2 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/clk.h>
15 #include <linux/slab.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/module.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
23 #include <linux/of_device.h>
24 #include <linux/delay.h>
26 /* NANDc reg offsets */
27 #define NAND_FLASH_CMD 0x00
28 #define NAND_ADDR0 0x04
29 #define NAND_ADDR1 0x08
30 #define NAND_FLASH_CHIP_SELECT 0x0c
31 #define NAND_EXEC_CMD 0x10
32 #define NAND_FLASH_STATUS 0x14
33 #define NAND_BUFFER_STATUS 0x18
34 #define NAND_DEV0_CFG0 0x20
35 #define NAND_DEV0_CFG1 0x24
36 #define NAND_DEV0_ECC_CFG 0x28
37 #define NAND_DEV1_ECC_CFG 0x2c
38 #define NAND_DEV1_CFG0 0x30
39 #define NAND_DEV1_CFG1 0x34
40 #define NAND_READ_ID 0x40
41 #define NAND_READ_STATUS 0x44
42 #define NAND_DEV_CMD0 0xa0
43 #define NAND_DEV_CMD1 0xa4
44 #define NAND_DEV_CMD2 0xa8
45 #define NAND_DEV_CMD_VLD 0xac
46 #define SFLASHC_BURST_CFG 0xe0
47 #define NAND_ERASED_CW_DETECT_CFG 0xe8
48 #define NAND_ERASED_CW_DETECT_STATUS 0xec
49 #define NAND_EBI2_ECC_BUF_CFG 0xf0
50 #define FLASH_BUF_ACC 0x100
52 #define NAND_CTRL 0xf00
53 #define NAND_VERSION 0xf08
54 #define NAND_READ_LOCATION_0 0xf20
55 #define NAND_READ_LOCATION_1 0xf24
57 /* dummy register offsets, used by write_reg_dma */
58 #define NAND_DEV_CMD1_RESTORE 0xdead
59 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef
61 /* NAND_FLASH_CMD bits */
62 #define PAGE_ACC BIT(4)
63 #define LAST_PAGE BIT(5)
65 /* NAND_FLASH_CHIP_SELECT bits */
66 #define NAND_DEV_SEL 0
69 /* NAND_FLASH_STATUS bits */
70 #define FS_OP_ERR BIT(4)
71 #define FS_READY_BSY_N BIT(5)
72 #define FS_MPU_ERR BIT(8)
73 #define FS_DEVICE_STS_ERR BIT(16)
74 #define FS_DEVICE_WP BIT(23)
76 /* NAND_BUFFER_STATUS bits */
77 #define BS_UNCORRECTABLE_BIT BIT(8)
78 #define BS_CORRECTABLE_ERR_MSK 0x1f
80 /* NAND_DEVn_CFG0 bits */
81 #define DISABLE_STATUS_AFTER_WRITE 4
83 #define UD_SIZE_BYTES 9
84 #define ECC_PARITY_SIZE_BYTES_RS 19
85 #define SPARE_SIZE_BYTES 23
86 #define NUM_ADDR_CYCLES 27
87 #define STATUS_BFR_READ 30
88 #define SET_RD_MODE_AFTER_STATUS 31
90 /* NAND_DEVn_CFG0 bits */
91 #define DEV0_CFG1_ECC_DISABLE 0
93 #define NAND_RECOVERY_CYCLES 2
94 #define CS_ACTIVE_BSY 5
95 #define BAD_BLOCK_BYTE_NUM 6
96 #define BAD_BLOCK_IN_SPARE_AREA 16
97 #define WR_RD_BSY_GAP 17
98 #define ENABLE_BCH_ECC 27
100 /* NAND_DEV0_ECC_CFG bits */
101 #define ECC_CFG_ECC_DISABLE 0
102 #define ECC_SW_RESET 1
104 #define ECC_PARITY_SIZE_BYTES_BCH 8
105 #define ECC_NUM_DATA_BYTES 16
106 #define ECC_FORCE_CLK_OPEN 30
108 /* NAND_DEV_CMD1 bits */
111 /* NAND_DEV_CMD_VLD bits */
112 #define READ_START_VLD 0
114 /* NAND_EBI2_ECC_BUF_CFG bits */
117 /* NAND_ERASED_CW_DETECT_CFG bits */
118 #define ERASED_CW_ECC_MASK 1
119 #define AUTO_DETECT_RES 0
120 #define MASK_ECC (1 << ERASED_CW_ECC_MASK)
121 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
122 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
123 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
124 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
126 /* NAND_ERASED_CW_DETECT_STATUS bits */
127 #define PAGE_ALL_ERASED BIT(7)
128 #define CODEWORD_ALL_ERASED BIT(6)
129 #define PAGE_ERASED BIT(5)
130 #define CODEWORD_ERASED BIT(4)
131 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
132 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
135 #define NAND_VERSION_MAJOR_MASK 0xf0000000
136 #define NAND_VERSION_MAJOR_SHIFT 28
137 #define NAND_VERSION_MINOR_MASK 0x0fff0000
138 #define NAND_VERSION_MINOR_SHIFT 16
141 #define PAGE_READ 0x2
142 #define PAGE_READ_WITH_ECC 0x3
143 #define PAGE_READ_WITH_ECC_SPARE 0x4
144 #define PROGRAM_PAGE 0x6
145 #define PAGE_PROGRAM_WITH_ECC 0x7
146 #define PROGRAM_PAGE_SPARE 0x9
147 #define BLOCK_ERASE 0xa
149 #define RESET_DEVICE 0xd
152 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
153 * the driver calls the chunks 'step' or 'codeword' interchangeably
155 #define NANDC_STEP_SIZE 512
158 * the largest page size we support is 8K, this will have 16 steps/codewords
161 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
163 /* we read at most 3 registers per codeword scan */
164 #define MAX_REG_RD (3 * MAX_NUM_STEPS)
166 /* ECC modes supported by the controller */
167 #define ECC_NONE BIT(0)
168 #define ECC_RS_4BIT BIT(1)
169 #define ECC_BCH_4BIT BIT(2)
170 #define ECC_BCH_8BIT BIT(3)
173 struct list_head node
;
175 enum dma_data_direction dir
;
176 struct scatterlist sgl
;
177 struct dma_async_tx_descriptor
*dma_desc
;
181 * holds the current register values that we want to write. acts as a contiguous
182 * chunk of memory which we use to write the controller registers through DMA.
