mtd: nand: brcmnand: Check flash #WP pin status before nand erase/program
[linux/fpc-iii.git] / drivers / target / target_core_transport.c
blob1f9bfa4195ea27bd6fa998c758a17281c8109554
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
72 int init_se_kmem_caches(void)
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
145 return 0;
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
185 * Allocate a new row index for the entry type specified
187 u32 scsi_get_new_index(scsi_index_t type)
189 u32 new_index;
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
197 return new_index;
200 void transport_subsystem_check_init(void)
202 int ret;
203 static int sub_api_initialized;
205 if (sub_api_initialized)
206 return;
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized = 1;
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 struct se_session *se_sess;
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 se_sess->sup_prot_ops = sup_prot_ops;
244 return se_sess;
246 EXPORT_SYMBOL(transport_init_session);
248 int transport_alloc_session_tags(struct se_session *se_sess,
249 unsigned int tag_num, unsigned int tag_size)
251 int rc;
253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
254 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
255 if (!se_sess->sess_cmd_map) {
256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
257 if (!se_sess->sess_cmd_map) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
259 return -ENOMEM;
263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
264 if (rc < 0) {
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num);
267 kvfree(se_sess->sess_cmd_map);
268 se_sess->sess_cmd_map = NULL;
269 return -ENOMEM;
272 return 0;
274 EXPORT_SYMBOL(transport_alloc_session_tags);
276 struct se_session *transport_init_session_tags(unsigned int tag_num,
277 unsigned int tag_size,
278 enum target_prot_op sup_prot_ops)
280 struct se_session *se_sess;
281 int rc;
283 if (tag_num != 0 && !tag_size) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num);
286 return ERR_PTR(-EINVAL);
288 if (!tag_num && tag_size) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size);
291 return ERR_PTR(-EINVAL);
294 se_sess = transport_init_session(sup_prot_ops);
295 if (IS_ERR(se_sess))
296 return se_sess;
298 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
299 if (rc < 0) {
300 transport_free_session(se_sess);
301 return ERR_PTR(-ENOMEM);
304 return se_sess;
306 EXPORT_SYMBOL(transport_init_session_tags);
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 void __transport_register_session(
312 struct se_portal_group *se_tpg,
313 struct se_node_acl *se_nacl,
314 struct se_session *se_sess,
315 void *fabric_sess_ptr)
317 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
318 unsigned char buf[PR_REG_ISID_LEN];
320 se_sess->se_tpg = se_tpg;
321 se_sess->fabric_sess_ptr = fabric_sess_ptr;
323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 * Only set for struct se_session's that will actually be moving I/O.
326 * eg: *NOT* discovery sessions.
328 if (se_nacl) {
331 * Determine if fabric allows for T10-PI feature bits exposed to
332 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 * If so, then always save prot_type on a per se_node_acl node
335 * basis and re-instate the previous sess_prot_type to avoid
336 * disabling PI from below any previously initiator side
337 * registered LUNs.
339 if (se_nacl->saved_prot_type)
340 se_sess->sess_prot_type = se_nacl->saved_prot_type;
341 else if (tfo->tpg_check_prot_fabric_only)
342 se_sess->sess_prot_type = se_nacl->saved_prot_type =
343 tfo->tpg_check_prot_fabric_only(se_tpg);
345 * If the fabric module supports an ISID based TransportID,
346 * save this value in binary from the fabric I_T Nexus now.
348 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349 memset(&buf[0], 0, PR_REG_ISID_LEN);
350 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351 &buf[0], PR_REG_ISID_LEN);
352 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
355 spin_lock_irq(&se_nacl->nacl_sess_lock);
357 * The se_nacl->nacl_sess pointer will be set to the
358 * last active I_T Nexus for each struct se_node_acl.
360 se_nacl->nacl_sess = se_sess;
362 list_add_tail(&se_sess->sess_acl_list,
363 &se_nacl->acl_sess_list);
364 spin_unlock_irq(&se_nacl->nacl_sess_lock);
366 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 EXPORT_SYMBOL(__transport_register_session);
373 void transport_register_session(
374 struct se_portal_group *se_tpg,
375 struct se_node_acl *se_nacl,
376 struct se_session *se_sess,
377 void *fabric_sess_ptr)
379 unsigned long flags;
381 spin_lock_irqsave(&se_tpg->session_lock, flags);
382 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
383 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 EXPORT_SYMBOL(transport_register_session);
387 struct se_session *
388 target_alloc_session(struct se_portal_group *tpg,
389 unsigned int tag_num, unsigned int tag_size,
390 enum target_prot_op prot_op,
391 const char *initiatorname, void *private,
392 int (*callback)(struct se_portal_group *,
393 struct se_session *, void *))
395 struct se_session *sess;
398 * If the fabric driver is using percpu-ida based pre allocation
399 * of I/O descriptor tags, go ahead and perform that setup now..
401 if (tag_num != 0)
402 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
403 else
404 sess = transport_init_session(prot_op);
406 if (IS_ERR(sess))
407 return sess;
409 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
410 (unsigned char *)initiatorname);
411 if (!sess->se_node_acl) {
412 transport_free_session(sess);
413 return ERR_PTR(-EACCES);
416 * Go ahead and perform any remaining fabric setup that is
417 * required before transport_register_session().
419 if (callback != NULL) {
420 int rc = callback(tpg, sess, private);
421 if (rc) {
422 transport_free_session(sess);
423 return ERR_PTR(rc);
427 transport_register_session(tpg, sess->se_node_acl, sess, private);
428 return sess;
430 EXPORT_SYMBOL(target_alloc_session);
432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
434 struct se_session *se_sess;
435 ssize_t len = 0;
437 spin_lock_bh(&se_tpg->session_lock);
438 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
439 if (!se_sess->se_node_acl)
440 continue;
441 if (!se_sess->se_node_acl->dynamic_node_acl)
442 continue;
443 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
444 break;
446 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
447 se_sess->se_node_acl->initiatorname);
448 len += 1; /* Include NULL terminator */
450 spin_unlock_bh(&se_tpg->session_lock);
452 return len;
454 EXPORT_SYMBOL(target_show_dynamic_sessions);
456 static void target_complete_nacl(struct kref *kref)
458 struct se_node_acl *nacl = container_of(kref,
459 struct se_node_acl, acl_kref);
460 struct se_portal_group *se_tpg = nacl->se_tpg;
462 if (!nacl->dynamic_stop) {
463 complete(&nacl->acl_free_comp);
464 return;
467 mutex_lock(&se_tpg->acl_node_mutex);
468 list_del(&nacl->acl_list);
469 mutex_unlock(&se_tpg->acl_node_mutex);
471 core_tpg_wait_for_nacl_pr_ref(nacl);
472 core_free_device_list_for_node(nacl, se_tpg);
473 kfree(nacl);
476 void target_put_nacl(struct se_node_acl *nacl)
478 kref_put(&nacl->acl_kref, target_complete_nacl);
480 EXPORT_SYMBOL(target_put_nacl);
482 void transport_deregister_session_configfs(struct se_session *se_sess)
484 struct se_node_acl *se_nacl;
485 unsigned long flags;
487 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
489 se_nacl = se_sess->se_node_acl;
490 if (se_nacl) {
491 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
492 if (!list_empty(&se_sess->sess_acl_list))
493 list_del_init(&se_sess->sess_acl_list);
495 * If the session list is empty, then clear the pointer.
496 * Otherwise, set the struct se_session pointer from the tail
497 * element of the per struct se_node_acl active session list.
499 if (list_empty(&se_nacl->acl_sess_list))
500 se_nacl->nacl_sess = NULL;
501 else {
502 se_nacl->nacl_sess = container_of(
503 se_nacl->acl_sess_list.prev,
504 struct se_session, sess_acl_list);
506 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
509 EXPORT_SYMBOL(transport_deregister_session_configfs);
511 void transport_free_session(struct se_session *se_sess)
513 struct se_node_acl *se_nacl = se_sess->se_node_acl;
516 * Drop the se_node_acl->nacl_kref obtained from within
517 * core_tpg_get_initiator_node_acl().
519 if (se_nacl) {
520 struct se_portal_group *se_tpg = se_nacl->se_tpg;
521 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
522 unsigned long flags;
524 se_sess->se_node_acl = NULL;
527 * Also determine if we need to drop the extra ->cmd_kref if
528 * it had been previously dynamically generated, and
529 * the endpoint is not caching dynamic ACLs.
531 mutex_lock(&se_tpg->acl_node_mutex);
532 if (se_nacl->dynamic_node_acl &&
533 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
534 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
535 if (list_empty(&se_nacl->acl_sess_list))
536 se_nacl->dynamic_stop = true;
537 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
539 if (se_nacl->dynamic_stop)
540 list_del(&se_nacl->acl_list);
542 mutex_unlock(&se_tpg->acl_node_mutex);
544 if (se_nacl->dynamic_stop)
545 target_put_nacl(se_nacl);
547 target_put_nacl(se_nacl);
549 if (se_sess->sess_cmd_map) {
550 percpu_ida_destroy(&se_sess->sess_tag_pool);
551 kvfree(se_sess->sess_cmd_map);
553 kmem_cache_free(se_sess_cache, se_sess);
555 EXPORT_SYMBOL(transport_free_session);
557 void transport_deregister_session(struct se_session *se_sess)
559 struct se_portal_group *se_tpg = se_sess->se_tpg;
560 unsigned long flags;
562 if (!se_tpg) {
563 transport_free_session(se_sess);
564 return;
567 spin_lock_irqsave(&se_tpg->session_lock, flags);
568 list_del(&se_sess->sess_list);
569 se_sess->se_tpg = NULL;
570 se_sess->fabric_sess_ptr = NULL;
571 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
573 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
574 se_tpg->se_tpg_tfo->get_fabric_name());
576 * If last kref is dropping now for an explicit NodeACL, awake sleeping
577 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
578 * removal context from within transport_free_session() code.
580 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
581 * to release all remaining generate_node_acl=1 created ACL resources.
