3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
13 * David Woodhouse for adding multichip support
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/nand_ecc.h>
43 #include <linux/mtd/nand_bch.h>
44 #include <linux/interrupt.h>
45 #include <linux/bitops.h>
47 #include <linux/mtd/partitions.h>
50 static int nand_get_device(struct mtd_info
*mtd
, int new_state
);
52 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
53 struct mtd_oob_ops
*ops
);
55 /* Define default oob placement schemes for large and small page devices */
56 static int nand_ooblayout_ecc_sp(struct mtd_info
*mtd
, int section
,
57 struct mtd_oob_region
*oobregion
)
59 struct nand_chip
*chip
= mtd_to_nand(mtd
);
60 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
66 oobregion
->offset
= 0;
67 oobregion
->length
= 4;
69 oobregion
->offset
= 6;
70 oobregion
->length
= ecc
->total
- 4;
76 static int nand_ooblayout_free_sp(struct mtd_info
*mtd
, int section
,
77 struct mtd_oob_region
*oobregion
)
82 if (mtd
->oobsize
== 16) {
86 oobregion
->length
= 8;
87 oobregion
->offset
= 8;
89 oobregion
->length
= 2;
91 oobregion
->offset
= 3;
93 oobregion
->offset
= 6;
99 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops
= {
100 .ecc
= nand_ooblayout_ecc_sp
,
101 .free
= nand_ooblayout_free_sp
,
103 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops
);
105 static int nand_ooblayout_ecc_lp(struct mtd_info
*mtd
, int section
,
106 struct mtd_oob_region
*oobregion
)
108 struct nand_chip
*chip
= mtd_to_nand(mtd
);
109 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
114 oobregion
->length
= ecc
->total
;
115 oobregion
->offset
= mtd
->oobsize
- oobregion
->length
;
120 static int nand_ooblayout_free_lp(struct mtd_info
*mtd
, int section
,
121 struct mtd_oob_region
*oobregion
)
123 struct nand_chip
*chip
= mtd_to_nand(mtd
);
124 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
129 oobregion
->length
= mtd
->oobsize
- ecc
->total
- 2;
130 oobregion
->offset
= 2;
135 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops
= {
136 .ecc
= nand_ooblayout_ecc_lp
,
137 .free
= nand_ooblayout_free_lp
,
139 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops
);
142 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
143 * are placed at a fixed offset.
145 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info
*mtd
, int section
,
146 struct mtd_oob_region
*oobregion
)
148 struct nand_chip
*chip
= mtd_to_nand(mtd
);
149 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
154 switch (mtd
->oobsize
) {
156 oobregion
->offset
= 40;
159 oobregion
->offset
= 80;
165 oobregion
->length
= ecc
->total
;
166 if (oobregion
->offset
+ oobregion
->length
> mtd
->oobsize
)
172 static int nand_ooblayout_free_lp_hamming(struct mtd_info
*mtd
, int section
,
173 struct mtd_oob_region
*oobregion
)
175 struct nand_chip
*chip
= mtd_to_nand(mtd
);
176 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
179 if (section
< 0 || section
> 1)
182 switch (mtd
->oobsize
) {
194 oobregion
->offset
= 2;
195 oobregion
->length
= ecc_offset
- 2;
197 oobregion
->offset
= ecc_offset
+ ecc
->total
;
198 oobregion
->length
= mtd
->oobsize
- oobregion
->offset
;
204 const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops
= {
205 .ecc
= nand_ooblayout_ecc_lp_hamming
,
206 .free
= nand_ooblayout_free_lp_hamming
,
209 static int check_offs_len(struct mtd_info
*mtd
,
210 loff_t ofs
, uint64_t len
)
212 struct nand_chip
*chip
= mtd_to_nand(mtd
);
215 /* Start address must align on block boundary */
216 if (ofs
& ((1ULL << chip
->phys_erase_shift
) - 1)) {
217 pr_debug("%s: unaligned address\n", __func__
);
221 /* Length must align on block boundary */
222 if (len
& ((1ULL << chip
->phys_erase_shift
) - 1)) {
223 pr_debug("%s: length not block aligned\n", __func__
);
231 * nand_release_device - [GENERIC] release chip
232 * @mtd: MTD device structure
234 * Release chip lock and wake up anyone waiting on the device.
236 static void nand_release_device(struct mtd_info
*mtd
)
238 struct nand_chip
*chip
= mtd_to_nand(mtd
);
240 /* Release the controller and the chip */
241 spin_lock(&chip
->controller
->lock
);
242 chip
->controller
->active
= NULL
;
243 chip
->state
= FL_READY
;
244 wake_up(&chip
->controller
->wq
);
245 spin_unlock(&chip
->controller
->lock
);
249 * nand_read_byte - [DEFAULT] read one byte from the chip
250 * @mtd: MTD device structure
252 * Default read function for 8bit buswidth
254 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
256 struct nand_chip
*chip
= mtd_to_nand(mtd
);
257 return readb(chip
->IO_ADDR_R
);
261 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
262 * @mtd: MTD device structure
264 * Default read function for 16bit buswidth with endianness conversion.
267 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
269 struct nand_chip
*chip
= mtd_to_nand(mtd
);
270 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
274 * nand_read_word - [DEFAULT] read one word from the chip
275 * @mtd: MTD device structure
277 * Default read function for 16bit buswidth without endianness conversion.
279 static u16
nand_read_word(struct mtd_info
*mtd
)
281 struct nand_chip
*chip
= mtd_to_nand(mtd
);
282 return readw(chip
->IO_ADDR_R
);
286 * nand_select_chip - [DEFAULT] control CE line
287 * @mtd: MTD device structure
288 * @chipnr: chipnumber to select, -1 for deselect
290 * Default select function for 1 chip devices.
292 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
294 struct nand_chip
*chip
= mtd_to_nand(mtd
);
298 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
309 * nand_write_byte - [DEFAULT] write single byte to chip
310 * @mtd: MTD device structure
311 * @byte: value to write
313 * Default function to write a byte to I/O[7:0]
315 static void nand_write_byte(struct mtd_info
*mtd
, uint8_t byte
)
317 struct nand_chip
*chip
= mtd_to_nand(mtd
);
319 chip
->write_buf(mtd
, &byte
, 1);
323 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
324 * @mtd: MTD device structure
325 * @byte: value to write
327 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
329 static void nand_write_byte16(struct mtd_info
*mtd
, uint8_t byte
)
331 struct nand_chip
*chip
= mtd_to_nand(mtd
);
332 uint16_t word
= byte
;
335 * It's not entirely clear what should happen to I/O[15:8] when writing
336 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
338 * When the host supports a 16-bit bus width, only data is
339 * transferred at the 16-bit width. All address and command line
340 * transfers shall use only the lower 8-bits of the data bus. During
341 * command transfers, the host may place any value on the upper
342 * 8-bits of the data bus. During address transfers, the host shall
343 * set the upper 8-bits of the data bus to 00h.
345 * One user of the write_byte callback is nand_onfi_set_features. The
346 * four parameters are specified to be written to I/O[7:0], but this is
347 * neither an address nor a command transfer. Let's assume a 0 on the
348 * upper I/O lines is OK.
350 chip
->write_buf(mtd
, (uint8_t *)&word
, 2);
354 * nand_write_buf - [DEFAULT] write buffer to chip
355 * @mtd: MTD device structure
357 * @len: number of bytes to write
359 * Default write function for 8bit buswidth.
361 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
363 struct nand_chip
*chip
= mtd_to_nand(mtd
);
365 iowrite8_rep(chip
->IO_ADDR_W
, buf
, len
);
369 * nand_read_buf - [DEFAULT] read chip data into buffer
370 * @mtd: MTD device structure
371 * @buf: buffer to store date
372 * @len: number of bytes to read
374 * Default read function for 8bit buswidth.
376 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
378 struct nand_chip
*chip
= mtd_to_nand(mtd
);
380 ioread8_rep(chip
->IO_ADDR_R
, buf
, len
);
384 * nand_write_buf16 - [DEFAULT] write buffer to chip
385 * @mtd: MTD device structure
387 * @len: number of bytes to write
389 * Default write function for 16bit buswidth.
391 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
393 struct nand_chip
*chip
= mtd_to_nand(mtd
);
394 u16
*p
= (u16
*) buf
;
396 iowrite16_rep(chip
->IO_ADDR_W
, p
, len
>> 1);
400 * nand_read_buf16 - [DEFAULT] read chip data into buffer
401 * @mtd: MTD device structure
402 * @buf: buffer to store date
403 * @len: number of bytes to read
405 * Default read function for 16bit buswidth.
407 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
409 struct nand_chip
*chip
= mtd_to_nand(mtd
);
410 u16
*p
= (u16
*) buf
;
412 ioread16_rep(chip
->IO_ADDR_R
, p
, len
>> 1);
416 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
417 * @mtd: MTD device structure
418 * @ofs: offset from device start
420 * Check, if the block is bad.
422 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
)
424 int page
, res
= 0, i
= 0;
425 struct nand_chip
*chip
= mtd_to_nand(mtd
);
428 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
429 ofs
+= mtd
->erasesize
- mtd
->writesize
;
431 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
434 if (chip
->options
& NAND_BUSWIDTH_16
) {
435 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
,
436 chip
->badblockpos
& 0xFE, page
);
437 bad
= cpu_to_le16(chip
->read_word(mtd
));
438 if (chip
->badblockpos
& 0x1)
443 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
,
445 bad
= chip
->read_byte(mtd
);
448 if (likely(chip
->badblockbits
== 8))
451 res
= hweight8(bad
) < chip
->badblockbits
;
452 ofs
+= mtd
->writesize
;
453 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
455 } while (!res
&& i
< 2 && (chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
));
461 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
462 * @mtd: MTD device structure
463 * @ofs: offset from device start
465 * This is the default implementation, which can be overridden by a hardware
466 * specific driver. It provides the details for writing a bad block marker to a
469 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
471 struct nand_chip
*chip
= mtd_to_nand(mtd
);
472 struct mtd_oob_ops ops
;
473 uint8_t buf
[2] = { 0, 0 };
474 int ret
= 0, res
, i
= 0;
476 memset(&ops
, 0, sizeof(ops
));
478 ops
.ooboffs
= chip
->badblockpos
;
479 if (chip
->options
& NAND_BUSWIDTH_16
) {
480 ops
.ooboffs
&= ~0x01;
481 ops
.len
= ops
.ooblen
= 2;
483 ops
.len
= ops
.ooblen
= 1;
485 ops
.mode
= MTD_OPS_PLACE_OOB
;
487 /* Write to first/last page(s) if necessary */
488 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
489 ofs
+= mtd
->erasesize
- mtd
->writesize
;
491 res
= nand_do_write_oob(mtd
, ofs
, &ops
);
496 ofs
+= mtd
->writesize
;
497 } while ((chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
) && i
< 2);
503 * nand_block_markbad_lowlevel - mark a block bad
504 * @mtd: MTD device structure
505 * @ofs: offset from device start
507 * This function performs the generic NAND bad block marking steps (i.e., bad
508 * block table(s) and/or marker(s)). We only allow the hardware driver to
509 * specify how to write bad block markers to OOB (chip->block_markbad).
511 * We try operations in the following order:
512 * (1) erase the affected block, to allow OOB marker to be written cleanly
513 * (2) write bad block marker to OOB area of affected block (unless flag
514 * NAND_BBT_NO_OOB_BBM is present)
516 * Note that we retain the first error encountered in (2) or (3), finish the
517 * procedures, and dump the error in the end.
519 static int nand_block_markbad_lowlevel(struct mtd_info
*mtd
, loff_t ofs
)
521 struct nand_chip
*chip
= mtd_to_nand(mtd
);
524 if (!(chip
->bbt_options
& NAND_BBT_NO_OOB_BBM
)) {
525 struct erase_info einfo
;
527 /* Attempt erase before marking OOB */
528 memset(&einfo
, 0, sizeof(einfo
));
531 einfo
.len
= 1ULL << chip
->phys_erase_shift
;
532 nand_erase_nand(mtd
, &einfo
, 0);
534 /* Write bad block marker to OOB */
535 nand_get_device(mtd
, FL_WRITING
);
536 ret
= chip
->block_markbad(mtd
, ofs
);
537 nand_release_device(mtd
);
540 /* Mark block bad in BBT */
542 res
= nand_markbad_bbt(mtd
, ofs
);
548 mtd
->ecc_stats
.badblocks
++;
554 * nand_check_wp - [GENERIC] check if the chip is write protected
555 * @mtd: MTD device structure
557 * Check, if the device is write protected. The function expects, that the
558 * device is already selected.
560 static int nand_check_wp(struct mtd_info
*mtd
)
562 struct nand_chip
*chip
= mtd_to_nand(mtd
);
564 /* Broken xD cards report WP despite being writable */
565 if (chip
->options
& NAND_BROKEN_XD
)
568 /* Check the WP bit */
569 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
570 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
574 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
575 * @mtd: MTD device structure
576 * @ofs: offset from device start
578 * Check if the block is marked as reserved.
580 static int nand_block_isreserved(struct mtd_info
*mtd
, loff_t ofs
)
582 struct nand_chip
*chip
= mtd_to_nand(mtd
);
586 /* Return info from the table */
587 return nand_isreserved_bbt(mtd
, ofs
);
591 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
592 * @mtd: MTD device structure
593 * @ofs: offset from device start
594 * @allowbbt: 1, if its allowed to access the bbt area
596 * Check, if the block is bad. Either by reading the bad block table or
597 * calling of the scan function.
599 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int allowbbt
)
601 struct nand_chip
*chip
= mtd_to_nand(mtd
);
604 return chip
->block_bad(mtd
, ofs
);
606 /* Return info from the table */
607 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
611 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
612 * @mtd: MTD device structure
615 * Helper function for nand_wait_ready used when needing to wait in interrupt
618 static void panic_nand_wait_ready(struct mtd_info
*mtd
, unsigned long timeo
)
620 struct nand_chip
*chip
= mtd_to_nand(mtd
);
623 /* Wait for the device to get ready */
624 for (i
= 0; i
< timeo
; i
++) {
625 if (chip
->dev_ready(mtd
))
627 touch_softlockup_watchdog();
633 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
634 * @mtd: MTD device structure
636 * Wait for the ready pin after a command, and warn if a timeout occurs.
638 void nand_wait_ready(struct mtd_info
*mtd
)
640 struct nand_chip
*chip
= mtd_to_nand(mtd
);
641 unsigned long timeo
= 400;
643 if (in_interrupt() || oops_in_progress
)
644 return panic_nand_wait_ready(mtd
, timeo
);
646 /* Wait until command is processed or timeout occurs */
647 timeo
= jiffies
+ msecs_to_jiffies(timeo
);
649 if (chip
->dev_ready(mtd
))
652 } while (time_before(jiffies
, timeo
));
654 if (!chip
->dev_ready(mtd
))
655 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
657 EXPORT_SYMBOL_GPL(nand_wait_ready
);
660 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
661 * @mtd: MTD device structure
662 * @timeo: Timeout in ms
664 * Wait for status ready (i.e. command done) or timeout.
666 static void nand_wait_status_ready(struct mtd_info
*mtd
, unsigned long timeo
)
668 register struct nand_chip
*chip
= mtd_to_nand(mtd
);
670 timeo
= jiffies
+ msecs_to_jiffies(timeo
);
672 if ((chip
->read_byte(mtd
) & NAND_STATUS_READY
))
674 touch_softlockup_watchdog();
675 } while (time_before(jiffies
, timeo
));
679 * nand_command - [DEFAULT] Send command to NAND device
680 * @mtd: MTD device structure
681 * @command: the command to be sent
682 * @column: the column address for this command, -1 if none
683 * @page_addr: the page address for this command, -1 if none
685 * Send command to NAND device. This function is used for small page devices
686 * (512 Bytes per page).
