mtd: nand: brcmnand: Check flash #WP pin status before nand erase/program
[linux/fpc-iii.git] / drivers / mtd / nand / nuc900_nand.c
blob8f64011d32ef2a2791a0380b003c10ab3dc63f0b
1 /*
2 * Copyright © 2009 Nuvoton technology corporation.
4 * Wan ZongShun <mcuos.com@gmail.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation;version 2 of the License.
12 #include <linux/slab.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/platform_device.h>
17 #include <linux/delay.h>
18 #include <linux/clk.h>
19 #include <linux/err.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/nand.h>
23 #include <linux/mtd/partitions.h>
25 #define REG_FMICSR 0x00
26 #define REG_SMCSR 0xa0
27 #define REG_SMISR 0xac
28 #define REG_SMCMD 0xb0
29 #define REG_SMADDR 0xb4
30 #define REG_SMDATA 0xb8
32 #define RESET_FMI 0x01
33 #define NAND_EN 0x08
34 #define READYBUSY (0x01 << 18)
36 #define SWRST 0x01
37 #define PSIZE (0x01 << 3)
38 #define DMARWEN (0x03 << 1)
39 #define BUSWID (0x01 << 4)
40 #define ECC4EN (0x01 << 5)
41 #define WP (0x01 << 24)
42 #define NANDCS (0x01 << 25)
43 #define ENDADDR (0x01 << 31)
45 #define read_data_reg(dev) \
46 __raw_readl((dev)->reg + REG_SMDATA)
48 #define write_data_reg(dev, val) \
49 __raw_writel((val), (dev)->reg + REG_SMDATA)
51 #define write_cmd_reg(dev, val) \
52 __raw_writel((val), (dev)->reg + REG_SMCMD)
54 #define write_addr_reg(dev, val) \
55 __raw_writel((val), (dev)->reg + REG_SMADDR)
57 struct nuc900_nand {
58 struct nand_chip chip;
59 void __iomem *reg;
60 struct clk *clk;
61 spinlock_t lock;
64 static inline struct nuc900_nand *mtd_to_nuc900(struct mtd_info *mtd)
66 return container_of(mtd_to_nand(mtd), struct nuc900_nand, chip);
69 static const struct mtd_partition partitions[] = {
71 .name = "NAND FS 0",
72 .offset = 0,
73 .size = 8 * 1024 * 1024
76 .name = "NAND FS 1",
77 .offset = MTDPART_OFS_APPEND,
78 .size = MTDPART_SIZ_FULL
82 static unsigned char nuc900_nand_read_byte(struct mtd_info *mtd)
84 unsigned char ret;
85 struct nuc900_nand *nand = mtd_to_nuc900(mtd);
87 ret = (unsigned char)read_data_reg(nand);
89 return ret;
92 static void nuc900_nand_read_buf(struct mtd_info *mtd,
93 unsigned char *buf, int len)
95 int i;
96 struct nuc900_nand *nand = mtd_to_nuc900(mtd);
98 for (i = 0; i < len; i++)
99 buf[i] = (unsigned char)read_data_reg(nand);
102 static void nuc900_nand_write_buf(struct mtd_info *mtd,
103 const unsigned char *buf, int len)
105 int i;
106 struct nuc900_nand *nand = mtd_to_nuc900(mtd);
108 for (i = 0; i < len; i++)
109 write_data_reg(nand, buf[i]);
112 static int nuc900_check_rb(struct nuc900_nand *nand)
114 unsigned int val;
115 spin_lock(&nand->lock);
116 val = __raw_readl(nand->reg + REG_SMISR);
117 val &= READYBUSY;
118 spin_unlock(&nand->lock);
120 return val;
123 static int nuc900_nand_devready(struct mtd_info *mtd)
125 struct nuc900_nand *nand = mtd_to_nuc900(mtd);
126 int ready;
128 ready = (nuc900_check_rb(nand)) ? 1 : 0;
129 return ready;
132 static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command,
133 int column, int page_addr)
135 register struct nand_chip *chip = mtd_to_nand(mtd);
136 struct nuc900_nand *nand = mtd_to_nuc900(mtd);
138 if (command == NAND_CMD_READOOB) {
139 column += mtd->writesize;
140 command = NAND_CMD_READ0;
143 write_cmd_reg(nand, command & 0xff);
145 if (column != -1 || page_addr != -1) {
147 if (column != -1) {
148 if (chip->options & NAND_BUSWIDTH_16 &&
149 !nand_opcode_8bits(command))
150 column >>= 1;
151 write_addr_reg(nand, column);
152 write_addr_reg(nand, column >> 8 | ENDADDR);
