mtd: nand: brcmnand: Check flash #WP pin status before nand erase/program
[linux/fpc-iii.git] / drivers / mtd / nand / mxc_nand.c
blobd7f724b24fd70afa37a049ec39df98a4fe510250
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
38 #include <asm/mach/flash.h>
39 #include <linux/platform_data/mtd-mxc_nand.h>
41 #define DRIVER_NAME "mxc_nand"
43 /* Addresses for NFC registers */
44 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
45 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
46 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
47 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
48 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
49 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
50 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
51 #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
52 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
53 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
54 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
55 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
56 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
57 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
58 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
59 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
60 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
61 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
62 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
63 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
64 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
65 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
67 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
68 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
69 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
70 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
71 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
72 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
73 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
74 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
75 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
76 #define NFC_V2_CONFIG1_FP_INT (1 << 11)
78 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
81 * Operation modes for the NFC. Valid for v1, v2 and v3
82 * type controllers.
84 #define NFC_CMD (1 << 0)
85 #define NFC_ADDR (1 << 1)
86 #define NFC_INPUT (1 << 2)
87 #define NFC_OUTPUT (1 << 3)
88 #define NFC_ID (1 << 4)
89 #define NFC_STATUS (1 << 5)
91 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
92 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
94 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
95 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
96 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
98 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
100 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
102 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
103 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
104 #define NFC_V3_WRPROT_LOCK (1 << 1)
105 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
106 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
108 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
110 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
111 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
112 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
113 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
114 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
115 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
116 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
117 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
118 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
119 #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
120 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
121 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
122 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
123 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
125 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
126 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
127 #define NFC_V3_CONFIG3_FW8 (1 << 3)
128 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
129 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
130 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
131 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
133 #define NFC_V3_IPC (host->regs_ip + 0x2C)
134 #define NFC_V3_IPC_CREQ (1 << 0)
135 #define NFC_V3_IPC_INT (1 << 31)
137 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
139 struct mxc_nand_host;
141 struct mxc_nand_devtype_data {
142 void (*preset)(struct mtd_info *);
143 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
144 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
145 void (*send_page)(struct mtd_info *, unsigned int);
146 void (*send_read_id)(struct mxc_nand_host *);
147 uint16_t (*get_dev_status)(struct mxc_nand_host *);
148 int (*check_int)(struct mxc_nand_host *);
149 void (*irq_control)(struct mxc_nand_host *, int);
150 u32 (*get_ecc_status)(struct mxc_nand_host *);
151 const struct mtd_ooblayout_ops *ooblayout;
152 void (*select_chip)(struct mtd_info *mtd, int chip);
153 int (*correct_data)(struct mtd_info *mtd, u_char *dat,
154 u_char *read_ecc, u_char *calc_ecc);
155 int (*setup_data_interface)(struct mtd_info *mtd,
156 const struct nand_data_interface *conf,
157 bool check_only);
160 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
161 * (CONFIG1:INT_MSK is set). To handle this the driver uses
162 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
164 int irqpending_quirk;
165 int needs_ip;
167 size_t regs_offset;
168 size_t spare0_offset;
169 size_t axi_offset;
171 int spare_len;
172 int eccbytes;
173 int eccsize;
174 int ppb_shift;
177 struct mxc_nand_host {
178 struct nand_chip nand;
179 struct device *dev;
181 void __iomem *spare0;
182 void __iomem *main_area0;
184 void __iomem *base;
185 void __iomem *regs;
186 void __iomem *regs_axi;
187 void __iomem *regs_ip;
188 int status_request;
189 struct clk *clk;
190 int clk_act;
191 int irq;
192 int eccsize;
193 int used_oobsize;
194 int active_cs;
196 struct completion op_completion;
198 uint8_t *data_buf;
199 unsigned int buf_start;
201 const struct mxc_nand_devtype_data *devtype_data;
202 struct mxc_nand_platform_data pdata;
205 static const char * const part_probes[] = {
206 "cmdlinepart", "RedBoot", "ofpart", NULL };
208 static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
210 int i;
211 u32 *t = trg;
212 const __iomem u32 *s = src;
214 for (i = 0; i < (size >> 2); i++)
215 *t++ = __raw_readl(s++);
218 static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size)
220 int i;
221 u16 *t = trg;
222 const __iomem u16 *s = src;
224 /* We assume that src (IO) is always 32bit aligned */
225 if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
226 memcpy32_fromio(trg, src, size);
227 return;
230 for (i = 0; i < (size >> 1); i++)
231 *t++ = __raw_readw(s++);
234 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
236 /* __iowrite32_copy use 32bit size values so divide by 4 */
237 __iowrite32_copy(trg, src, size / 4);
240 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
242 int i;
243 __iomem u16 *t = trg;
244 const u16 *s = src;
246 /* We assume that trg (IO) is always 32bit aligned */
247 if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
248 memcpy32_toio(trg, src, size);
249 return;
252 for (i = 0; i < (size >> 1); i++)
253 __raw_writew(*s++, t++);
256 static int check_int_v3(struct mxc_nand_host *host)
258 uint32_t tmp;
260 tmp = readl(NFC_V3_IPC);
261 if (!(tmp & NFC_V3_IPC_INT))
262 return 0;
264 tmp &= ~NFC_V3_IPC_INT;
265 writel(tmp, NFC_V3_IPC);
267 return 1;
270 static int check_int_v1_v2(struct mxc_nand_host *host)
272 uint32_t tmp;
274 tmp = readw(NFC_V1_V2_CONFIG2);
275 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
276 return 0;
278 if (!host->devtype_data->irqpending_quirk)
279 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
281 return 1;
284 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
286 uint16_t tmp;
288 tmp = readw(NFC_V1_V2_CONFIG1);
290 if (activate)
291 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
292 else
293 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
295 writew(tmp, NFC_V1_V2_CONFIG1);
298 static void irq_control_v3(struct mxc_nand_host *host, int activate)
300 uint32_t tmp;
302 tmp = readl(NFC_V3_CONFIG2);
304 if (activate)
305 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
306 else
307 tmp |= NFC_V3_CONFIG2_INT_MSK;
309 writel(tmp, NFC_V3_CONFIG2);
312 static void irq_control(struct mxc_nand_host *host, int activate)
314 if (host->devtype_data->irqpending_quirk) {
315 if (activate)
316 enable_irq(host->irq);
317 else
318 disable_irq_nosync(host->irq);
319 } else {
320 host->devtype_data->irq_control(host, activate);
324 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
326 return readw(NFC_V1_V2_ECC_STATUS_RESULT);
329 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
331 return readl(NFC_V1_V2_ECC_STATUS_RESULT);
334 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
336 return readl(NFC_V3_ECC_STATUS_RESULT);
339 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
341 struct mxc_nand_host *host = dev_id;
343 if (!host->devtype_data->check_int(host))
344 return IRQ_NONE;
346 irq_control(host, 0);
348 complete(&host->op_completion);
350 return IRQ_HANDLED;
353 /* This function polls the NANDFC to wait for the basic operation to
354 * complete by checking the INT bit of config2 register.