688 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
689 int column
, int page_addr
)
691 register struct nand_chip
*chip
= mtd_to_nand(mtd
);
692 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
694 /* Write out the command to the device */
695 if (command
== NAND_CMD_SEQIN
) {
698 if (column
>= mtd
->writesize
) {
700 column
-= mtd
->writesize
;
701 readcmd
= NAND_CMD_READOOB
;
702 } else if (column
< 256) {
703 /* First 256 bytes --> READ0 */
704 readcmd
= NAND_CMD_READ0
;
707 readcmd
= NAND_CMD_READ1
;
709 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
710 ctrl
&= ~NAND_CTRL_CHANGE
;
712 chip
->cmd_ctrl(mtd
, command
, ctrl
);
714 /* Address cycle, when necessary */
715 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
716 /* Serially input address */
718 /* Adjust columns for 16 bit buswidth */
719 if (chip
->options
& NAND_BUSWIDTH_16
&&
720 !nand_opcode_8bits(command
))
722 chip
->cmd_ctrl(mtd
, column
, ctrl
);
723 ctrl
&= ~NAND_CTRL_CHANGE
;
725 if (page_addr
!= -1) {
726 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
727 ctrl
&= ~NAND_CTRL_CHANGE
;
728 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
729 /* One more address cycle for devices > 32MiB */
730 if (chip
->chipsize
> (32 << 20))
731 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
733 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
736 * Program and erase have their own busy handlers status and sequential
741 case NAND_CMD_PAGEPROG
:
742 case NAND_CMD_ERASE1
:
743 case NAND_CMD_ERASE2
:
745 case NAND_CMD_STATUS
:
751 udelay(chip
->chip_delay
);
752 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
753 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
755 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
756 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
757 nand_wait_status_ready(mtd
, 250);
760 /* This applies to read commands */
763 * If we don't have access to the busy pin, we apply the given
766 if (!chip
->dev_ready
) {
767 udelay(chip
->chip_delay
);
772 * Apply this short delay always to ensure that we do wait tWB in
773 * any case on any machine.
777 nand_wait_ready(mtd
);
781 * nand_command_lp - [DEFAULT] Send command to NAND large page device
782 * @mtd: MTD device structure
783 * @command: the command to be sent
784 * @column: the column address for this command, -1 if none
785 * @page_addr: the page address for this command, -1 if none
787 * Send command to NAND device. This is the version for the new large page
788 * devices. We don't have the separate regions as we have in the small page
789 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
791 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
792 int column
, int page_addr
)
794 register struct nand_chip
*chip
= mtd_to_nand(mtd
);
796 /* Emulate NAND_CMD_READOOB */
797 if (command
== NAND_CMD_READOOB
) {
798 column
+= mtd
->writesize
;
799 command
= NAND_CMD_READ0
;
802 /* Command latch cycle */
803 chip
->cmd_ctrl(mtd
, command
, NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
805 if (column
!= -1 || page_addr
!= -1) {
806 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
808 /* Serially input address */
810 /* Adjust columns for 16 bit buswidth */
811 if (chip
->options
& NAND_BUSWIDTH_16
&&
812 !nand_opcode_8bits(command
))
814 chip
->cmd_ctrl(mtd
, column
, ctrl
);
815 ctrl
&= ~NAND_CTRL_CHANGE
;
817 /* Only output a single addr cycle for 8bits opcodes. */
818 if (!nand_opcode_8bits(command
))
819 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
821 if (page_addr
!= -1) {
822 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
823 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
824 NAND_NCE
| NAND_ALE
);
825 /* One more address cycle for devices > 128MiB */
826 if (chip
->chipsize
> (128 << 20))
827 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
828 NAND_NCE
| NAND_ALE
);
831 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
834 * Program and erase have their own busy handlers status, sequential
835 * in and status need no delay.
839 case NAND_CMD_CACHEDPROG
:
840 case NAND_CMD_PAGEPROG
:
841 case NAND_CMD_ERASE1
:
842 case NAND_CMD_ERASE2
:
845 case NAND_CMD_STATUS
:
851 udelay(chip
->chip_delay
);
852 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
853 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
854 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
855 NAND_NCE
| NAND_CTRL_CHANGE
);
856 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
857 nand_wait_status_ready(mtd
, 250);
860 case NAND_CMD_RNDOUT
:
861 /* No ready / busy check necessary */
862 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
863 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
864 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
865 NAND_NCE
| NAND_CTRL_CHANGE
);
869 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
870 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
871 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
872 NAND_NCE
| NAND_CTRL_CHANGE
);
874 /* This applies to read commands */
877 * If we don't have access to the busy pin, we apply the given
880 if (!chip
->dev_ready
) {
881 udelay(chip
->chip_delay
);
887 * Apply this short delay always to ensure that we do wait tWB in
888 * any case on any machine.
892 nand_wait_ready(mtd
);
896 * panic_nand_get_device - [GENERIC] Get chip for selected access
897 * @chip: the nand chip descriptor
898 * @mtd: MTD device structure
899 * @new_state: the state which is requested
901 * Used when in panic, no locks are taken.
903 static void panic_nand_get_device(struct nand_chip
*chip
,
904 struct mtd_info
*mtd
, int new_state
)
906 /* Hardware controller shared among independent devices */
907 chip
->controller
->active
= chip
;
908 chip
->state
= new_state
;
912 * nand_get_device - [GENERIC] Get chip for selected access
913 * @mtd: MTD device structure
914 * @new_state: the state which is requested
916 * Get the device and lock it for exclusive access
919 nand_get_device(struct mtd_info
*mtd
, int new_state
)
921 struct nand_chip
*chip
= mtd_to_nand(mtd
);
922 spinlock_t
*lock
= &chip
->controller
->lock
;
923 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
924 DECLARE_WAITQUEUE(wait
, current
);
928 /* Hardware controller shared among independent devices */
929 if (!chip
->controller
->active
)
930 chip
->controller
->active
= chip
;
932 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
933 chip
->state
= new_state
;
937 if (new_state
== FL_PM_SUSPENDED
) {
938 if (chip
->controller
->active
->state
== FL_PM_SUSPENDED
) {
939 chip
->state
= FL_PM_SUSPENDED
;
944 set_current_state(TASK_UNINTERRUPTIBLE
);
945 add_wait_queue(wq
, &wait
);
948 remove_wait_queue(wq
, &wait
);
953 * panic_nand_wait - [GENERIC] wait until the command is done
954 * @mtd: MTD device structure
955 * @chip: NAND chip structure
958 * Wait for command done. This is a helper function for nand_wait used when
959 * we are in interrupt context. May happen when in panic and trying to write
960 * an oops through mtdoops.
962 static void panic_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
,
966 for (i
= 0; i
< timeo
; i
++) {
967 if (chip
->dev_ready
) {
968 if (chip
->dev_ready(mtd
))
971 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
979 * nand_wait - [DEFAULT] wait until the command is done
980 * @mtd: MTD device structure
981 * @chip: NAND chip structure
983 * Wait for command done. This applies to erase and program only.
985 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
989 unsigned long timeo
= 400;
992 * Apply this short delay always to ensure that we do wait tWB in any
993 * case on any machine.
997 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
999 if (in_interrupt() || oops_in_progress
)
1000 panic_nand_wait(mtd
, chip
, timeo
);
1002 timeo
= jiffies
+ msecs_to_jiffies(timeo
);
1004 if (chip
->dev_ready
) {
1005 if (chip
->dev_ready(mtd
))
1008 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
1012 } while (time_before(jiffies
, timeo
));
1015 status
= (int)chip
->read_byte(mtd
);
1016 /* This can happen if in case of timeout or buggy dev_ready */
1017 WARN_ON(!(status
& NAND_STATUS_READY
));
1022 * nand_reset_data_interface - Reset data interface and timings
1023 * @chip: The NAND chip
1025 * Reset the Data interface and timings to ONFI mode 0.
1027 * Returns 0 for success or negative error code otherwise.
1029 static int nand_reset_data_interface(struct nand_chip
*chip
)
1031 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1032 const struct nand_data_interface
*conf
;
1035 if (!chip
->setup_data_interface
)
1039 * The ONFI specification says:
1041 * To transition from NV-DDR or NV-DDR2 to the SDR data
1042 * interface, the host shall use the Reset (FFh) command
1043 * using SDR timing mode 0. A device in any timing mode is
1044 * required to recognize Reset (FFh) command issued in SDR
1048 * Configure the data interface in SDR mode and set the
1049 * timings to timing mode 0.
1052 conf
= nand_get_default_data_interface();
1053 ret
= chip
->setup_data_interface(mtd
, conf
, false);
1055 pr_err("Failed to configure data interface to SDR timing mode 0\n");
1061 * nand_setup_data_interface - Setup the best data interface and timings
1062 * @chip: The NAND chip
1064 * Find and configure the best data interface and NAND timings supported by
1065 * the chip and the driver.
1066 * First tries to retrieve supported timing modes from ONFI information,
1067 * and if the NAND chip does not support ONFI, relies on the
1068 * ->onfi_timing_mode_default specified in the nand_ids table.
1070 * Returns 0 for success or negative error code otherwise.
1072 static int nand_setup_data_interface(struct nand_chip
*chip
)
1074 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1077 if (!chip
->setup_data_interface
|| !chip
->data_interface
)
1081 * Ensure the timing mode has been changed on the chip side
1082 * before changing timings on the controller side.
1084 if (chip
->onfi_version
) {
1085 u8 tmode_param
[ONFI_SUBFEATURE_PARAM_LEN
] = {
1086 chip
->onfi_timing_mode_default
,
1089 ret
= chip
->onfi_set_features(mtd
, chip
,
1090 ONFI_FEATURE_ADDR_TIMING_MODE
,
1096 ret
= chip
->setup_data_interface(mtd
, chip
->data_interface
, false);
1102 * nand_init_data_interface - find the best data interface and timings
1103 * @chip: The NAND chip
1105 * Find the best data interface and NAND timings supported by the chip
1107 * First tries to retrieve supported timing modes from ONFI information,
1108 * and if the NAND chip does not support ONFI, relies on the
1109 * ->onfi_timing_mode_default specified in the nand_ids table. After this
1110 * function nand_chip->data_interface is initialized with the best timing mode
1113 * Returns 0 for success or negative error code otherwise.
1115 static int nand_init_data_interface(struct nand_chip
*chip
)
1117 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1118 int modes
, mode
, ret
;
1120 if (!chip
->setup_data_interface
)
1124 * First try to identify the best timings from ONFI parameters and
1125 * if the NAND does not support ONFI, fallback to the default ONFI
1128 modes
= onfi_get_async_timing_mode(chip
);
1129 if (modes
== ONFI_TIMING_MODE_UNKNOWN
) {
1130 if (!chip
->onfi_timing_mode_default
)
1133 modes
= GENMASK(chip
->onfi_timing_mode_default
, 0);
1136 chip
->data_interface
= kzalloc(sizeof(*chip
->data_interface
),
1138 if (!chip
->data_interface
)
1141 for (mode
= fls(modes
) - 1; mode
>= 0; mode
--) {
1142 ret
= onfi_init_data_interface(chip
, chip
->data_interface
,
1143 NAND_SDR_IFACE
, mode
);
1147 ret
= chip
->setup_data_interface(mtd
, chip
->data_interface
,
1150 chip
->onfi_timing_mode_default
= mode
;
1158 static void nand_release_data_interface(struct nand_chip
*chip
)
1160 kfree(chip
->data_interface
);
1164 * nand_reset - Reset and initialize a NAND device
1165 * @chip: The NAND chip
1166 * @chipnr: Internal die id
1168 * Returns 0 for success or negative error code otherwise
1170 int nand_reset(struct nand_chip
*chip
, int chipnr
)
1172 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1175 ret
= nand_reset_data_interface(chip
);
1180 * The CS line has to be released before we can apply the new NAND
1181 * interface settings, hence this weird ->select_chip() dance.
1183 chip
->select_chip(mtd
, chipnr
);
1184 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
1185 chip
->select_chip(mtd
, -1);
1187 chip
->select_chip(mtd
, chipnr
);
1188 ret
= nand_setup_data_interface(chip
);
1189 chip
->select_chip(mtd
, -1);
1197 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
1199 * @ofs: offset to start unlock from
1200 * @len: length to unlock
1201 * @invert: when = 0, unlock the range of blocks within the lower and
1202 * upper boundary address
1203 * when = 1, unlock the range of blocks outside the boundaries
1204 * of the lower and upper boundary address
1206 * Returs unlock status.
1208 static int __nand_unlock(struct mtd_info
*mtd
, loff_t ofs
,
1209 uint64_t len
, int invert
)
1213 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1215 /* Submit address of first page to unlock */
1216 page
= ofs
>> chip
->page_shift
;
1217 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK1
, -1, page
& chip
->pagemask
);
1219 /* Submit address of last page to unlock */
1220 page
= (ofs
+ len
) >> chip
->page_shift
;
1221 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK2
, -1,
1222 (page
| invert
) & chip
->pagemask
);
1224 /* Call wait ready function */
1225 status
= chip
->waitfunc(mtd
, chip
);
1226 /* See if device thinks it succeeded */
1227 if (status
& NAND_STATUS_FAIL
) {
1228 pr_debug("%s: error status = 0x%08x\n",
1237 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
1239 * @ofs: offset to start unlock from
1240 * @len: length to unlock
1242 * Returns unlock status.
1244 int nand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1248 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1250 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1251 __func__
, (unsigned long long)ofs
, len
);
1253 if (check_offs_len(mtd
, ofs
, len
))
1256 /* Align to last block address if size addresses end of the device */
1257 if (ofs
+ len
== mtd
->size
)
1258 len
-= mtd
->erasesize
;
1260 nand_get_device(mtd
, FL_UNLOCKING
);
1262 /* Shift to get chip number */
1263 chipnr
= ofs
>> chip
->chip_shift
;
1267 * If we want to check the WP through READ STATUS and check the bit 7
1268 * we must reset the chip
1269 * some operation can also clear the bit 7 of status register
1270 * eg. erase/program a locked block
1272 nand_reset(chip
, chipnr
);
1274 chip
->select_chip(mtd
, chipnr
);
1276 /* Check, if it is write protected */
1277 if (nand_check_wp(mtd
)) {
1278 pr_debug("%s: device is write protected!\n",
1284 ret
= __nand_unlock(mtd
, ofs
, len
, 0);
1287 chip
->select_chip(mtd
, -1);
1288 nand_release_device(mtd
);
1292 EXPORT_SYMBOL(nand_unlock
);
1295 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1297 * @ofs: offset to start unlock from
1298 * @len: length to unlock
1300 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1301 * have this feature, but it allows only to lock all blocks, not for specified
1302 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1305 * Returns lock status.
1307 int nand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1310 int chipnr
, status
, page
;
1311 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1313 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1314 __func__
, (unsigned long long)ofs
, len
);
1316 if (check_offs_len(mtd
, ofs
, len
))
1319 nand_get_device(mtd
, FL_LOCKING
);
1321 /* Shift to get chip number */
1322 chipnr
= ofs
>> chip
->chip_shift
;
1326 * If we want to check the WP through READ STATUS and check the bit 7
1327 * we must reset the chip
1328 * some operation can also clear the bit 7 of status register
1329 * eg. erase/program a locked block
1331 nand_reset(chip
, chipnr
);
1333 chip
->select_chip(mtd
, chipnr
);
1335 /* Check, if it is write protected */
1336 if (nand_check_wp(mtd
)) {
1337 pr_debug("%s: device is write protected!\n",
1339 status
= MTD_ERASE_FAILED
;
1344 /* Submit address of first page to lock */
1345 page
= ofs
>> chip
->page_shift
;
1346 chip
->cmdfunc(mtd
, NAND_CMD_LOCK
, -1, page
& chip
->pagemask
);
1348 /* Call wait ready function */
1349 status
= chip
->waitfunc(mtd
, chip
);
1350 /* See if device thinks it succeeded */
1351 if (status
& NAND_STATUS_FAIL
) {
1352 pr_debug("%s: error status = 0x%08x\n",
1358 ret
= __nand_unlock(mtd
, ofs
, len
, 0x1);
1361 chip
->select_chip(mtd
, -1);
1362 nand_release_device(mtd
);
1366 EXPORT_SYMBOL(nand_lock
);
1369 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1370 * @buf: buffer to test
1371 * @len: buffer length
1372 * @bitflips_threshold: maximum number of bitflips
1374 * Check if a buffer contains only 0xff, which means the underlying region
1375 * has been erased and is ready to be programmed.