195 __le32 clrflashstatus
;
196 __le32 clrreadstatus
;
208 * NAND controller data struct
210 * @controller: base controller structure
211 * @host_list: list containing all the chips attached to the
213 * @dev: parent device
215 * @base_dma: physical base address of controller registers
216 * @core_clk: controller clock
217 * @aon_clk: another controller clock
220 * @cmd_crci: ADM DMA CRCI for command flow control
221 * @data_crci: ADM DMA CRCI for data flow control
222 * @desc_list: DMA descriptor list (list of desc_infos)
224 * @data_buffer: our local DMA buffer for page read/writes,
225 * used when we can't use the buffer provided
226 * by upper layers directly
227 * @buf_size/count/start: markers for chip->read_buf/write_buf functions
228 * @reg_read_buf: local buffer for reading back registers via DMA
229 * @reg_read_pos: marker for data read in reg_read_buf
231 * @regs: a contiguous chunk of memory for DMA register
232 * writes. contains the register values to be
233 * written to controller
234 * @cmd1/vld: some fixed controller register values
235 * @ecc_modes: supported ECC modes by the current controller,
236 * initialized via DT match data
238 struct qcom_nand_controller
{
239 struct nand_hw_control controller
;
240 struct list_head host_list
;
247 struct clk
*core_clk
;
250 struct dma_chan
*chan
;
251 unsigned int cmd_crci
;
252 unsigned int data_crci
;
253 struct list_head desc_list
;
260 __le32
*reg_read_buf
;
263 struct nandc_regs
*regs
;
270 * NAND chip structure
272 * @chip: base NAND chip structure
273 * @node: list node to add itself to host_list in
274 * qcom_nand_controller
276 * @cs: chip select value for this chip
277 * @cw_size: the number of bytes in a single step/codeword
278 * of a page, consisting of all data, ecc, spare
280 * @cw_data: the number of bytes within a codeword protected
282 * @use_ecc: request the controller to use ECC for the
283 * upcoming read/write
284 * @bch_enabled: flag to tell whether BCH ECC mode is used
285 * @ecc_bytes_hw: ECC bytes used by controller hardware for this
287 * @status: value to be returned if NAND_CMD_STATUS command
289 * @last_command: keeps track of last command on this chip. used
290 * for reading correct status
292 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
293 * ecc/non-ecc mode for the current nand flash
296 struct qcom_nand_host
{
297 struct nand_chip chip
;
298 struct list_head node
;
312 u32 cfg0_raw
, cfg1_raw
;
319 static inline struct qcom_nand_host
*to_qcom_nand_host(struct nand_chip
*chip
)
321 return container_of(chip
, struct qcom_nand_host
, chip
);
324 static inline struct qcom_nand_controller
*
325 get_qcom_nand_controller(struct nand_chip
*chip
)
327 return container_of(chip
->controller
, struct qcom_nand_controller
,
331 static inline u32
nandc_read(struct qcom_nand_controller
*nandc
, int offset
)
333 return ioread32(nandc
->base
+ offset
);
336 static inline void nandc_write(struct qcom_nand_controller
*nandc
, int offset
,
339 iowrite32(val
, nandc
->base
+ offset
);
342 static __le32
*offset_to_nandc_reg(struct nandc_regs
*regs
, int offset
)
351 case NAND_FLASH_CHIP_SELECT
:
352 return ®s
->chip_sel
;
355 case NAND_FLASH_STATUS
:
356 return ®s
->clrflashstatus
;
361 case NAND_DEV0_ECC_CFG
:
362 return ®s
->ecc_bch_cfg
;
363 case NAND_READ_STATUS
:
364 return ®s
->clrreadstatus
;
367 case NAND_DEV_CMD1_RESTORE
:
368 return ®s
->orig_cmd1
;
369 case NAND_DEV_CMD_VLD
:
371 case NAND_DEV_CMD_VLD_RESTORE
:
372 return ®s
->orig_vld
;
373 case NAND_EBI2_ECC_BUF_CFG
:
374 return ®s
->ecc_buf_cfg
;
380 static void nandc_set_reg(struct qcom_nand_controller
*nandc
, int offset
,
383 struct nandc_regs
*regs
= nandc
->regs
;
386 reg
= offset_to_nandc_reg(regs
, offset
);
389 *reg
= cpu_to_le32(val
);
392 /* helper to configure address register values */
393 static void set_address(struct qcom_nand_host
*host
, u16 column
, int page
)
395 struct nand_chip
*chip
= &host
->chip
;
396 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
398 if (chip
->options
& NAND_BUSWIDTH_16
)
401 nandc_set_reg(nandc
, NAND_ADDR0
, page
<< 16 | column
);
402 nandc_set_reg(nandc
, NAND_ADDR1
, page
>> 16 & 0xff);
406 * update_rw_regs: set up read/write register values, these will be
407 * written to the NAND controller registers via DMA
409 * @num_cw: number of steps for the read/write operation
410 * @read: read or write operation
412 static void update_rw_regs(struct qcom_nand_host
*host
, int num_cw
, bool read
)
414 struct nand_chip
*chip
= &host
->chip
;
415 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
416 u32 cmd
, cfg0
, cfg1
, ecc_bch_cfg
;
420 cmd
= PAGE_READ_WITH_ECC
| PAGE_ACC
| LAST_PAGE
;
422 cmd
= PAGE_READ
| PAGE_ACC
| LAST_PAGE
;
424 cmd
= PROGRAM_PAGE
| PAGE_ACC
| LAST_PAGE
;
428 cfg0
= (host
->cfg0
& ~(7U << CW_PER_PAGE
)) |
429 (num_cw
- 1) << CW_PER_PAGE
;
432 ecc_bch_cfg
= host
->ecc_bch_cfg
;
434 cfg0
= (host
->cfg0_raw
& ~(7U << CW_PER_PAGE
)) |
435 (num_cw
- 1) << CW_PER_PAGE
;
437 cfg1
= host
->cfg1_raw
;
438 ecc_bch_cfg
= 1 << ECC_CFG_ECC_DISABLE
;
441 nandc_set_reg(nandc
, NAND_FLASH_CMD
, cmd
);
442 nandc_set_reg(nandc
, NAND_DEV0_CFG0
, cfg0
);
443 nandc_set_reg(nandc
, NAND_DEV0_CFG1
, cfg1
);
444 nandc_set_reg(nandc
, NAND_DEV0_ECC_CFG
, ecc_bch_cfg
);
445 nandc_set_reg(nandc
, NAND_EBI2_ECC_BUF_CFG
, host
->ecc_buf_cfg
);
446 nandc_set_reg(nandc
, NAND_FLASH_STATUS
, host
->clrflashstatus
);
447 nandc_set_reg(nandc
, NAND_READ_STATUS
, host
->clrreadstatus
);
448 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
451 static int prep_dma_desc(struct qcom_nand_controller
*nandc
, bool read
,
452 int reg_off
, const void *vaddr
, int size
,
455 struct desc_info
*desc
;
456 struct dma_async_tx_descriptor
*dma_desc
;
457 struct scatterlist
*sgl
;
458 struct dma_slave_config slave_conf
;
459 enum dma_transfer_direction dir_eng
;
462 desc
= kzalloc(sizeof(*desc
), GFP_KERNEL
);
468 sg_init_one(sgl
, vaddr
, size
);
471 dir_eng
= DMA_DEV_TO_MEM
;
472 desc
->dir
= DMA_FROM_DEVICE
;
474 dir_eng
= DMA_MEM_TO_DEV
;
475 desc
->dir
= DMA_TO_DEVICE
;
478 ret
= dma_map_sg(nandc
->dev
, sgl
, 1, desc
->dir
);
484 memset(&slave_conf
, 0x00, sizeof(slave_conf
));
486 slave_conf
.device_fc
= flow_control
;
488 slave_conf
.src_maxburst
= 16;
489 slave_conf
.src_addr
= nandc
->base_dma
+ reg_off
;
490 slave_conf
.slave_id
= nandc
->data_crci
;
492 slave_conf
.dst_maxburst
= 16;
493 slave_conf
.dst_addr
= nandc
->base_dma
+ reg_off
;
494 slave_conf
.slave_id
= nandc
->cmd_crci
;
497 ret
= dmaengine_slave_config(nandc
->chan
, &slave_conf
);
499 dev_err(nandc
->dev
, "failed to configure dma channel\n");
503 dma_desc
= dmaengine_prep_slave_sg(nandc
->chan
, sgl
, 1, dir_eng
, 0);
505 dev_err(nandc
->dev
, "failed to prepare desc\n");
510 desc
->dma_desc