356 static int wait_op_done(struct mxc_nand_host *host, int useirq)
358 int ret = 0;
361 * If operation is already complete, don't bother to setup an irq or a
362 * loop.
364 if (host->devtype_data->check_int(host))
365 return 0;
367 if (useirq) {
368 unsigned long timeout;
370 reinit_completion(&host->op_completion);
372 irq_control(host, 1);
374 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
375 if (!timeout && !host->devtype_data->check_int(host)) {
376 dev_dbg(host->dev, "timeout waiting for irq\n");
377 ret = -ETIMEDOUT;
379 } else {
380 int max_retries = 8000;
381 int done;
383 do {
384 udelay(1);
386 done = host->devtype_data->check_int(host);
387 if (done)
388 break;
390 } while (--max_retries);
392 if (!done) {
393 dev_dbg(host->dev, "timeout polling for completion\n");
394 ret = -ETIMEDOUT;
398 WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
400 return ret;
403 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
405 /* fill command */
406 writel(cmd, NFC_V3_FLASH_CMD);
408 /* send out command */
409 writel(NFC_CMD, NFC_V3_LAUNCH);
411 /* Wait for operation to complete */
412 wait_op_done(host, useirq);
415 /* This function issues the specified command to the NAND device and
416 * waits for completion. */
417 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
419 pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
421 writew(cmd, NFC_V1_V2_FLASH_CMD);
422 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
424 if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
425 int max_retries = 100;
426 /* Reset completion is indicated by NFC_CONFIG2 */
427 /* being set to 0 */
428 while (max_retries-- > 0) {
429 if (readw(NFC_V1_V2_CONFIG2) == 0) {
430 break;
432 udelay(1);
434 if (max_retries < 0)
435 pr_debug("%s: RESET failed\n", __func__);
436 } else {
437 /* Wait for operation to complete */
438 wait_op_done(host, useirq);
442 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
444 /* fill address */
445 writel(addr, NFC_V3_FLASH_ADDR0);
447 /* send out address */
448 writel(NFC_ADDR, NFC_V3_LAUNCH);
450 wait_op_done(host, 0);
453 /* This function sends an address (or partial address) to the
454 * NAND device. The address is used to select the source/destination for
455 * a NAND command. */
456 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
458 pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
460 writew(addr, NFC_V1_V2_FLASH_ADDR);
461 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
463 /* Wait for operation to complete */
464 wait_op_done(host, islast);
467 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
469 struct nand_chip *nand_chip = mtd_to_nand(mtd);
470 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
471 uint32_t tmp;
473 tmp = readl(NFC_V3_CONFIG1);
474 tmp &= ~(7 << 4);
475 writel(tmp, NFC_V3_CONFIG1);
477 /* transfer data from NFC ram to nand */
478 writel(ops, NFC_V3_LAUNCH);
480 wait_op_done(host, false);
483 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
485 struct nand_chip *nand_chip = mtd_to_nand(mtd);
486 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
488 /* NANDFC buffer 0 is used for page read/write */
489 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
491 writew(ops, NFC_V1_V2_CONFIG2);
493 /* Wait for operation to complete */
494 wait_op_done(host, true);
497 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
499 struct nand_chip *nand_chip = mtd_to_nand(mtd);
500 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
501 int bufs, i;
503 if (mtd->writesize > 512)
504 bufs = 4;
505 else
506 bufs = 1;
508 for (i = 0; i < bufs; i++) {
510 /* NANDFC buffer 0 is used for page read/write */
511 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
513 writew(ops, NFC_V1_V2_CONFIG2);
515 /* Wait for operation to complete */
516 wait_op_done(host, true);
520 static void send_read_id_v3(struct mxc_nand_host *host)
522 /* Read ID into main buffer */
523 writel(NFC_ID, NFC_V3_LAUNCH);
525 wait_op_done(host, true);
527 memcpy32_fromio(host->data_buf, host->main_area0, 16);
530 /* Request the NANDFC to perform a read of the NAND device ID. */
531 static void send_read_id_v1_v2(struct mxc_nand_host *host)
533 /* NANDFC buffer 0 is used for device ID output */
534 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
536 writew(NFC_ID, NFC_V1_V2_CONFIG2);
538 /* Wait for operation to complete */
539 wait_op_done(host, true);
541 memcpy32_fromio(host->data_buf, host->main_area0, 16);
544 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
546 writew(NFC_STATUS, NFC_V3_LAUNCH);
547 wait_op_done(host, true);
549 return readl(NFC_V3_CONFIG1) >> 16;
552 /* This function requests the NANDFC to perform a read of the
553 * NAND device status and returns the current status. */
554 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
556 void __iomem *main_buf = host->main_area0;
557 uint32_t store;
558 uint16_t ret;
560 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
563 * The device status is stored in main_area0. To
564 * prevent corruption of the buffer save the value
565 * and restore it afterwards.
567 store = readl(main_buf);
569 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
570 wait_op_done(host, true);
572 ret = readw(main_buf);
574 writel(store, main_buf);
576 return ret;
579 /* This functions is used by upper layer to checks if device is ready */
580 static int mxc_nand_dev_ready(struct mtd_info *mtd)
583 * NFC handles R/B internally. Therefore, this function
584 * always returns status as ready.