1376 * The bitflips_threshold specify the maximum number of bitflips before
1377 * considering the region is not erased.
1378 * Note: The logic of this function has been extracted from the memweight
1379 * implementation, except that nand_check_erased_buf function exit before
1380 * testing the whole buffer if the number of bitflips exceed the
1381 * bitflips_threshold value.
1383 * Returns a positive number of bitflips less than or equal to
1384 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1387 static int nand_check_erased_buf(void *buf
, int len
, int bitflips_threshold
)
1389 const unsigned char *bitmap
= buf
;
1393 for (; len
&& ((uintptr_t)bitmap
) % sizeof(long);
1395 weight
= hweight8(*bitmap
);
1396 bitflips
+= BITS_PER_BYTE
- weight
;
1397 if (unlikely(bitflips
> bitflips_threshold
))
1401 for (; len
>= sizeof(long);
1402 len
-= sizeof(long), bitmap
+= sizeof(long)) {
1403 weight
= hweight_long(*((unsigned long *)bitmap
));
1404 bitflips
+= BITS_PER_LONG
- weight
;
1405 if (unlikely(bitflips
> bitflips_threshold
))
1409 for (; len
> 0; len
--, bitmap
++) {
1410 weight
= hweight8(*bitmap
);
1411 bitflips
+= BITS_PER_BYTE
- weight
;
1412 if (unlikely(bitflips
> bitflips_threshold
))
1420 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1422 * @data: data buffer to test
1423 * @datalen: data length
1425 * @ecclen: ECC length
1426 * @extraoob: extra OOB buffer
1427 * @extraooblen: extra OOB length
1428 * @bitflips_threshold: maximum number of bitflips
1430 * Check if a data buffer and its associated ECC and OOB data contains only
1431 * 0xff pattern, which means the underlying region has been erased and is
1432 * ready to be programmed.
1433 * The bitflips_threshold specify the maximum number of bitflips before
1434 * considering the region as not erased.
1437 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1438 * different from the NAND page size. When fixing bitflips, ECC engines will
1439 * report the number of errors per chunk, and the NAND core infrastructure
1440 * expect you to return the maximum number of bitflips for the whole page.
1441 * This is why you should always use this function on a single chunk and
1442 * not on the whole page. After checking each chunk you should update your
1443 * max_bitflips value accordingly.
1444 * 2/ When checking for bitflips in erased pages you should not only check
1445 * the payload data but also their associated ECC data, because a user might
1446 * have programmed almost all bits to 1 but a few. In this case, we
1447 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1449 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1450 * data are protected by the ECC engine.
1451 * It could also be used if you support subpages and want to attach some
1452 * extra OOB data to an ECC chunk.
1454 * Returns a positive number of bitflips less than or equal to
1455 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1456 * threshold. In case of success, the passed buffers are filled with 0xff.
1458 int nand_check_erased_ecc_chunk(void *data
, int datalen
,
1459 void *ecc
, int ecclen
,
1460 void *extraoob
, int extraooblen
,
1461 int bitflips_threshold
)
1463 int data_bitflips
= 0, ecc_bitflips
= 0, extraoob_bitflips
= 0;
1465 data_bitflips
= nand_check_erased_buf(data
, datalen
,
1466 bitflips_threshold
);
1467 if (data_bitflips
< 0)
1468 return data_bitflips
;
1470 bitflips_threshold
-= data_bitflips
;
1472 ecc_bitflips
= nand_check_erased_buf(ecc
, ecclen
, bitflips_threshold
);
1473 if (ecc_bitflips
< 0)
1474 return ecc_bitflips
;
1476 bitflips_threshold
-= ecc_bitflips
;
1478 extraoob_bitflips
= nand_check_erased_buf(extraoob
, extraooblen
,
1479 bitflips_threshold
);
1480 if (extraoob_bitflips
< 0)
1481 return extraoob_bitflips
;
1484 memset(data
, 0xff, datalen
);
1487 memset(ecc
, 0xff, ecclen
);
1489 if (extraoob_bitflips
)
1490 memset(extraoob
, 0xff, extraooblen
);
1492 return data_bitflips
+ ecc_bitflips
+ extraoob_bitflips
;
1494 EXPORT_SYMBOL(nand_check_erased_ecc_chunk
);
1497 * nand_read_page_raw - [INTERN] read raw page data without ecc
1498 * @mtd: mtd info structure
1499 * @chip: nand chip info structure
1500 * @buf: buffer to store read data
1501 * @oob_required: caller requires OOB data read to chip->oob_poi
1502 * @page: page number to read
1504 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1506 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1507 uint8_t *buf
, int oob_required
, int page
)
1509 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1511 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1516 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1517 * @mtd: mtd info structure
1518 * @chip: nand chip info structure
1519 * @buf: buffer to store read data
1520 * @oob_required: caller requires OOB data read to chip->oob_poi
1521 * @page: page number to read
1523 * We need a special oob layout and handling even when OOB isn't used.
1525 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
,
1526 struct nand_chip
*chip
, uint8_t *buf
,
1527 int oob_required
, int page
)
1529 int eccsize
= chip
->ecc
.size
;
1530 int eccbytes
= chip
->ecc
.bytes
;
1531 uint8_t *oob
= chip
->oob_poi
;
1534 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1535 chip
->read_buf(mtd
, buf
, eccsize
);
1538 if (chip
->ecc
.prepad
) {
1539 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1540 oob
+= chip
->ecc
.prepad
;
1543 chip
->read_buf(mtd
, oob
, eccbytes
);
1546 if (chip
->ecc
.postpad
) {
1547 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1548 oob
+= chip
->ecc
.postpad
;
1552 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1554 chip
->read_buf(mtd
, oob
, size
);
1560 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1561 * @mtd: mtd info structure
1562 * @chip: nand chip info structure
1563 * @buf: buffer to store read data
1564 * @oob_required: caller requires OOB data read to chip->oob_poi
1565 * @page: page number to read
1567 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1568 uint8_t *buf
, int oob_required
, int page
)
1570 int i
, eccsize
= chip
->ecc
.size
, ret
;
1571 int eccbytes
= chip
->ecc
.bytes
;
1572 int eccsteps
= chip
->ecc
.steps
;
1574 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1575 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1576 unsigned int max_bitflips
= 0;
1578 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, 1, page
);
1580 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1581 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1583 ret
= mtd_ooblayout_get_eccbytes(mtd
, ecc_code
, chip
->oob_poi
, 0,
1588 eccsteps
= chip
->ecc
.steps
;
1591 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1594 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1596 mtd
->ecc_stats
.failed
++;
1598 mtd
->ecc_stats
.corrected
+= stat
;
1599 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1602 return max_bitflips
;
1606 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1607 * @mtd: mtd info structure
1608 * @chip: nand chip info structure
1609 * @data_offs: offset of requested data within the page
1610 * @readlen: data length
1611 * @bufpoi: buffer to store read data
1612 * @page: page number to read
1614 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1615 uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
,
1618 int start_step
, end_step
, num_steps
, ret
;
1620 int data_col_addr
, i
, gaps
= 0;
1621 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
1622 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
1623 int index
, section
= 0;
1624 unsigned int max_bitflips
= 0;
1625 struct mtd_oob_region oobregion
= { };
1627 /* Column address within the page aligned to ECC size (256bytes) */
1628 start_step
= data_offs
/ chip
->ecc
.size
;
1629 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
1630 num_steps
= end_step
- start_step
+ 1;
1631 index
= start_step
* chip
->ecc
.bytes
;
1633 /* Data size aligned to ECC ecc.size */
1634 datafrag_len
= num_steps
* chip
->ecc
.size
;
1635 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
1637 data_col_addr
= start_step
* chip
->ecc
.size
;
1638 /* If we read not a page aligned data */
1639 if (data_col_addr
!= 0)
1640 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
1642 p
= bufpoi
+ data_col_addr
;
1643 chip
->read_buf(mtd
, p
, datafrag_len
);
1646 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
1647 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
1650 * The performance is faster if we position offsets according to
1651 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1653 ret
= mtd_ooblayout_find_eccregion(mtd
, index
, §ion
, &oobregion
);
1657 if (oobregion
.length
< eccfrag_len
)
1661 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
1662 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1665 * Send the command to read the particular ECC bytes take care
1666 * about buswidth alignment in read_buf.
1668 aligned_pos
= oobregion
.offset
& ~(busw
- 1);
1669 aligned_len
= eccfrag_len
;
1670 if (oobregion
.offset
& (busw
- 1))
1672 if ((oobregion
.offset
+ (num_steps
* chip
->ecc
.bytes
)) &
1676 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1677 mtd
->writesize
+ aligned_pos
, -1);
1678 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
1681 ret
= mtd_ooblayout_get_eccbytes(mtd
, chip
->buffers
->ecccode
,
1682 chip
->oob_poi
, index
, eccfrag_len
);
1686 p
= bufpoi
+ data_col_addr
;
1687 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
1690 stat
= chip
->ecc
.correct(mtd
, p
,
1691 &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
1692 if (stat
== -EBADMSG
&&
1693 (chip
->ecc
.options
& NAND_ECC_GENERIC_ERASED_CHECK
)) {
1694 /* check for empty pages with bitflips */
1695 stat
= nand_check_erased_ecc_chunk(p
, chip
->ecc
.size
,
1696 &chip
->buffers
->ecccode
[i
],
1699 chip
->ecc
.strength
);
1703 mtd
->ecc_stats
.failed
++;
1705 mtd
->ecc_stats
.corrected
+= stat
;
1706 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1709 return max_bitflips
;
1713 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1714 * @mtd: mtd info structure
1715 * @chip: nand chip info structure
1716 * @buf: buffer to store read data
1717 * @oob_required: caller requires OOB data read to chip->oob_poi
1718 * @page: page number to read
1720 * Not for syndrome calculating ECC controllers which need a special oob layout.
1722 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1723 uint8_t *buf
, int oob_required
, int page
)
1725 int i
, eccsize
= chip
->ecc
.size
, ret
;
1726 int eccbytes
= chip
->ecc
.bytes
;
1727 int eccsteps
= chip
->ecc
.steps
;
1729 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1730 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1731 unsigned int max_bitflips
= 0;
1733 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1734 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1735 chip
->read_buf(mtd
, p
, eccsize
);
1736 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1738 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1740 ret
= mtd_ooblayout_get_eccbytes(mtd
, ecc_code
, chip
->oob_poi
, 0,
1745 eccsteps
= chip
->ecc
.steps
;
1748 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1751 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1752 if (stat
== -EBADMSG
&&
1753 (chip
->ecc
.options
& NAND_ECC_GENERIC_ERASED_CHECK
)) {
1754 /* check for empty pages with bitflips */
1755 stat
= nand_check_erased_ecc_chunk(p
, eccsize
,
1756 &ecc_code
[i
], eccbytes
,
1758 chip
->ecc
.strength
);
1762 mtd
->ecc_stats
.failed
++;
1764 mtd
->ecc_stats
.corrected
+= stat
;
1765 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1768 return max_bitflips
;
1772 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1773 * @mtd: mtd info structure
1774 * @chip: nand chip info structure
1775 * @buf: buffer to store read data
1776 * @oob_required: caller requires OOB data read to chip->oob_poi
1777 * @page: page number to read
1779 * Hardware ECC for large page chips, require OOB to be read first. For this
1780 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1781 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1782 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1783 * the data area, by overwriting the NAND manufacturer bad block markings.
1785 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
1786 struct nand_chip
*chip
, uint8_t *buf
, int oob_required
, int page
)
1788 int i
, eccsize
= chip
->ecc
.size
, ret
;
1789 int eccbytes
= chip
->ecc
.bytes
;
1790 int eccsteps
= chip
->ecc
.steps
;
1792 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1793 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1794 unsigned int max_bitflips
= 0;
1796 /* Read the OOB area first */
1797 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1798 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1799 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1801 ret
= mtd_ooblayout_get_eccbytes(mtd
, ecc_code
, chip
->oob_poi
, 0,
1806 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1809 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1810 chip
->read_buf(mtd
, p
, eccsize
);
1811 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1813 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1814 if (stat
== -EBADMSG
&&
1815 (chip
->ecc
.options
& NAND_ECC_GENERIC_ERASED_CHECK
)) {
1816 /* check for empty pages with bitflips */
1817 stat
= nand_check_erased_ecc_chunk(p
, eccsize
,
1818 &ecc_code
[i
], eccbytes
,
1820 chip
->ecc
.strength
);
1824 mtd
->ecc_stats
.failed
++;
1826 mtd
->ecc_stats
.corrected
+= stat
;
1827 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1830 return max_bitflips
;
1834 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1835 * @mtd: mtd info structure
1836 * @chip: nand chip info structure
1837 * @buf: buffer to store read data
1838 * @oob_required: caller requires OOB data read to chip->oob_poi
1839 * @page: page number to read
1841 * The hw generator calculates the error syndrome automatically. Therefore we
1842 * need a special oob layout and handling.
1844 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1845 uint8_t *buf
, int oob_required
, int page
)
1847 int i
, eccsize
= chip
->ecc
.size
;
1848 int eccbytes
= chip
->ecc
.bytes
;
1849 int eccsteps
= chip
->ecc
.steps
;
1850 int eccpadbytes
= eccbytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1852 uint8_t *oob
= chip
->oob_poi
;
1853 unsigned int max_bitflips
= 0;
1855 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1858 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1859 chip
->read_buf(mtd
, p
, eccsize
);
1861 if (chip
->ecc
.prepad
) {
1862 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1863 oob
+= chip
->ecc
.prepad
;
1866 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1867 chip
->read_buf(mtd
, oob
, eccbytes
);
1868 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1872 if (chip
->ecc
.postpad
) {
1873 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1874 oob
+= chip
->ecc
.postpad
;
1877 if (stat
== -EBADMSG
&&
1878 (chip
->ecc
.options
& NAND_ECC_GENERIC_ERASED_CHECK
)) {
1879 /* check for empty pages with bitflips */
1880 stat
= nand_check_erased_ecc_chunk(p
, chip
->ecc
.size
,
1884 chip
->ecc
.strength
);
1888 mtd
->ecc_stats
.failed
++;
1890 mtd
->ecc_stats
.corrected
+= stat
;
1891 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1895 /* Calculate remaining oob bytes */
1896 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1898 chip
->read_buf(mtd
, oob
, i
);
1900 return max_bitflips
;
1904 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1905 * @mtd: mtd info structure
1906 * @oob: oob destination address
1907 * @ops: oob ops structure
1908 * @len: size of oob to transfer
1910 static uint8_t *nand_transfer_oob(struct mtd_info
*mtd
, uint8_t *oob
,
1911 struct mtd_oob_ops
*ops
, size_t len
)
1913 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1916 switch (ops
->mode
) {
1918 case MTD_OPS_PLACE_OOB
:
1920 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1923 case MTD_OPS_AUTO_OOB
:
1924 ret
= mtd_ooblayout_get_databytes(mtd
, oob
, chip
->oob_poi
,
1936 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1937 * @mtd: MTD device structure
1938 * @retry_mode: the retry mode to use
1940 * Some vendors supply a special command to shift the Vt threshold, to be used
1941 * when there are too many bitflips in a page (i.e., ECC error). After setting
1942 * a new threshold, the host should retry reading the page.
1944 static int nand_setup_read_retry(struct mtd_info
*mtd
, int retry_mode
)
1946 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1948 pr_debug("setting READ RETRY mode %d\n", retry_mode
);
1950 if (retry_mode
>= chip
->read_retries
)
1953 if (!chip
->setup_read_retry
)
1956 return chip
->setup_read_retry(mtd
, retry_mode
);
1960 * nand_do_read_ops - [INTERN] Read data with ECC
1961 * @mtd: MTD device structure
1962 * @from: offset to read from
1963 * @ops: oob ops structure
1965 * Internal function. Called with chip held.