= dma_desc
;
512 list_add_tail(&desc
->node
, &nandc
->desc_list
);
522 * read_reg_dma: prepares a descriptor to read a given number of
523 * contiguous registers to the reg_read_buf pointer
525 * @first: offset of the first register in the contiguous block
526 * @num_regs: number of registers to read
528 static int read_reg_dma(struct qcom_nand_controller
*nandc
, int first
,
531 bool flow_control
= false;
535 if (first
== NAND_READ_ID
|| first
== NAND_FLASH_STATUS
)
538 size
= num_regs
* sizeof(u32
);
539 vaddr
= nandc
->reg_read_buf
+ nandc
->reg_read_pos
;
540 nandc
->reg_read_pos
+= num_regs
;
542 return prep_dma_desc(nandc
, true, first
, vaddr
, size
, flow_control
);
546 * write_reg_dma: prepares a descriptor to write a given number of
547 * contiguous registers
549 * @first: offset of the first register in the contiguous block
550 * @num_regs: number of registers to write
552 static int write_reg_dma(struct qcom_nand_controller
*nandc
, int first
,
555 bool flow_control
= false;
556 struct nandc_regs
*regs
= nandc
->regs
;
560 vaddr
= offset_to_nandc_reg(regs
, first
);
562 if (first
== NAND_FLASH_CMD
)
565 if (first
== NAND_DEV_CMD1_RESTORE
)
566 first
= NAND_DEV_CMD1
;
568 if (first
== NAND_DEV_CMD_VLD_RESTORE
)
569 first
= NAND_DEV_CMD_VLD
;
571 size
= num_regs
* sizeof(u32
);
573 return prep_dma_desc(nandc
, false, first
, vaddr
, size
, flow_control
);
577 * read_data_dma: prepares a DMA descriptor to transfer data from the
578 * controller's internal buffer to the buffer 'vaddr'
580 * @reg_off: offset within the controller's data buffer
581 * @vaddr: virtual address of the buffer we want to write to
582 * @size: DMA transaction size in bytes
584 static int read_data_dma(struct qcom_nand_controller
*nandc
, int reg_off
,
585 const u8
*vaddr
, int size
)
587 return prep_dma_desc(nandc
, true, reg_off
, vaddr
, size
, false);
591 * write_data_dma: prepares a DMA descriptor to transfer data from
592 * 'vaddr' to the controller's internal buffer
594 * @reg_off: offset within the controller's data buffer
595 * @vaddr: virtual address of the buffer we want to read from
596 * @size: DMA transaction size in bytes
598 static int write_data_dma(struct qcom_nand_controller
*nandc
, int reg_off
,
599 const u8
*vaddr
, int size
)
601 return prep_dma_desc(nandc
, false, reg_off
, vaddr
, size
, false);
605 * helper to prepare dma descriptors to configure registers needed for reading a
606 * codeword/step in a page
608 static void config_cw_read(struct qcom_nand_controller
*nandc
)
610 write_reg_dma(nandc
, NAND_FLASH_CMD
, 3);
611 write_reg_dma(nandc
, NAND_DEV0_CFG0
, 3);
612 write_reg_dma(nandc
, NAND_EBI2_ECC_BUF_CFG
, 1);
614 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1);
616 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 2);
617 read_reg_dma(nandc
, NAND_ERASED_CW_DETECT_STATUS
, 1);
621 * helpers to prepare dma descriptors used to configure registers needed for
622 * writing a codeword/step in a page
624 static void config_cw_write_pre(struct qcom_nand_controller
*nandc
)
626 write_reg_dma(nandc
, NAND_FLASH_CMD
, 3);
627 write_reg_dma(nandc
, NAND_DEV0_CFG0
, 3);
628 write_reg_dma(nandc
, NAND_EBI2_ECC_BUF_CFG
, 1);
631 static void config_cw_write_post(struct qcom_nand_controller
*nandc
)
633 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1);
635 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 1);
637 write_reg_dma(nandc
, NAND_FLASH_STATUS
, 1);
638 write_reg_dma(nandc
, NAND_READ_STATUS
, 1);
642 * the following functions are used within chip->cmdfunc() to perform different
643 * NAND_CMD_* commands
646 /* sets up descriptors for NAND_CMD_PARAM */
647 static int nandc_param(struct qcom_nand_host
*host
)
649 struct nand_chip
*chip
= &host
->chip
;
650 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
653 * NAND_CMD_PARAM is called before we know much about the FLASH chip
654 * in use. we configure the controller to perform a raw read of 512
655 * bytes to read onfi params
657 nandc_set_reg(nandc
, NAND_FLASH_CMD
, PAGE_READ
| PAGE_ACC
| LAST_PAGE
);
658 nandc_set_reg(nandc
, NAND_ADDR0
, 0);
659 nandc_set_reg(nandc
, NAND_ADDR1
, 0);
660 nandc_set_reg(nandc
, NAND_DEV0_CFG0
, 0 << CW_PER_PAGE
661 | 512 << UD_SIZE_BYTES
662 | 5 << NUM_ADDR_CYCLES
663 | 0 << SPARE_SIZE_BYTES
);
664 nandc_set_reg(nandc
, NAND_DEV0_CFG1
, 7 << NAND_RECOVERY_CYCLES
666 | 17 << BAD_BLOCK_BYTE_NUM
667 | 1 << BAD_BLOCK_IN_SPARE_AREA
670 | 1 << DEV0_CFG1_ECC_DISABLE
);
671 nandc_set_reg(nandc
, NAND_EBI2_ECC_BUF_CFG
, 1 << ECC_CFG_ECC_DISABLE
);
673 /* configure CMD1 and VLD for ONFI param probing */
674 nandc_set_reg(nandc
, NAND_DEV_CMD_VLD
,
675 (nandc
->vld
& ~(1 << READ_START_VLD
))
676 | 0 << READ_START_VLD
);
677 nandc_set_reg(nandc
, NAND_DEV_CMD1
,
678 (nandc
->cmd1
& ~(0xFF << READ_ADDR
))
679 | NAND_CMD_PARAM
<< READ_ADDR
);
681 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
683 nandc_set_reg(nandc
, NAND_DEV_CMD1_RESTORE
, nandc
->cmd1
);
684 nandc_set_reg(nandc
, NAND_DEV_CMD_VLD_RESTORE
, nandc
->vld
);
686 write_reg_dma(nandc
, NAND_DEV_CMD_VLD
, 1);
687 write_reg_dma(nandc
, NAND_DEV_CMD1
, 1);
689 nandc
->buf_count
= 512;
690 memset(nandc
->data_buffer
, 0xff, nandc
->buf_count
);
692 config_cw_read(nandc
);
694 read_data_dma(nandc
, FLASH_BUF_ACC
, nandc
->data_buffer
,
697 /* restore CMD1 and VLD regs */
698 write_reg_dma(nandc
, NAND_DEV_CMD1_RESTORE
, 1);
699 write_reg_dma(nandc
, NAND_DEV_CMD_VLD_RESTORE
, 1);
704 /* sets up descriptors for NAND_CMD_ERASE1 */
705 static int erase_block(struct qcom_nand_host
*host
, int page_addr
)
707 struct nand_chip
*chip
= &host
->chip
;
708 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
710 nandc_set_reg(nandc
, NAND_FLASH_CMD
,
711 BLOCK_ERASE
| PAGE_ACC
| LAST_PAGE
);
712 nandc_set_reg(nandc
, NAND_ADDR0
, page_addr
);
713 nandc_set_reg(nandc
, NAND_ADDR1
, 0);
714 nandc_set_reg(nandc
, NAND_DEV0_CFG0
,
715 host
->cfg0_raw
& ~(7 << CW_PER_PAGE
));
716 nandc_set_reg(nandc
, NAND_DEV0_CFG1
, host
->cfg1_raw
);
717 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
718 nandc_set_reg(nandc
, NAND_FLASH_STATUS
, host
->clrflashstatus
);
719 nandc_set_reg(nandc
, NAND_READ_STATUS
, host
->clrreadstatus
);
721 write_reg_dma(nandc
, NAND_FLASH_CMD
, 3);
722 write_reg_dma(nandc
, NAND_DEV0_CFG0
, 2);
723 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1);
725 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 1);
727 write_reg_dma(nandc
, NAND_FLASH_STATUS
, 1);
728 write_reg_dma(nandc
, NAND_READ_STATUS
, 1);
733 /* sets up descriptors for NAND_CMD_READID */
734 static int read_id(struct qcom_nand_host
*host
, int column
)
736 struct nand_chip
*chip
= &host
->chip
;
737 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
742 nandc_set_reg(nandc
, NAND_FLASH_CMD