586 return 1;
589 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
592 * If HW ECC is enabled, we turn it on during init. There is
593 * no need to enable again here.
597 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
598 u_char *read_ecc, u_char *calc_ecc)
600 struct nand_chip *nand_chip = mtd_to_nand(mtd);
601 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
604 * 1-Bit errors are automatically corrected in HW. No need for
605 * additional correction. 2-Bit errors cannot be corrected by
606 * HW ECC, so we need to return failure
608 uint16_t ecc_status = get_ecc_status_v1(host);
610 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
611 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
612 return -EBADMSG;
615 return 0;
618 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
619 u_char *read_ecc, u_char *calc_ecc)
621 struct nand_chip *nand_chip = mtd_to_nand(mtd);
622 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
623 u32 ecc_stat, err;
624 int no_subpages = 1;
625 int ret = 0;
626 u8 ecc_bit_mask, err_limit;
628 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
629 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
631 no_subpages = mtd->writesize >> 9;
633 ecc_stat = host->devtype_data->get_ecc_status(host);
635 do {
636 err = ecc_stat & ecc_bit_mask;
637 if (err > err_limit) {
638 printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
639 return -EBADMSG;
640 } else {
641 ret += err;
643 ecc_stat >>= 4;
644 } while (--no_subpages);
646 pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
648 return ret;
651 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
652 u_char *ecc_code)
654 return 0;
657 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
659 struct nand_chip *nand_chip = mtd_to_nand(mtd);
660 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
661 uint8_t ret;
663 /* Check for status request */
664 if (host->status_request)
665 return host->devtype_data->get_dev_status(host) & 0xFF;
667 if (nand_chip->options & NAND_BUSWIDTH_16) {
668 /* only take the lower byte of each word */
669 ret = *(uint16_t *)(host->data_buf + host->buf_start);
671 host->buf_start += 2;
672 } else {
673 ret = *(uint8_t *)(host->data_buf + host->buf_start);
674 host->buf_start++;
677 pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
678 return ret;
681 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
683 struct nand_chip *nand_chip = mtd_to_nand(mtd);
684 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
685 uint16_t ret;
687 ret = *(uint16_t *)(host->data_buf + host->buf_start);
688 host->buf_start += 2;
690 return ret;
693 /* Write data of length len to buffer buf. The data to be
694 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
695 * Operation by the NFC, the data is written to NAND Flash */
696 static void mxc_nand_write_buf(struct mtd_info *mtd,
697 const u_char *buf, int len)
699 struct nand_chip *nand_chip = mtd_to_nand(mtd);
700 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
701 u16 col = host->buf_start;
702 int n = mtd->oobsize + mtd->writesize - col;
704 n = min(n, len);
706 memcpy(host->data_buf + col, buf, n);
708 host->buf_start += n;
711 /* Read the data buffer from the NAND Flash. To read the data from NAND
712 * Flash first the data output cycle is initiated by the NFC, which copies
713 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
715 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
717 struct nand_chip *nand_chip = mtd_to_nand(mtd);
718 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
719 u16 col = host->buf_start;
720 int n = mtd->oobsize + mtd->writesize - col;
722 n = min(n, len);
724 memcpy(buf, host->data_buf + col, n);
726 host->buf_start += n;
729 /* This function is used by upper layer for select and
730 * deselect of the NAND chip */
731 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
733 struct nand_chip *nand_chip = mtd_to_nand(mtd);
734 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
736 if (chip == -1) {
737 /* Disable the NFC clock */
738 if (host->clk_act) {
739 clk_disable_unprepare(host->clk);
740 host->clk_act = 0;
742 return;
745 if (!host->clk_act) {
746 /* Enable the NFC clock */
747 clk_prepare_enable(host->clk);
748 host->clk_act = 1;
752 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
754 struct nand_chip *nand_chip = mtd_to_nand(mtd);
755 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
757 if (chip == -1) {
758 /* Disable the NFC clock */
759 if (host->clk_act) {
760 clk_disable_unprepare(host->clk);
761 host->clk_act = 0;
763 return;
766 if (!host->clk_act) {
767 /* Enable the NFC clock */
768 clk_prepare_enable(host->clk);
769 host->clk_act = 1;
772 host->active_cs = chip;
773 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
777 * The controller splits a page into data chunks of 512 bytes + partial oob.
778 * There are writesize / 512 such chunks, the size of the partial oob parts is
779 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
780 * contains additionally the byte lost by rounding (if any).
781 * This function handles the needed shuffling between host->data_buf (which
782 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
783 * spare) and the NFC buffer.