1967 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1968 struct mtd_oob_ops
*ops
)
1970 int chipnr
, page
, realpage
, col
, bytes
, aligned
, oob_required
;
1971 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1973 uint32_t readlen
= ops
->len
;
1974 uint32_t oobreadlen
= ops
->ooblen
;
1975 uint32_t max_oobsize
= mtd_oobavail(mtd
, ops
);
1977 uint8_t *bufpoi
, *oob
, *buf
;
1979 unsigned int max_bitflips
= 0;
1981 bool ecc_fail
= false;
1983 chipnr
= (int)(from
>> chip
->chip_shift
);
1984 chip
->select_chip(mtd
, chipnr
);
1986 realpage
= (int)(from
>> chip
->page_shift
);
1987 page
= realpage
& chip
->pagemask
;
1989 col
= (int)(from
& (mtd
->writesize
- 1));
1993 oob_required
= oob
? 1 : 0;
1996 unsigned int ecc_failures
= mtd
->ecc_stats
.failed
;
1998 bytes
= min(mtd
->writesize
- col
, readlen
);
1999 aligned
= (bytes
== mtd
->writesize
);
2003 else if (chip
->options
& NAND_USE_BOUNCE_BUFFER
)
2004 use_bufpoi
= !virt_addr_valid(buf
);
2008 /* Is the current page in the buffer? */
2009 if (realpage
!= chip
->pagebuf
|| oob
) {
2010 bufpoi
= use_bufpoi
? chip
->buffers
->databuf
: buf
;
2012 if (use_bufpoi
&& aligned
)
2013 pr_debug("%s: using read bounce buffer for buf@%p\n",
2017 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
2020 * Now read the page into the buffer. Absent an error,
2021 * the read methods return max bitflips per ecc step.
2023 if (unlikely(ops
->mode
== MTD_OPS_RAW
))
2024 ret
= chip
->ecc
.read_page_raw(mtd
, chip
, bufpoi
,
2027 else if (!aligned
&& NAND_HAS_SUBPAGE_READ(chip
) &&
2029 ret
= chip
->ecc
.read_subpage(mtd
, chip
,
2033 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
2034 oob_required
, page
);
2037 /* Invalidate page cache */
2042 max_bitflips
= max_t(unsigned int, max_bitflips
, ret
);
2044 /* Transfer not aligned data */
2046 if (!NAND_HAS_SUBPAGE_READ(chip
) && !oob
&&
2047 !(mtd
->ecc_stats
.failed
- ecc_failures
) &&
2048 (ops
->mode
!= MTD_OPS_RAW
)) {
2049 chip
->pagebuf
= realpage
;
2050 chip
->pagebuf_bitflips
= ret
;
2052 /* Invalidate page cache */
2055 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
2058 if (unlikely(oob
)) {
2059 int toread
= min(oobreadlen
, max_oobsize
);
2062 oob
= nand_transfer_oob(mtd
,
2064 oobreadlen
-= toread
;
2068 if (chip
->options
& NAND_NEED_READRDY
) {
2069 /* Apply delay or wait for ready/busy pin */
2070 if (!chip
->dev_ready
)
2071 udelay(chip
->chip_delay
);
2073 nand_wait_ready(mtd
);
2076 if (mtd
->ecc_stats
.failed
- ecc_failures
) {
2077 if (retry_mode
+ 1 < chip
->read_retries
) {
2079 ret
= nand_setup_read_retry(mtd
,
2084 /* Reset failures; retry */
2085 mtd
->ecc_stats
.failed
= ecc_failures
;
2088 /* No more retry modes; real failure */
2095 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
2097 max_bitflips
= max_t(unsigned int, max_bitflips
,
2098 chip
->pagebuf_bitflips
);
2103 /* Reset to retry mode 0 */
2105 ret
= nand_setup_read_retry(mtd
, 0);
2114 /* For subsequent reads align to page boundary */
2116 /* Increment page address */
2119 page
= realpage
& chip
->pagemask
;
2120 /* Check, if we cross a chip boundary */
2123 chip
->select_chip(mtd
, -1);
2124 chip
->select_chip(mtd
, chipnr
);
2127 chip
->select_chip(mtd
, -1);
2129 ops
->retlen
= ops
->len
- (size_t) readlen
;
2131 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
2139 return max_bitflips
;
2143 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
2144 * @mtd: MTD device structure
2145 * @from: offset to read from
2146 * @len: number of bytes to read
2147 * @retlen: pointer to variable to store the number of read bytes
2148 * @buf: the databuffer to put data
2150 * Get hold of the chip and call nand_do_read.
2152 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
2153 size_t *retlen
, uint8_t *buf
)
2155 struct mtd_oob_ops ops
;
2158 nand_get_device(mtd
, FL_READING
);
2159 memset(&ops
, 0, sizeof(ops
));
2162 ops
.mode
= MTD_OPS_PLACE_OOB
;
2163 ret
= nand_do_read_ops(mtd
, from
, &ops
);
2164 *retlen
= ops
.retlen
;
2165 nand_release_device(mtd
);
2170 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
2171 * @mtd: mtd info structure
2172 * @chip: nand chip info structure
2173 * @page: page number to read
2175 int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
, int page
)
2177 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
2178 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2181 EXPORT_SYMBOL(nand_read_oob_std
);
2184 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
2186 * @mtd: mtd info structure
2187 * @chip: nand chip info structure
2188 * @page: page number to read
2190 int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2193 int length
= mtd
->oobsize
;
2194 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
2195 int eccsize
= chip
->ecc
.size
;
2196 uint8_t *bufpoi
= chip
->oob_poi
;
2197 int i
, toread
, sndrnd
= 0, pos
;
2199 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
2200 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
2202 pos
= eccsize
+ i
* (eccsize
+ chunk
);
2203 if (mtd
->writesize
> 512)
2204 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
2206 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
2209 toread
= min_t(int, length
, chunk
);
2210 chip
->read_buf(mtd
, bufpoi
, toread
);
2215 chip
->read_buf(mtd
, bufpoi
, length
);
2219 EXPORT_SYMBOL(nand_read_oob_syndrome
);
2222 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
2223 * @mtd: mtd info structure
2224 * @chip: nand chip info structure
2225 * @page: page number to write
2227 int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
, int page
)
2230 const uint8_t *buf
= chip
->oob_poi
;
2231 int length
= mtd
->oobsize
;
2233 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
2234 chip
->write_buf(mtd
, buf
, length
);
2235 /* Send command to program the OOB data */
2236 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2238 status
= chip
->waitfunc(mtd
, chip
);
2240 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
2242 EXPORT_SYMBOL(nand_write_oob_std
);
2245 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
2246 * with syndrome - only for large page flash
2247 * @mtd: mtd info structure
2248 * @chip: nand chip info structure
2249 * @page: page number to write
2251 int nand_write_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2254 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
2255 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
2256 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
2257 const uint8_t *bufpoi
= chip
->oob_poi
;
2260 * data-ecc-data-ecc ... ecc-oob
2262 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
2264 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
2265 pos
= steps
* (eccsize
+ chunk
);
2270 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
2271 for (i
= 0; i
< steps
; i
++) {
2273 if (mtd
->writesize
<= 512) {
2274 uint32_t fill
= 0xFFFFFFFF;
2278 int num
= min_t(int, len
, 4);
2279 chip
->write_buf(mtd
, (uint8_t *)&fill
,
2284 pos
= eccsize
+ i
* (eccsize
+ chunk
);
2285 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
2289 len
= min_t(int, length
, chunk
);
2290 chip
->write_buf(mtd
, bufpoi
, len
);
2295 chip
->write_buf(mtd
, bufpoi
, length
);
2297 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2298 status
= chip
->waitfunc(mtd
, chip
);
2300 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
2302 EXPORT_SYMBOL(nand_write_oob_syndrome
);
2305 * nand_do_read_oob - [INTERN] NAND read out-of-band
2306 * @mtd: MTD device structure
2307 * @from: offset to read from
2308 * @ops: oob operations description structure
2310 * NAND read out-of-band data from the spare area.
2312 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
2313 struct mtd_oob_ops
*ops
)
2315 int page
, realpage
, chipnr
;
2316 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2317 struct mtd_ecc_stats stats
;
2318 int readlen
= ops
->ooblen
;
2320 uint8_t *buf
= ops
->oobbuf
;
2323 pr_debug("%s: from = 0x%08Lx, len = %i\n",
2324 __func__
, (unsigned long long)from
, readlen
);
2326 stats
= mtd
->ecc_stats
;
2328 len
= mtd_oobavail(mtd
, ops
);
2330 if (unlikely(ops
->ooboffs
>= len
)) {
2331 pr_debug("%s: attempt to start read outside oob\n",
2336 /* Do not allow reads past end of device */
2337 if (unlikely(from
>= mtd
->size
||
2338 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
2339 (from
>> chip
->page_shift
)) * len
)) {
2340 pr_debug("%s: attempt to read beyond end of device\n",
2345 chipnr
= (int)(from
>> chip
->chip_shift
);
2346 chip
->select_chip(mtd
, chipnr
);
2348 /* Shift to get page */
2349 realpage
= (int)(from
>> chip
->page_shift
);
2350 page
= realpage
& chip
->pagemask
;
2353 if (ops
->mode
== MTD_OPS_RAW
)
2354 ret
= chip
->ecc
.read_oob_raw(mtd
, chip
, page
);
2356 ret
= chip
->ecc
.read_oob(mtd
, chip
, page
);
2361 len
= min(len
, readlen
);
2362 buf
= nand_transfer_oob(mtd
, buf
, ops
, len
);
2364 if (chip
->options
& NAND_NEED_READRDY
) {
2365 /* Apply delay or wait for ready/busy pin */
2366 if (!chip
->dev_ready
)
2367 udelay(chip
->chip_delay
);
2369 nand_wait_ready(mtd
);
2376 /* Increment page address */
2379 page
= realpage
& chip
->pagemask
;
2380 /* Check, if we cross a chip boundary */
2383 chip
->select_chip(mtd
, -1);
2384 chip
->select_chip(mtd
, chipnr
);
2387 chip
->select_chip(mtd
, -1);
2389 ops
->oobretlen
= ops
->ooblen
- readlen
;
2394 if (mtd
->ecc_stats
.failed
- stats
.failed
)
2397 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
2401 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2402 * @mtd: MTD device structure
2403 * @from: offset to read from
2404 * @ops: oob operation description structure
2406 * NAND read data and/or out-of-band data.
2408 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
2409 struct mtd_oob_ops
*ops
)
2415 /* Do not allow reads past end of device */
2416 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
2417 pr_debug("%s: attempt to read beyond end of device\n",
2422 if (ops
->mode
!= MTD_OPS_PLACE_OOB
&&
2423 ops
->mode
!= MTD_OPS_AUTO_OOB
&&
2424 ops
->mode
!= MTD_OPS_RAW
)
2427 nand_get_device(mtd
, FL_READING
);
2430 ret
= nand_do_read_oob(mtd
, from
, ops
);
2432 ret
= nand_do_read_ops(mtd
, from
, ops
);
2434 nand_release_device(mtd
);
2440 * nand_write_page_raw - [INTERN] raw page write function
2441 * @mtd: mtd info structure
2442 * @chip: nand chip info structure
2444 * @oob_required: must write chip->oob_poi to OOB
2445 * @page: page number to write
2447 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2449 static int nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2450 const uint8_t *buf
, int oob_required
, int page
)
2452 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
2454 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2460 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2461 * @mtd: mtd info structure
2462 * @chip: nand chip info structure
2464 * @oob_required: must write chip->oob_poi to OOB
2465 * @page: page number to write
2467 * We need a special oob layout and handling even when ECC isn't checked.
2469 static int nand_write_page_raw_syndrome(struct mtd_info
*mtd
,
2470 struct nand_chip
*chip
,
2471 const uint8_t *buf
, int oob_required
,
2474 int eccsize
= chip
->ecc
.size
;
2475 int eccbytes
= chip
->ecc
.bytes
;
2476 uint8_t *oob
= chip
->oob_poi
;
2479 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
2480 chip
->write_buf(mtd
, buf
, eccsize
);
2483 if (chip
->ecc
.prepad
) {
2484 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2485 oob
+= chip
->ecc
.prepad
;
2488 chip
->write_buf(mtd
, oob
, eccbytes
);
2491 if (chip
->ecc
.postpad
) {
2492 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2493 oob
+= chip
->ecc
.postpad
;
2497 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2499 chip
->write_buf(mtd
, oob
, size
);
2504 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2505 * @mtd: mtd info structure
2506 * @chip: nand chip info structure
2508 * @oob_required: must write chip->oob_poi to OOB
2509 * @page: page number to write
2511 static int nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2512 const uint8_t *buf
, int oob_required
,
2515 int i
, eccsize
= chip
->ecc
.size
, ret
;
2516 int eccbytes
= chip
->ecc
.bytes
;
2517 int eccsteps
= chip
->ecc
.steps
;
2518 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2519 const uint8_t *p
= buf
;
2521 /* Software ECC calculation */
2522 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
2523 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
2525 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
2530 return chip
->ecc
.write_page_raw(mtd
, chip
, buf
, 1, page
);
2534 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2535 * @mtd: mtd info structure
2536 * @chip: nand chip info structure
2538 * @oob_required: must write chip->oob_poi to OOB
2539 * @page: page number to write
2541 static int nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2542 const uint8_t *buf
, int oob_required
,
2545 int i
, eccsize
= chip
->ecc
.size
, ret
;
2546 int eccbytes
= chip
->ecc
.bytes
;
2547 int eccsteps
= chip
->ecc
.steps
;
2548 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2549 const uint8_t *p
= buf
;
2551 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2552 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2553 chip
->write_buf(mtd
, p
, eccsize
);
2554 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
2557 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
2562 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2569 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2570 * @mtd: mtd info structure
2571 * @chip: nand chip info structure
2572 * @offset: column address of subpage within the page
2573 * @data_len: data length
2575 * @oob_required: must write chip->oob_poi to OOB
2576 * @page: page number to write
2578 static int nand_write_subpage_hwecc(struct mtd_info
*mtd
,
2579 struct nand_chip
*chip
, uint32_t offset
,
2580 uint32_t data_len
, const uint8_t *buf
,
2581 int oob_required
, int page
)
2583 uint8_t *oob_buf
= chip
->oob_poi
;
2584 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2585 int ecc_size
= chip
->ecc
.size
;
2586 int ecc_bytes
= chip
->ecc
.bytes
;
2587 int ecc_steps
= chip
->ecc
.steps
;
2588 uint32_t start_step
= offset
/ ecc_size
;
2589 uint32_t end_step
= (offset
+ data_len
- 1) / ecc_size
;
2590 int oob_bytes
= mtd
->oobsize
/ ecc_steps
;
2593 for (step
= 0; step
< ecc_steps
; step
++) {
2594 /* configure controller for WRITE access */
2595 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2597 /* write data (untouched subpages already masked by 0xFF) */
2598 chip
->write_buf(mtd
, buf
, ecc_size
);
2600 /* mask ECC of un-touched subpages by padding 0xFF */
2601 if ((step
< start_step
) || (step
> end_step
))
2602 memset(ecc_calc
, 0xff, ecc_bytes
);
2604 chip
->ecc
.calculate(mtd
, buf
, ecc_calc
);
2606 /* mask OOB of un-touched subpages by padding 0xFF */
2607 /* if oob_required, preserve OOB metadata of written subpage */
2608 if (!oob_required
|| (step
< start_step
) || (step
> end_step
))
2609 memset(oob_buf
, 0xff, oob_bytes
);
2612 ecc_calc
+= ecc_bytes
;
2613 oob_buf
+= oob_bytes
;
2616 /* copy calculated ECC for whole page to chip->buffer->oob */
2617 /* this include masked-value(0xFF) for unwritten subpages */
2618 ecc_calc
= chip
->buffers
->ecccalc
;
2619 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
2624 /* write OOB buffer to NAND device */
2625 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2632 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2633 * @mtd: mtd info structure
2634 * @chip: nand chip info structure
2636 * @oob_required: must write chip->oob_poi to OOB
2637 * @page: page number to write
2639 * The hw generator calculates the error syndrome automatically. Therefore we
2640 * need a special oob layout and handling.