, FETCH_ID
);
743 nandc_set_reg(nandc
, NAND_ADDR0
, column
);
744 nandc_set_reg(nandc
, NAND_ADDR1
, 0);
745 nandc_set_reg(nandc
, NAND_FLASH_CHIP_SELECT
, DM_EN
);
746 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
748 write_reg_dma(nandc
, NAND_FLASH_CMD
, 4);
749 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1);
751 read_reg_dma(nandc
, NAND_READ_ID
, 1);
756 /* sets up descriptors for NAND_CMD_RESET */
757 static int reset(struct qcom_nand_host
*host
)
759 struct nand_chip
*chip
= &host
->chip
;
760 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
762 nandc_set_reg(nandc
, NAND_FLASH_CMD
, RESET_DEVICE
);
763 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
765 write_reg_dma(nandc
, NAND_FLASH_CMD
, 1);
766 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1);
768 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 1);
773 /* helpers to submit/free our list of dma descriptors */
774 static int submit_descs(struct qcom_nand_controller
*nandc
)
776 struct desc_info
*desc
;
777 dma_cookie_t cookie
= 0;
779 list_for_each_entry(desc
, &nandc
->desc_list
, node
)
780 cookie
= dmaengine_submit(desc
->dma_desc
);
782 if (dma_sync_wait(nandc
->chan
, cookie
) != DMA_COMPLETE
)
788 static void free_descs(struct qcom_nand_controller
*nandc
)
790 struct desc_info
*desc
, *n
;
792 list_for_each_entry_safe(desc
, n
, &nandc
->desc_list
, node
) {
793 list_del(&desc
->node
);
794 dma_unmap_sg(nandc
->dev
, &desc
->sgl
, 1, desc
->dir
);
799 /* reset the register read buffer for next NAND operation */
800 static void clear_read_regs(struct qcom_nand_controller
*nandc
)
802 nandc
->reg_read_pos
= 0;
803 memset(nandc
->reg_read_buf
, 0,
804 MAX_REG_RD
* sizeof(*nandc
->reg_read_buf
));
807 static void pre_command(struct qcom_nand_host
*host
, int command
)
809 struct nand_chip
*chip
= &host
->chip
;
810 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
812 nandc
->buf_count
= 0;
813 nandc
->buf_start
= 0;
814 host
->use_ecc
= false;
815 host
->last_command
= command
;
817 clear_read_regs(nandc
);
821 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
822 * privately maintained status byte, this status byte can be read after
823 * NAND_CMD_STATUS is called
825 static void parse_erase_write_errors(struct qcom_nand_host
*host
, int command
)
827 struct nand_chip
*chip
= &host
->chip
;
828 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
829 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
833 num_cw
= command
== NAND_CMD_PAGEPROG
? ecc
->steps
: 1;
835 for (i
= 0; i
< num_cw
; i
++) {
836 u32 flash_status
= le32_to_cpu(nandc
->reg_read_buf
[i
]);
838 if (flash_status
& FS_MPU_ERR
)
839 host
->status
&= ~NAND_STATUS_WP
;
841 if (flash_status
& FS_OP_ERR
|| (i
== (num_cw
- 1) &&
844 host
->status
|= NAND_STATUS_FAIL
;
848 static void post_command(struct qcom_nand_host
*host
, int command
)
850 struct nand_chip
*chip
= &host
->chip
;
851 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
854 case NAND_CMD_READID
:
855 memcpy(nandc
->data_buffer
, nandc
->reg_read_buf
,
858 case NAND_CMD_PAGEPROG
:
859 case NAND_CMD_ERASE1
:
860 parse_erase_write_errors(host
, command
);
868 * Implements chip->cmdfunc. It's only used for a limited set of commands.
869 * The rest of the commands wouldn't be called by upper layers. For example,
870 * NAND_CMD_READOOB would never be called because we have our own versions
871 * of read_oob ops for nand_ecc_ctrl.
873 static void qcom_nandc_command(struct mtd_info
*mtd
, unsigned int command
,
874 int column
, int page_addr
)
876 struct nand_chip
*chip
= mtd_to_nand(mtd
);
877 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
878 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
879 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
883 pre_command(host
, command
);
891 case NAND_CMD_READID
:
892 nandc
->buf_count
= 4;
893 ret
= read_id(host
, column
);
898 ret
= nandc_param(host
);
902 case NAND_CMD_ERASE1
:
903 ret
= erase_block(host
, page_addr
);
908 /* we read the entire page for now */
909 WARN_ON(column
!= 0);
911 host
->use_ecc
= true;
912 set_address(host
, 0, page_addr
);
913 update_rw_regs(host
, ecc
->steps
, true);
917 WARN_ON(column
!= 0);
918 set_address(host
, 0, page_addr
);
921 case NAND_CMD_PAGEPROG
:
922 case NAND_CMD_STATUS
:
929 dev_err(nandc
->dev
, "failure executing command %d\n",
936 ret
= submit_descs(nandc
);
939 "failure submitting descs for command %d\n",
945 post_command(host
, command
);
949 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
950 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
952 * when using RS ECC, the HW reports the same erros when reading an erased CW,
953 * but it notifies that it is an erased CW by placing special characters at
954 * certain offsets in the buffer.
956 * verify if the page is erased or not, and fix up the page for RS ECC by
957 * replacing the special characters with 0xff.
959 static bool erased_chunk_check_and_fixup(u8
*data_buf
, int data_len
)
964 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
965 * is erased by looking for 0x54s at offsets 3 and 175 from the
966 * beginning of each codeword
969 empty1
= data_buf
[3];
970 empty2
= data_buf
[175];
973 * if the erased codework markers, if they exist override them with
976 if ((empty1
== 0x54 && empty2
== 0xff) ||
977 (empty1
== 0xff && empty2
== 0x54)) {
979 data_buf
[175] = 0xff;
983 * check if the entire chunk contains 0xffs or not. if it doesn't, then
984 * restore the original values at the special offsets
986 if (memchr_inv(data_buf
, 0xff, data_len
)) {
987 data_buf
[3] = empty1
;
988 data_buf
[175] = empty2
;
1003 * reads back status registers set by the controller to notify page read
1004 * errors. this is equivalent to what 'ecc->correct()' would do.
1006 static int parse_read_errors(struct qcom_nand_host
*host
, u8
*data_buf
,
1009 struct nand_chip
*chip
= &host
->chip
;
1010 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1011 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1012 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1013 unsigned int max_bitflips
= 0;
1014 struct read_stats
*buf
;
1017 buf
= (struct read_stats
*)nandc
->reg_read_buf
;
1019 for (i
= 0; i
< ecc
->steps
; i
++, buf
++) {
1020 u32 flash
, buffer
, erased_cw
;
1021 int data_len
, oob_len
;
1023 if (i
== (ecc
->steps
- 1)) {
1024 data_len
= ecc
->size
- ((ecc
->steps
- 1) << 2);
1025 oob_len
= ecc
->steps
<< 2;
1027 data_len
= host
->cw_data
;
1031 flash
= le32_to_cpu(buf
->flash
);
1032 buffer
= le32_to_cpu(buf
->buffer
);
1033 erased_cw
= le32_to_cpu(buf
->erased_cw
);
1035 if (flash
& (FS_OP_ERR
| FS_MPU_ERR
)) {
1038 /* ignore erased codeword errors */
1039 if (host
->bch_enabled
) {
1040 erased
= (erased_cw
& ERASED_CW
) == ERASED_CW
?