584 transport_free_session(se_sess);
586 EXPORT_SYMBOL(transport_deregister_session);
588 static void target_remove_from_state_list(struct se_cmd *cmd)
590 struct se_device *dev = cmd->se_dev;
591 unsigned long flags;
593 if (!dev)
594 return;
596 if (cmd->transport_state & CMD_T_BUSY)
597 return;
599 spin_lock_irqsave(&dev->execute_task_lock, flags);
600 if (cmd->state_active) {
601 list_del(&cmd->state_list);
602 cmd->state_active = false;
604 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
607 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
608 bool write_pending)
610 unsigned long flags;
612 if (remove_from_lists) {
613 target_remove_from_state_list(cmd);
616 * Clear struct se_cmd->se_lun before the handoff to FE.
618 cmd->se_lun = NULL;
621 spin_lock_irqsave(&cmd->t_state_lock, flags);
622 if (write_pending)
623 cmd->t_state = TRANSPORT_WRITE_PENDING;
626 * Determine if frontend context caller is requesting the stopping of
627 * this command for frontend exceptions.
629 if (cmd->transport_state & CMD_T_STOP) {
630 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
631 __func__, __LINE__, cmd->tag);
633 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
635 complete_all(&cmd->t_transport_stop_comp);
636 return 1;
639 cmd->transport_state &= ~CMD_T_ACTIVE;
640 if (remove_from_lists) {
642 * Some fabric modules like tcm_loop can release
643 * their internally allocated I/O reference now and
644 * struct se_cmd now.
646 * Fabric modules are expected to return '1' here if the
647 * se_cmd being passed is released at this point,
648 * or zero if not being released.
650 if (cmd->se_tfo->check_stop_free != NULL) {
651 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
652 return cmd->se_tfo->check_stop_free(cmd);
656 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
657 return 0;
660 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
662 return transport_cmd_check_stop(cmd, true, false);
665 static void transport_lun_remove_cmd(struct se_cmd *cmd)
667 struct se_lun *lun = cmd->se_lun;
669 if (!lun)
670 return;
672 if (cmpxchg(&cmd->lun_ref_active, true, false))
673 percpu_ref_put(&lun->lun_ref);
676 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
678 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
679 int ret = 0;
681 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
682 transport_lun_remove_cmd(cmd);
684 * Allow the fabric driver to unmap any resources before
685 * releasing the descriptor via TFO->release_cmd()
687 if (remove)
688 cmd->se_tfo->aborted_task(cmd);
690 if (transport_cmd_check_stop_to_fabric(cmd))
691 return 1;
692 if (remove && ack_kref)
693 ret = transport_put_cmd(cmd);
695 return ret;
698 static void target_complete_failure_work(struct work_struct *work)
700 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
702 transport_generic_request_failure(cmd,
703 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
707 * Used when asking transport to copy Sense Data from the underlying
708 * Linux/SCSI struct scsi_cmnd
710 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
712 struct se_device *dev = cmd->se_dev;
714 WARN_ON(!cmd->se_lun);
716 if (!dev)
717 return NULL;
719 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
720 return NULL;
722 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
724 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
725 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
726 return cmd->sense_buffer;
729 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
731 struct se_device *dev = cmd->se_dev;
732 int success = scsi_status == GOOD;
733 unsigned long flags;
735 cmd->scsi_status = scsi_status;
738 spin_lock_irqsave(&cmd->t_state_lock, flags);
739 cmd->transport_state &= ~CMD_T_BUSY;
741 if (dev && dev->transport->transport_complete) {
742 dev->transport->transport_complete(cmd,
743 cmd->t_data_sg,
744 transport_get_sense_buffer(cmd));
745 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
746 success = 1;
750 * Check for case where an explicit ABORT_TASK has been received
751 * and transport_wait_for_tasks() will be waiting for completion..
753 if (cmd->transport_state & CMD_T_ABORTED ||
754 cmd->transport_state & CMD_T_STOP) {
755 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
756 complete_all(&cmd->t_transport_stop_comp);
757 return;
758 } else if (!success) {
759 INIT_WORK(&cmd->work, target_complete_failure_work);
760 } else {
761 INIT_WORK(&cmd->work, target_complete_ok_work);
764 cmd->t_state = TRANSPORT_COMPLETE;
765 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
766 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
768 if (cmd->se_cmd_flags & SCF_USE_CPUID)
769 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
770 else
771 queue_work(target_completion_wq, &cmd->work);
773 EXPORT_SYMBOL(target_complete_cmd);
775 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
777 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
778 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
779 cmd->residual_count += cmd->data_length - length;
780 } else {
781 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
782 cmd->residual_count = cmd->data_length - length;
785 cmd->data_length = length;
788 target_complete_cmd(cmd, scsi_status);
790 EXPORT_SYMBOL(target_complete_cmd_with_length);
792 static void target_add_to_state_list(struct se_cmd *cmd)
794 struct se_device *dev = cmd->se_dev;
795 unsigned long flags;
797 spin_lock_irqsave(&dev->execute_task_lock, flags);
798 if (!cmd->state_active) {
799 list_add_tail(&cmd->state_list, &dev->state_list);
800 cmd->state_active = true;
802 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
806 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
808 static void transport_write_pending_qf(struct se_cmd *cmd);
809 static void transport_complete_qf(struct se_cmd *cmd);
811 void target_qf_do_work(struct work_struct *work)
813 struct se_device *dev = container_of(work, struct se_device,
814 qf_work_queue);
815 LIST_HEAD(qf_cmd_list);
816 struct se_cmd *cmd, *cmd_tmp;
818 spin_lock_irq(&dev->qf_cmd_lock);
819 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
820 spin_unlock_irq(&dev->qf_cmd_lock);
822 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
823 list_del(&cmd->se_qf_node);
824 atomic_dec_mb(&dev->dev_qf_count);
826 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
827 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
828 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
829 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
830 : "UNKNOWN");
832 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
833 transport_write_pending_qf(cmd);
834 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
835 transport_complete_qf(cmd);
839 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
841 switch (cmd->data_direction) {
842 case DMA_NONE:
843 return "NONE";
844 case DMA_FROM_DEVICE:
845 return "READ";
846 case DMA_TO_DEVICE:
847 return "WRITE";
848 case DMA_BIDIRECTIONAL:
849 return "BIDI";
850 default:
851 break;
854 return "UNKNOWN";
857 void transport_dump_dev_state(
858 struct se_device *dev,
859 char *b,
860 int *bl)
862 *bl += sprintf(b + *bl, "Status: ");
863 if (dev->export_count)
864 *bl += sprintf(b + *bl, "ACTIVATED");
865 else
866 *bl += sprintf(b + *bl, "DEACTIVATED");
868 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
869 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
870 dev->dev_attrib.block_size,
871 dev->dev_attrib.hw_max_sectors);
872 *bl += sprintf(b + *bl, " ");
875 void transport_dump_vpd_proto_id(
876 struct t10_vpd *vpd,
877 unsigned char *p_buf,
878 int p_buf_len)
880 unsigned char buf[VPD_TMP_BUF_SIZE];
881 int len;
883 memset(buf, 0, VPD_TMP_BUF_SIZE);
884 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
886 switch (vpd->protocol_identifier) {
887 case 0x00:
888 sprintf(buf+len, "Fibre Channel\n");
889 break;
890 case 0x10:
891 sprintf(buf+len, "Parallel SCSI\n");
892 break;
893 case 0x20:
894 sprintf(buf+len, "SSA\n");
895 break;
896 case 0x30:
897 sprintf(buf+len, "IEEE 1394\n");
898 break;
899 case 0x40:
900 sprintf(buf+len, "SCSI Remote Direct Memory Access"
901 " Protocol\n");
902 break;
903 case 0x50:
904 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
905 break;
906 case 0x60:
907 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
908 break;
909 case 0x70:
910 sprintf(buf+len, "Automation/Drive Interface Transport"
911 " Protocol\n");
912 break;
913 case 0x80:
914 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
915 break;
916 default:
917 sprintf(buf+len, "Unknown 0x%02x\n",
918 vpd->protocol_identifier);
919 break;
922 if (p_buf)
923 strncpy(p_buf, buf, p_buf_len);
924 else
925 pr_debug("%s", buf);
928 void
929 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
932 * Check if the Protocol Identifier Valid (PIV) bit is set..
934 * from spc3r23.pdf section 7.5.1
936 if (page_83[1] & 0x80) {
937 vpd->protocol_identifier = (page_83[0] & 0xf0);
938 vpd->protocol_identifier_set = 1;
939 transport_dump_vpd_proto_id(vpd, NULL, 0);
942 EXPORT_SYMBOL(transport_set_vpd_proto_id);
944 int transport_dump_vpd_assoc(
945 struct t10_vpd *vpd,
946 unsigned char *p_buf,
947 int p_buf_len)
949 unsigned char buf[VPD_TMP_BUF_SIZE];
950 int ret = 0;
951 int len;
953 memset(buf, 0, VPD_TMP_BUF_SIZE);
954 len = sprintf(buf, "T10 VPD Identifier Association: ");
956 switch (vpd->association) {
957 case 0x00:
958 sprintf(buf+len, "addressed logical unit\n");
959 break;
960 case 0x10:
961 sprintf(buf+len, "target port\n");
962 break;
963 case 0x20:
964 sprintf(buf+len, "SCSI target device\n");
965 break;
966 default:
967 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
968 ret = -EINVAL;
969 break;
972 if (p_buf)
973 strncpy(p_buf, buf, p_buf_len);
974 else
975 pr_debug("%s", buf);
977 return ret;
980 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
983 * The VPD identification association..