785 static void copy_spare(struct mtd_info *mtd, bool bfrom)
787 struct nand_chip *this = mtd_to_nand(mtd);
788 struct mxc_nand_host *host = nand_get_controller_data(this);
789 u16 i, oob_chunk_size;
790 u16 num_chunks = mtd->writesize / 512;
792 u8 *d = host->data_buf + mtd->writesize;
793 u8 __iomem *s = host->spare0;
794 u16 sparebuf_size = host->devtype_data->spare_len;
796 /* size of oob chunk for all but possibly the last one */
797 oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
799 if (bfrom) {
800 for (i = 0; i < num_chunks - 1; i++)
801 memcpy16_fromio(d + i * oob_chunk_size,
802 s + i * sparebuf_size,
803 oob_chunk_size);
805 /* the last chunk */
806 memcpy16_fromio(d + i * oob_chunk_size,
807 s + i * sparebuf_size,
808 host->used_oobsize - i * oob_chunk_size);
809 } else {
810 for (i = 0; i < num_chunks - 1; i++)
811 memcpy16_toio(&s[i * sparebuf_size],
812 &d[i * oob_chunk_size],
813 oob_chunk_size);
815 /* the last chunk */
816 memcpy16_toio(&s[i * sparebuf_size],
817 &d[i * oob_chunk_size],
818 host->used_oobsize - i * oob_chunk_size);
823 * MXC NANDFC can only perform full page+spare or spare-only read/write. When
824 * the upper layers perform a read/write buf operation, the saved column address
825 * is used to index into the full page. So usually this function is called with
826 * column == 0 (unless no column cycle is needed indicated by column == -1)
828 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
830 struct nand_chip *nand_chip = mtd_to_nand(mtd);
831 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
833 /* Write out column address, if necessary */
834 if (column != -1) {
835 host->devtype_data->send_addr(host, column & 0xff,
836 page_addr == -1);
837 if (mtd->writesize > 512)
838 /* another col addr cycle for 2k page */
839 host->devtype_data->send_addr(host,
840 (column >> 8) & 0xff,
841 false);
844 /* Write out page address, if necessary */
845 if (page_addr != -1) {
846 /* paddr_0 - p_addr_7 */
847 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
849 if (mtd->writesize > 512) {
850 if (mtd->size >= 0x10000000) {
851 /* paddr_8 - paddr_15 */
852 host->devtype_data->send_addr(host,
853 (page_addr >> 8) & 0xff,
854 false);
855 host->devtype_data->send_addr(host,
856 (page_addr >> 16) & 0xff,
857 true);
858 } else
859 /* paddr_8 - paddr_15 */
860 host->devtype_data->send_addr(host,
861 (page_addr >> 8) & 0xff, true);
862 } else {
863 /* One more address cycle for higher density devices */
864 if (mtd->size >= 0x4000000) {
865 /* paddr_8 - paddr_15 */
866 host->devtype_data->send_addr(host,
867 (page_addr >> 8) & 0xff,
868 false);
869 host->devtype_data->send_addr(host,
870 (page_addr >> 16) & 0xff,
871 true);
872 } else
873 /* paddr_8 - paddr_15 */
874 host->devtype_data->send_addr(host,
875 (page_addr >> 8) & 0xff, true);
880 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
881 struct mtd_oob_region *oobregion)
883 struct nand_chip *nand_chip = mtd_to_nand(mtd);
885 if (section >= nand_chip->ecc.steps)
886 return -ERANGE;
888 oobregion->offset = (section * 16) + 6;
889 oobregion->length = nand_chip->ecc.bytes;
891 return 0;
894 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
895 struct mtd_oob_region *oobregion)
897 struct nand_chip *nand_chip = mtd_to_nand(mtd);
899 if (section > nand_chip->ecc.steps)
900 return -ERANGE;
902 if (!section) {
903 if (mtd->writesize <= 512) {
904 oobregion->offset = 0;
905 oobregion->length = 5;
906 } else {
907 oobregion->offset = 2;
908 oobregion->length = 4;
910 } else {
911 oobregion->offset = ((section - 1) * 16) +
912 nand_chip->ecc.bytes + 6;
913 if (section < nand_chip->ecc.steps)
914 oobregion->length = (section * 16) + 6 -
915 oobregion->offset;
916 else
917 oobregion->length = mtd->oobsize - oobregion->offset;
920 return 0;
923 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
924 .ecc = mxc_v1_ooblayout_ecc,
925 .free = mxc_v1_ooblayout_free,
928 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
929 struct mtd_oob_region *oobregion)
931 struct nand_chip *nand_chip = mtd_to_nand(mtd);
932 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
934 if (section >= nand_chip->ecc.steps)
935 return -ERANGE;
937 oobregion->offset = (section * stepsize) + 7;
938 oobregion->length = nand_chip->ecc.bytes;
940 return 0;
943 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
944 struct mtd_oob_region *oobregion)
946 struct nand_chip *nand_chip = mtd_to_nand(mtd);
947 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
949 if (section >= nand_chip->ecc.steps)
950 return -ERANGE;
952 if (!section) {
953 if (mtd->writesize <= 512) {
954 oobregion->offset = 0;
955 oobregion->length = 5;
956 } else {
957 oobregion->offset = 2;
958 oobregion->length = 4;
960 } else {
961 oobregion->offset = section * stepsize;
962 oobregion->length = 7;
965 return 0;
968 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
969 .ecc = mxc_v2_ooblayout_ecc,
970 .free = mxc_v2_ooblayout_free,
974 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
975 * on how much oob the nand chip has. For 8bit ecc we need at least
976 * 26 bytes of oob data per 512 byte block.
978 static int get_eccsize(struct mtd_info *mtd)
980 int oobbytes_per_512 = 0;
982 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
984 if (oobbytes_per_512 < 26)
985 return 4;
986 else
987 return 8;
990 static void preset_v1(struct mtd_info *mtd)
992 struct nand_chip *nand_chip = mtd_to_nand(mtd);
993 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
994 uint16_t config1 = 0;
996 if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
997 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
999 if (!host->devtype_data->irqpending_quirk)
1000 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1002 host->eccsize = 1;
1004 writew(config1, NFC_V1_V2_CONFIG1);
1005 /* preset operation */
1007 /* Unlock the internal RAM Buffer */
1008 writew(0x2, NFC_V1_V2_CONFIG);
1010 /* Blocks to be unlocked */
1011 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1012 writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1014 /* Unlock Block Command for given address range */
1015 writew(0x4, NFC_V1_V2_WRPROT);
1018 static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd,
1019 const struct nand_data_interface *conf,
1020 bool check_only)
1022 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1023 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1024 int tRC_min_ns, tRC_ps, ret;
1025 unsigned long rate, rate_round;
1026 const struct nand_sdr_timings *timings;
1027 u16 config1;
1029 timings = nand_get_sdr_timings(conf);
1030 if (IS_ERR(timings))
1031 return -ENOTSUPP;
1033 config1 = readw(NFC_V1_V2_CONFIG1);
1035 tRC_min_ns = timings->tRC_min / 1000;
1036 rate = 1000000000 / tRC_min_ns;
1039 * For tRC < 30ns we have to use EDO mode. In this case the controller
1040 * does one access per clock cycle. Otherwise the controller does one
1041 * access in two clock cycles, thus we have to double the rate to the
1042 * controller.