1043 erased
= erased_chunk_check_and_fixup(data_buf
,
1048 data_buf
+= data_len
;
1050 oob_buf
+= oob_len
+ ecc
->bytes
;
1054 if (buffer
& BS_UNCORRECTABLE_BIT
) {
1055 int ret
, ecclen
, extraooblen
;
1058 eccbuf
= oob_buf
? oob_buf
+ oob_len
: NULL
;
1059 ecclen
= oob_buf
? host
->ecc_bytes_hw
: 0;
1060 extraooblen
= oob_buf
? oob_len
: 0;
1063 * make sure it isn't an erased page reported
1064 * as not-erased by HW because of a few bitflips
1066 ret
= nand_check_erased_ecc_chunk(data_buf
,
1067 data_len
, eccbuf
, ecclen
, oob_buf
,
1068 extraooblen
, ecc
->strength
);
1070 mtd
->ecc_stats
.failed
++;
1072 mtd
->ecc_stats
.corrected
+= ret
;
1074 max_t(unsigned int, max_bitflips
, ret
);
1080 stat
= buffer
& BS_CORRECTABLE_ERR_MSK
;
1081 mtd
->ecc_stats
.corrected
+= stat
;
1082 max_bitflips
= max(max_bitflips
, stat
);
1085 data_buf
+= data_len
;
1087 oob_buf
+= oob_len
+ ecc
->bytes
;
1090 return max_bitflips
;
1094 * helper to perform the actual page read operation, used by ecc->read_page(),
1097 static int read_page_ecc(struct qcom_nand_host
*host
, u8
*data_buf
,
1100 struct nand_chip
*chip
= &host
->chip
;
1101 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1102 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1105 /* queue cmd descs for each codeword */
1106 for (i
= 0; i
< ecc
->steps
; i
++) {
1107 int data_size
, oob_size
;
1109 if (i
== (ecc
->steps
- 1)) {
1110 data_size
= ecc
->size
- ((ecc
->steps
- 1) << 2);
1111 oob_size
= (ecc
->steps
<< 2) + host
->ecc_bytes_hw
+
1114 data_size
= host
->cw_data
;
1115 oob_size
= host
->ecc_bytes_hw
+ host
->spare_bytes
;
1118 config_cw_read(nandc
);
1121 read_data_dma(nandc
, FLASH_BUF_ACC
, data_buf
,
1125 * when ecc is enabled, the controller doesn't read the real
1126 * or dummy bad block markers in each chunk. To maintain a
1127 * consistent layout across RAW and ECC reads, we just
1128 * leave the real/dummy BBM offsets empty (i.e, filled with
1134 for (j
= 0; j
< host
->bbm_size
; j
++)
1137 read_data_dma(nandc
, FLASH_BUF_ACC
+ data_size
,
1142 data_buf
+= data_size
;
1144 oob_buf
+= oob_size
;
1147 ret
= submit_descs(nandc
);
1149 dev_err(nandc
->dev
, "failure to read page/oob\n");
1157 * a helper that copies the last step/codeword of a page (containing free oob)
1158 * into our local buffer
1160 static int copy_last_cw(struct qcom_nand_host
*host
, int page
)
1162 struct nand_chip
*chip
= &host
->chip
;
1163 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1164 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1168 clear_read_regs(nandc
);
1170 size
= host
->use_ecc
? host
->cw_data
: host
->cw_size
;
1172 /* prepare a clean read buffer */
1173 memset(nandc
->data_buffer
, 0xff, size
);
1175 set_address(host
, host
->cw_size
* (ecc
->steps
- 1), page
);
1176 update_rw_regs(host
, 1, true);
1178 config_cw_read(nandc
);
1180 read_data_dma(nandc
, FLASH_BUF_ACC
, nandc
->data_buffer
, size
);
1182 ret
= submit_descs(nandc
);
1184 dev_err(nandc
->dev
, "failed to copy last codeword\n");
1191 /* implements ecc->read_page() */
1192 static int qcom_nandc_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1193 uint8_t *buf
, int oob_required
, int page
)
1195 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1196 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1197 u8
*data_buf
, *oob_buf
= NULL
;
1201 oob_buf
= oob_required
? chip
->oob_poi
: NULL
;
1203 ret
= read_page_ecc(host
, data_buf
, oob_buf
);
1205 dev_err(nandc
->dev
, "failure to read page\n");
1209 return parse_read_errors(host
, data_buf
, oob_buf
);
1212 /* implements ecc->read_page_raw() */
1213 static int qcom_nandc_read_page_raw(struct mtd_info
*mtd
,
1214 struct nand_chip
*chip
, uint8_t *buf
,
1215 int oob_required
, int page
)
1217 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1218 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1219 u8
*data_buf
, *oob_buf
;
1220 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1224 oob_buf
= chip
->oob_poi
;
1226 host
->use_ecc
= false;
1227 update_rw_regs(host
, ecc
->steps
, true);
1229 for (i
= 0; i
< ecc
->steps
; i
++) {
1230 int data_size1
, data_size2
, oob_size1
, oob_size2
;
1231 int reg_off
= FLASH_BUF_ACC
;
1233 data_size1
= mtd
->writesize
- host
->cw_size
* (ecc
->steps
- 1);
1234 oob_size1
= host
->bbm_size
;
1236 if (i
== (ecc
->steps
- 1)) {
1237 data_size2
= ecc
->size
- data_size1
-
1238 ((ecc
->steps
- 1) << 2);
1239 oob_size2
= (ecc
->steps
<< 2) + host
->ecc_bytes_hw
+
1242 data_size2
= host
->cw_data
- data_size1
;
1243 oob_size2
= host
->ecc_bytes_hw
+ host
->spare_bytes
;
1246 config_cw_read(nandc
);
1248 read_data_dma(nandc
, reg_off
, data_buf
, data_size1
);
1249 reg_off
+= data_size1
;
1250 data_buf
+= data_size1
;
1252 read_data_dma(nandc
, reg_off
, oob_buf
, oob_size1
);
1253 reg_off
+= oob_size1
;
1254 oob_buf
+= oob_size1
;
1256 read_data_dma(nandc
, reg_off
, data_buf
, data_size2
);
1257 reg_off
+= data_size2
;
1258 data_buf
+= data_size2
;
1260 read_data_dma(nandc
, reg_off
, oob_buf
, oob_size2
);
1261 oob_buf
+= oob_size2
;
1264 ret
= submit_descs(nandc
);
1266 dev_err(nandc
->dev
, "failure to read raw page\n");
1273 /* implements ecc->read_oob() */
1274 static int qcom_nandc_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1277 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1278 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1279 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1282 clear_read_regs(nandc
);
1284 host
->use_ecc
= true;
1285 set_address(host
, 0, page
);
1286 update_rw_regs(host
, ecc
->steps
, true);
1288 ret
= read_page_ecc(host
, NULL
, chip
->oob_poi
);
1290 dev_err(nandc
->dev
, "failure to read oob\n");
1295 /* implements ecc->write_page() */
1296 static int qcom_nandc_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1297 const uint8_t *buf
, int oob_required
, int page
)
1299 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1300 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1301 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1302 u8
*data_buf
, *oob_buf
;
1305 clear_read_regs(nandc
);
1307 data_buf
= (u8
*)buf
;
1308 oob_buf
= chip
->oob_poi
;
1310 host
->use_ecc
= true;
1311 update_rw_regs(host
, ecc
->steps
, false);
1313 for (i
= 0; i
< ecc
->steps
; i
++) {
1314 int data_size
, oob_size
;
1316 if (i
== (ecc
->steps
- 1)) {
1317 data_size
= ecc
->size
- ((ecc
->steps
- 1) << 2);
1318 oob_size
= (ecc
->steps
<< 2) + host
->ecc_bytes_hw
+
1321 data_size
= host
->cw_data
;
1322 oob_size
= ecc
->bytes
;
1325 config_cw_write_pre(nandc
);
1327 write_data_dma(nandc
, FLASH_BUF_ACC
, data_buf
, data_size
);
1330 * when ECC is enabled, we don't really need to write anything
1331 * to oob for the first n - 1 codewords since these oob regions
1332 * just contain ECC bytes that's written by the controller
1333 * itself. For the last codeword, we skip the bbm positions and
1334 * write to the free oob area.
1336 if (i
== (ecc
->steps
- 1)) {
1337 oob_buf
+= host
->bbm_size
;
1339 write_data_dma(nandc
, FLASH_BUF_ACC
+ data_size
,
1343 config_cw_write_post(nandc
);
1345 data_buf
+= data_size
;
1346 oob_buf
+= oob_size
;
1349 ret
= submit_descs(nandc
);
1351 dev_err(nandc
->dev
, "failure to write page\n");
1358 /* implements ecc->write_page_raw() */
1359 static int qcom_nandc_write_page_raw(struct mtd_info
*mtd
,
1360 struct nand_chip
*chip
, const uint8_t *buf
,
1361 int oob_required
, int page
)
1363 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1364 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1365 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1366 u8
*data_buf
, *oob_buf
;
1369 clear_read_regs(nandc
);
1371 data_buf
= (u8
*)buf
;
1372 oob_buf
= chip
->oob_poi
;
1374 host
->use_ecc
= false;
1375 update_rw_regs(host
, ecc
->steps
, false);
1377 for (i
= 0; i
< ecc
->steps
; i
++) {
1378 int data_size1
, data_size2
, oob_size1
, oob_size2
;
1379 int reg_off
= FLASH_BUF_ACC
;
1381 data_size1
= mtd
->writesize
- host
->cw_size
* (ecc
->steps
- 1);
1382 oob_size1
= host
->bbm_size
;
1384 if (i
== (ecc
->steps
- 1)) {
1385 data_size2
= ecc
->size
- data_size1
-
1386 ((ecc
->steps
- 1) << 2);
1387 oob_size2
= (ecc
->steps
<< 2) + host
->ecc_bytes_hw
+
1390 data_size2
= host
->cw_data
- data_size1
;
1391 oob_size2
= host
->ecc_bytes_hw
+ host
->spare_bytes
;
1394 config_cw_write_pre(nandc
);
1396 write_data_dma(nandc
, reg_off
, data_buf
, data_size1
);
1397 reg_off
+= data_size1
;
1398 data_buf
+= data_size1
;
1400 write_data_dma(nandc
, reg_off
, oob_buf
, oob_size1
);
1401 reg_off
+= oob_size1
;
1402 oob_buf
+= oob_size1
;
1404 write_data_dma(nandc
, reg_off
, data_buf
, data_size2
);
1405 reg_off
+= data_size2
;
1406 data_buf
+= data_size2
;
1408 write_data_dma(nandc
, reg_off
, oob_buf
, oob_size2
);
1409 oob_buf
+= oob_size2
;
1411 config_cw_write_post(nandc
);
1414 ret
= submit_descs(nandc
);
1416 dev_err(nandc
->dev
, "failure to write raw page\n");
1424 * implements ecc->write_oob()
1426 * the NAND controller cannot write only data or only oob within a codeword,
1427 * since ecc is calculated for the combined codeword. we first copy the
1428 * entire contents for the last codeword(data + oob), replace the old oob
1429 * with the new one in chip->oob_poi, and then write the entire codeword.