2642 static int nand_write_page_syndrome(struct mtd_info
*mtd
,
2643 struct nand_chip
*chip
,
2644 const uint8_t *buf
, int oob_required
,
2647 int i
, eccsize
= chip
->ecc
.size
;
2648 int eccbytes
= chip
->ecc
.bytes
;
2649 int eccsteps
= chip
->ecc
.steps
;
2650 const uint8_t *p
= buf
;
2651 uint8_t *oob
= chip
->oob_poi
;
2653 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2655 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2656 chip
->write_buf(mtd
, p
, eccsize
);
2658 if (chip
->ecc
.prepad
) {
2659 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2660 oob
+= chip
->ecc
.prepad
;
2663 chip
->ecc
.calculate(mtd
, p
, oob
);
2664 chip
->write_buf(mtd
, oob
, eccbytes
);
2667 if (chip
->ecc
.postpad
) {
2668 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2669 oob
+= chip
->ecc
.postpad
;
2673 /* Calculate remaining oob bytes */
2674 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2676 chip
->write_buf(mtd
, oob
, i
);
2682 * nand_write_page - [REPLACEABLE] write one page
2683 * @mtd: MTD device structure
2684 * @chip: NAND chip descriptor
2685 * @offset: address offset within the page
2686 * @data_len: length of actual data to be written
2687 * @buf: the data to write
2688 * @oob_required: must write chip->oob_poi to OOB
2689 * @page: page number to write
2690 * @cached: cached programming
2691 * @raw: use _raw version of write_page
2693 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2694 uint32_t offset
, int data_len
, const uint8_t *buf
,
2695 int oob_required
, int page
, int cached
, int raw
)
2697 int status
, subpage
;
2699 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
2700 chip
->ecc
.write_subpage
)
2701 subpage
= offset
|| (data_len
< mtd
->writesize
);
2705 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
2708 status
= chip
->ecc
.write_page_raw(mtd
, chip
, buf
,
2709 oob_required
, page
);
2711 status
= chip
->ecc
.write_subpage(mtd
, chip
, offset
, data_len
,
2712 buf
, oob_required
, page
);
2714 status
= chip
->ecc
.write_page(mtd
, chip
, buf
, oob_required
,
2721 * Cached progamming disabled for now. Not sure if it's worth the
2722 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2726 if (!cached
|| !NAND_HAS_CACHEPROG(chip
)) {
2728 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2729 status
= chip
->waitfunc(mtd
, chip
);
2731 * See if operation failed and additional status checks are
2734 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2735 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
2738 if (status
& NAND_STATUS_FAIL
)
2741 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
2742 status
= chip
->waitfunc(mtd
, chip
);
2749 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2750 * @mtd: MTD device structure
2751 * @oob: oob data buffer
2752 * @len: oob data write length
2753 * @ops: oob ops structure
2755 static uint8_t *nand_fill_oob(struct mtd_info
*mtd
, uint8_t *oob
, size_t len
,
2756 struct mtd_oob_ops
*ops
)
2758 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2762 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2763 * data from a previous OOB read.
2765 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2767 switch (ops
->mode
) {
2769 case MTD_OPS_PLACE_OOB
:
2771 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
2774 case MTD_OPS_AUTO_OOB
:
2775 ret
= mtd_ooblayout_set_databytes(mtd
, oob
, chip
->oob_poi
,
2786 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2789 * nand_do_write_ops - [INTERN] NAND write with ECC
2790 * @mtd: MTD device structure
2791 * @to: offset to write to
2792 * @ops: oob operations description structure
2794 * NAND write with ECC.
2796 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
2797 struct mtd_oob_ops
*ops
)
2799 int chipnr
, realpage
, page
, blockmask
, column
;
2800 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2801 uint32_t writelen
= ops
->len
;
2803 uint32_t oobwritelen
= ops
->ooblen
;
2804 uint32_t oobmaxlen
= mtd_oobavail(mtd
, ops
);
2806 uint8_t *oob
= ops
->oobbuf
;
2807 uint8_t *buf
= ops
->datbuf
;
2809 int oob_required
= oob
? 1 : 0;
2815 /* Reject writes, which are not page aligned */
2816 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
2817 pr_notice("%s: attempt to write non page aligned data\n",
2822 column
= to
& (mtd
->writesize
- 1);
2824 chipnr
= (int)(to
>> chip
->chip_shift
);
2825 chip
->select_chip(mtd
, chipnr
);
2827 /* Check, if it is write protected */
2828 if (nand_check_wp(mtd
)) {
2833 realpage
= (int)(to
>> chip
->page_shift
);
2834 page
= realpage
& chip
->pagemask
;
2835 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
2837 /* Invalidate the page cache, when we write to the cached page */
2838 if (to
<= ((loff_t
)chip
->pagebuf
<< chip
->page_shift
) &&
2839 ((loff_t
)chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
2842 /* Don't allow multipage oob writes with offset */
2843 if (oob
&& ops
->ooboffs
&& (ops
->ooboffs
+ ops
->ooblen
> oobmaxlen
)) {
2849 int bytes
= mtd
->writesize
;
2850 int cached
= writelen
> bytes
&& page
!= blockmask
;
2851 uint8_t *wbuf
= buf
;
2853 int part_pagewr
= (column
|| writelen
< mtd
->writesize
);
2857 else if (chip
->options
& NAND_USE_BOUNCE_BUFFER
)
2858 use_bufpoi
= !virt_addr_valid(buf
);
2862 /* Partial page write?, or need to use bounce buffer */
2864 pr_debug("%s: using write bounce buffer for buf@%p\n",
2868 bytes
= min_t(int, bytes
- column
, writelen
);
2870 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
2871 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
2872 wbuf
= chip
->buffers
->databuf
;
2875 if (unlikely(oob
)) {
2876 size_t len
= min(oobwritelen
, oobmaxlen
);
2877 oob
= nand_fill_oob(mtd
, oob
, len
, ops
);
2880 /* We still need to erase leftover OOB data */
2881 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2883 ret
= chip
->write_page(mtd
, chip
, column
, bytes
, wbuf
,
2884 oob_required
, page
, cached
,
2885 (ops
->mode
== MTD_OPS_RAW
));
2897 page
= realpage
& chip
->pagemask
;
2898 /* Check, if we cross a chip boundary */
2901 chip
->select_chip(mtd
, -1);
2902 chip
->select_chip(mtd
, chipnr
);
2906 ops
->retlen
= ops
->len
- writelen
;
2908 ops
->oobretlen
= ops
->ooblen
;
2911 chip
->select_chip(mtd
, -1);
2916 * panic_nand_write - [MTD Interface] NAND write with ECC
2917 * @mtd: MTD device structure
2918 * @to: offset to write to
2919 * @len: number of bytes to write
2920 * @retlen: pointer to variable to store the number of written bytes
2921 * @buf: the data to write
2923 * NAND write with ECC. Used when performing writes in interrupt context, this
2924 * may for example be called by mtdoops when writing an oops while in panic.
2926 static int panic_nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2927 size_t *retlen
, const uint8_t *buf
)
2929 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2930 struct mtd_oob_ops ops
;
2933 /* Wait for the device to get ready */
2934 panic_nand_wait(mtd
, chip
, 400);
2936 /* Grab the device */
2937 panic_nand_get_device(chip
, mtd
, FL_WRITING
);
2939 memset(&ops
, 0, sizeof(ops
));
2941 ops
.datbuf
= (uint8_t *)buf
;
2942 ops
.mode
= MTD_OPS_PLACE_OOB
;
2944 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2946 *retlen
= ops
.retlen
;
2951 * nand_write - [MTD Interface] NAND write with ECC
2952 * @mtd: MTD device structure
2953 * @to: offset to write to
2954 * @len: number of bytes to write
2955 * @retlen: pointer to variable to store the number of written bytes
2956 * @buf: the data to write
2958 * NAND write with ECC.
2960 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2961 size_t *retlen
, const uint8_t *buf
)
2963 struct mtd_oob_ops ops
;
2966 nand_get_device(mtd
, FL_WRITING
);
2967 memset(&ops
, 0, sizeof(ops
));
2969 ops
.datbuf
= (uint8_t *)buf
;
2970 ops
.mode
= MTD_OPS_PLACE_OOB
;
2971 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2972 *retlen
= ops
.retlen
;
2973 nand_release_device(mtd
);
2978 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2979 * @mtd: MTD device structure
2980 * @to: offset to write to
2981 * @ops: oob operation description structure
2983 * NAND write out-of-band.
2985 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
2986 struct mtd_oob_ops
*ops
)
2988 int chipnr
, page
, status
, len
;
2989 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2991 pr_debug("%s: to = 0x%08x, len = %i\n",
2992 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
2994 len
= mtd_oobavail(mtd
, ops
);
2996 /* Do not allow write past end of page */
2997 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2998 pr_debug("%s: attempt to write past end of page\n",
3003 if (unlikely(ops
->ooboffs
>= len
)) {
3004 pr_debug("%s: attempt to start write outside oob\n",
3009 /* Do not allow write past end of device */
3010 if (unlikely(to
>= mtd
->size
||
3011 ops
->ooboffs
+ ops
->ooblen
>
3012 ((mtd
->size
>> chip
->page_shift
) -
3013 (to
>> chip
->page_shift
)) * len
)) {
3014 pr_debug("%s: attempt to write beyond end of device\n",
3019 chipnr
= (int)(to
>> chip
->chip_shift
);
3022 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
3023 * of my DiskOnChip 2000 test units) will clear the whole data page too
3024 * if we don't do this. I have no clue why, but I seem to have 'fixed'
3025 * it in the doc2000 driver in August 1999. dwmw2.
3027 nand_reset(chip
, chipnr
);
3029 chip
->select_chip(mtd
, chipnr
);
3031 /* Shift to get page */
3032 page
= (int)(to
>> chip
->page_shift
);
3034 /* Check, if it is write protected */
3035 if (nand_check_wp(mtd
)) {
3036 chip
->select_chip(mtd
, -1);
3040 /* Invalidate the page cache, if we write to the cached page */
3041 if (page
== chip
->pagebuf
)
3044 nand_fill_oob(mtd
, ops
->oobbuf
, ops
->ooblen
, ops
);
3046 if (ops
->mode
== MTD_OPS_RAW
)
3047 status
= chip
->ecc
.write_oob_raw(mtd
, chip
, page
& chip
->pagemask
);
3049 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
3051 chip
->select_chip(mtd
, -1);
3056 ops
->oobretlen
= ops
->ooblen
;
3062 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
3063 * @mtd: MTD device structure
3064 * @to: offset to write to
3065 * @ops: oob operation description structure
3067 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
3068 struct mtd_oob_ops
*ops
)
3070 int ret
= -ENOTSUPP
;
3074 /* Do not allow writes past end of device */
3075 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
3076 pr_debug("%s: attempt to write beyond end of device\n",
3081 nand_get_device(mtd
, FL_WRITING
);
3083 switch (ops
->mode
) {
3084 case MTD_OPS_PLACE_OOB
:
3085 case MTD_OPS_AUTO_OOB
:
3094 ret
= nand_do_write_oob(mtd
, to
, ops
);
3096 ret
= nand_do_write_ops(mtd
, to
, ops
);
3099 nand_release_device(mtd
);
3104 * single_erase - [GENERIC] NAND standard block erase command function
3105 * @mtd: MTD device structure
3106 * @page: the page address of the block which will be erased
3108 * Standard erase command for NAND chips. Returns NAND status.
3110 static int single_erase(struct mtd_info
*mtd
, int page
)
3112 struct nand_chip
*chip
= mtd_to_nand(mtd
);
3113 /* Send commands to erase a block */
3114 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
3115 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
3117 return chip
->waitfunc(mtd
, chip
);
3121 * nand_erase - [MTD Interface] erase block(s)
3122 * @mtd: MTD device structure
3123 * @instr: erase instruction
3125 * Erase one ore more blocks.
3127 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
3129 return nand_erase_nand(mtd
, instr
, 0);
3133 * nand_erase_nand - [INTERN] erase block(s)
3134 * @mtd: MTD device structure
3135 * @instr: erase instruction
3136 * @allowbbt: allow erasing the bbt area
3138 * Erase one ore more blocks.
3140 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
3143 int page
, status
, pages_per_block
, ret
, chipnr
;
3144 struct nand_chip
*chip
= mtd_to_nand(mtd
);
3147 pr_debug("%s: start = 0x%012llx, len = %llu\n",
3148 __func__
, (unsigned long long)instr
->addr
,
3149 (unsigned long long)instr
->len
);
3151 if (check_offs_len(mtd
, instr
->addr
, instr
->len
))
3154 /* Grab the lock and see if the device is available */
3155 nand_get_device(mtd
, FL_ERASING
);
3157 /* Shift to get first page */
3158 page
= (int)(instr
->addr
>> chip
->page_shift
);
3159 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
3161 /* Calculate pages in each block */
3162 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
3164 /* Select the NAND device */
3165 chip
->select_chip(mtd
, chipnr
);
3167 /* Check, if it is write protected */
3168 if (nand_check_wp(mtd
)) {
3169 pr_debug("%s: device is write protected!\n",
3171 instr
->state
= MTD_ERASE_FAILED
;
3175 /* Loop through the pages */
3178 instr
->state
= MTD_ERASING
;
3181 /* Check if we have a bad block, we do not erase bad blocks! */
3182 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
3183 chip
->page_shift
, allowbbt
)) {
3184 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
3186 instr
->state
= MTD_ERASE_FAILED
;
3191 * Invalidate the page cache, if we erase the block which
3192 * contains the current cached page.
3194 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
3195 (page
+ pages_per_block
))
3198 status
= chip
->erase(mtd
, page
& chip
->pagemask
);
3201 * See if operation failed and additional status checks are
3204 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
3205 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
3208 /* See if block erase succeeded */
3209 if (status
& NAND_STATUS_FAIL
) {
3210 pr_debug("%s: failed erase, page 0x%08x\n",
3212 instr
->state
= MTD_ERASE_FAILED
;
3214 ((loff_t
)page
<< chip
->page_shift
);
3218 /* Increment page address and decrement length */
3219 len
-= (1ULL << chip
->phys_erase_shift
);
3220 page
+= pages_per_block
;
3222 /* Check, if we cross a chip boundary */
3223 if (len
&& !(page
& chip
->pagemask
)) {
3225 chip
->select_chip(mtd
, -1);
3226 chip
->select_chip(mtd
, chipnr
);
3229 instr
->state
= MTD_ERASE_DONE
;
3233 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
3235 /* Deselect and wake up anyone waiting on the device */
3236 chip
->select_chip(mtd
, -1);
3237 nand_release_device(mtd
);
3239 /* Do call back function */
3241 mtd_erase_callback(instr
);
3243 /* Return more or less happy */
3248 * nand_sync - [MTD Interface] sync
3249 * @mtd: MTD device structure
3251 * Sync is actually a wait for chip ready function.
3253 static void nand_sync(struct mtd_info
*mtd
)
3255 pr_debug("%s: called\n", __func__
);
3257 /* Grab the lock and see if the device is available */
3258 nand_get_device(mtd
, FL_SYNCING
);
3259 /* Release it and go back */
3260 nand_release_device(mtd
);
3264 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3265 * @mtd: MTD device structure
3266 * @offs: offset relative to mtd start
3268 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
3270 struct nand_chip
*chip
= mtd_to_nand(mtd
);
3271 int chipnr
= (int)(offs
>> chip
->chip_shift
);
3274 /* Select the NAND device */
3275 nand_get_device(mtd
, FL_READING
);
3276 chip
->select_chip(mtd
, chipnr
);
3278 ret
= nand_block_checkbad(mtd
, offs
, 0);
3280 chip
->select_chip(mtd
, -1);
3281 nand_release_device(mtd
);
3287 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3288 * @mtd: MTD device structure
3289 * @ofs: offset relative to mtd start
3291 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
3295 ret
= nand_block_isbad(mtd
, ofs
);
3297 /* If it was bad already, return success and do nothing */
3303 return nand_block_markbad_lowlevel(mtd
, ofs
);
3307 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3308 * @mtd: MTD device structure
3309 * @chip: nand chip info structure
3310 * @addr: feature address.