985 * from spc3r23.pdf Section 7.6.3.1 Table 297
987 vpd->association = (page_83[1] & 0x30);
988 return transport_dump_vpd_assoc(vpd, NULL, 0);
990 EXPORT_SYMBOL(transport_set_vpd_assoc);
992 int transport_dump_vpd_ident_type(
993 struct t10_vpd *vpd,
994 unsigned char *p_buf,
995 int p_buf_len)
997 unsigned char buf[VPD_TMP_BUF_SIZE];
998 int ret = 0;
999 int len;
1001 memset(buf, 0, VPD_TMP_BUF_SIZE);
1002 len = sprintf(buf, "T10 VPD Identifier Type: ");
1004 switch (vpd->device_identifier_type) {
1005 case 0x00:
1006 sprintf(buf+len, "Vendor specific\n");
1007 break;
1008 case 0x01:
1009 sprintf(buf+len, "T10 Vendor ID based\n");
1010 break;
1011 case 0x02:
1012 sprintf(buf+len, "EUI-64 based\n");
1013 break;
1014 case 0x03:
1015 sprintf(buf+len, "NAA\n");
1016 break;
1017 case 0x04:
1018 sprintf(buf+len, "Relative target port identifier\n");
1019 break;
1020 case 0x08:
1021 sprintf(buf+len, "SCSI name string\n");
1022 break;
1023 default:
1024 sprintf(buf+len, "Unsupported: 0x%02x\n",
1025 vpd->device_identifier_type);
1026 ret = -EINVAL;
1027 break;
1030 if (p_buf) {
1031 if (p_buf_len < strlen(buf)+1)
1032 return -EINVAL;
1033 strncpy(p_buf, buf, p_buf_len);
1034 } else {
1035 pr_debug("%s", buf);
1038 return ret;
1041 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1044 * The VPD identifier type..
1046 * from spc3r23.pdf Section 7.6.3.1 Table 298
1048 vpd->device_identifier_type = (page_83[1] & 0x0f);
1049 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1051 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1053 int transport_dump_vpd_ident(
1054 struct t10_vpd *vpd,
1055 unsigned char *p_buf,
1056 int p_buf_len)
1058 unsigned char buf[VPD_TMP_BUF_SIZE];
1059 int ret = 0;
1061 memset(buf, 0, VPD_TMP_BUF_SIZE);
1063 switch (vpd->device_identifier_code_set) {
1064 case 0x01: /* Binary */
1065 snprintf(buf, sizeof(buf),
1066 "T10 VPD Binary Device Identifier: %s\n",
1067 &vpd->device_identifier[0]);
1068 break;
1069 case 0x02: /* ASCII */
1070 snprintf(buf, sizeof(buf),
1071 "T10 VPD ASCII Device Identifier: %s\n",
1072 &vpd->device_identifier[0]);
1073 break;
1074 case 0x03: /* UTF-8 */
1075 snprintf(buf, sizeof(buf),
1076 "T10 VPD UTF-8 Device Identifier: %s\n",
1077 &vpd->device_identifier[0]);
1078 break;
1079 default:
1080 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1081 " 0x%02x", vpd->device_identifier_code_set);
1082 ret = -EINVAL;
1083 break;
1086 if (p_buf)
1087 strncpy(p_buf, buf, p_buf_len);
1088 else
1089 pr_debug("%s", buf);
1091 return ret;
1095 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1097 static const char hex_str[] = "0123456789abcdef";
1098 int j = 0, i = 4; /* offset to start of the identifier */
1101 * The VPD Code Set (encoding)
1103 * from spc3r23.pdf Section 7.6.3.1 Table 296
1105 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1106 switch (vpd->device_identifier_code_set) {
1107 case 0x01: /* Binary */
1108 vpd->device_identifier[j++] =
1109 hex_str[vpd->device_identifier_type];
1110 while (i < (4 + page_83[3])) {
1111 vpd->device_identifier[j++] =
1112 hex_str[(page_83[i] & 0xf0) >> 4];
1113 vpd->device_identifier[j++] =
1114 hex_str[page_83[i] & 0x0f];
1115 i++;
1117 break;
1118 case 0x02: /* ASCII */
1119 case 0x03: /* UTF-8 */
1120 while (i < (4 + page_83[3]))
1121 vpd->device_identifier[j++] = page_83[i++];
1122 break;
1123 default:
1124 break;
1127 return transport_dump_vpd_ident(vpd, NULL, 0);
1129 EXPORT_SYMBOL(transport_set_vpd_ident);
1131 static sense_reason_t
1132 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1133 unsigned int size)
1135 u32 mtl;
1137 if (!cmd->se_tfo->max_data_sg_nents)
1138 return TCM_NO_SENSE;
1140 * Check if fabric enforced maximum SGL entries per I/O descriptor
1141 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1142 * residual_count and reduce original cmd->data_length to maximum
1143 * length based on single PAGE_SIZE entry scatter-lists.
1145 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1146 if (cmd->data_length > mtl) {
1148 * If an existing CDB overflow is present, calculate new residual
1149 * based on CDB size minus fabric maximum transfer length.
1151 * If an existing CDB underflow is present, calculate new residual
1152 * based on original cmd->data_length minus fabric maximum transfer
1153 * length.
1155 * Otherwise, set the underflow residual based on cmd->data_length
1156 * minus fabric maximum transfer length.
1158 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1159 cmd->residual_count = (size - mtl);
1160 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1161 u32 orig_dl = size + cmd->residual_count;
1162 cmd->residual_count = (orig_dl - mtl);
1163 } else {
1164 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1165 cmd->residual_count = (cmd->data_length - mtl);
1167 cmd->data_length = mtl;
1169 * Reset sbc_check_prot() calculated protection payload
1170 * length based upon the new smaller MTL.
1172 if (cmd->prot_length) {
1173 u32 sectors = (mtl / dev->dev_attrib.block_size);
1174 cmd->prot_length = dev->prot_length * sectors;
1177 return TCM_NO_SENSE;
1180 sense_reason_t
1181 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1183 struct se_device *dev = cmd->se_dev;
1185 if (cmd->unknown_data_length) {
1186 cmd->data_length = size;
1187 } else if (size != cmd->data_length) {
1188 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1189 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1190 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1191 cmd->data_length, size, cmd->t_task_cdb[0]);
1193 if (cmd->data_direction == DMA_TO_DEVICE) {
1194 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1195 pr_err_ratelimited("Rejecting underflow/overflow"
1196 " for WRITE data CDB\n");
1197 return TCM_INVALID_CDB_FIELD;
1200 * Some fabric drivers like iscsi-target still expect to
1201 * always reject overflow writes. Reject this case until
1202 * full fabric driver level support for overflow writes
1203 * is introduced tree-wide.
1205 if (size > cmd->data_length) {
1206 pr_err_ratelimited("Rejecting overflow for"
1207 " WRITE control CDB\n");
1208 return TCM_INVALID_CDB_FIELD;
1212 * Reject READ_* or WRITE_* with overflow/underflow for
1213 * type SCF_SCSI_DATA_CDB.
1215 if (dev->dev_attrib.block_size != 512) {
1216 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1217 " CDB on non 512-byte sector setup subsystem"
1218 " plugin: %s\n", dev->transport->name);
1219 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1220 return TCM_INVALID_CDB_FIELD;
1223 * For the overflow case keep the existing fabric provided
1224 * ->data_length. Otherwise for the underflow case, reset
1225 * ->data_length to the smaller SCSI expected data transfer
1226 * length.
1228 if (size > cmd->data_length) {
1229 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1230 cmd->residual_count = (size - cmd->data_length);
1231 } else {
1232 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1233 cmd->residual_count = (cmd->data_length - size);
1234 cmd->data_length = size;
1238 return target_check_max_data_sg_nents(cmd, dev, size);
1243 * Used by fabric modules containing a local struct se_cmd within their
1244 * fabric dependent per I/O descriptor.
1246 * Preserves the value of @cmd->tag.
1248 void transport_init_se_cmd(
1249 struct se_cmd *cmd,
1250 const struct target_core_fabric_ops *tfo,
1251 struct se_session *se_sess,
1252 u32 data_length,
1253 int data_direction,
1254 int task_attr,
1255 unsigned char *sense_buffer)
1257 INIT_LIST_HEAD(&cmd->se_delayed_node);
1258 INIT_LIST_HEAD(&cmd->se_qf_node);
1259 INIT_LIST_HEAD(&cmd->se_cmd_list);
1260 INIT_LIST_HEAD(&cmd->state_list);
1261 init_completion(&cmd->t_transport_stop_comp);
1262 init_completion(&cmd->cmd_wait_comp);
1263 spin_lock_init(&cmd->t_state_lock);
1264 kref_init(&cmd->cmd_kref);
1265 cmd->transport_state = CMD_T_DEV_ACTIVE;
1267 cmd->se_tfo = tfo;
1268 cmd->se_sess = se_sess;
1269 cmd->data_length = data_length;
1270 cmd->data_direction = data_direction;
1271 cmd->sam_task_attr = task_attr;
1272 cmd->sense_buffer = sense_buffer;
1274 cmd->state_active = false;
1276 EXPORT_SYMBOL(transport_init_se_cmd);
1278 static sense_reason_t
1279 transport_check_alloc_task_attr(struct se_cmd *cmd)
1281 struct se_device *dev = cmd->se_dev;
1284 * Check if SAM Task Attribute emulation is enabled for this
1285 * struct se_device storage object
1287 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1288 return 0;
1290 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1291 pr_debug("SAM Task Attribute ACA"
1292 " emulation is not supported\n");
1293 return TCM_INVALID_CDB_FIELD;
1296 return 0;
1299 sense_reason_t
1300 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1302 struct se_device *dev = cmd->se_dev;
1303 sense_reason_t ret;
1306 * Ensure that the received CDB is less than the max (252 + 8) bytes
1307 * for VARIABLE_LENGTH_CMD
1309 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1310 pr_err("Received SCSI CDB with command_size: %d that"
1311 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1312 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1313 return TCM_INVALID_CDB_FIELD;
1316 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1317 * allocate the additional extended CDB buffer now.. Otherwise
1318 * setup the pointer from __t_task_cdb to t_task_cdb.