1430 * this read-copy-write operation results in a slight performance loss.
1432 static int qcom_nandc_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1435 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1436 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1437 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1438 u8
*oob
= chip
->oob_poi
;
1439 int data_size
, oob_size
;
1440 int ret
, status
= 0;
1442 host
->use_ecc
= true;
1444 ret
= copy_last_cw(host
, page
);
1448 clear_read_regs(nandc
);
1450 /* calculate the data and oob size for the last codeword/step */
1451 data_size
= ecc
->size
- ((ecc
->steps
- 1) << 2);
1452 oob_size
= mtd
->oobavail
;
1454 /* override new oob content to last codeword */
1455 mtd_ooblayout_get_databytes(mtd
, nandc
->data_buffer
+ data_size
, oob
,
1458 set_address(host
, host
->cw_size
* (ecc
->steps
- 1), page
);
1459 update_rw_regs(host
, 1, false);
1461 config_cw_write_pre(nandc
);
1462 write_data_dma(nandc
, FLASH_BUF_ACC
, nandc
->data_buffer
,
1463 data_size
+ oob_size
);
1464 config_cw_write_post(nandc
);
1466 ret
= submit_descs(nandc
);
1471 dev_err(nandc
->dev
, "failure to write oob\n");
1475 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1477 status
= chip
->waitfunc(mtd
, chip
);
1479 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1482 static int qcom_nandc_block_bad(struct mtd_info
*mtd
, loff_t ofs
)
1484 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1485 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1486 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1487 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1488 int page
, ret
, bbpos
, bad
= 0;
1491 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
1494 * configure registers for a raw sub page read, the address is set to
1495 * the beginning of the last codeword, we don't care about reading ecc
1496 * portion of oob. we just want the first few bytes from this codeword
1497 * that contains the BBM
1499 host
->use_ecc
= false;
1501 ret
= copy_last_cw(host
, page
);
1505 flash_status
= le32_to_cpu(nandc
->reg_read_buf
[0]);
1507 if (flash_status
& (FS_OP_ERR
| FS_MPU_ERR
)) {
1508 dev_warn(nandc
->dev
, "error when trying to read BBM\n");
1512 bbpos
= mtd
->writesize
- host
->cw_size
* (ecc
->steps
- 1);
1514 bad
= nandc
->data_buffer
[bbpos
] != 0xff;
1516 if (chip
->options
& NAND_BUSWIDTH_16
)
1517 bad
= bad
|| (nandc
->data_buffer
[bbpos
+ 1] != 0xff);
1522 static int qcom_nandc_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1524 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1525 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1526 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1527 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1528 int page
, ret
, status
= 0;
1530 clear_read_regs(nandc
);
1533 * to mark the BBM as bad, we flash the entire last codeword with 0s.
1534 * we don't care about the rest of the content in the codeword since
1535 * we aren't going to use this block again
1537 memset(nandc
->data_buffer
, 0x00, host
->cw_size
);
1539 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
1542 host
->use_ecc
= false;
1543 set_address(host
, host
->cw_size
* (ecc
->steps
- 1), page
);
1544 update_rw_regs(host
, 1, false);
1546 config_cw_write_pre(nandc
);
1547 write_data_dma(nandc
, FLASH_BUF_ACC
, nandc
->data_buffer
, host
->cw_size
);
1548 config_cw_write_post(nandc
);
1550 ret
= submit_descs(nandc
);
1555 dev_err(nandc
->dev
, "failure to update BBM\n");
1559 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1561 status
= chip
->waitfunc(mtd
, chip
);
1563 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1567 * the three functions below implement chip->read_byte(), chip->read_buf()
1568 * and chip->write_buf() respectively. these aren't used for
1569 * reading/writing page data, they are used for smaller data like reading
1572 static uint8_t qcom_nandc_read_byte(struct mtd_info
*mtd
)
1574 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1575 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1576 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1577 u8
*buf
= nandc
->data_buffer
;
1580 if (host
->last_command
== NAND_CMD_STATUS
) {
1583 host
->status
= NAND_STATUS_READY
| NAND_STATUS_WP
;
1588 if (nandc
->buf_start
< nandc
->buf_count
)
1589 ret
= buf
[nandc
->buf_start
++];
1594 static void qcom_nandc_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
1596 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1597 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1598 int real_len
= min_t(size_t, len
, nandc
->buf_count
- nandc
->buf_start
);
1600 memcpy(buf
, nandc
->data_buffer
+ nandc
->buf_start
, real_len
);
1601 nandc
->buf_start
+= real_len
;
1604 static void qcom_nandc_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
,
1607 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1608 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1609 int real_len
= min_t(size_t, len
, nandc
->buf_count
- nandc
->buf_start
);
1611 memcpy(nandc
->data_buffer
+ nandc
->buf_start
, buf
, real_len
);
1613 nandc
->buf_start
+= real_len
;
1616 /* we support only one external chip for now */
1617 static void qcom_nandc_select_chip(struct mtd_info
*mtd
, int chipnr
)
1619 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1620 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1625 dev_warn(nandc
->dev
, "invalid chip select\n");
1629 * NAND controller page layout info
1631 * Layout with ECC enabled:
1633 * |----------------------| |---------------------------------|
1634 * | xx.......yy| | *********xx.......yy|
1635 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
1636 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
1637 * | xx.......yy| | *********xx.......yy|
1638 * |----------------------| |---------------------------------|
1639 * codeword 1,2..n-1 codeword n
1640 * <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
1642 * n = Number of codewords in the page
1644 * * = Spare/free bytes
1645 * x = Unused byte(s)
1646 * y = Reserved byte(s)
1648 * 2K page: n = 4, spare = 16 bytes
1649 * 4K page: n = 8, spare = 32 bytes
1650 * 8K page: n = 16, spare = 64 bytes
1652 * the qcom nand controller operates at a sub page/codeword level. each
1653 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
1654 * the number of ECC bytes vary based on the ECC strength and the bus width.
1656 * the first n - 1 codewords contains 516 bytes of user data, the remaining
1657 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
1658 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
1660 * When we access a page with ECC enabled, the reserved bytes(s) are not
1661 * accessible at all. When reading, we fill up these unreadable positions
1662 * with 0xffs. When writing, the controller skips writing the inaccessible
1665 * Layout with ECC disabled:
1667 * |------------------------------| |---------------------------------------|
1668 * | yy xx.......| | bb *********xx.......|
1669 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
1670 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
1671 * | yy xx.......| | bb *********xx.......|
1672 * |------------------------------| |---------------------------------------|
1673 * codeword 1,2..n-1 codeword n
1674 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
1676 * n = Number of codewords in the page
1678 * * = Spare/free bytes
1679 * x = Unused byte(s)
1680 * y = Dummy Bad Bock byte(s)
1681 * b = Real Bad Block byte(s)
1682 * size1/size2 = function of codeword size and 'n'
1684 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
1685 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
1686 * Block Markers. In the last codeword, this position contains the real BBM
1688 * In order to have a consistent layout between RAW and ECC modes, we assume
1689 * the following OOB layout arrangement:
1691 * |-----------| |--------------------|
1692 * |yyxx.......| |bb*********xx.......|
1693 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
1694 * |yyxx.......| |bb*********xx.......|
1695 * |yyxx.......| |bb*********xx.......|
1696 * |-----------| |--------------------|
1697 * first n - 1 nth OOB region
1700 * n = Number of codewords in the page
1702 * * = FREE OOB bytes
1703 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
1704 * x = Unused byte(s)
1705 * b = Real bad block byte(s) (inaccessible when ECC enabled)
1707 * This layout is read as is when ECC is disabled. When ECC is enabled, the
1708 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
1709 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
1710 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
1711 * the sum of the three).