1044 if (tRC_min_ns < 30) {
1045 rate_round = clk_round_rate(host->clk, rate);
1046 config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1047 tRC_ps = 1000000000 / (rate_round / 1000);
1048 } else {
1049 rate *= 2;
1050 rate_round = clk_round_rate(host->clk, rate);
1051 config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1052 tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1056 * The timing values compared against are from the i.MX25 Automotive
1057 * datasheet, Table 50. NFC Timing Parameters
1059 if (timings->tCLS_min > tRC_ps - 1000 ||
1060 timings->tCLH_min > tRC_ps - 2000 ||
1061 timings->tCS_min > tRC_ps - 1000 ||
1062 timings->tCH_min > tRC_ps - 2000 ||
1063 timings->tWP_min > tRC_ps - 1500 ||
1064 timings->tALS_min > tRC_ps ||
1065 timings->tALH_min > tRC_ps - 3000 ||
1066 timings->tDS_min > tRC_ps ||
1067 timings->tDH_min > tRC_ps - 5000 ||
1068 timings->tWC_min > 2 * tRC_ps ||
1069 timings->tWH_min > tRC_ps - 2500 ||
1070 timings->tRR_min > 6 * tRC_ps ||
1071 timings->tRP_min > 3 * tRC_ps / 2 ||
1072 timings->tRC_min > 2 * tRC_ps ||
1073 timings->tREH_min > (tRC_ps / 2) - 2500) {
1074 dev_dbg(host->dev, "Timing out of bounds\n");
1075 return -EINVAL;
1078 if (check_only)
1079 return 0;
1081 ret = clk_set_rate(host->clk, rate);
1082 if (ret)
1083 return ret;
1085 writew(config1, NFC_V1_V2_CONFIG1);
1087 dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1088 config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1089 "normal");
1091 return 0;
1094 static void preset_v2(struct mtd_info *mtd)
1096 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1097 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1098 uint16_t config1 = 0;
1100 config1 |= NFC_V2_CONFIG1_FP_INT;
1102 if (!host->devtype_data->irqpending_quirk)
1103 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1105 if (mtd->writesize) {
1106 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1108 if (nand_chip->ecc.mode == NAND_ECC_HW)
1109 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1111 host->eccsize = get_eccsize(mtd);
1112 if (host->eccsize == 4)
1113 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1115 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1116 } else {
1117 host->eccsize = 1;
1120 writew(config1, NFC_V1_V2_CONFIG1);
1121 /* preset operation */
1123 /* Unlock the internal RAM Buffer */
1124 writew(0x2, NFC_V1_V2_CONFIG);
1126 /* Blocks to be unlocked */
1127 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1128 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1129 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1130 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1131 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1132 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1133 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1134 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1136 /* Unlock Block Command for given address range */
1137 writew(0x4, NFC_V1_V2_WRPROT);
1140 static void preset_v3(struct mtd_info *mtd)
1142 struct nand_chip *chip = mtd_to_nand(mtd);
1143 struct mxc_nand_host *host = nand_get_controller_data(chip);
1144 uint32_t config2, config3;
1145 int i, addr_phases;
1147 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1148 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1150 /* Unlock the internal RAM Buffer */
1151 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1152 NFC_V3_WRPROT);
1154 /* Blocks to be unlocked */
1155 for (i = 0; i < NAND_MAX_CHIPS; i++)
1156 writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1158 writel(0, NFC_V3_IPC);
1160 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1161 NFC_V3_CONFIG2_2CMD_PHASES |
1162 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1163 NFC_V3_CONFIG2_ST_CMD(0x70) |
1164 NFC_V3_CONFIG2_INT_MSK |
1165 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1167 addr_phases = fls(chip->pagemask) >> 3;
1169 if (mtd->writesize == 2048) {
1170 config2 |= NFC_V3_CONFIG2_PS_2048;
1171 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1172 } else if (mtd->writesize == 4096) {
1173 config2 |= NFC_V3_CONFIG2_PS_4096;
1174 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1175 } else {
1176 config2 |= NFC_V3_CONFIG2_PS_512;
1177 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1180 if (mtd->writesize) {
1181 if (chip->ecc.mode == NAND_ECC_HW)
1182 config2 |= NFC_V3_CONFIG2_ECC_EN;
1184 config2 |= NFC_V3_CONFIG2_PPB(
1185 ffs(mtd->erasesize / mtd->writesize) - 6,
1186 host->devtype_data->ppb_shift);
1187 host->eccsize = get_eccsize(mtd);
1188 if (host->eccsize == 8)
1189 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1192 writel(config2, NFC_V3_CONFIG2);
1194 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1195 NFC_V3_CONFIG3_NO_SDMA |
1196 NFC_V3_CONFIG3_RBB_MODE |
1197 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1198 NFC_V3_CONFIG3_ADD_OP(0);
1200 if (!(chip->options & NAND_BUSWIDTH_16))
1201 config3 |= NFC_V3_CONFIG3_FW8;
1203 writel(config3, NFC_V3_CONFIG3);
1205 writel(0, NFC_V3_DELAY_LINE);
1208 /* Used by the upper layer to write command to NAND Flash for
1209 * different operations to be carried out on NAND Flash */
1210 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1211 int column, int page_addr)
1213 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1214 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1216 pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1217 command, column, page_addr);
1219 /* Reset command state information */
1220 host->status_request = false;
1222 /* Command pre-processing step */
1223 switch (command) {
1224 case NAND_CMD_RESET:
1225 host->devtype_data->preset(mtd);
1226 host->devtype_data->send_cmd(host, command, false);
1227 break;
1229 case NAND_CMD_STATUS:
1230 host->buf_start = 0;
1231 host->status_request = true;
1233 host->devtype_data->send_cmd(host, command, true);