1320 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1321 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1322 GFP_KERNEL);
1323 if (!cmd->t_task_cdb) {
1324 pr_err("Unable to allocate cmd->t_task_cdb"
1325 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1326 scsi_command_size(cdb),
1327 (unsigned long)sizeof(cmd->__t_task_cdb));
1328 return TCM_OUT_OF_RESOURCES;
1330 } else
1331 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1333 * Copy the original CDB into cmd->
1335 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1337 trace_target_sequencer_start(cmd);
1339 ret = dev->transport->parse_cdb(cmd);
1340 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1341 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1342 cmd->se_tfo->get_fabric_name(),
1343 cmd->se_sess->se_node_acl->initiatorname,
1344 cmd->t_task_cdb[0]);
1345 if (ret)
1346 return ret;
1348 ret = transport_check_alloc_task_attr(cmd);
1349 if (ret)
1350 return ret;
1352 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1353 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1354 return 0;
1356 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1359 * Used by fabric module frontends to queue tasks directly.
1360 * May only be used from process context.
1362 int transport_handle_cdb_direct(
1363 struct se_cmd *cmd)
1365 sense_reason_t ret;
1367 if (!cmd->se_lun) {
1368 dump_stack();
1369 pr_err("cmd->se_lun is NULL\n");
1370 return -EINVAL;
1372 if (in_interrupt()) {
1373 dump_stack();
1374 pr_err("transport_generic_handle_cdb cannot be called"
1375 " from interrupt context\n");
1376 return -EINVAL;
1379 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1380 * outstanding descriptors are handled correctly during shutdown via
1381 * transport_wait_for_tasks()
1383 * Also, we don't take cmd->t_state_lock here as we only expect
1384 * this to be called for initial descriptor submission.
1386 cmd->t_state = TRANSPORT_NEW_CMD;
1387 cmd->transport_state |= CMD_T_ACTIVE;
1390 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1391 * so follow TRANSPORT_NEW_CMD processing thread context usage
1392 * and call transport_generic_request_failure() if necessary..
1394 ret = transport_generic_new_cmd(cmd);
1395 if (ret)
1396 transport_generic_request_failure(cmd, ret);
1397 return 0;
1399 EXPORT_SYMBOL(transport_handle_cdb_direct);
1401 sense_reason_t
1402 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1403 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1405 if (!sgl || !sgl_count)
1406 return 0;
1409 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1410 * scatterlists already have been set to follow what the fabric
1411 * passes for the original expected data transfer length.
1413 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1414 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1415 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1416 return TCM_INVALID_CDB_FIELD;
1419 cmd->t_data_sg = sgl;
1420 cmd->t_data_nents = sgl_count;
1421 cmd->t_bidi_data_sg = sgl_bidi;
1422 cmd->t_bidi_data_nents = sgl_bidi_count;
1424 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1425 return 0;
1429 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1430 * se_cmd + use pre-allocated SGL memory.
1432 * @se_cmd: command descriptor to submit
1433 * @se_sess: associated se_sess for endpoint
1434 * @cdb: pointer to SCSI CDB
1435 * @sense: pointer to SCSI sense buffer
1436 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1437 * @data_length: fabric expected data transfer length
1438 * @task_addr: SAM task attribute
1439 * @data_dir: DMA data direction
1440 * @flags: flags for command submission from target_sc_flags_tables
1441 * @sgl: struct scatterlist memory for unidirectional mapping
1442 * @sgl_count: scatterlist count for unidirectional mapping
1443 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1444 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1445 * @sgl_prot: struct scatterlist memory protection information
1446 * @sgl_prot_count: scatterlist count for protection information
1448 * Task tags are supported if the caller has set @se_cmd->tag.
1450 * Returns non zero to signal active I/O shutdown failure. All other
1451 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1452 * but still return zero here.
1454 * This may only be called from process context, and also currently
1455 * assumes internal allocation of fabric payload buffer by target-core.
1457 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1458 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1459 u32 data_length, int task_attr, int data_dir, int flags,
1460 struct scatterlist *sgl, u32 sgl_count,
1461 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1462 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1464 struct se_portal_group *se_tpg;
1465 sense_reason_t rc;
1466 int ret;
1468 se_tpg = se_sess->se_tpg;
1469 BUG_ON(!se_tpg);
1470 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1471 BUG_ON(in_interrupt());
1473 * Initialize se_cmd for target operation. From this point
1474 * exceptions are handled by sending exception status via
1475 * target_core_fabric_ops->queue_status() callback
1477 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1478 data_length, data_dir, task_attr, sense);
1480 if (flags & TARGET_SCF_USE_CPUID)
1481 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1482 else
1483 se_cmd->cpuid = WORK_CPU_UNBOUND;
1485 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1486 se_cmd->unknown_data_length = 1;
1488 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1489 * se_sess->sess_cmd_list. A second kref_get here is necessary
1490 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1491 * kref_put() to happen during fabric packet acknowledgement.
1493 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1494 if (ret)
1495 return ret;
1497 * Signal bidirectional data payloads to target-core
1499 if (flags & TARGET_SCF_BIDI_OP)
1500 se_cmd->se_cmd_flags |= SCF_BIDI;
1502 * Locate se_lun pointer and attach it to struct se_cmd
1504 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1505 if (rc) {
1506 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1507 target_put_sess_cmd(se_cmd);
1508 return 0;
1511 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1512 if (rc != 0) {
1513 transport_generic_request_failure(se_cmd, rc);
1514 return 0;
1518 * Save pointers for SGLs containing protection information,
1519 * if present.
1521 if (sgl_prot_count) {
1522 se_cmd->t_prot_sg = sgl_prot;
1523 se_cmd->t_prot_nents = sgl_prot_count;
1524 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1528 * When a non zero sgl_count has been passed perform SGL passthrough
1529 * mapping for pre-allocated fabric memory instead of having target
1530 * core perform an internal SGL allocation..
1532 if (sgl_count != 0) {
1533 BUG_ON(!sgl);
1536 * A work-around for tcm_loop as some userspace code via
1537 * scsi-generic do not memset their associated read buffers,
1538 * so go ahead and do that here for type non-data CDBs. Also
1539 * note that this is currently guaranteed to be a single SGL
1540 * for this case by target core in target_setup_cmd_from_cdb()
1541 * -> transport_generic_cmd_sequencer().
1543 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1544 se_cmd->data_direction == DMA_FROM_DEVICE) {
1545 unsigned char *buf = NULL;
1547 if (sgl)
1548 buf = kmap(sg_page(sgl)) + sgl->offset;
1550 if (buf) {
1551 memset(buf, 0, sgl->length);
1552 kunmap(sg_page(sgl));
1556 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1557 sgl_bidi, sgl_bidi_count);
1558 if (rc != 0) {
1559 transport_generic_request_failure(se_cmd, rc);
1560 return 0;
1565 * Check if we need to delay processing because of ALUA
1566 * Active/NonOptimized primary access state..
1568 core_alua_check_nonop_delay(se_cmd);
1570 transport_handle_cdb_direct(se_cmd);
1571 return 0;
1573 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1576 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1578 * @se_cmd: command descriptor to submit
1579 * @se_sess: associated se_sess for endpoint
1580 * @cdb: pointer to SCSI CDB
1581 * @sense: pointer to SCSI sense buffer
1582 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1583 * @data_length: fabric expected data transfer length
1584 * @task_addr: SAM task attribute
1585 * @data_dir: DMA data direction
1586 * @flags: flags for command submission from target_sc_flags_tables
1588 * Task tags are supported if the caller has set @se_cmd->tag.
1590 * Returns non zero to signal active I/O shutdown failure. All other
1591 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1592 * but still return zero here.
1594 * This may only be called from process context, and also currently
1595 * assumes internal allocation of fabric payload buffer by target-core.
1597 * It also assumes interal target core SGL memory allocation.
1599 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1600 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1601 u32 data_length, int task_attr, int data_dir, int flags)
1603 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1604 unpacked_lun, data_length, task_attr, data_dir,
1605 flags, NULL, 0, NULL, 0, NULL, 0);
1607 EXPORT_SYMBOL(target_submit_cmd);
1609 static void target_complete_tmr_failure(struct work_struct *work)
1611 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1613 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1614 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1616 transport_cmd_check_stop_to_fabric(se_cmd);
1620 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1621 * for TMR CDBs
1623 * @se_cmd: command descriptor to submit
1624 * @se_sess: associated se_sess for endpoint
1625 * @sense: pointer to SCSI sense buffer
1626 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1627 * @fabric_context: fabric context for TMR req
1628 * @tm_type: Type of TM request
1629 * @gfp: gfp type for caller
1630 * @tag: referenced task tag for TMR_ABORT_TASK
1631 * @flags: submit cmd flags
1633 * Callable from all contexts.
1636 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1637 unsigned char *sense, u64 unpacked_lun,
1638 void *fabric_tmr_ptr, unsigned char tm_type,
1639 gfp_t gfp, u64 tag, int flags)
1641 struct se_portal_group *se_tpg;
1642 int ret;
1644 se_tpg = se_sess->se_tpg;
1645 BUG_ON(!se_tpg);
1647 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1648 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1650 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1651 * allocation failure.
1653 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1654 if (ret < 0)
1655 return -ENOMEM;
1657 if (tm_type == TMR_ABORT_TASK)
1658 se_cmd->se_tmr_req->ref_task_tag = tag;
1660 /* See target_submit_cmd for commentary */
1661 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1662 if (ret) {
1663 core_tmr_release_req(se_cmd->se_tmr_req);
1664 return ret;
1667 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1668 if (ret) {
1670 * For callback during failure handling, push this work off
1671 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1673 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1674 schedule_work(&se_cmd->work);
1675 return 0;
1677 transport_generic_handle_tmr(se_cmd);
1678 return 0;
1680 EXPORT_SYMBOL(target_submit_tmr);
1683 * Handle SAM-esque emulation for generic transport request failures.