1713 static int qcom_nand_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1714 struct mtd_oob_region
*oobregion
)
1716 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1717 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1718 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1724 oobregion
->length
= (ecc
->bytes
* (ecc
->steps
- 1)) +
1726 oobregion
->offset
= 0;
1728 oobregion
->length
= host
->ecc_bytes_hw
+ host
->spare_bytes
;
1729 oobregion
->offset
= mtd
->oobsize
- oobregion
->length
;
1735 static int qcom_nand_ooblayout_free(struct mtd_info
*mtd
, int section
,
1736 struct mtd_oob_region
*oobregion
)
1738 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1739 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1740 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1745 oobregion
->length
= ecc
->steps
* 4;
1746 oobregion
->offset
= ((ecc
->steps
- 1) * ecc
->bytes
) + host
->bbm_size
;
1751 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops
= {
1752 .ecc
= qcom_nand_ooblayout_ecc
,
1753 .free
= qcom_nand_ooblayout_free
,
1756 static int qcom_nand_host_setup(struct qcom_nand_host
*host
)
1758 struct nand_chip
*chip
= &host
->chip
;
1759 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1760 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1761 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1762 int cwperpage
, bad_block_byte
;
1767 * the controller requires each step consists of 512 bytes of data.
1768 * bail out if DT has populated a wrong step size.
1770 if (ecc
->size
!= NANDC_STEP_SIZE
) {
1771 dev_err(nandc
->dev
, "invalid ecc size\n");
1775 wide_bus
= chip
->options
& NAND_BUSWIDTH_16
? true : false;
1777 if (ecc
->strength
>= 8) {
1778 /* 8 bit ECC defaults to BCH ECC on all platforms */
1779 host
->bch_enabled
= true;
1783 host
->ecc_bytes_hw
= 14;
1784 host
->spare_bytes
= 0;
1787 host
->ecc_bytes_hw
= 13;
1788 host
->spare_bytes
= 2;
1793 * if the controller supports BCH for 4 bit ECC, the controller
1794 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
1797 if (nandc
->ecc_modes
& ECC_BCH_4BIT
) {
1799 host
->bch_enabled
= true;
1803 host
->ecc_bytes_hw
= 8;
1804 host
->spare_bytes
= 2;
1807 host
->ecc_bytes_hw
= 7;
1808 host
->spare_bytes
= 4;
1813 host
->ecc_bytes_hw
= 10;
1816 host
->spare_bytes
= 0;
1819 host
->spare_bytes
= 1;
1826 * we consider ecc->bytes as the sum of all the non-data content in a
1827 * step. It gives us a clean representation of the oob area (even if
1828 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
1829 * ECC and 12 bytes for 4 bit ECC
1831 ecc
->bytes
= host
->ecc_bytes_hw
+ host
->spare_bytes
+ host
->bbm_size
;
1833 ecc
->read_page
= qcom_nandc_read_page
;
1834 ecc
->read_page_raw
= qcom_nandc_read_page_raw
;
1835 ecc
->read_oob
= qcom_nandc_read_oob
;
1836 ecc
->write_page
= qcom_nandc_write_page
;
1837 ecc
->write_page_raw
= qcom_nandc_write_page_raw
;
1838 ecc
->write_oob
= qcom_nandc_write_oob
;
1840 ecc
->mode
= NAND_ECC_HW
;
1842 mtd_set_ooblayout(mtd
, &qcom_nand_ooblayout_ops
);
1844 cwperpage
= mtd
->writesize
/ ecc
->size
;
1847 * DATA_UD_BYTES varies based on whether the read/write command protects
1848 * spare data with ECC too. We protect spare data by default, so we set
1849 * it to main + spare data, which are 512 and 4 bytes respectively.
1851 host
->cw_data
= 516;
1854 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
1857 host
->cw_size
= host
->cw_data
+ ecc
->bytes
;
1859 if (ecc
->bytes
* (mtd
->writesize
/ ecc
->size
) > mtd
->oobsize
) {
1860 dev_err(nandc
->dev
, "ecc data doesn't fit in OOB area\n");
1864 bad_block_byte
= mtd
->writesize
- host
->cw_size
* (cwperpage
- 1) + 1;
1866 host
->cfg0
= (cwperpage
- 1) << CW_PER_PAGE
1867 | host
->cw_data
<< UD_SIZE_BYTES
1868 | 0 << DISABLE_STATUS_AFTER_WRITE
1869 | 5 << NUM_ADDR_CYCLES
1870 | host
->ecc_bytes_hw
<< ECC_PARITY_SIZE_BYTES_RS
1871 | 0 << STATUS_BFR_READ
1872 | 1 << SET_RD_MODE_AFTER_STATUS
1873 | host
->spare_bytes
<< SPARE_SIZE_BYTES
;
1875 host
->cfg1
= 7 << NAND_RECOVERY_CYCLES
1876 | 0 << CS_ACTIVE_BSY
1877 | bad_block_byte
<< BAD_BLOCK_BYTE_NUM
1878 | 0 << BAD_BLOCK_IN_SPARE_AREA
1879 | 2 << WR_RD_BSY_GAP
1880 | wide_bus
<< WIDE_FLASH
1881 | host
->bch_enabled
<< ENABLE_BCH_ECC
;
1883 host
->cfg0_raw
= (cwperpage
- 1) << CW_PER_PAGE
1884 | host
->cw_size
<< UD_SIZE_BYTES
1885 | 5 << NUM_ADDR_CYCLES
1886 | 0 << SPARE_SIZE_BYTES
;
1888 host
->cfg1_raw
= 7 << NAND_RECOVERY_CYCLES
1889 | 0 << CS_ACTIVE_BSY
1890 | 17 << BAD_BLOCK_BYTE_NUM
1891 | 1 << BAD_BLOCK_IN_SPARE_AREA
1892 | 2 << WR_RD_BSY_GAP
1893 | wide_bus
<< WIDE_FLASH
1894 | 1 << DEV0_CFG1_ECC_DISABLE
;
1896 host
->ecc_bch_cfg
= host
->bch_enabled
<< ECC_CFG_ECC_DISABLE
1898 | host
->cw_data
<< ECC_NUM_DATA_BYTES
1899 | 1 << ECC_FORCE_CLK_OPEN
1900 | ecc_mode
<< ECC_MODE
1901 | host
->ecc_bytes_hw
<< ECC_PARITY_SIZE_BYTES_BCH
;
1903 host
->ecc_buf_cfg
= 0x203 << NUM_STEPS
;
1905 host
->clrflashstatus
= FS_READY_BSY_N
;
1906 host
->clrreadstatus
= 0xc0;
1909 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
1910 host
->cfg0
, host
->cfg1
, host
->ecc_buf_cfg
, host
->ecc_bch_cfg
,
1911 host
->cw_size
, host
->cw_data
, ecc
->strength
, ecc
->bytes
,
1917 static int qcom_nandc_alloc(struct qcom_nand_controller
*nandc
)
1921 ret
= dma_set_coherent_mask(nandc
->dev
, DMA_BIT_MASK(32));
1923 dev_err(nandc
->dev
, "failed to set DMA mask\n");
1928 * we use the internal buffer for reading ONFI params, reading small
1929 * data like ID and status, and preforming read-copy-write operations
1930 * when writing to a codeword partially. 532 is the maximum possible
1931 * size of a codeword for our nand controller
1933 nandc
->buf_size
= 532;
1935 nandc
->data_buffer
= devm_kzalloc(nandc
->dev
, nandc
->buf_size
,
1937 if (!nandc
->data_buffer
)
1940 nandc
->regs
= devm_kzalloc(nandc
->dev
, sizeof(*nandc
->regs
),
1945 nandc
->reg_read_buf
= devm_kzalloc(nandc
->dev
,
1946 MAX_REG_RD
* sizeof(*nandc
->reg_read_buf
),
1948 if (!nandc
->reg_read_buf
)
1951 nandc
->chan