1234 WARN_ONCE(column != -1 || page_addr != -1,
1235 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1236 command, column, page_addr);
1237 mxc_do_addr_cycle(mtd, column, page_addr);
1238 break;
1240 case NAND_CMD_READ0:
1241 case NAND_CMD_READOOB:
1242 if (command == NAND_CMD_READ0)
1243 host->buf_start = column;
1244 else
1245 host->buf_start = column + mtd->writesize;
1247 command = NAND_CMD_READ0; /* only READ0 is valid */
1249 host->devtype_data->send_cmd(host, command, false);
1250 WARN_ONCE(column < 0,
1251 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1252 command, column, page_addr);
1253 mxc_do_addr_cycle(mtd, 0, page_addr);
1255 if (mtd->writesize > 512)
1256 host->devtype_data->send_cmd(host,
1257 NAND_CMD_READSTART, true);
1259 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1261 memcpy32_fromio(host->data_buf, host->main_area0,
1262 mtd->writesize);
1263 copy_spare(mtd, true);
1264 break;
1266 case NAND_CMD_SEQIN:
1267 if (column >= mtd->writesize)
1268 /* call ourself to read a page */
1269 mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1271 host->buf_start = column;
1273 host->devtype_data->send_cmd(host, command, false);
1274 WARN_ONCE(column < -1,
1275 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1276 command, column, page_addr);
1277 mxc_do_addr_cycle(mtd, 0, page_addr);
1278 break;
1280 case NAND_CMD_PAGEPROG:
1281 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1282 copy_spare(mtd, false);
1283 host->devtype_data->send_page(mtd, NFC_INPUT);
1284 host->devtype_data->send_cmd(host, command, true);
1285 WARN_ONCE(column != -1 || page_addr != -1,
1286 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1287 command, column, page_addr);
1288 mxc_do_addr_cycle(mtd, column, page_addr);
1289 break;
1291 case NAND_CMD_READID:
1292 host->devtype_data->send_cmd(host, command, true);
1293 mxc_do_addr_cycle(mtd, column, page_addr);
1294 host->devtype_data->send_read_id(host);
1295 host->buf_start = 0;
1296 break;
1298 case NAND_CMD_ERASE1:
1299 case NAND_CMD_ERASE2:
1300 host->devtype_data->send_cmd(host, command, false);
1301 WARN_ONCE(column != -1,
1302 "Unexpected column value (cmd=%u, col=%d)\n",
1303 command, column);
1304 mxc_do_addr_cycle(mtd, column, page_addr);
1306 break;
1307 case NAND_CMD_PARAM:
1308 host->devtype_data->send_cmd(host, command, false);
1309 mxc_do_addr_cycle(mtd, column, page_addr);
1310 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1311 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1312 host->buf_start = 0;
1313 break;
1314 default:
1315 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1316 command);
1317 break;
1321 static int mxc_nand_onfi_set_features(struct mtd_info *mtd,
1322 struct nand_chip *chip, int addr,
1323 u8 *subfeature_param)
1325 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1326 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1327 int i;
1329 if (!chip->onfi_version ||
1330 !(le16_to_cpu(chip->onfi_params.opt_cmd)
1331 & ONFI_OPT_CMD_SET_GET_FEATURES))
1332 return -EINVAL;
1334 host->buf_start = 0;
1336 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1337 chip->write_byte(mtd, subfeature_param[i]);
1339 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1340 host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1341 mxc_do_addr_cycle(mtd, addr, -1);
1342 host->devtype_data->send_page(mtd, NFC_INPUT);
1344 return 0;
1347 static int mxc_nand_onfi_get_features(struct mtd_info *mtd,
1348 struct nand_chip *chip, int addr,
1349 u8 *subfeature_param)
1351 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1352 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1353 int i;
1355 if (!chip->onfi_version ||
1356 !(le16_to_cpu(chip->onfi_params.opt_cmd)
1357 & ONFI_OPT_CMD_SET_GET_FEATURES))
1358 return -EINVAL;
1360 host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1361 mxc_do_addr_cycle(mtd, addr, -1);
1362 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1363 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1364 host->buf_start = 0;
1366 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1367 *subfeature_param++ = chip->read_byte(mtd);
1369 return 0;
1373 * The generic flash bbt decriptors overlap with our ecc
1374 * hardware, so define some i.MX specific ones.
1376 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1377 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1379 static struct nand_bbt_descr bbt_main_descr = {
1380 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1381 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1382 .offs = 0,
1383 .len = 4,
1384 .veroffs = 4,
1385 .maxblocks = 4,
1386 .pattern = bbt_pattern,
1389 static struct nand_bbt_descr bbt_mirror_descr = {
1390 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1391 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1392 .offs = 0,
1393 .len = 4,
1394 .veroffs = 4,
1395 .maxblocks = 4,
1396 .pattern = mirror_pattern,
1399 /* v1 + irqpending_quirk: i.MX21 */
1400 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1401 .preset = preset_v1,
1402 .send_cmd = send_cmd_v1_v2,
1403 .send_addr = send_addr_v1_v2,
1404 .send_page = send_page_v1,
1405 .send_read_id = send_read_id_v1_v2,
1406 .get_dev_status = get_dev_status_v1_v2,
1407 .check_int = check_int_v1_v2,
1408 .irq_control = irq_control_v1_v2,
1409 .get_ecc_status = get_ecc_status_v1,
1410 .ooblayout = &mxc_v1_ooblayout_ops,
1411 .select_chip = mxc_nand_select_chip_v1_v3,
1412 .correct_data = mxc_nand_correct_data_v1,
1413 .irqpending_quirk = 1,
1414 .needs_ip = 0,
1415 .regs_offset = 0xe00,
1416 .spare0_offset = 0x800,
1417 .spare_len = 16,
1418 .eccbytes = 3,
1419 .eccsize = 1,
1422 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1423 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1424 .preset = preset_v1,
1425 .send_cmd = send_cmd_v1_v2,
1426 .send_addr = send_addr_v1_v2,