1685 void transport_generic_request_failure(struct se_cmd *cmd,
1686 sense_reason_t sense_reason)
1688 int ret = 0, post_ret = 0;
1690 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1691 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1692 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1693 cmd->se_tfo->get_cmd_state(cmd),
1694 cmd->t_state, sense_reason);
1695 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1696 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1697 (cmd->transport_state & CMD_T_STOP) != 0,
1698 (cmd->transport_state & CMD_T_SENT) != 0);
1701 * For SAM Task Attribute emulation for failed struct se_cmd
1703 transport_complete_task_attr(cmd);
1705 * Handle special case for COMPARE_AND_WRITE failure, where the
1706 * callback is expected to drop the per device ->caw_sem.
1708 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1709 cmd->transport_complete_callback)
1710 cmd->transport_complete_callback(cmd, false, &post_ret);
1712 switch (sense_reason) {
1713 case TCM_NON_EXISTENT_LUN:
1714 case TCM_UNSUPPORTED_SCSI_OPCODE:
1715 case TCM_INVALID_CDB_FIELD:
1716 case TCM_INVALID_PARAMETER_LIST:
1717 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1718 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1719 case TCM_UNKNOWN_MODE_PAGE:
1720 case TCM_WRITE_PROTECTED:
1721 case TCM_ADDRESS_OUT_OF_RANGE:
1722 case TCM_CHECK_CONDITION_ABORT_CMD:
1723 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1724 case TCM_CHECK_CONDITION_NOT_READY:
1725 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1726 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1727 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1728 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1729 break;
1730 case TCM_OUT_OF_RESOURCES:
1731 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1732 break;
1733 case TCM_RESERVATION_CONFLICT:
1735 * No SENSE Data payload for this case, set SCSI Status
1736 * and queue the response to $FABRIC_MOD.
1738 * Uses linux/include/scsi/scsi.h SAM status codes defs
1740 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1742 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1743 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1744 * CONFLICT STATUS.
1746 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1748 if (cmd->se_sess &&
1749 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1750 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1751 cmd->orig_fe_lun, 0x2C,
1752 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1754 trace_target_cmd_complete(cmd);
1755 ret = cmd->se_tfo->queue_status(cmd);
1756 if (ret == -EAGAIN || ret == -ENOMEM)
1757 goto queue_full;
1758 goto check_stop;
1759 default:
1760 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1761 cmd->t_task_cdb[0], sense_reason);
1762 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1763 break;
1766 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1767 if (ret == -EAGAIN || ret == -ENOMEM)
1768 goto queue_full;
1770 check_stop:
1771 transport_lun_remove_cmd(cmd);
1772 transport_cmd_check_stop_to_fabric(cmd);
1773 return;
1775 queue_full:
1776 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1777 transport_handle_queue_full(cmd, cmd->se_dev);
1779 EXPORT_SYMBOL(transport_generic_request_failure);
1781 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1783 sense_reason_t ret;
1785 if (!cmd->execute_cmd) {
1786 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1787 goto err;
1789 if (do_checks) {
1791 * Check for an existing UNIT ATTENTION condition after
1792 * target_handle_task_attr() has done SAM task attr
1793 * checking, and possibly have already defered execution
1794 * out to target_restart_delayed_cmds() context.
1796 ret = target_scsi3_ua_check(cmd);
1797 if (ret)
1798 goto err;
1800 ret = target_alua_state_check(cmd);
1801 if (ret)
1802 goto err;
1804 ret = target_check_reservation(cmd);
1805 if (ret) {
1806 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1807 goto err;
1811 ret = cmd->execute_cmd(cmd);
1812 if (!ret)
1813 return;
1814 err:
1815 spin_lock_irq(&cmd->t_state_lock);
1816 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1817 spin_unlock_irq(&cmd->t_state_lock);
1819 transport_generic_request_failure(cmd, ret);
1822 static int target_write_prot_action(struct se_cmd *cmd)
1824 u32 sectors;
1826 * Perform WRITE_INSERT of PI using software emulation when backend
1827 * device has PI enabled, if the transport has not already generated
1828 * PI using hardware WRITE_INSERT offload.
1830 switch (cmd->prot_op) {
1831 case TARGET_PROT_DOUT_INSERT:
1832 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1833 sbc_dif_generate(cmd);
1834 break;
1835 case TARGET_PROT_DOUT_STRIP:
1836 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1837 break;
1839 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1840 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1841 sectors, 0, cmd->t_prot_sg, 0);
1842 if (unlikely(cmd->pi_err)) {
1843 spin_lock_irq(&cmd->t_state_lock);
1844 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1845 spin_unlock_irq(&cmd->t_state_lock);
1846 transport_generic_request_failure(cmd, cmd->pi_err);
1847 return -1;
1849 break;
1850 default:
1851 break;
1854 return 0;
1857 static bool target_handle_task_attr(struct se_cmd *cmd)
1859 struct se_device *dev = cmd->se_dev;
1861 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1862 return false;
1864 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1867 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1868 * to allow the passed struct se_cmd list of tasks to the front of the list.
1870 switch (cmd->sam_task_attr) {
1871 case TCM_HEAD_TAG:
1872 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1873 cmd->t_task_cdb[0]);
1874 return false;
1875 case TCM_ORDERED_TAG:
1876 atomic_inc_mb(&dev->dev_ordered_sync);
1878 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1879 cmd->t_task_cdb[0]);
1882 * Execute an ORDERED command if no other older commands
1883 * exist that need to be completed first.
1885 if (!atomic_read(&dev->simple_cmds))
1886 return false;
1887 break;
1888 default:
1890 * For SIMPLE and UNTAGGED Task Attribute commands
1892 atomic_inc_mb(&dev->simple_cmds);
1893 break;
1896 if (atomic_read(&dev->dev_ordered_sync) == 0)
1897 return false;
1899 spin_lock(&dev->delayed_cmd_lock);
1900 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1901 spin_unlock(&dev->delayed_cmd_lock);
1903 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1904 cmd->t_task_cdb[0], cmd->sam_task_attr);
1905 return true;
1908 static int __transport_check_aborted_status(struct se_cmd *, int);
1910 void target_execute_cmd(struct se_cmd *cmd)
1913 * Determine if frontend context caller is requesting the stopping of
1914 * this command for frontend exceptions.
1916 * If the received CDB has aleady been aborted stop processing it here.
1918 spin_lock_irq(&cmd->t_state_lock);
1919 if (__transport_check_aborted_status(cmd, 1)) {
1920 spin_unlock_irq(&cmd->t_state_lock);
1921 return;
1923 if (cmd->transport_state & CMD_T_STOP) {
1924 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1925 __func__, __LINE__, cmd->tag);
1927 spin_unlock_irq(&cmd->t_state_lock);
1928 complete_all(&cmd->t_transport_stop_comp);
1929 return;
1932 cmd->t_state = TRANSPORT_PROCESSING;
1933 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1934 spin_unlock_irq(&cmd->t_state_lock);
1936 if (target_write_prot_action(cmd))
1937 return;
1939 if (target_handle_task_attr(cmd)) {
1940 spin_lock_irq(&cmd->t_state_lock);
1941 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1942 spin_unlock_irq(&cmd->t_state_lock);
1943 return;
1946 __target_execute_cmd(cmd, true);
1948 EXPORT_SYMBOL(target_execute_cmd);
1951 * Process all commands up to the last received ORDERED task attribute which
1952 * requires another blocking boundary
1954 static void target_restart_delayed_cmds(struct se_device *dev)
1956 for (;;) {
1957 struct se_cmd *cmd;
1959 spin_lock(&dev->delayed_cmd_lock);
1960 if (list_empty(&dev->delayed_cmd_list)) {
1961 spin_unlock(&dev->delayed_cmd_lock);
1962 break;
1965 cmd = list_entry(dev->delayed_cmd_list.next,
1966 struct se_cmd, se_delayed_node);
1967 list_del(&cmd->se_delayed_node);
1968 spin_unlock(&dev->delayed_cmd_lock);
1970 __target_execute_cmd(cmd, true);
1972 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1973 break;
1978 * Called from I/O completion to determine which dormant/delayed
1979 * and ordered cmds need to have their tasks added to the execution queue.
1981 static void transport_complete_task_attr(struct se_cmd *cmd)
1983 struct se_device *dev = cmd->se_dev;
1985 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1986 return;
1988 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
1989 goto restart;
1991 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1992 atomic_dec_mb(&dev->simple_cmds);
1993 dev->dev_cur_ordered_id++;
1994 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1995 dev->dev_cur_ordered_id);
1996 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1997 dev->dev_cur_ordered_id++;
1998 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1999 dev->dev_cur_ordered_id);
2000 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2001 atomic_dec_mb(&dev->dev_ordered_sync);
2003 dev->dev_cur_ordered_id++;
2004 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2005 dev->dev_cur_ordered_id);
2007 restart:
2008 target_restart_delayed_cmds(dev);
2011 static void transport_complete_qf(struct se_cmd *cmd)
2013 int ret = 0;
2015 transport_complete_task_attr(cmd);
2017 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2018 trace_target_cmd_complete(cmd);
2019 ret = cmd->se_tfo->queue_status(cmd);
2020 goto out;
2023 switch (cmd->data_direction) {
2024 case DMA_FROM_DEVICE:
2025 if (cmd->scsi_status)
2026 goto queue_status;
2028 trace_target_cmd_complete(cmd);
2029 ret = cmd->se_tfo->queue_data_in(cmd);
2030 break;
2031 case DMA_TO_DEVICE:
2032 if (cmd->se_cmd_flags & SCF_BIDI) {
2033 ret = cmd->se_tfo->queue_data_in(cmd);
2034 break;
2036 /* Fall through for DMA_TO_DEVICE */
2037 case DMA_NONE:
2038 queue_status:
2039 trace_target_cmd_complete(cmd);
2040 ret = cmd->se_tfo->queue_status(cmd);
2041 break;
2042 default:
2043 break;
2046 out:
2047 if (ret < 0) {
2048 transport_handle_queue_full(cmd, cmd->se_dev);
2049 return;
2051 transport_lun_remove_cmd(cmd);
2052 transport_cmd_check_stop_to_fabric(cmd);
2055 static void transport_handle_queue_full(
2056 struct se_cmd *cmd,
2057 struct se_device *dev)
2059 spin_lock_irq(&dev->qf_cmd_lock);
2060 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2061 atomic_inc_mb(&dev->dev_qf_count);
2062 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2064 schedule_work(&cmd->se_dev->qf_work_queue);
2067 static bool target_read_prot_action(struct se_cmd *cmd)
2069 switch (cmd->prot_op) {
2070 case TARGET_PROT_DIN_STRIP:
2071 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2072 u32 sectors = cmd->data_length >>
2073 ilog2(cmd->se_dev->dev_attrib.block_size);
2075 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2076 sectors, 0, cmd->t_prot_sg,
2078 if (cmd->pi_err)
2079 return true;
2081 break;
2082 case TARGET_PROT_DIN_INSERT:
2083 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2084 break;
2086 sbc_dif_generate(cmd);
2087 break;
2088 default:
2089 break;
2092 return false;
2095 static void target_complete_ok_work(struct work_struct *work)
2097 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2098 int ret;
2101 * Check if we need to move delayed/dormant tasks from cmds on the
2102 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2103 * Attribute.