= dma_request_slave_channel(nandc
->dev
, "rxtx");
1953 dev_err(nandc
->dev
, "failed to request slave channel\n");
1957 INIT_LIST_HEAD(&nandc
->desc_list
);
1958 INIT_LIST_HEAD(&nandc
->host_list
);
1960 nand_hw_control_init(&nandc
->controller
);
1965 static void qcom_nandc_unalloc(struct qcom_nand_controller
*nandc
)
1967 dma_release_channel(nandc
->chan
);
1970 /* one time setup of a few nand controller registers */
1971 static int qcom_nandc_setup(struct qcom_nand_controller
*nandc
)
1974 nandc_write(nandc
, SFLASHC_BURST_CFG
, 0);
1976 /* enable ADM DMA */
1977 nandc_write(nandc
, NAND_FLASH_CHIP_SELECT
, DM_EN
);
1979 /* save the original values of these registers */
1980 nandc
->cmd1
= nandc_read(nandc
, NAND_DEV_CMD1
);
1981 nandc
->vld
= nandc_read(nandc
, NAND_DEV_CMD_VLD
);
1986 static int qcom_nand_host_init(struct qcom_nand_controller
*nandc
,
1987 struct qcom_nand_host
*host
,
1988 struct device_node
*dn
)
1990 struct nand_chip
*chip
= &host
->chip
;
1991 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1992 struct device
*dev
= nandc
->dev
;
1995 ret
= of_property_read_u32(dn
, "reg", &host
->cs
);
1997 dev_err(dev
, "can't get chip-select\n");
2001 nand_set_flash_node(chip
, dn
);
2002 mtd
->name
= devm_kasprintf(dev
, GFP_KERNEL
, "qcom_nand.%d", host
->cs
);
2003 mtd
->owner
= THIS_MODULE
;
2004 mtd
->dev
.parent
= dev
;
2006 chip
->cmdfunc
= qcom_nandc_command
;
2007 chip
->select_chip
= qcom_nandc_select_chip
;
2008 chip
->read_byte
= qcom_nandc_read_byte
;
2009 chip
->read_buf
= qcom_nandc_read_buf
;
2010 chip
->write_buf
= qcom_nandc_write_buf
;
2013 * the bad block marker is readable only when we read the last codeword
2014 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2015 * helpers don't allow us to read BB from a nand chip with ECC
2016 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2017 * and block_markbad helpers until we permanently switch to using
2018 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2020 chip
->block_bad
= qcom_nandc_block_bad
;
2021 chip
->block_markbad
= qcom_nandc_block_markbad
;
2023 chip
->controller
= &nandc
->controller
;
2024 chip
->options
|= NAND_NO_SUBPAGE_WRITE
| NAND_USE_BOUNCE_BUFFER
|
2027 /* set up initial status value */
2028 host
->status
= NAND_STATUS_READY
| NAND_STATUS_WP
;
2030 ret
= nand_scan_ident(mtd
, 1, NULL
);
2034 ret
= qcom_nand_host_setup(host
);
2038 ret
= nand_scan_tail(mtd
);
2042 return mtd_device_register(mtd
, NULL
, 0);
2045 /* parse custom DT properties here */
2046 static int qcom_nandc_parse_dt(struct platform_device
*pdev
)
2048 struct qcom_nand_controller
*nandc
= platform_get_drvdata(pdev
);
2049 struct device_node
*np
= nandc
->dev
->of_node
;
2052 ret
= of_property_read_u32(np
, "qcom,cmd-crci", &nandc
->cmd_crci
);
2054 dev_err(nandc
->dev
, "command CRCI unspecified\n");
2058 ret
= of_property_read_u32(np
, "qcom,data-crci", &nandc
->data_crci
);
2060 dev_err(nandc
->dev
, "data CRCI unspecified\n");
2067 static int qcom_nandc_probe(struct platform_device
*pdev
)
2069 struct qcom_nand_controller
*nandc
;
2070 struct qcom_nand_host
*host
;
2071 const void *dev_data
;
2072 struct device
*dev
= &pdev
->dev
;
2073 struct device_node
*dn
= dev
->of_node
, *child
;
2074 struct resource
*res
;
2077 nandc
= devm_kzalloc(&pdev
->dev
, sizeof(*nandc
), GFP_KERNEL
);
2081 platform_set_drvdata(pdev
, nandc
);
2084 dev_data
= of_device_get_match_data(dev
);
2086 dev_err(&pdev
->dev
, "failed to get device data\n");
2090 nandc
->ecc_modes
= (unsigned long)dev_data
;
2092 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2093 nandc
->base
= devm_ioremap_resource(dev
, res
);
2094 if (IS_ERR(nandc
->base
))
2095 return PTR_ERR(nandc
->base
);
2097 nandc
->base_dma
= phys_to_dma(dev
, (phys_addr_t
)res
->start
);
2099 nandc
->core_clk
= devm_clk_get(dev
, "core");
2100 if (IS_ERR(nandc
->core_clk
))
2101 return PTR_ERR(nandc
->core_clk
);
2103 nandc
->aon_clk
= devm_clk_get(dev
, "aon");
2104 if (IS_ERR(nandc
->aon_clk
))
2105 return PTR_ERR(nandc
->aon_clk
);
2107 ret
= qcom_nandc_parse_dt(pdev
);
2111 ret
= qcom_nandc_alloc(nandc
);
2115 ret
= clk_prepare_enable(nandc
->core_clk
);
2119 ret
= clk_prepare_enable(nandc
->aon_clk
);
2123 ret
= qcom_nandc_setup(nandc
);
2127 for_each_available_child_of_node(dn
, child
) {
2128 if (of_device_is_compatible(child
, "qcom,nandcs")) {
2129 host
= devm_kzalloc(dev
, sizeof(*host
), GFP_KERNEL
);
2136 ret
= qcom_nand_host_init(nandc
, host
, child
);
2138 devm_kfree(dev
, host
);
2142 list_add_tail(&host
->node
, &nandc
->host_list
);
2146 if (list_empty(&nandc
->host_list
)) {
2154 list_for_each_entry(host
, &nandc
->host_list
, node
)
2155 nand_release(nand_to_mtd(&host
->chip
));
2157 clk_disable_unprepare(nandc
->aon_clk
);
2159 clk_disable_unprepare(nandc
->core_clk
);
2161 qcom_nandc_unalloc(nandc
);
2166 static int qcom_nandc_remove(struct platform_device
*pdev
)
2168 struct qcom_nand_controller
*nandc
= platform_get_drvdata(pdev
);
2169 struct qcom_nand_host
*host
;
2171 list_for_each_entry(host
, &nandc
->host_list
, node
)
2172 nand_release(nand_to_mtd(&host
->chip
));
2174 qcom_nandc_unalloc(nandc
);
2176 clk_disable_unprepare(nandc
->aon_clk
);
2177 clk_disable_unprepare(nandc
->core_clk
);
2182 #define EBI2_NANDC_ECC_MODES (ECC_RS_4BIT | ECC_BCH_8BIT)
2185 * data will hold a struct pointer containing more differences once we support
2186 * more controller variants
2188 static const struct of_device_id qcom_nandc_of_match
[] = {
2189 { .compatible
= "qcom,ipq806x-nand",
2190 .data
= (void *)EBI2_NANDC_ECC_MODES
,
2194 MODULE_DEVICE_TABLE(of
, qcom_nandc_of_match
);
2196 static struct platform_driver qcom_nandc_driver
= {
2198 .name
= "qcom-nandc",
2199 .of_match_table
= qcom_nandc_of_match
,
2201 .probe
= qcom_nandc_probe
,
2202 .remove
= qcom_nandc_remove
,
2204 module_platform_driver(qcom_nandc_driver
);
2206 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
2207 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
2208 MODULE_LICENSE("GPL v2");