3311 * @subfeature_param: the subfeature parameters, a four bytes array.
3313 static int nand_onfi_set_features(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3314 int addr
, uint8_t *subfeature_param
)
3319 if (!chip
->onfi_version
||
3320 !(le16_to_cpu(chip
->onfi_params
.opt_cmd
)
3321 & ONFI_OPT_CMD_SET_GET_FEATURES
))
3324 chip
->cmdfunc(mtd
, NAND_CMD_SET_FEATURES
, addr
, -1);
3325 for (i
= 0; i
< ONFI_SUBFEATURE_PARAM_LEN
; ++i
)
3326 chip
->write_byte(mtd
, subfeature_param
[i
]);
3328 status
= chip
->waitfunc(mtd
, chip
);
3329 if (status
& NAND_STATUS_FAIL
)
3335 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3336 * @mtd: MTD device structure
3337 * @chip: nand chip info structure
3338 * @addr: feature address.
3339 * @subfeature_param: the subfeature parameters, a four bytes array.
3341 static int nand_onfi_get_features(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3342 int addr
, uint8_t *subfeature_param
)
3346 if (!chip
->onfi_version
||
3347 !(le16_to_cpu(chip
->onfi_params
.opt_cmd
)
3348 & ONFI_OPT_CMD_SET_GET_FEATURES
))
3351 chip
->cmdfunc(mtd
, NAND_CMD_GET_FEATURES
, addr
, -1);
3352 for (i
= 0; i
< ONFI_SUBFEATURE_PARAM_LEN
; ++i
)
3353 *subfeature_param
++ = chip
->read_byte(mtd
);
3358 * nand_suspend - [MTD Interface] Suspend the NAND flash
3359 * @mtd: MTD device structure
3361 static int nand_suspend(struct mtd_info
*mtd
)
3363 return nand_get_device(mtd
, FL_PM_SUSPENDED
);
3367 * nand_resume - [MTD Interface] Resume the NAND flash
3368 * @mtd: MTD device structure
3370 static void nand_resume(struct mtd_info
*mtd
)
3372 struct nand_chip
*chip
= mtd_to_nand(mtd
);
3374 if (chip
->state
== FL_PM_SUSPENDED
)
3375 nand_release_device(mtd
);
3377 pr_err("%s called for a chip which is not in suspended state\n",
3382 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3383 * prevent further operations
3384 * @mtd: MTD device structure
3386 static void nand_shutdown(struct mtd_info
*mtd
)
3388 nand_get_device(mtd
, FL_PM_SUSPENDED
);
3391 /* Set default functions */
3392 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
3394 /* check for proper chip_delay setup, set 20us if not */
3395 if (!chip
->chip_delay
)
3396 chip
->chip_delay
= 20;
3398 /* check, if a user supplied command function given */
3399 if (chip
->cmdfunc
== NULL
)
3400 chip
->cmdfunc
= nand_command
;
3402 /* check, if a user supplied wait function given */
3403 if (chip
->waitfunc
== NULL
)
3404 chip
->waitfunc
= nand_wait
;
3406 if (!chip
->select_chip
)
3407 chip
->select_chip
= nand_select_chip
;
3409 /* set for ONFI nand */
3410 if (!chip
->onfi_set_features
)
3411 chip
->onfi_set_features
= nand_onfi_set_features
;
3412 if (!chip
->onfi_get_features
)
3413 chip
->onfi_get_features
= nand_onfi_get_features
;
3415 /* If called twice, pointers that depend on busw may need to be reset */
3416 if (!chip
->read_byte
|| chip
->read_byte
== nand_read_byte
)
3417 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
3418 if (!chip
->read_word
)
3419 chip
->read_word
= nand_read_word
;
3420 if (!chip
->block_bad
)
3421 chip
->block_bad
= nand_block_bad
;
3422 if (!chip
->block_markbad
)
3423 chip
->block_markbad
= nand_default_block_markbad
;
3424 if (!chip
->write_buf
|| chip
->write_buf
== nand_write_buf
)
3425 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
3426 if (!chip
->write_byte
|| chip
->write_byte
== nand_write_byte
)
3427 chip
->write_byte
= busw
? nand_write_byte16
: nand_write_byte
;
3428 if (!chip
->read_buf
|| chip
->read_buf
== nand_read_buf
)
3429 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
3430 if (!chip
->scan_bbt
)
3431 chip
->scan_bbt
= nand_default_bbt
;
3433 if (!chip
->controller
) {
3434 chip
->controller
= &chip
->hwcontrol
;
3435 nand_hw_control_init(chip
->controller
);
3440 /* Sanitize ONFI strings so we can safely print them */
3441 static void sanitize_string(uint8_t *s
, size_t len
)
3445 /* Null terminate */
3448 /* Remove non printable chars */
3449 for (i
= 0; i
< len
- 1; i
++) {
3450 if (s
[i
] < ' ' || s
[i
] > 127)
3454 /* Remove trailing spaces */
3458 static u16
onfi_crc16(u16 crc
, u8
const *p
, size_t len
)
3463 for (i
= 0; i
< 8; i
++)
3464 crc
= (crc
<< 1) ^ ((crc
& 0x8000) ? 0x8005 : 0);
3470 /* Parse the Extended Parameter Page. */
3471 static int nand_flash_detect_ext_param_page(struct mtd_info
*mtd
,
3472 struct nand_chip
*chip
, struct nand_onfi_params
*p
)
3474 struct onfi_ext_param_page
*ep
;
3475 struct onfi_ext_section
*s
;
3476 struct onfi_ext_ecc_info
*ecc
;
3482 len
= le16_to_cpu(p
->ext_param_page_length
) * 16;
3483 ep
= kmalloc(len
, GFP_KERNEL
);
3487 /* Send our own NAND_CMD_PARAM. */
3488 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
3490 /* Use the Change Read Column command to skip the ONFI param pages. */
3491 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
3492 sizeof(*p
) * p
->num_of_param_pages
, -1);
3494 /* Read out the Extended Parameter Page. */
3495 chip
->read_buf(mtd
, (uint8_t *)ep
, len
);
3496 if ((onfi_crc16(ONFI_CRC_BASE
, ((uint8_t *)ep
) + 2, len
- 2)
3497 != le16_to_cpu(ep
->crc
))) {
3498 pr_debug("fail in the CRC.\n");
3503 * Check the signature.
3504 * Do not strictly follow the ONFI spec, maybe changed in future.
3506 if (strncmp(ep
->sig
, "EPPS", 4)) {
3507 pr_debug("The signature is invalid.\n");
3511 /* find the ECC section. */
3512 cursor
= (uint8_t *)(ep
+ 1);
3513 for (i
= 0; i
< ONFI_EXT_SECTION_MAX
; i
++) {
3514 s
= ep
->sections
+ i
;
3515 if (s
->type
== ONFI_SECTION_TYPE_2
)
3517 cursor
+= s
->length
* 16;
3519 if (i
== ONFI_EXT_SECTION_MAX
) {
3520 pr_debug("We can not find the ECC section.\n");
3524 /* get the info we want. */
3525 ecc
= (struct onfi_ext_ecc_info
*)cursor
;
3527 if (!ecc
->codeword_size
) {
3528 pr_debug("Invalid codeword size\n");
3532 chip
->ecc_strength_ds
= ecc
->ecc_bits
;
3533 chip
->ecc_step_ds
= 1 << ecc
->codeword_size
;
3541 static int nand_setup_read_retry_micron(struct mtd_info
*mtd
, int retry_mode
)
3543 struct nand_chip
*chip
= mtd_to_nand(mtd
);
3544 uint8_t feature
[ONFI_SUBFEATURE_PARAM_LEN
] = {retry_mode
};
3546 return chip
->onfi_set_features(mtd
, chip
, ONFI_FEATURE_ADDR_READ_RETRY
,
3551 * Configure chip properties from Micron vendor-specific ONFI table
3553 static void nand_onfi_detect_micron(struct nand_chip
*chip
,
3554 struct nand_onfi_params
*p
)
3556 struct nand_onfi_vendor_micron
*micron
= (void *)p
->vendor
;
3558 if (le16_to_cpu(p
->vendor_revision
) < 1)
3561 chip
->read_retries
= micron
->read_retry_options
;
3562 chip
->setup_read_retry
= nand_setup_read_retry_micron
;
3566 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3568 static int nand_flash_detect_onfi(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3571 struct nand_onfi_params
*p
= &chip
->onfi_params
;
3575 /* Try ONFI for unknown chip or LP */
3576 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x20, -1);
3577 if (chip
->read_byte(mtd
) != 'O' || chip
->read_byte(mtd
) != 'N' ||
3578 chip
->read_byte(mtd
) != 'F' || chip
->read_byte(mtd
) != 'I')
3581 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
3582 for (i
= 0; i
< 3; i
++) {
3583 for (j
= 0; j
< sizeof(*p
); j
++)
3584 ((uint8_t *)p
)[j
] = chip
->read_byte(mtd
);
3585 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 254) ==
3586 le16_to_cpu(p
->crc
)) {
3592 pr_err("Could not find valid ONFI parameter page; aborting\n");
3597 val
= le16_to_cpu(p
->revision
);
3599 chip
->onfi_version
= 23;
3600 else if (val
& (1 << 4))
3601 chip
->onfi_version
= 22;
3602 else if (val
& (1 << 3))
3603 chip
->onfi_version
= 21;
3604 else if (val
& (1 << 2))
3605 chip
->onfi_version
= 20;
3606 else if (val
& (1 << 1))
3607 chip
->onfi_version
= 10;
3609 if (!chip
->onfi_version
) {
3610 pr_info("unsupported ONFI version: %d\n", val
);
3614 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
3615 sanitize_string(p
->model
, sizeof(p
->model
));
3617 mtd
->name
= p
->model
;
3619 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
3622 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3623 * (don't ask me who thought of this...). MTD assumes that these
3624 * dimensions will be power-of-2, so just truncate the remaining area.
3626 mtd
->erasesize
= 1 << (fls(le32_to_cpu(p
->pages_per_block
)) - 1);
3627 mtd
->erasesize
*= mtd
->writesize
;
3629 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
3631 /* See erasesize comment */
3632 chip
->chipsize
= 1 << (fls(le32_to_cpu(p
->blocks_per_lun
)) - 1);
3633 chip
->chipsize
*= (uint64_t)mtd
->erasesize
* p
->lun_count
;
3634 chip
->bits_per_cell
= p
->bits_per_cell
;
3636 if (onfi_feature(chip
) & ONFI_FEATURE_16_BIT_BUS
)
3637 *busw
= NAND_BUSWIDTH_16
;
3641 if (p
->ecc_bits
!= 0xff) {
3642 chip
->ecc_strength_ds
= p
->ecc_bits
;
3643 chip
->ecc_step_ds
= 512;
3644 } else if (chip
->onfi_version
>= 21 &&
3645 (onfi_feature(chip
) & ONFI_FEATURE_EXT_PARAM_PAGE
)) {
3648 * The nand_flash_detect_ext_param_page() uses the
3649 * Change Read Column command which maybe not supported
3650 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3651 * now. We do not replace user supplied command function.
3653 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3654 chip
->cmdfunc
= nand_command_lp
;
3656 /* The Extended Parameter Page is supported since ONFI 2.1. */
3657 if (nand_flash_detect_ext_param_page(mtd
, chip
, p
))
3658 pr_warn("Failed to detect ONFI extended param page\n");
3660 pr_warn("Could not retrieve ONFI ECC requirements\n");
3663 if (p
->jedec_id
== NAND_MFR_MICRON
)
3664 nand_onfi_detect_micron(chip
, p
);
3670 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3672 static int nand_flash_detect_jedec(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3675 struct nand_jedec_params
*p
= &chip
->jedec_params
;
3676 struct jedec_ecc_info
*ecc
;
3680 /* Try JEDEC for unknown chip or LP */
3681 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x40, -1);
3682 if (chip
->read_byte(mtd
) != 'J' || chip
->read_byte(mtd
) != 'E' ||
3683 chip
->read_byte(mtd
) != 'D' || chip
->read_byte(mtd
) != 'E' ||
3684 chip
->read_byte(mtd
) != 'C')
3687 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0x40, -1);
3688 for (i
= 0; i
< 3; i
++) {
3689 for (j
= 0; j
< sizeof(*p
); j
++)
3690 ((uint8_t *)p
)[j
] = chip
->read_byte(mtd
);
3692 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 510) ==
3693 le16_to_cpu(p
->crc
))
3698 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3703 val
= le16_to_cpu(p
->revision
);
3705 chip
->jedec_version
= 10;
3706 else if (val
& (1 << 1))
3707 chip
->jedec_version
= 1; /* vendor specific version */
3709 if (!chip
->jedec_version
) {
3710 pr_info("unsupported JEDEC version: %d\n", val
);
3714 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
3715 sanitize_string(p
->model
, sizeof(p
->model
));
3717 mtd
->name
= p
->model
;
3719 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
3721 /* Please reference to the comment for nand_flash_detect_onfi. */
3722 mtd
->erasesize
= 1 << (fls(le32_to_cpu(p
->pages_per_block
)) - 1);
3723 mtd
->erasesize
*= mtd
->writesize
;
3725 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
3727 /* Please reference to the comment for nand_flash_detect_onfi. */
3728 chip
->chipsize
= 1 << (fls(le32_to_cpu(p
->blocks_per_lun
)) - 1);
3729 chip
->chipsize
*= (uint64_t)mtd
->erasesize
* p
->lun_count
;
3730 chip
->bits_per_cell
= p
->bits_per_cell
;
3732 if (jedec_feature(chip
) & JEDEC_FEATURE_16_BIT_BUS
)
3733 *busw
= NAND_BUSWIDTH_16
;
3738 ecc
= &p
->ecc_info
[0];
3740 if (ecc
->codeword_size
>= 9) {
3741 chip
->ecc_strength_ds
= ecc
->ecc_bits
;
3742 chip
->ecc_step_ds
= 1 << ecc
->codeword_size
;
3744 pr_warn("Invalid codeword size\n");
3751 * nand_id_has_period - Check if an ID string has a given wraparound period
3752 * @id_data: the ID string
3753 * @arrlen: the length of the @id_data array
3754 * @period: the period of repitition
3756 * Check if an ID string is repeated within a given sequence of bytes at
3757 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3758 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3759 * if the repetition has a period of @period; otherwise, returns zero.
3761 static int nand_id_has_period(u8
*id_data
, int arrlen
, int period
)
3764 for (i
= 0; i
< period
; i
++)
3765 for (j
= i
+ period
; j
< arrlen
; j
+= period
)
3766 if (id_data
[i
] != id_data
[j
])
3772 * nand_id_len - Get the length of an ID string returned by CMD_READID
3773 * @id_data: the ID string
3774 * @arrlen: the length of the @id_data array
3776 * Returns the length of the ID string, according to known wraparound/trailing
3777 * zero patterns. If no pattern exists, returns the length of the array.
3779 static int nand_id_len(u8
*id_data
, int arrlen
)
3781 int last_nonzero
, period
;
3783 /* Find last non-zero byte */
3784 for (last_nonzero
= arrlen
- 1; last_nonzero
>= 0; last_nonzero
--)
3785 if (id_data
[last_nonzero
])
3789 if (last_nonzero
< 0)
3792 /* Calculate wraparound period */
3793 for (period
= 1; period
< arrlen
; period
++)
3794 if (nand_id_has_period(id_data
, arrlen
, period
))
3797 /* There's a repeated pattern */
3798 if (period
< arrlen
)
3801 /* There are trailing zeros */
3802 if (last_nonzero
< arrlen
- 1)
3803 return last_nonzero
+ 1;
3805 /* No pattern detected */
3809 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3810 static int nand_get_bits_per_cell(u8 cellinfo
)
3814 bits
= cellinfo
& NAND_CI_CELLTYPE_MSK
;
3815 bits
>>= NAND_CI_CELLTYPE_SHIFT
;
3820 * Many new NAND share similar device ID codes, which represent the size of the
3821 * chip. The rest of the parameters must be decoded according to generic or
3822 * manufacturer-specific "extended ID" decoding patterns.