2105 transport_complete_task_attr(cmd);
2108 * Check to schedule QUEUE_FULL work, or execute an existing
2109 * cmd->transport_qf_callback()
2111 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2112 schedule_work(&cmd->se_dev->qf_work_queue);
2115 * Check if we need to send a sense buffer from
2116 * the struct se_cmd in question.
2118 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2119 WARN_ON(!cmd->scsi_status);
2120 ret = transport_send_check_condition_and_sense(
2121 cmd, 0, 1);
2122 if (ret == -EAGAIN || ret == -ENOMEM)
2123 goto queue_full;
2125 transport_lun_remove_cmd(cmd);
2126 transport_cmd_check_stop_to_fabric(cmd);
2127 return;
2130 * Check for a callback, used by amongst other things
2131 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2133 if (cmd->transport_complete_callback) {
2134 sense_reason_t rc;
2135 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2136 bool zero_dl = !(cmd->data_length);
2137 int post_ret = 0;
2139 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2140 if (!rc && !post_ret) {
2141 if (caw && zero_dl)
2142 goto queue_rsp;
2144 return;
2145 } else if (rc) {
2146 ret = transport_send_check_condition_and_sense(cmd,
2147 rc, 0);
2148 if (ret == -EAGAIN || ret == -ENOMEM)
2149 goto queue_full;
2151 transport_lun_remove_cmd(cmd);
2152 transport_cmd_check_stop_to_fabric(cmd);
2153 return;
2157 queue_rsp:
2158 switch (cmd->data_direction) {
2159 case DMA_FROM_DEVICE:
2160 if (cmd->scsi_status)
2161 goto queue_status;
2163 atomic_long_add(cmd->data_length,
2164 &cmd->se_lun->lun_stats.tx_data_octets);
2166 * Perform READ_STRIP of PI using software emulation when
2167 * backend had PI enabled, if the transport will not be
2168 * performing hardware READ_STRIP offload.
2170 if (target_read_prot_action(cmd)) {
2171 ret = transport_send_check_condition_and_sense(cmd,
2172 cmd->pi_err, 0);
2173 if (ret == -EAGAIN || ret == -ENOMEM)
2174 goto queue_full;
2176 transport_lun_remove_cmd(cmd);
2177 transport_cmd_check_stop_to_fabric(cmd);
2178 return;
2181 trace_target_cmd_complete(cmd);
2182 ret = cmd->se_tfo->queue_data_in(cmd);
2183 if (ret == -EAGAIN || ret == -ENOMEM)
2184 goto queue_full;
2185 break;
2186 case DMA_TO_DEVICE:
2187 atomic_long_add(cmd->data_length,
2188 &cmd->se_lun->lun_stats.rx_data_octets);
2190 * Check if we need to send READ payload for BIDI-COMMAND
2192 if (cmd->se_cmd_flags & SCF_BIDI) {
2193 atomic_long_add(cmd->data_length,
2194 &cmd->se_lun->lun_stats.tx_data_octets);
2195 ret = cmd->se_tfo->queue_data_in(cmd);
2196 if (ret == -EAGAIN || ret == -ENOMEM)
2197 goto queue_full;
2198 break;
2200 /* Fall through for DMA_TO_DEVICE */
2201 case DMA_NONE:
2202 queue_status:
2203 trace_target_cmd_complete(cmd);
2204 ret = cmd->se_tfo->queue_status(cmd);
2205 if (ret == -EAGAIN || ret == -ENOMEM)
2206 goto queue_full;
2207 break;
2208 default:
2209 break;
2212 transport_lun_remove_cmd(cmd);
2213 transport_cmd_check_stop_to_fabric(cmd);
2214 return;
2216 queue_full:
2217 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2218 " data_direction: %d\n", cmd, cmd->data_direction);
2219 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2220 transport_handle_queue_full(cmd, cmd->se_dev);
2223 void target_free_sgl(struct scatterlist *sgl, int nents)
2225 struct scatterlist *sg;
2226 int count;
2228 for_each_sg(sgl, sg, nents, count)
2229 __free_page(sg_page(sg));
2231 kfree(sgl);
2233 EXPORT_SYMBOL(target_free_sgl);
2235 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2238 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2239 * emulation, and free + reset pointers if necessary..
2241 if (!cmd->t_data_sg_orig)
2242 return;
2244 kfree(cmd->t_data_sg);
2245 cmd->t_data_sg = cmd->t_data_sg_orig;
2246 cmd->t_data_sg_orig = NULL;
2247 cmd->t_data_nents = cmd->t_data_nents_orig;
2248 cmd->t_data_nents_orig = 0;
2251 static inline void transport_free_pages(struct se_cmd *cmd)
2253 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2254 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2255 cmd->t_prot_sg = NULL;
2256 cmd->t_prot_nents = 0;
2259 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2261 * Release special case READ buffer payload required for
2262 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2264 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2265 target_free_sgl(cmd->t_bidi_data_sg,
2266 cmd->t_bidi_data_nents);
2267 cmd->t_bidi_data_sg = NULL;
2268 cmd->t_bidi_data_nents = 0;
2270 transport_reset_sgl_orig(cmd);
2271 return;
2273 transport_reset_sgl_orig(cmd);
2275 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2276 cmd->t_data_sg = NULL;
2277 cmd->t_data_nents = 0;
2279 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2280 cmd->t_bidi_data_sg = NULL;
2281 cmd->t_bidi_data_nents = 0;
2285 * transport_put_cmd - release a reference to a command
2286 * @cmd: command to release
2288 * This routine releases our reference to the command and frees it if possible.
2290 static int transport_put_cmd(struct se_cmd *cmd)
2292 BUG_ON(!cmd->se_tfo);
2294 * If this cmd has been setup with target_get_sess_cmd(), drop
2295 * the kref and call ->release_cmd() in kref callback.
2297 return target_put_sess_cmd(cmd);
2300 void *transport_kmap_data_sg(struct se_cmd *cmd)
2302 struct scatterlist *sg = cmd->t_data_sg;
2303 struct page **pages;
2304 int i;
2307 * We need to take into account a possible offset here for fabrics like
2308 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2309 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2311 if (!cmd->t_data_nents)
2312 return NULL;
2314 BUG_ON(!sg);
2315 if (cmd->t_data_nents == 1)
2316 return kmap(sg_page(sg)) + sg->offset;
2318 /* >1 page. use vmap */
2319 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2320 if (!pages)
2321 return NULL;
2323 /* convert sg[] to pages[] */
2324 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2325 pages[i] = sg_page(sg);
2328 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2329 kfree(pages);
2330 if (!cmd->t_data_vmap)
2331 return NULL;
2333 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2335 EXPORT_SYMBOL(transport_kmap_data_sg);
2337 void transport_kunmap_data_sg(struct se_cmd *cmd)
2339 if (!cmd->t_data_nents) {
2340 return;
2341 } else if (cmd->t_data_nents == 1) {
2342 kunmap(sg_page(cmd->t_data_sg));
2343 return;
2346 vunmap(cmd->t_data_vmap);
2347 cmd->t_data_vmap = NULL;
2349 EXPORT_SYMBOL(transport_kunmap_data_sg);
2352 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2353 bool zero_page, bool chainable)
2355 struct scatterlist *sg;
2356 struct page *page;
2357 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2358 unsigned int nalloc, nent;
2359 int i = 0;
2361 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2362 if (chainable)
2363 nalloc++;
2364 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2365 if (!sg)
2366 return -ENOMEM;
2368 sg_init_table(sg, nalloc);
2370 while (length) {
2371 u32 page_len = min_t(u32, length, PAGE_SIZE);
2372 page = alloc_page(GFP_KERNEL | zero_flag);
2373 if (!page)
2374 goto out;
2376 sg_set_page(&sg[i], page, page_len, 0);
2377 length -= page_len;
2378 i++;
2380 *sgl = sg;
2381 *nents = nent;
2382 return 0;
2384 out:
2385 while (i > 0) {
2386 i--;
2387 __free_page(sg_page(&sg[i]));
2389 kfree(sg);
2390 return -ENOMEM;
2392 EXPORT_SYMBOL(target_alloc_sgl);
2395 * Allocate any required resources to execute the command. For writes we
2396 * might not have the payload yet, so notify the fabric via a call to
2397 * ->write_pending instead. Otherwise place it on the execution queue.
2399 sense_reason_t
2400 transport_generic_new_cmd(struct se_cmd *cmd)
2402 int ret = 0;
2403 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2405 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2406 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2407 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2408 cmd->prot_length, true, false);
2409 if (ret < 0)
2410 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2414 * Determine is the TCM fabric module has already allocated physical
2415 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2416 * beforehand.
