867 chip
->ecc
.read_page_raw
= lpc32xx_nand_read_page_raw_syndrome
;
868 chip
->ecc
.read_page
= lpc32xx_nand_read_page_syndrome
;
869 chip
->ecc
.write_page_raw
= lpc32xx_nand_write_page_raw_syndrome
;
870 chip
->ecc
.write_page
= lpc32xx_nand_write_page_syndrome
;
871 chip
->ecc
.write_oob
= lpc32xx_nand_write_oob_syndrome
;
872 chip
->ecc
.read_oob
= lpc32xx_nand_read_oob_syndrome
;
873 chip
->ecc
.calculate
= lpc32xx_nand_ecc_calculate
;
874 chip
->ecc
.correct
= nand_correct_data
;
875 chip
->ecc
.strength
= 1;
876 chip
->ecc
.hwctl
= lpc32xx_nand_ecc_enable
;
879 * Allocate a large enough buffer for a single huge page plus
880 * extra space for the spare area and ECC storage area
882 host
->dma_buf_len
= LPC32XX_DMA_DATA_SIZE
+ LPC32XX_ECC_SAVE_SIZE
;
883 host
->data_buf
= devm_kzalloc(&pdev
->dev
, host
->dma_buf_len
,
885 if (host
->data_buf
== NULL
) {
890 res
= lpc32xx_nand_dma_setup(host
);
896 /* Find NAND device */
897 if (nand_scan_ident(mtd
, 1, NULL
)) {
902 /* OOB and ECC CPU and DMA work areas */
903 host
->ecc_buf
= (uint32_t *)(host
->data_buf
+ LPC32XX_DMA_DATA_SIZE
);
906 * Small page FLASH has a unique OOB layout, but large and huge
907 * page FLASH use the standard layout. Small page FLASH uses a
908 * custom BBT marker layout.
910 if (mtd
->writesize
<= 512)
911 mtd_set_ooblayout(mtd
, &lpc32xx_ooblayout_ops
);
913 /* These sizes remain the same regardless of page size */
914 chip
->ecc
.size
= 256;
915 chip
->ecc
.bytes
= LPC32XX_SLC_DEV_ECC_BYTES
;
916 chip
->ecc
.prepad
= chip
->ecc
.postpad
= 0;
919 * Use a custom BBT marker setup for small page FLASH that
920 * won't interfere with the ECC layout. Large and huge page
921 * FLASH use the standard layout.
923 if ((chip
->bbt_options
& NAND_BBT_USE_FLASH
) &&
924 mtd
->writesize
<= 512) {
925 chip
->bbt_td
= &bbt_smallpage_main_descr
;
926 chip
->bbt_md
= &bbt_smallpage_mirror_descr
;
930 * Fills out all the uninitialized function pointers with the defaults
932 if (nand_scan_tail(mtd
)) {
937 mtd
->name
= "nxp_lpc3220_slc";
938 res
= mtd_device_register(mtd
, host
->ncfg
->parts
,
939 host
->ncfg
->num_parts
);
946 dma_release_channel(host
->dma_chan
);
948 clk_disable_unprepare(host
->clk
);
950 lpc32xx_wp_enable(host
);
956 * Remove NAND device.
958 static int lpc32xx_nand_remove(struct platform_device
*pdev
)
961 struct lpc32xx_nand_host
*host
= platform_get_drvdata(pdev
);
962 struct mtd_info
*mtd
= nand_to_mtd(&host
->nand_chip
);
965 dma_release_channel(host
->dma_chan
);
968 tmp
= readl(SLC_CTRL(host
->io_base
));
969 tmp
&= ~SLCCFG_CE_LOW
;
970 writel(tmp
, SLC_CTRL(host
->io_base
));
972 clk_disable_unprepare(host
->clk
);
973 lpc32xx_wp_enable(host
);
979 static int lpc32xx_nand_resume(struct platform_device
*pdev
)
981 struct lpc32xx_nand_host
*host
= platform_get_drvdata(pdev
);
983 /* Re-enable NAND clock */
984 clk_prepare_enable(host
->clk
);
986 /* Fresh init of NAND controller */
987 lpc32xx_nand_setup(host
);
989 /* Disable write protect */
990 lpc32xx_wp_disable(host
);
995 static int lpc32xx_nand_suspend(struct platform_device
*pdev
, pm_message_t pm
)
998 struct lpc32xx_nand_host
*host
= platform_get_drvdata(pdev
);
1001 tmp
= readl(SLC_CTRL(host
->io_base
));
1002 tmp
&= ~SLCCFG_CE_LOW
;
1003 writel(tmp
, SLC_CTRL(host
->io_base
));
1005 /* Enable write protect for safety */
1006 lpc32xx_wp_enable(host
);
1009 clk_disable_unprepare(host
->clk
);
1015 #define lpc32xx_nand_resume NULL
1016 #define lpc32xx_nand_suspend NULL
1019 static const struct of_device_id lpc32xx_nand_match
[] = {
1020 { .compatible
= "nxp,lpc3220-slc" },
1023 MODULE_DEVICE_TABLE(of
, lpc32xx_nand_match
);
1025 static struct platform_driver lpc32xx_nand_driver
= {
1026 .probe
= lpc32xx_nand_probe
,
1027 .remove
= lpc32xx_nand_remove
,
1028 .resume
= lpc32xx_nand_resume
,
1029 .suspend
= lpc32xx_nand_suspend
,
1031 .name
= LPC32XX_MODNAME
,
1032 .of_match_table
= lpc32xx_nand_match
,
1036 module_platform_driver(lpc32xx_nand_driver
);
1038 MODULE_LICENSE("GPL");
1039 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1040 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1041 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");