3824 static void nand_decode_ext_id(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3825 u8 id_data
[8], int *busw
)
3828 /* The 3rd id byte holds MLC / multichip data */
3829 chip
->bits_per_cell
= nand_get_bits_per_cell(id_data
[2]);
3830 /* The 4th id byte is the important one */
3833 id_len
= nand_id_len(id_data
, 8);
3836 * Field definitions are in the following datasheets:
3837 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3838 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3839 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3841 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3842 * ID to decide what to do.
3844 if (id_len
== 6 && id_data
[0] == NAND_MFR_SAMSUNG
&&
3845 !nand_is_slc(chip
) && id_data
[5] != 0x00) {
3847 mtd
->writesize
= 2048 << (extid
& 0x03);
3850 switch (((extid
>> 2) & 0x04) | (extid
& 0x03)) {
3870 default: /* Other cases are "reserved" (unknown) */
3871 mtd
->oobsize
= 1024;
3875 /* Calc blocksize */
3876 mtd
->erasesize
= (128 * 1024) <<
3877 (((extid
>> 1) & 0x04) | (extid
& 0x03));
3879 } else if (id_len
== 6 && id_data
[0] == NAND_MFR_HYNIX
&&
3880 !nand_is_slc(chip
)) {
3884 mtd
->writesize
= 2048 << (extid
& 0x03);
3887 switch (((extid
>> 2) & 0x04) | (extid
& 0x03)) {
3911 /* Calc blocksize */
3912 tmp
= ((extid
>> 1) & 0x04) | (extid
& 0x03);
3914 mtd
->erasesize
= (128 * 1024) << tmp
;
3915 else if (tmp
== 0x03)
3916 mtd
->erasesize
= 768 * 1024;
3918 mtd
->erasesize
= (64 * 1024) << tmp
;
3922 mtd
->writesize
= 1024 << (extid
& 0x03);
3925 mtd
->oobsize
= (8 << (extid
& 0x01)) *
3926 (mtd
->writesize
>> 9);
3928 /* Calc blocksize. Blocksize is multiples of 64KiB */
3929 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
3931 /* Get buswidth information */
3932 *busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
3935 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3936 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3938 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3940 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3942 if (id_len
>= 6 && id_data
[0] == NAND_MFR_TOSHIBA
&&
3943 nand_is_slc(chip
) &&
3944 (id_data
[5] & 0x7) == 0x6 /* 24nm */ &&
3945 !(id_data
[4] & 0x80) /* !BENAND */) {
3946 mtd
->oobsize
= 32 * mtd
->writesize
>> 9;
3953 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3954 * decodes a matching ID table entry and assigns the MTD size parameters for
3957 static void nand_decode_id(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3958 struct nand_flash_dev
*type
, u8 id_data
[8],
3961 int maf_id
= id_data
[0];
3963 mtd
->erasesize
= type
->erasesize
;
3964 mtd
->writesize
= type
->pagesize
;
3965 mtd
->oobsize
= mtd
->writesize
/ 32;
3966 *busw
= type
->options
& NAND_BUSWIDTH_16
;
3968 /* All legacy ID NAND are small-page, SLC */
3969 chip
->bits_per_cell
= 1;
3972 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3973 * some Spansion chips have erasesize that conflicts with size
3974 * listed in nand_ids table.
3975 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3977 if (maf_id
== NAND_MFR_AMD
&& id_data
[4] != 0x00 && id_data
[5] == 0x00
3978 && id_data
[6] == 0x00 && id_data
[7] == 0x00
3979 && mtd
->writesize
== 512) {
3980 mtd
->erasesize
= 128 * 1024;
3981 mtd
->erasesize
<<= ((id_data
[3] & 0x03) << 1);
3986 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3987 * heuristic patterns using various detected parameters (e.g., manufacturer,
3988 * page size, cell-type information).
3990 static void nand_decode_bbm_options(struct mtd_info
*mtd
,
3991 struct nand_chip
*chip
, u8 id_data
[8])
3993 int maf_id
= id_data
[0];
3995 /* Set the bad block position */
3996 if (mtd
->writesize
> 512 || (chip
->options
& NAND_BUSWIDTH_16
))
3997 chip
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
3999 chip
->badblockpos
= NAND_SMALL_BADBLOCK_POS
;
4002 * Bad block marker is stored in the last page of each block on Samsung
4003 * and Hynix MLC devices; stored in first two pages of each block on
4004 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
4005 * AMD/Spansion, and Macronix. All others scan only the first page.
4007 if (!nand_is_slc(chip
) &&
4008 (maf_id
== NAND_MFR_SAMSUNG
||
4009 maf_id
== NAND_MFR_HYNIX
))
4010 chip
->bbt_options
|= NAND_BBT_SCANLASTPAGE
;
4011 else if ((nand_is_slc(chip
) &&
4012 (maf_id
== NAND_MFR_SAMSUNG
||
4013 maf_id
== NAND_MFR_HYNIX
||
4014 maf_id
== NAND_MFR_TOSHIBA
||
4015 maf_id
== NAND_MFR_AMD
||
4016 maf_id
== NAND_MFR_MACRONIX
)) ||
4017 (mtd
->writesize
== 2048 &&
4018 maf_id
== NAND_MFR_MICRON
))
4019 chip
->bbt_options
|= NAND_BBT_SCAN2NDPAGE
;
4022 static inline bool is_full_id_nand(struct nand_flash_dev
*type
)
4024 return type
->id_len
;
4027 static bool find_full_id_nand(struct mtd_info
*mtd
, struct nand_chip
*chip
,
4028 struct nand_flash_dev
*type
, u8
*id_data
, int *busw
)
4030 if (!strncmp(type
->id
, id_data
, type
->id_len
)) {
4031 mtd
->writesize
= type
->pagesize
;
4032 mtd
->erasesize
= type
->erasesize
;
4033 mtd
->oobsize
= type
->oobsize
;
4035 chip
->bits_per_cell
= nand_get_bits_per_cell(id_data
[2]);
4036 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
4037 chip
->options
|= type
->options
;
4038 chip
->ecc_strength_ds
= NAND_ECC_STRENGTH(type
);
4039 chip
->ecc_step_ds
= NAND_ECC_STEP(type
);
4040 chip
->onfi_timing_mode_default
=
4041 type
->onfi_timing_mode_default
;
4043 *busw
= type
->options
& NAND_BUSWIDTH_16
;
4046 mtd
->name
= type
->name
;
4054 * Get the flash and manufacturer id and lookup if the type is supported.
4056 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
4057 struct nand_chip
*chip
,
4058 int *maf_id
, int *dev_id
,
4059 struct nand_flash_dev
*type
)
4066 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4069 nand_reset(chip
, 0);
4071 /* Select the device */
4072 chip
->select_chip(mtd
, 0);
4074 /* Send the command for reading device ID */
4075 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
4077 /* Read manufacturer and device IDs */
4078 *maf_id
= chip
->read_byte(mtd
);
4079 *dev_id
= chip
->read_byte(mtd
);
4082 * Try again to make sure, as some systems the bus-hold or other
4083 * interface concerns can cause random data which looks like a
4084 * possibly credible NAND flash to appear. If the two results do
4085 * not match, ignore the device completely.
4088 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
4090 /* Read entire ID string */
4091 for (i
= 0; i
< 8; i
++)
4092 id_data
[i
] = chip
->read_byte(mtd
);
4094 if (id_data
[0] != *maf_id
|| id_data
[1] != *dev_id
) {
4095 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4096 *maf_id
, *dev_id
, id_data
[0], id_data
[1]);
4097 return ERR_PTR(-ENODEV
);
4101 type
= nand_flash_ids
;
4103 for (; type
->name
!= NULL
; type
++) {
4104 if (is_full_id_nand(type
)) {
4105 if (find_full_id_nand(mtd
, chip
, type
, id_data
, &busw
))
4107 } else if (*dev_id
== type
->dev_id
) {
4112 chip
->onfi_version
= 0;
4113 if (!type
->name
|| !type
->pagesize
) {
4114 /* Check if the chip is ONFI compliant */
4115 if (nand_flash_detect_onfi(mtd
, chip
, &busw
))
4118 /* Check if the chip is JEDEC compliant */
4119 if (nand_flash_detect_jedec(mtd
, chip
, &busw
))
4124 return ERR_PTR(-ENODEV
);
4127 mtd
->name
= type
->name
;
4129 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
4131 if (!type
->pagesize
) {
4132 /* Decode parameters from extended ID */
4133 nand_decode_ext_id(mtd
, chip
, id_data
, &busw
);
4135 nand_decode_id(mtd
, chip
, type
, id_data
, &busw
);
4137 /* Get chip options */
4138 chip
->options
|= type
->options
;
4141 * Check if chip is not a Samsung device. Do not clear the
4142 * options for chips which do not have an extended id.
4144 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
4145 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
4148 /* Try to identify manufacturer */
4149 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
4150 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
4154 if (chip
->options
& NAND_BUSWIDTH_AUTO
) {
4155 WARN_ON(chip
->options
& NAND_BUSWIDTH_16
);
4156 chip
->options
|= busw
;
4157 nand_set_defaults(chip
, busw
);
4158 } else if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
4160 * Check, if buswidth is correct. Hardware drivers should set
4163 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4165 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
4166 pr_warn("bus width %d instead %d bit\n",
4167 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
4169 return ERR_PTR(-EINVAL
);
4172 nand_decode_bbm_options(mtd
, chip
, id_data
);
4174 /* Calculate the address shift from the page size */
4175 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
4176 /* Convert chipsize to number of pages per chip -1 */
4177 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
4179 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
4180 ffs(mtd
->erasesize
) - 1;
4181 if (chip
->chipsize
& 0xffffffff)
4182 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
4184 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32));
4185 chip
->chip_shift
+= 32 - 1;
4188 chip
->badblockbits
= 8;
4189 chip
->erase
= single_erase
;
4191 /* Do not replace user supplied command function! */
4192 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
4193 chip
->cmdfunc
= nand_command_lp
;
4195 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4198 if (chip
->onfi_version
)
4199 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
4200 chip
->onfi_params
.model
);
4201 else if (chip
->jedec_version
)
4202 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
4203 chip
->jedec_params
.model
);
4205 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
4208 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4209 (int)(chip
->chipsize
>> 20), nand_is_slc(chip
) ? "SLC" : "MLC",
4210 mtd
->erasesize
>> 10, mtd
->writesize
, mtd
->oobsize
);
4214 static const char * const nand_ecc_modes
[] = {
4215 [NAND_ECC_NONE
] = "none",
4216 [NAND_ECC_SOFT
] = "soft",
4217 [NAND_ECC_HW
] = "hw",
4218 [NAND_ECC_HW_SYNDROME
] = "hw_syndrome",
4219 [NAND_ECC_HW_OOB_FIRST
] = "hw_oob_first",
4222 static int of_get_nand_ecc_mode(struct device_node
*np
)
4227 err
= of_property_read_string(np
, "nand-ecc-mode", &pm
);
4231 for (i
= 0; i
< ARRAY_SIZE(nand_ecc_modes
); i
++)
4232 if (!strcasecmp(pm
, nand_ecc_modes
[i
]))
4236 * For backward compatibility we support few obsoleted values that don't
4237 * have their mappings into nand_ecc_modes_t anymore (they were merged
4238 * with other enums).
4240 if (!strcasecmp(pm
, "soft_bch"))
4241 return NAND_ECC_SOFT
;
4246 static const char * const nand_ecc_algos
[] = {
4247 [NAND_ECC_HAMMING
] = "hamming",
4248 [NAND_ECC_BCH
] = "bch",
4251 static int of_get_nand_ecc_algo(struct device_node
*np
)
4256 err
= of_property_read_string(np
, "nand-ecc-algo", &pm
);
4258 for (i
= NAND_ECC_HAMMING
; i
< ARRAY_SIZE(nand_ecc_algos
); i
++)
4259 if (!strcasecmp(pm
, nand_ecc_algos
[i
]))
4265 * For backward compatibility we also read "nand-ecc-mode" checking
4266 * for some obsoleted values that were specifying ECC algorithm.
4268 err
= of_property_read_string(np
, "nand-ecc-mode", &pm
);
4272 if (!strcasecmp(pm
, "soft"))
4273 return NAND_ECC_HAMMING
;
4274 else if (!strcasecmp(pm
, "soft_bch"))
4275 return NAND_ECC_BCH
;
4280 static int of_get_nand_ecc_step_size(struct device_node
*np
)
4285 ret
= of_property_read_u32(np
, "nand-ecc-step-size", &val
);
4286 return ret
? ret
: val
;
4289 static int of_get_nand_ecc_strength(struct device_node
*np
)
4294 ret
= of_property_read_u32(np
, "nand-ecc-strength", &val
);
4295 return ret
? ret
: val
;
4298 static int of_get_nand_bus_width(struct device_node
*np
)
4302 if (of_property_read_u32(np
, "nand-bus-width", &val
))
4314 static bool of_get_nand_on_flash_bbt(struct device_node
*np
)
4316 return of_property_read_bool(np
, "nand-on-flash-bbt");
4319 static int nand_dt_init(struct nand_chip
*chip
)
4321 struct device_node
*dn
= nand_get_flash_node(chip
);
4322 int ecc_mode
, ecc_algo
, ecc_strength
, ecc_step
;
4327 if (of_get_nand_bus_width(dn
) == 16)
4328 chip
->options
|= NAND_BUSWIDTH_16
;
4330 if (of_get_nand_on_flash_bbt(dn
))
4331 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
4333 ecc_mode
= of_get_nand_ecc_mode(dn
);
4334 ecc_algo
= of_get_nand_ecc_algo(dn
);
4335 ecc_strength
= of_get_nand_ecc_strength(dn
);
4336 ecc_step
= of_get_nand_ecc_step_size(dn
);
4338 if ((ecc_step
>= 0 && !(ecc_strength
>= 0)) ||
4339 (!(ecc_step
>= 0) && ecc_strength
>= 0)) {
4340 pr_err("must set both strength and step size in DT\n");
4345 chip
->ecc
.mode
= ecc_mode
;
4348 chip
->ecc
.algo
= ecc_algo
;
4350 if (ecc_strength
>= 0)
4351 chip
->ecc
.strength
= ecc_strength
;
4354 chip
->ecc
.size
= ecc_step
;
4356 if (of_property_read_bool(dn
, "nand-ecc-maximize"))
4357 chip
->ecc
.options
|= NAND_ECC_MAXIMIZE
;
4363 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4364 * @mtd: MTD device structure
4365 * @maxchips: number of chips to scan for
4366 * @table: alternative NAND ID table
4368 * This is the first phase of the normal nand_scan() function. It reads the
4369 * flash ID and sets up MTD fields accordingly.
4372 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
,
4373 struct nand_flash_dev
*table
)
4375 int i
, nand_maf_id
, nand_dev_id
;
4376 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4377 struct nand_flash_dev
*type
;
4380 ret
= nand_dt_init(chip
);
4384 if (!mtd
->name
&& mtd
->dev
.parent
)
4385 mtd
->name
= dev_name(mtd
->dev
.parent
);
4387 if ((!chip
->cmdfunc
|| !chip
->select_chip
) && !chip
->cmd_ctrl
) {
4389 * Default functions assigned for chip_select() and
4390 * cmdfunc() both expect cmd_ctrl() to be populated,
4391 * so we need to check that that's the case
4393 pr_err("chip.cmd_ctrl() callback is not provided");
4396 /* Set the default functions */
4397 nand_set_defaults(chip
, chip
->options
& NAND_BUSWIDTH_16
);
4399 /* Read the flash type */
4400 type
= nand_get_flash_type(mtd
, chip
, &nand_maf_id
,
4401 &nand_dev_id
, table
);
4404 if (!(chip
->options
& NAND_SCAN_SILENT_NODEV
))
4405 pr_warn("No NAND device found\n");
4406 chip
->select_chip(mtd
, -1);
4407 return PTR_ERR(type
);
4410 /* Initialize the ->data_interface field. */
4411 ret
= nand_init_data_interface(chip
);
4416 * Setup the data interface correctly on the chip and controller side.