2418 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2419 cmd->data_length) {
2421 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2422 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2423 u32 bidi_length;
2425 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2426 bidi_length = cmd->t_task_nolb *
2427 cmd->se_dev->dev_attrib.block_size;
2428 else
2429 bidi_length = cmd->data_length;
2431 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2432 &cmd->t_bidi_data_nents,
2433 bidi_length, zero_flag, false);
2434 if (ret < 0)
2435 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2438 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2439 cmd->data_length, zero_flag, false);
2440 if (ret < 0)
2441 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2442 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2443 cmd->data_length) {
2445 * Special case for COMPARE_AND_WRITE with fabrics
2446 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2448 u32 caw_length = cmd->t_task_nolb *
2449 cmd->se_dev->dev_attrib.block_size;
2451 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2452 &cmd->t_bidi_data_nents,
2453 caw_length, zero_flag, false);
2454 if (ret < 0)
2455 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2458 * If this command is not a write we can execute it right here,
2459 * for write buffers we need to notify the fabric driver first
2460 * and let it call back once the write buffers are ready.
2462 target_add_to_state_list(cmd);
2463 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2464 target_execute_cmd(cmd);
2465 return 0;
2467 transport_cmd_check_stop(cmd, false, true);
2469 ret = cmd->se_tfo->write_pending(cmd);
2470 if (ret == -EAGAIN || ret == -ENOMEM)
2471 goto queue_full;
2473 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2474 WARN_ON(ret);
2476 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2478 queue_full:
2479 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2480 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2481 transport_handle_queue_full(cmd, cmd->se_dev);
2482 return 0;
2484 EXPORT_SYMBOL(transport_generic_new_cmd);
2486 static void transport_write_pending_qf(struct se_cmd *cmd)
2488 int ret;
2490 ret = cmd->se_tfo->write_pending(cmd);
2491 if (ret == -EAGAIN || ret == -ENOMEM) {
2492 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2493 cmd);
2494 transport_handle_queue_full(cmd, cmd->se_dev);
2498 static bool
2499 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2500 unsigned long *flags);
2502 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2504 unsigned long flags;
2506 spin_lock_irqsave(&cmd->t_state_lock, flags);
2507 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2508 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2511 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2513 int ret = 0;
2514 bool aborted = false, tas = false;
2516 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2517 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2518 target_wait_free_cmd(cmd, &aborted, &tas);
2520 if (!aborted || tas)
2521 ret = transport_put_cmd(cmd);
2522 } else {
2523 if (wait_for_tasks)
2524 target_wait_free_cmd(cmd, &aborted, &tas);
2526 * Handle WRITE failure case where transport_generic_new_cmd()
2527 * has already added se_cmd to state_list, but fabric has
2528 * failed command before I/O submission.
2530 if (cmd->state_active)
2531 target_remove_from_state_list(cmd);
2533 if (cmd->se_lun)
2534 transport_lun_remove_cmd(cmd);
2536 if (!aborted || tas)
2537 ret = transport_put_cmd(cmd);
2540 * If the task has been internally aborted due to TMR ABORT_TASK
2541 * or LUN_RESET, target_core_tmr.c is responsible for performing
2542 * the remaining calls to target_put_sess_cmd(), and not the
2543 * callers of this function.
2545 if (aborted) {
2546 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2547 wait_for_completion(&cmd->cmd_wait_comp);
2548 cmd->se_tfo->release_cmd(cmd);
2549 ret = 1;
2551 return ret;
2553 EXPORT_SYMBOL(transport_generic_free_cmd);
2555 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2556 * @se_cmd: command descriptor to add
2557 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2559 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2561 struct se_session *se_sess = se_cmd->se_sess;
2562 unsigned long flags;
2563 int ret = 0;
2566 * Add a second kref if the fabric caller is expecting to handle
2567 * fabric acknowledgement that requires two target_put_sess_cmd()
2568 * invocations before se_cmd descriptor release.
2570 if (ack_kref) {
2571 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2572 return -EINVAL;
2574 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2577 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2578 if (se_sess->sess_tearing_down) {
2579 ret = -ESHUTDOWN;
2580 goto out;
2582 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2583 out:
2584 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2586 if (ret && ack_kref)
2587 target_put_sess_cmd(se_cmd);
2589 return ret;
2591 EXPORT_SYMBOL(target_get_sess_cmd);
2593 static void target_free_cmd_mem(struct se_cmd *cmd)
2595 transport_free_pages(cmd);
2597 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2598 core_tmr_release_req(cmd->se_tmr_req);
2599 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2600 kfree(cmd->t_task_cdb);
2603 static void target_release_cmd_kref(struct kref *kref)
2605 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2606 struct se_session *se_sess = se_cmd->se_sess;
2607 unsigned long flags;
2608 bool fabric_stop;
2610 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2612 spin_lock(&se_cmd->t_state_lock);
2613 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2614 (se_cmd->transport_state & CMD_T_ABORTED);
2615 spin_unlock(&se_cmd->t_state_lock);
2617 if (se_cmd->cmd_wait_set || fabric_stop) {
2618 list_del_init(&se_cmd->se_cmd_list);
2619 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2620 target_free_cmd_mem(se_cmd);
2621 complete(&se_cmd->cmd_wait_comp);
2622 return;
2624 list_del_init(&se_cmd->se_cmd_list);
2625 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2627 target_free_cmd_mem(se_cmd);
2628 se_cmd->se_tfo->release_cmd(se_cmd);
2631 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2632 * @se_cmd: command descriptor to drop
2634 int target_put_sess_cmd(struct se_cmd *se_cmd)
2636 struct se_session *se_sess = se_cmd->se_sess;
2638 if (!se_sess) {
2639 target_free_cmd_mem(se_cmd);
2640 se_cmd->se_tfo->release_cmd(se_cmd);
2641 return 1;
2643 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2645 EXPORT_SYMBOL(target_put_sess_cmd);
2647 /* target_sess_cmd_list_set_waiting - Flag all commands in
2648 * sess_cmd_list to complete cmd_wait_comp. Set
2649 * sess_tearing_down so no more commands are queued.
2650 * @se_sess: session to flag
2652 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2654 struct se_cmd *se_cmd, *tmp_cmd;
2655 unsigned long flags;
2656 int rc;
2658 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2659 if (se_sess->sess_tearing_down) {
2660 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2661 return;
2663 se_sess->sess_tearing_down = 1;
2664 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2666 list_for_each_entry_safe(se_cmd, tmp_cmd,
2667 &se_sess->sess_wait_list, se_cmd_list) {
2668 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2669 if (rc) {
2670 se_cmd->cmd_wait_set = 1;
2671 spin_lock(&se_cmd->t_state_lock);
2672 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2673 spin_unlock(&se_cmd->t_state_lock);
2674 } else
2675 list_del_init(&se_cmd->se_cmd_list);
2678 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2680 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2682 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2683 * @se_sess: session to wait for active I/O
2685 void target_wait_for_sess_cmds(struct se_session *se_sess)
2687 struct se_cmd *se_cmd, *tmp_cmd;
2688 unsigned long flags;
2689 bool tas;
2691 list_for_each_entry_safe(se_cmd, tmp_cmd,
2692 &se_sess->sess_wait_list, se_cmd_list) {
2693 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2694 " %d\n", se_cmd, se_cmd->t_state,
2695 se_cmd->se_tfo->get_cmd_state(se_cmd));
2697 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2698 tas = (se_cmd->transport_state & CMD_T_TAS);
2699 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2701 if (!target_put_sess_cmd(se_cmd)) {
2702 if (tas)
2703 target_put_sess_cmd(se_cmd);
2706 wait_for_completion(&se_cmd->cmd_wait_comp);
2707 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2708 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2709 se_cmd->se_tfo->get_cmd_state(se_cmd));
2711 se_cmd->se_tfo->release_cmd(se_cmd);
2714 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2715 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2716 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2719 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2721 static void target_lun_confirm(struct percpu_ref *ref)
2723 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2725 complete(&lun->lun_ref_comp);
2728 void transport_clear_lun_ref(struct se_lun *lun)
2731 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2732 * the initial reference and schedule confirm kill to be
2733 * executed after one full RCU grace period has completed.
2735 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2737 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2738 * to call target_lun_confirm after lun->lun_ref has been marked
2739 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2740 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2741 * fails for all new incoming I/O.
2743 wait_for_completion(&lun->lun_ref_comp);
2745 * The second completion waits for percpu_ref_put_many() to
2746 * invoke ->release() after lun->lun_ref has switched to
2747 * atomic_t mode, and lun->lun_ref.count has reached zero.
2749 * At this point all target-core lun->lun_ref references have
2750 * been dropped via transport_lun_remove_cmd(), and it's safe
2751 * to proceed with the remaining LUN shutdown.
2753 wait_for_completion(&lun->lun_shutdown_comp);
2756 static bool
2757 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2758 bool *aborted, bool *tas, unsigned long *flags)
2759 __releases(&cmd->t_state_lock)
2760 __acquires(&cmd->t_state_lock)
2763 assert_spin_locked(&cmd->t_state_lock);
2764 WARN_ON_ONCE(!irqs_disabled());
2766 if (fabric_stop)
2767 cmd->transport_state |= CMD_T_FABRIC_STOP;
2769 if (cmd->transport_state & CMD_T_ABORTED)
2770 *aborted = true;
2772 if (cmd->transport_state & CMD_T_TAS)
2773 *tas = true;
2775 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2776 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2777 return false;
2779 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2780 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2781 return false;
2783 if (!(cmd->transport_state & CMD_T_ACTIVE))
2784 return false;
2786 if (fabric_stop && *aborted)
2787 return false;
2789 cmd->transport_state |= CMD_T_STOP;
2791 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2792 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2793 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2795 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2797 wait_for_completion(&cmd->t_transport_stop_comp);
2799 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2800 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2802 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2803 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2805 return true;
2809 * transport_wait_for_tasks - wait for completion to occur
2810 * @cmd: command to wait
2812 * Called from frontend fabric context to wait for storage engine
2813 * to pause and/or release frontend generated struct se_cmd.