154 if (page_addr != -1) {
155 write_addr_reg(nand, page_addr);
157 if (chip->chipsize > (128 << 20)) {
158 write_addr_reg(nand, page_addr >> 8);
159 write_addr_reg(nand, page_addr >> 16 | ENDADDR);
160 } else {
161 write_addr_reg(nand, page_addr >> 8 | ENDADDR);
166 switch (command) {
167 case NAND_CMD_CACHEDPROG:
168 case NAND_CMD_PAGEPROG:
169 case NAND_CMD_ERASE1:
170 case NAND_CMD_ERASE2:
171 case NAND_CMD_SEQIN:
172 case NAND_CMD_RNDIN:
173 case NAND_CMD_STATUS:
174 return;
176 case NAND_CMD_RESET:
177 if (chip->dev_ready)
178 break;
179 udelay(chip->chip_delay);
181 write_cmd_reg(nand, NAND_CMD_STATUS);
182 write_cmd_reg(nand, command);
184 while (!nuc900_check_rb(nand))
187 return;
189 case NAND_CMD_RNDOUT:
190 write_cmd_reg(nand, NAND_CMD_RNDOUTSTART);
191 return;
193 case NAND_CMD_READ0:
195 write_cmd_reg(nand, NAND_CMD_READSTART);
196 default:
198 if (!chip->dev_ready) {
199 udelay(chip->chip_delay);
200 return;
204 /* Apply this short delay always to ensure that we do wait tWB in
205 * any case on any machine. */
206 ndelay(100);
208 while (!chip->dev_ready(mtd))
213 static void nuc900_nand_enable(struct nuc900_nand *nand)
215 unsigned int val;
216 spin_lock(&nand->lock);
217 __raw_writel(RESET_FMI, (nand->reg + REG_FMICSR));
219 val = __raw_readl(nand->reg + REG_FMICSR);
221 if (!(val & NAND_EN))
222 __raw_writel(val | NAND_EN, nand->reg + REG_FMICSR);
224 val = __raw_readl(nand->reg + REG_SMCSR);
226 val &= ~(SWRST|PSIZE|DMARWEN|BUSWID|ECC4EN|NANDCS);
227 val |= WP;
229 __raw_writel(val, nand->reg + REG_SMCSR);
231 spin_unlock(&nand->lock);
234 static int nuc900_nand_probe(struct platform_device *pdev)
236 struct nuc900_nand *nuc900_nand;
237 struct nand_chip *chip;
238 struct mtd_info *mtd;
239 struct resource *res;
241 nuc900_nand = devm_kzalloc(&pdev->dev, sizeof(struct nuc900_nand),
242 GFP_KERNEL);
243 if (!nuc900_nand)
244 return -ENOMEM;
245 chip = &(nuc900_nand->chip);
246 mtd = nand_to_mtd(chip);
248 mtd->dev.parent = &pdev->dev;
249 spin_lock_init(&nuc900_nand->lock);
251 nuc900_nand->clk = devm_clk_get(&pdev->dev, NULL);
252 if (IS_ERR(nuc900_nand->clk))
253 return -ENOENT;
254 clk_enable(nuc900_nand->clk);
256 chip->cmdfunc = nuc900_nand_command_lp;
257 chip->dev_ready = nuc900_nand_devready;
258 chip->read_byte = nuc900_nand_read_byte;
259 chip->write_buf = nuc900_nand_write_buf;
260 chip->read_buf = nuc900_nand_read_buf;
261 chip->chip_delay = 50;
262 chip->options = 0;
263 chip->ecc.mode = NAND_ECC_SOFT;
264 chip->ecc.algo = NAND_ECC_HAMMING;
266 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
267 nuc900_nand->reg = devm_ioremap_resource(&pdev->dev, res);
268 if (IS_ERR(nuc900_nand->reg))
269 return PTR_ERR(nuc900_nand->reg);
271 nuc900_nand_enable(nuc900_nand);
273 if (nand_scan(mtd, 1))
274 return -ENXIO;
276 mtd_device_register(mtd, partitions, ARRAY_SIZE(partitions));
278 platform_set_drvdata(pdev, nuc900_nand);
280 return 0;
283 static int nuc900_nand_remove(struct platform_device *pdev)
285 struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev);
287 nand_release(nand_to_mtd(&nuc900_nand->chip));
288 clk_disable(nuc900_nand->clk);
290 return 0;
293 static struct platform_driver nuc900_nand_driver = {
294 .probe = nuc900_nand_probe,
295 .remove = nuc900_nand_remove,
296 .driver = {
297 .name = "nuc900-fmi",
301 module_platform_driver(nuc900_nand_driver);
303 MODULE_AUTHOR("Wan ZongShun <mcuos.com@gmail.com>");
304 MODULE_DESCRIPTION("w90p910/NUC9xx nand driver!");
305 MODULE_LICENSE("GPL");
306 MODULE_ALIAS("platform:nuc900-fmi");