4417 * This explicit call to nand_setup_data_interface() is only required
4418 * for the first die, because nand_reset() has been called before
4419 * ->data_interface and ->default_onfi_timing_mode were set.
4420 * For the other dies, nand_reset() will automatically switch to the
4423 ret
= nand_setup_data_interface(chip
);
4427 chip
->select_chip(mtd
, -1);
4429 /* Check for a chip array */
4430 for (i
= 1; i
< maxchips
; i
++) {
4431 /* See comment in nand_get_flash_type for reset */
4432 nand_reset(chip
, i
);
4434 chip
->select_chip(mtd
, i
);
4435 /* Send the command for reading device ID */
4436 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
4437 /* Read manufacturer and device IDs */
4438 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
4439 nand_dev_id
!= chip
->read_byte(mtd
)) {
4440 chip
->select_chip(mtd
, -1);
4443 chip
->select_chip(mtd
, -1);
4446 pr_info("%d chips detected\n", i
);
4448 /* Store the number of chips and calc total size for mtd */
4450 mtd
->size
= i
* chip
->chipsize
;
4454 EXPORT_SYMBOL(nand_scan_ident
);
4456 static int nand_set_ecc_soft_ops(struct mtd_info
*mtd
)
4458 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4459 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
4461 if (WARN_ON(ecc
->mode
!= NAND_ECC_SOFT
))
4464 switch (ecc
->algo
) {
4465 case NAND_ECC_HAMMING
:
4466 ecc
->calculate
= nand_calculate_ecc
;
4467 ecc
->correct
= nand_correct_data
;
4468 ecc
->read_page
= nand_read_page_swecc
;
4469 ecc
->read_subpage
= nand_read_subpage
;
4470 ecc
->write_page
= nand_write_page_swecc
;
4471 ecc
->read_page_raw
= nand_read_page_raw
;
4472 ecc
->write_page_raw
= nand_write_page_raw
;
4473 ecc
->read_oob
= nand_read_oob_std
;
4474 ecc
->write_oob
= nand_write_oob_std
;
4481 if (!mtd_nand_has_bch()) {
4482 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4485 ecc
->calculate
= nand_bch_calculate_ecc
;
4486 ecc
->correct
= nand_bch_correct_data
;
4487 ecc
->read_page
= nand_read_page_swecc
;
4488 ecc
->read_subpage
= nand_read_subpage
;
4489 ecc
->write_page
= nand_write_page_swecc
;
4490 ecc
->read_page_raw
= nand_read_page_raw
;
4491 ecc
->write_page_raw
= nand_write_page_raw
;
4492 ecc
->read_oob
= nand_read_oob_std
;
4493 ecc
->write_oob
= nand_write_oob_std
;
4496 * Board driver should supply ecc.size and ecc.strength
4497 * values to select how many bits are correctable.
4498 * Otherwise, default to 4 bits for large page devices.
4500 if (!ecc
->size
&& (mtd
->oobsize
>= 64)) {
4506 * if no ecc placement scheme was provided pickup the default
4509 if (!mtd
->ooblayout
) {
4510 /* handle large page devices only */
4511 if (mtd
->oobsize
< 64) {
4512 WARN(1, "OOB layout is required when using software BCH on small pages\n");
4516 mtd_set_ooblayout(mtd
, &nand_ooblayout_lp_ops
);
4521 * We can only maximize ECC config when the default layout is
4522 * used, otherwise we don't know how many bytes can really be
4525 if (mtd
->ooblayout
== &nand_ooblayout_lp_ops
&&
4526 ecc
->options
& NAND_ECC_MAXIMIZE
) {
4529 /* Always prefer 1k blocks over 512bytes ones */
4531 steps
= mtd
->writesize
/ ecc
->size
;
4533 /* Reserve 2 bytes for the BBM */
4534 bytes
= (mtd
->oobsize
- 2) / steps
;
4535 ecc
->strength
= bytes
* 8 / fls(8 * ecc
->size
);
4538 /* See nand_bch_init() for details. */
4540 ecc
->priv
= nand_bch_init(mtd
);
4542 WARN(1, "BCH ECC initialization failed!\n");
4547 WARN(1, "Unsupported ECC algorithm!\n");
4553 * Check if the chip configuration meet the datasheet requirements.
4555 * If our configuration corrects A bits per B bytes and the minimum
4556 * required correction level is X bits per Y bytes, then we must ensure
4557 * both of the following are true:
4559 * (1) A / B >= X / Y
4562 * Requirement (1) ensures we can correct for the required bitflip density.
4563 * Requirement (2) ensures we can correct even when all bitflips are clumped
4564 * in the same sector.
4566 static bool nand_ecc_strength_good(struct mtd_info
*mtd
)
4568 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4569 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
4572 if (ecc
->size
== 0 || chip
->ecc_step_ds
== 0)
4573 /* Not enough information */
4577 * We get the number of corrected bits per page to compare
4578 * the correction density.
4580 corr
= (mtd
->writesize
* ecc
->strength
) / ecc
->size
;
4581 ds_corr
= (mtd
->writesize
* chip
->ecc_strength_ds
) / chip
->ecc_step_ds
;
4583 return corr
>= ds_corr
&& ecc
->strength
>= chip
->ecc_strength_ds
;
4587 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4588 * @mtd: MTD device structure
4590 * This is the second phase of the normal nand_scan() function. It fills out
4591 * all the uninitialized function pointers with the defaults and scans for a
4592 * bad block table if appropriate.
4594 int nand_scan_tail(struct mtd_info
*mtd
)
4596 struct nand_chip
*chip
= mtd_to_nand(mtd
);
4597 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
4598 struct nand_buffers
*nbuf
;
4601 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4602 if (WARN_ON((chip
->bbt_options
& NAND_BBT_NO_OOB_BBM
) &&
4603 !(chip
->bbt_options
& NAND_BBT_USE_FLASH
)))
4606 if (!(chip
->options
& NAND_OWN_BUFFERS
)) {
4607 nbuf
= kzalloc(sizeof(*nbuf
) + mtd
->writesize
4608 + mtd
->oobsize
* 3, GFP_KERNEL
);
4611 nbuf
->ecccalc
= (uint8_t *)(nbuf
+ 1);
4612 nbuf
->ecccode
= nbuf
->ecccalc
+ mtd
->oobsize
;
4613 nbuf
->databuf
= nbuf
->ecccode
+ mtd
->oobsize
;
4615 chip
->buffers
= nbuf
;
4621 /* Set the internal oob buffer location, just after the page data */
4622 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
4625 * If no default placement scheme is given, select an appropriate one.
4627 if (!mtd
->ooblayout
&&
4628 !(ecc
->mode
== NAND_ECC_SOFT
&& ecc
->algo
== NAND_ECC_BCH
)) {
4629 switch (mtd
->oobsize
) {
4632 mtd_set_ooblayout(mtd
, &nand_ooblayout_sp_ops
);
4636 mtd_set_ooblayout(mtd
, &nand_ooblayout_lp_hamming_ops
);
4639 WARN(1, "No oob scheme defined for oobsize %d\n",
4646 if (!chip
->write_page
)
4647 chip
->write_page
= nand_write_page
;
4650 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4651 * selected and we have 256 byte pagesize fallback to software ECC
4654 switch (ecc
->mode
) {
4655 case NAND_ECC_HW_OOB_FIRST
:
4656 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4657 if (!ecc
->calculate
|| !ecc
->correct
|| !ecc
->hwctl
) {
4658 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4662 if (!ecc
->read_page
)
4663 ecc
->read_page
= nand_read_page_hwecc_oob_first
;
4666 /* Use standard hwecc read page function? */
4667 if (!ecc
->read_page
)
4668 ecc
->read_page
= nand_read_page_hwecc
;
4669 if (!ecc
->write_page
)
4670 ecc
->write_page
= nand_write_page_hwecc
;
4671 if (!ecc
->read_page_raw
)
4672 ecc
->read_page_raw
= nand_read_page_raw
;
4673 if (!ecc
->write_page_raw
)
4674 ecc
->write_page_raw
= nand_write_page_raw
;
4676 ecc
->read_oob
= nand_read_oob_std
;
4677 if (!ecc
->write_oob
)
4678 ecc
->write_oob
= nand_write_oob_std
;
4679 if (!ecc
->read_subpage
)
4680 ecc
->read_subpage
= nand_read_subpage
;
4681 if (!ecc
->write_subpage
&& ecc
->hwctl
&& ecc
->calculate
)
4682 ecc
->write_subpage
= nand_write_subpage_hwecc
;
4684 case NAND_ECC_HW_SYNDROME
:
4685 if ((!ecc
->calculate
|| !ecc
->correct
|| !ecc
->hwctl
) &&
4687 ecc
->read_page
== nand_read_page_hwecc
||
4689 ecc
->write_page
== nand_write_page_hwecc
)) {
4690 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4694 /* Use standard syndrome read/write page function? */
4695 if (!ecc
->read_page
)
4696 ecc
->read_page
= nand_read_page_syndrome
;
4697 if (!ecc
->write_page
)
4698 ecc
->write_page
= nand_write_page_syndrome
;
4699 if (!ecc
->read_page_raw
)
4700 ecc
->read_page_raw
= nand_read_page_raw_syndrome
;
4701 if (!ecc
->write_page_raw
)
4702 ecc
->write_page_raw
= nand_write_page_raw_syndrome
;
4704 ecc
->read_oob
= nand_read_oob_syndrome
;
4705 if (!ecc
->write_oob
)
4706 ecc
->write_oob
= nand_write_oob_syndrome
;
4708 if (mtd
->writesize
>= ecc
->size
) {
4709 if (!ecc
->strength
) {
4710 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
4716 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4717 ecc
->size
, mtd
->writesize
);
4718 ecc
->mode
= NAND_ECC_SOFT
;
4719 ecc
->algo
= NAND_ECC_HAMMING
;
4722 ret
= nand_set_ecc_soft_ops(mtd
);
4730 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4731 ecc
->read_page
= nand_read_page_raw
;
4732 ecc
->write_page
= nand_write_page_raw
;
4733 ecc
->read_oob
= nand_read_oob_std
;
4734 ecc
->read_page_raw
= nand_read_page_raw
;
4735 ecc
->write_page_raw
= nand_write_page_raw
;
4736 ecc
->write_oob
= nand_write_oob_std
;
4737 ecc
->size
= mtd
->writesize
;
4743 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc
->mode
);
4748 /* For many systems, the standard OOB write also works for raw */
4749 if (!ecc
->read_oob_raw
)
4750 ecc
->read_oob_raw
= ecc
->read_oob
;
4751 if (!ecc
->write_oob_raw
)
4752 ecc
->write_oob_raw
= ecc
->write_oob
;
4754 /* propagate ecc info to mtd_info */
4755 mtd
->ecc_strength
= ecc
->strength
;
4756 mtd
->ecc_step_size
= ecc
->size
;
4759 * Set the number of read / write steps for one page depending on ECC
4762 ecc
->steps
= mtd
->writesize
/ ecc
->size
;
4763 if (ecc
->steps
* ecc
->size
!= mtd
->writesize
) {
4764 WARN(1, "Invalid ECC parameters\n");
4768 ecc
->total
= ecc
->steps
* ecc
->bytes
;
4771 * The number of bytes available for a client to place data into
4772 * the out of band area.
4774 ret
= mtd_ooblayout_count_freebytes(mtd
);
4778 mtd
->oobavail
= ret
;
4780 /* ECC sanity check: warn if it's too weak */
4781 if (!nand_ecc_strength_good(mtd
))
4782 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4785 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4786 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) && nand_is_slc(chip
)) {
4787 switch (ecc
->steps
) {
4789 mtd
->subpage_sft
= 1;
4794 mtd
->subpage_sft
= 2;
4798 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
4800 /* Initialize state */
4801 chip
->state
= FL_READY
;
4803 /* Invalidate the pagebuffer reference */
4806 /* Large page NAND with SOFT_ECC should support subpage reads */
4807 switch (ecc
->mode
) {
4809 if (chip
->page_shift
> 9)
4810 chip
->options
|= NAND_SUBPAGE_READ
;
4817 /* Fill in remaining MTD driver data */
4818 mtd
->type
= nand_is_slc(chip
) ? MTD_NANDFLASH
: MTD_MLCNANDFLASH
;
4819 mtd
->flags
= (chip
->options
& NAND_ROM
) ? MTD_CAP_ROM
:
4821 mtd
->_erase
= nand_erase
;
4823 mtd
->_unpoint
= NULL
;
4824 mtd
->_read
= nand_read
;
4825 mtd
->_write
= nand_write
;
4826 mtd
->_panic_write
= panic_nand_write
;
4827 mtd
->_read_oob
= nand_read_oob
;
4828 mtd
->_write_oob
= nand_write_oob
;
4829 mtd
->_sync
= nand_sync
;
4831 mtd
->_unlock
= NULL
;
4832 mtd
->_suspend
= nand_suspend
;
4833 mtd
->_resume
= nand_resume
;
4834 mtd
->_reboot
= nand_shutdown
;
4835 mtd
->_block_isreserved
= nand_block_isreserved
;
4836 mtd
->_block_isbad
= nand_block_isbad
;
4837 mtd
->_block_markbad
= nand_block_markbad
;
4838 mtd
->writebufsize
= mtd
->writesize
;
4841 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4842 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4845 if (!mtd
->bitflip_threshold
)
4846 mtd
->bitflip_threshold
= DIV_ROUND_UP(mtd
->ecc_strength
* 3, 4);
4848 /* Check, if we should skip the bad block table scan */
4849 if (chip
->options
& NAND_SKIP_BBTSCAN
)
4852 /* Build bad block table */
4853 return chip
->scan_bbt(mtd
);
4855 if (!(chip
->options
& NAND_OWN_BUFFERS
))
4856 kfree(chip
->buffers
);
4859 EXPORT_SYMBOL(nand_scan_tail
);
4862 * is_module_text_address() isn't exported, and it's mostly a pointless
4863 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4864 * to call us from in-kernel code if the core NAND support is modular.
4867 #define caller_is_module() (1)
4869 #define caller_is_module() \
4870 is_module_text_address((unsigned long)__builtin_return_address(0))
4874 * nand_scan - [NAND Interface] Scan for the NAND device
4875 * @mtd: MTD device structure
4876 * @maxchips: number of chips to scan for
4878 * This fills out all the uninitialized function pointers with the defaults.
4879 * The flash ID is read and the mtd/chip structures are filled with the
4880 * appropriate values.
4882 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
4886 ret
= nand_scan_ident(mtd
, maxchips
, NULL
);
4888 ret
= nand_scan_tail(mtd
);
4891 EXPORT_SYMBOL(nand_scan
);
4894 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
4895 * @chip: NAND chip object
4897 void nand_cleanup(struct nand_chip
*chip
)
4899 if (chip
->ecc
.mode
== NAND_ECC_SOFT
&&
4900 chip
->ecc
.algo
== NAND_ECC_BCH
)
4901 nand_bch_free((struct nand_bch_control
*)chip
->ecc
.priv
);
4903 nand_release_data_interface(chip
);
4905 /* Free bad block table memory */
4907 if (!(chip
->options
& NAND_OWN_BUFFERS
))
4908 kfree(chip
->buffers
);
4910 /* Free bad block descriptor memory */
4911 if (chip
->badblock_pattern
&& chip
->badblock_pattern
->options
4912 & NAND_BBT_DYNAMICSTRUCT
)
4913 kfree(chip
->badblock_pattern
);
4915 EXPORT_SYMBOL_GPL(nand_cleanup
);
4918 * nand_release - [NAND Interface] Unregister the MTD device and free resources
4919 * held by the NAND device
4920 * @mtd: MTD device structure
4922 void nand_release(struct mtd_info
*mtd
)
4924 mtd_device_unregister(mtd
);
4925 nand_cleanup(mtd_to_nand(mtd
));
4927 EXPORT_SYMBOL_GPL(nand_release
);
4929 MODULE_LICENSE("GPL");
4930 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4931 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4932 MODULE_DESCRIPTION("Generic NAND flash driver code");