2815 bool transport_wait_for_tasks(struct se_cmd *cmd)
2817 unsigned long flags;
2818 bool ret, aborted = false, tas = false;
2820 spin_lock_irqsave(&cmd->t_state_lock, flags);
2821 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2822 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2824 return ret;
2826 EXPORT_SYMBOL(transport_wait_for_tasks);
2828 struct sense_info {
2829 u8 key;
2830 u8 asc;
2831 u8 ascq;
2832 bool add_sector_info;
2835 static const struct sense_info sense_info_table[] = {
2836 [TCM_NO_SENSE] = {
2837 .key = NOT_READY
2839 [TCM_NON_EXISTENT_LUN] = {
2840 .key = ILLEGAL_REQUEST,
2841 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2843 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2844 .key = ILLEGAL_REQUEST,
2845 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2847 [TCM_SECTOR_COUNT_TOO_MANY] = {
2848 .key = ILLEGAL_REQUEST,
2849 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2851 [TCM_UNKNOWN_MODE_PAGE] = {
2852 .key = ILLEGAL_REQUEST,
2853 .asc = 0x24, /* INVALID FIELD IN CDB */
2855 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2856 .key = ABORTED_COMMAND,
2857 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2858 .ascq = 0x03,
2860 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2861 .key = ABORTED_COMMAND,
2862 .asc = 0x0c, /* WRITE ERROR */
2863 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2865 [TCM_INVALID_CDB_FIELD] = {
2866 .key = ILLEGAL_REQUEST,
2867 .asc = 0x24, /* INVALID FIELD IN CDB */
2869 [TCM_INVALID_PARAMETER_LIST] = {
2870 .key = ILLEGAL_REQUEST,
2871 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2873 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2874 .key = ILLEGAL_REQUEST,
2875 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2877 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2878 .key = ILLEGAL_REQUEST,
2879 .asc = 0x0c, /* WRITE ERROR */
2880 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2882 [TCM_SERVICE_CRC_ERROR] = {
2883 .key = ABORTED_COMMAND,
2884 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2885 .ascq = 0x05, /* N/A */
2887 [TCM_SNACK_REJECTED] = {
2888 .key = ABORTED_COMMAND,
2889 .asc = 0x11, /* READ ERROR */
2890 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2892 [TCM_WRITE_PROTECTED] = {
2893 .key = DATA_PROTECT,
2894 .asc = 0x27, /* WRITE PROTECTED */
2896 [TCM_ADDRESS_OUT_OF_RANGE] = {
2897 .key = ILLEGAL_REQUEST,
2898 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2900 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2901 .key = UNIT_ATTENTION,
2903 [TCM_CHECK_CONDITION_NOT_READY] = {
2904 .key = NOT_READY,
2906 [TCM_MISCOMPARE_VERIFY] = {
2907 .key = MISCOMPARE,
2908 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2909 .ascq = 0x00,
2911 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2912 .key = ABORTED_COMMAND,
2913 .asc = 0x10,
2914 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2915 .add_sector_info = true,
2917 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2918 .key = ABORTED_COMMAND,
2919 .asc = 0x10,
2920 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2921 .add_sector_info = true,
2923 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2924 .key = ABORTED_COMMAND,
2925 .asc = 0x10,
2926 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2927 .add_sector_info = true,
2929 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2930 .key = COPY_ABORTED,
2931 .asc = 0x0d,
2932 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2935 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2937 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2938 * Solaris initiators. Returning NOT READY instead means the
2939 * operations will be retried a finite number of times and we
2940 * can survive intermittent errors.
2942 .key = NOT_READY,
2943 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2947 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2949 const struct sense_info *si;
2950 u8 *buffer = cmd->sense_buffer;
2951 int r = (__force int)reason;
2952 u8 asc, ascq;
2953 bool desc_format = target_sense_desc_format(cmd->se_dev);
2955 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2956 si = &sense_info_table[r];
2957 else
2958 si = &sense_info_table[(__force int)
2959 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2961 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2962 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2963 WARN_ON_ONCE(asc == 0);
2964 } else if (si->asc == 0) {
2965 WARN_ON_ONCE(cmd->scsi_asc == 0);
2966 asc = cmd->scsi_asc;
2967 ascq = cmd->scsi_ascq;
2968 } else {
2969 asc = si->asc;
2970 ascq = si->ascq;
2973 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2974 if (si->add_sector_info)
2975 return scsi_set_sense_information(buffer,
2976 cmd->scsi_sense_length,
2977 cmd->bad_sector);
2979 return 0;
2983 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2984 sense_reason_t reason, int from_transport)
2986 unsigned long flags;
2988 spin_lock_irqsave(&cmd->t_state_lock, flags);
2989 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2990 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2991 return 0;
2993 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2994 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2996 if (!from_transport) {
2997 int rc;
2999 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3000 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3001 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3002 rc = translate_sense_reason(cmd, reason);
3003 if (rc)
3004 return rc;
3007 trace_target_cmd_complete(cmd);
3008 return cmd->se_tfo->queue_status(cmd);
3010 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3012 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3013 __releases(&cmd->t_state_lock)
3014 __acquires(&cmd->t_state_lock)
3016 assert_spin_locked(&cmd->t_state_lock);
3017 WARN_ON_ONCE(!irqs_disabled());
3019 if (!(cmd->transport_state & CMD_T_ABORTED))
3020 return 0;
3022 * If cmd has been aborted but either no status is to be sent or it has
3023 * already been sent, just return
3025 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3026 if (send_status)
3027 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3028 return 1;
3031 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3032 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3034 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3035 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3036 trace_target_cmd_complete(cmd);
3038 spin_unlock_irq(&cmd->t_state_lock);
3039 cmd->se_tfo->queue_status(cmd);
3040 spin_lock_irq(&cmd->t_state_lock);
3042 return 1;
3045 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3047 int ret;
3049 spin_lock_irq(&cmd->t_state_lock);
3050 ret = __transport_check_aborted_status(cmd, send_status);
3051 spin_unlock_irq(&cmd->t_state_lock);
3053 return ret;
3055 EXPORT_SYMBOL(transport_check_aborted_status);
3057 void transport_send_task_abort(struct se_cmd *cmd)
3059 unsigned long flags;
3061 spin_lock_irqsave(&cmd->t_state_lock, flags);
3062 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3063 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3064 return;
3066 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3069 * If there are still expected incoming fabric WRITEs, we wait
3070 * until until they have completed before sending a TASK_ABORTED
3071 * response. This response with TASK_ABORTED status will be
3072 * queued back to fabric module by transport_check_aborted_status().
3074 if (cmd->data_direction == DMA_TO_DEVICE) {
3075 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3076 spin_lock_irqsave(&cmd->t_state_lock, flags);
3077 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3078 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3079 goto send_abort;
3081 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3082 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3083 return;
3086 send_abort:
3087 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3089 transport_lun_remove_cmd(cmd);
3091 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3092 cmd->t_task_cdb[0], cmd->tag);
3094 trace_target_cmd_complete(cmd);
3095 cmd->se_tfo->queue_status(cmd);
3098 static void target_tmr_work(struct work_struct *work)
3100 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3101 struct se_device *dev = cmd->se_dev;
3102 struct se_tmr_req *tmr = cmd->se_tmr_req;
3103 unsigned long flags;
3104 int ret;
3106 spin_lock_irqsave(&cmd->t_state_lock, flags);
3107 if (cmd->transport_state & CMD_T_ABORTED) {
3108 tmr->response = TMR_FUNCTION_REJECTED;
3109 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3110 goto check_stop;
3112 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3114 switch (tmr->function) {
3115 case TMR_ABORT_TASK:
3116 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3117 break;
3118 case TMR_ABORT_TASK_SET:
3119 case TMR_CLEAR_ACA:
3120 case TMR_CLEAR_TASK_SET:
3121 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3122 break;
3123 case TMR_LUN_RESET:
3124 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3125 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3126 TMR_FUNCTION_REJECTED;
3127 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3128 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3129 cmd->orig_fe_lun, 0x29,
3130 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3132 break;
3133 case TMR_TARGET_WARM_RESET:
3134 tmr->response = TMR_FUNCTION_REJECTED;
3135 break;
3136 case TMR_TARGET_COLD_RESET:
3137 tmr->response = TMR_FUNCTION_REJECTED;
3138 break;
3139 default:
3140 pr_err("Uknown TMR function: 0x%02x.\n",
3141 tmr->function);
3142 tmr->response = TMR_FUNCTION_REJECTED;
3143 break;
3146 spin_lock_irqsave(&cmd->t_state_lock, flags);
3147 if (cmd->transport_state & CMD_T_ABORTED) {
3148 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3149 goto check_stop;
3151 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3153 cmd->se_tfo->queue_tm_rsp(cmd);
3155 check_stop:
3156 transport_cmd_check_stop_to_fabric(cmd);
3159 int transport_generic_handle_tmr(
3160 struct se_cmd *cmd)
3162 unsigned long flags;
3163 bool aborted = false;
3165 spin_lock_irqsave(&cmd->t_state_lock, flags);
3166 if (cmd->transport_state & CMD_T_ABORTED) {
3167 aborted = true;
3168 } else {
3169 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3170 cmd->transport_state |= CMD_T_ACTIVE;
3172 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3174 if (aborted) {
3175 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3176 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3177 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3178 transport_cmd_check_stop_to_fabric(cmd);
3179 return 0;
3182 INIT_WORK(&cmd->work, target_tmr_work);
3183 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3184 return 0;
3186 EXPORT_SYMBOL(transport_generic_handle_tmr);
3188 bool
3189 target_check_wce(struct se_device *dev)
3191 bool wce = false;
3193 if (dev->transport->get_write_cache)
3194 wce = dev->transport->get_write_cache(dev);
3195 else if (dev->dev_attrib.emulate_write_cache > 0)
3196 wce = true;
3198 return wce;
3201 bool
3202 target_check_fua(struct se_device *dev)
3204 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;