1427 .send_page = send_page_v1,
1428 .send_read_id = send_read_id_v1_v2,
1429 .get_dev_status = get_dev_status_v1_v2,
1430 .check_int = check_int_v1_v2,
1431 .irq_control = irq_control_v1_v2,
1432 .get_ecc_status = get_ecc_status_v1,
1433 .ooblayout = &mxc_v1_ooblayout_ops,
1434 .select_chip = mxc_nand_select_chip_v1_v3,
1435 .correct_data = mxc_nand_correct_data_v1,
1436 .irqpending_quirk = 0,
1437 .needs_ip = 0,
1438 .regs_offset = 0xe00,
1439 .spare0_offset = 0x800,
1440 .axi_offset = 0,
1441 .spare_len = 16,
1442 .eccbytes = 3,
1443 .eccsize = 1,
1446 /* v21: i.MX25, i.MX35 */
1447 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1448 .preset = preset_v2,
1449 .send_cmd = send_cmd_v1_v2,
1450 .send_addr = send_addr_v1_v2,
1451 .send_page = send_page_v2,
1452 .send_read_id = send_read_id_v1_v2,
1453 .get_dev_status = get_dev_status_v1_v2,
1454 .check_int = check_int_v1_v2,
1455 .irq_control = irq_control_v1_v2,
1456 .get_ecc_status = get_ecc_status_v2,
1457 .ooblayout = &mxc_v2_ooblayout_ops,
1458 .select_chip = mxc_nand_select_chip_v2,
1459 .correct_data = mxc_nand_correct_data_v2_v3,
1460 .setup_data_interface = mxc_nand_v2_setup_data_interface,
1461 .irqpending_quirk = 0,
1462 .needs_ip = 0,
1463 .regs_offset = 0x1e00,
1464 .spare0_offset = 0x1000,
1465 .axi_offset = 0,
1466 .spare_len = 64,
1467 .eccbytes = 9,
1468 .eccsize = 0,
1471 /* v3.2a: i.MX51 */
1472 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1473 .preset = preset_v3,
1474 .send_cmd = send_cmd_v3,
1475 .send_addr = send_addr_v3,
1476 .send_page = send_page_v3,
1477 .send_read_id = send_read_id_v3,
1478 .get_dev_status = get_dev_status_v3,
1479 .check_int = check_int_v3,
1480 .irq_control = irq_control_v3,
1481 .get_ecc_status = get_ecc_status_v3,
1482 .ooblayout = &mxc_v2_ooblayout_ops,
1483 .select_chip = mxc_nand_select_chip_v1_v3,
1484 .correct_data = mxc_nand_correct_data_v2_v3,
1485 .irqpending_quirk = 0,
1486 .needs_ip = 1,
1487 .regs_offset = 0,
1488 .spare0_offset = 0x1000,
1489 .axi_offset = 0x1e00,
1490 .spare_len = 64,
1491 .eccbytes = 0,
1492 .eccsize = 0,
1493 .ppb_shift = 7,
1496 /* v3.2b: i.MX53 */
1497 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1498 .preset = preset_v3,
1499 .send_cmd = send_cmd_v3,
1500 .send_addr = send_addr_v3,
1501 .send_page = send_page_v3,
1502 .send_read_id = send_read_id_v3,
1503 .get_dev_status = get_dev_status_v3,
1504 .check_int = check_int_v3,
1505 .irq_control = irq_control_v3,
1506 .get_ecc_status = get_ecc_status_v3,
1507 .ooblayout = &mxc_v2_ooblayout_ops,
1508 .select_chip = mxc_nand_select_chip_v1_v3,
1509 .correct_data = mxc_nand_correct_data_v2_v3,
1510 .irqpending_quirk = 0,
1511 .needs_ip = 1,
1512 .regs_offset = 0,
1513 .spare0_offset = 0x1000,
1514 .axi_offset = 0x1e00,
1515 .spare_len = 64,
1516 .eccbytes = 0,
1517 .eccsize = 0,
1518 .ppb_shift = 8,
1521 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1523 return host->devtype_data == &imx21_nand_devtype_data;
1526 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1528 return host->devtype_data == &imx27_nand_devtype_data;
1531 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1533 return host->devtype_data == &imx25_nand_devtype_data;
1536 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1538 return host->devtype_data == &imx51_nand_devtype_data;
1541 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1543 return host->devtype_data == &imx53_nand_devtype_data;
1546 static const struct platform_device_id mxcnd_devtype[] = {
1548 .name = "imx21-nand",
1549 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1550 }, {
1551 .name = "imx27-nand",
1552 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1553 }, {
1554 .name = "imx25-nand",
1555 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1556 }, {
1557 .name = "imx51-nand",
1558 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1559 }, {
1560 .name = "imx53-nand",
1561 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1562 }, {
1563 /* sentinel */
1566 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1568 #ifdef CONFIG_OF
1569 static const struct of_device_id mxcnd_dt_ids[] = {
1571 .compatible = "fsl,imx21-nand",
1572 .data = &imx21_nand_devtype_data,
1573 }, {
1574 .compatible = "fsl,imx27-nand",
1575 .data = &imx27_nand_devtype_data,
1576 }, {
1577 .compatible = "fsl,imx25-nand",
1578 .data = &imx25_nand_devtype_data,
1579 }, {
1580 .compatible = "fsl,imx51-nand",
1581 .data = &imx51_nand_devtype_data,
1582 }, {
1583 .compatible = "fsl,imx53-nand",
1584 .data = &imx53_nand_devtype_data,
1586 { /* sentinel */ }
1588 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1590 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1592 struct device_node *np = host->dev->of_node;
1593 const struct of_device_id *of_id =
1594 of_match_device(mxcnd_dt_ids, host->dev);
1596 if (!np)
1597 return 1;
1599 host->devtype_data = of_id->data;
1601 return 0;
1603 #else
1604 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1606 return 1;
1608 #endif
1610 static int mxcnd_probe(struct platform_device *pdev)
1612 struct nand_chip *this;
1613 struct mtd_info *mtd;
1614 struct mxc_nand_host *host;
1615 struct resource *res;
1616 int err = 0;
1618 /* Allocate memory for MTD device structure and private data */
1619 host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1620 GFP_KERNEL);
1621 if (!host)
1622 return -ENOMEM;
1624 /* allocate a temporary buffer for the nand_scan_ident() */
1625 host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1626 if (!host->data_buf)
1627 return -ENOMEM;
1629 host->dev = &pdev->dev;
1630 /* structures must be linked */
1631 this = &host->nand;
1632 mtd = nand_to_mtd(this);
1633 mtd->dev.parent = &pdev->dev;
1634 mtd->name = DRIVER_NAME;
1636 /* 50 us command delay time */
1637 this->chip_delay = 5;
1639 nand_set_controller_data(this, host);
1640 nand_set_flash_node(this, pdev->dev.of_node),
1641 this->dev_ready = mxc_nand_dev_ready;
1642 this->cmdfunc = mxc_nand_command;
1643 this->read_byte = mxc_nand_read_byte;
1644 this->read_word = mxc_nand_read_word;
1645 this->write_buf = mxc_nand_write_buf;
1646 this->read_buf = mxc_nand_read_buf;
1647 this->onfi_set_features = mxc_nand_onfi_set_features;
1648 this->onfi_get_features = mxc_nand_onfi_get_features;
1650 host->clk = devm_clk_get(&pdev->dev, NULL);
1651 if (IS_ERR(host->clk))
1652 return PTR_ERR(host->clk);
1654 err = mxcnd_probe_dt(host);
1655 if (err > 0) {
1656 struct mxc_nand_platform_data *pdata =
1657 dev_get_platdata(&pdev->dev);
1658 if (pdata) {
1659 host->pdata = *pdata;
1660 host->devtype_data = (struct mxc_nand_devtype_data *)
1661 pdev->id_entry->driver_data;
1662 } else {
1663 err = -ENODEV;
1666 if (err < 0)
1667 return err;
1669 this->setup_data_interface = host->devtype_data->setup_data_interface;
1671 if (host->devtype_data->needs_ip) {
1672 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1673 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1674 if (IS_ERR(host->regs_ip))
1675 return PTR_ERR(host->regs_ip);
1677 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1678 } else {
1679 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1682 host->base = devm_ioremap_resource(&pdev->dev, res);
1683 if (IS_ERR(host->base))
1684 return PTR_ERR(host->base);
1686 host->main_area0 = host->base;
1688 if (host->devtype_data->regs_offset)
1689 host->regs = host->base + host->devtype_data->regs_offset;
1690 host->spare0 = host->base + host->devtype_data->spare0_offset;
1691 if (host->devtype_data->axi_offset)
1692 host->regs_axi = host->base + host->devtype_data->axi_offset;
1694 this->ecc.bytes = host->devtype_data->eccbytes;
1695 host->eccsize = host->devtype_data->eccsize;
1697 this->select_chip = host->devtype_data->select_chip;
1698 this->ecc.size = 512;
1699 mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1701 if (host->pdata.hw_ecc) {
1702 this->ecc.mode = NAND_ECC_HW;
1703 } else {
1704 this->ecc.mode = NAND_ECC_SOFT;
1705 this->ecc.algo = NAND_ECC_HAMMING;
1708 /* NAND bus width determines access functions used by upper layer */
1709 if (host->pdata.width == 2)
1710 this->options |= NAND_BUSWIDTH_16;
1712 /* update flash based bbt */
1713 if (host->pdata.flash_bbt)
1714 this->bbt_options |= NAND_BBT_USE_FLASH;
1716 init_completion(&host->op_completion);
1718 host->irq = platform_get_irq(pdev, 0);
1719 if (host->irq < 0)
1720 return host->irq;
1723 * Use host->devtype_data->irq_control() here instead of irq_control()
1724 * because we must not disable_irq_nosync without having requested the
1725 * irq.
1727 host->devtype_data->irq_control(host, 0);
1729 err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1730 0, DRIVER_NAME, host);
1731 if (err)
1732 return err;
1734 err = clk_prepare_enable(host->clk);
1735 if (err)
1736 return err;
1737 host->clk_act = 1;
1740 * Now that we "own" the interrupt make sure the interrupt mask bit is
1741 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1742 * on this machine.
1744 if (host->devtype_data->irqpending_quirk) {
1745 disable_irq_nosync(host->irq);
1746 host->devtype_data->irq_control(host, 1);
1749 /* first scan to find the device and get the page size */
1750 if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1751 err = -ENXIO;
1752 goto escan;
1755 switch (this->ecc.mode) {
1756 case NAND_ECC_HW:
1757 this->ecc.calculate = mxc_nand_calculate_ecc;
1758 this->ecc.hwctl = mxc_nand_enable_hwecc;
1759 this->ecc.correct = host->devtype_data->correct_data;
1760 break;
1762 case NAND_ECC_SOFT:
1763 break;
1765 default:
1766 err = -EINVAL;
1767 goto escan;
1770 if (this->bbt_options & NAND_BBT_USE_FLASH) {
1771 this->bbt_td = &bbt_main_descr;
1772 this->bbt_md = &bbt_mirror_descr;
1775 /* allocate the right size buffer now */
1776 devm_kfree(&pdev->dev, (void *)host->data_buf);
1777 host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1778 GFP_KERNEL);
1779 if (!host->data_buf) {
1780 err = -ENOMEM;
1781 goto escan;
1784 /* Call preset again, with correct writesize this time */
1785 host->devtype_data->preset(mtd);
1787 if (!this->ecc.bytes) {
1788 if (host->eccsize == 8)
1789 this->ecc.bytes = 18;
1790 else if (host->eccsize == 4)
1791 this->ecc.bytes = 9;
1795 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1796 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1797 * into copying invalid data to/from the spare IO buffer, as this
1798 * might cause ECC data corruption when doing sub-page write to a
1799 * partially written page.
1801 host->used_oobsize = min(mtd->oobsize, 218U);
1803 if (this->ecc.mode == NAND_ECC_HW) {
1804 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1805 this->ecc.strength = 1;
1806 else
1807 this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1810 /* second phase scan */
1811 if (nand_scan_tail(mtd)) {
1812 err = -ENXIO;
1813 goto escan;
1816 /* Register the partitions */
1817 mtd_device_parse_register(mtd, part_probes,
1818 NULL,
1819 host->pdata.parts,
1820 host->pdata.nr_parts);
1822 platform_set_drvdata(pdev, host);
1824 return 0;
1826 escan:
1827 if (host->clk_act)
1828 clk_disable_unprepare(host->clk);
1830 return err;
1833 static int mxcnd_remove(struct platform_device *pdev)
1835 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1837 nand_release(nand_to_mtd(&host->nand));
1838 if (host->clk_act)
1839 clk_disable_unprepare(host->clk);
1841 return 0;
1844 static struct platform_driver mxcnd_driver = {
1845 .driver = {
1846 .name = DRIVER_NAME,
1847 .of_match_table = of_match_ptr(mxcnd_dt_ids),
1849 .id_table = mxcnd_devtype,
1850 .probe = mxcnd_probe,
1851 .remove = mxcnd_remove,
1853 module_platform_driver(mxcnd_driver);
1855 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1856 MODULE_DESCRIPTION("MXC NAND MTD driver");
1857 MODULE_LICENSE("GPL");