1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static void transport_handle_queue_full(struct se_cmd
*cmd
,
68 struct se_device
*dev
);
69 static int transport_put_cmd(struct se_cmd
*cmd
);
70 static void target_complete_ok_work(struct work_struct
*work
);
72 int init_se_kmem_caches(void)
74 se_sess_cache
= kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session
), __alignof__(struct se_session
),
78 pr_err("kmem_cache_create() for struct se_session"
82 se_ua_cache
= kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua
), __alignof__(struct se_ua
),
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache
;
89 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration
),
91 __alignof__(struct t10_pr_registration
), 0, NULL
);
92 if (!t10_pr_reg_cache
) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 goto out_free_ua_cache
;
97 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
100 if (!t10_alua_lu_gp_cache
) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 goto out_free_pr_reg_cache
;
105 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member
),
107 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
108 if (!t10_alua_lu_gp_mem_cache
) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 goto out_free_lu_gp_cache
;
113 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp
),
115 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
116 if (!t10_alua_tg_pt_gp_cache
) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 goto out_free_lu_gp_mem_cache
;
121 t10_alua_lba_map_cache
= kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map
),
124 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
125 if (!t10_alua_lba_map_cache
) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 goto out_free_tg_pt_gp_cache
;
130 t10_alua_lba_map_mem_cache
= kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member
),
133 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
134 if (!t10_alua_lba_map_mem_cache
) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 goto out_free_lba_map_cache
;
140 target_completion_wq
= alloc_workqueue("target_completion",
142 if (!target_completion_wq
)
143 goto out_free_lba_map_mem_cache
;
147 out_free_lba_map_mem_cache
:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
149 out_free_lba_map_cache
:
150 kmem_cache_destroy(t10_alua_lba_map_cache
);
151 out_free_tg_pt_gp_cache
:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
153 out_free_lu_gp_mem_cache
:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
155 out_free_lu_gp_cache
:
156 kmem_cache_destroy(t10_alua_lu_gp_cache
);
157 out_free_pr_reg_cache
:
158 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(se_ua_cache
);
162 kmem_cache_destroy(se_sess_cache
);
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq
);
170 kmem_cache_destroy(se_sess_cache
);
171 kmem_cache_destroy(se_ua_cache
);
172 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(t10_alua_lu_gp_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
176 kmem_cache_destroy(t10_alua_lba_map_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
182 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
185 * Allocate a new row index for the entry type specified
187 u32
scsi_get_new_index(scsi_index_t type
)
191 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
193 spin_lock(&scsi_mib_index_lock
);
194 new_index
= ++scsi_mib_index
[type
];
195 spin_unlock(&scsi_mib_index_lock
);
200 void transport_subsystem_check_init(void)
203 static int sub_api_initialized
;
205 if (sub_api_initialized
)
208 ret
= request_module("target_core_iblock");
210 pr_err("Unable to load target_core_iblock\n");
212 ret
= request_module("target_core_file");
214 pr_err("Unable to load target_core_file\n");
216 ret
= request_module("target_core_pscsi");
218 pr_err("Unable to load target_core_pscsi\n");
220 ret
= request_module("target_core_user");
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized
= 1;
227 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
229 struct se_session
*se_sess
;
231 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
233 pr_err("Unable to allocate struct se_session from"
235 return ERR_PTR(-ENOMEM
);
237 INIT_LIST_HEAD(&se_sess
->sess_list
);
238 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
239 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
240 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
241 spin_lock_init(&se_sess
->sess_cmd_lock
);
242 se_sess
->sup_prot_ops
= sup_prot_ops
;
246 EXPORT_SYMBOL(transport_init_session
);
248 int transport_alloc_session_tags(struct se_session
*se_sess
,
249 unsigned int tag_num
, unsigned int tag_size
)
253 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
254 GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
255 if (!se_sess
->sess_cmd_map
) {
256 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
257 if (!se_sess
->sess_cmd_map
) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
263 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num
);
267 kvfree(se_sess
->sess_cmd_map
);
268 se_sess
->sess_cmd_map
= NULL
;
274 EXPORT_SYMBOL(transport_alloc_session_tags
);
276 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
277 unsigned int tag_size
,
278 enum target_prot_op sup_prot_ops
)
280 struct se_session
*se_sess
;
283 if (tag_num
!= 0 && !tag_size
) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num
);
286 return ERR_PTR(-EINVAL
);
288 if (!tag_num
&& tag_size
) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size
);
291 return ERR_PTR(-EINVAL
);
294 se_sess
= transport_init_session(sup_prot_ops
);
298 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
300 transport_free_session(se_sess
);
301 return ERR_PTR(-ENOMEM
);
306 EXPORT_SYMBOL(transport_init_session_tags
);
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 void __transport_register_session(
312 struct se_portal_group
*se_tpg
,
313 struct se_node_acl
*se_nacl
,
314 struct se_session
*se_sess
,
315 void *fabric_sess_ptr
)
317 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
318 unsigned char buf
[PR_REG_ISID_LEN
];
320 se_sess
->se_tpg
= se_tpg
;
321 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 * Only set for struct se_session's that will actually be moving I/O.
326 * eg: *NOT* discovery sessions.
331 * Determine if fabric allows for T10-PI feature bits exposed to
332 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 * If so, then always save prot_type on a per se_node_acl node
335 * basis and re-instate the previous sess_prot_type to avoid
336 * disabling PI from below any previously initiator side
339 if (se_nacl
->saved_prot_type
)
340 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
341 else if (tfo
->tpg_check_prot_fabric_only
)
342 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
343 tfo
->tpg_check_prot_fabric_only(se_tpg
);
345 * If the fabric module supports an ISID based TransportID,
346 * save this value in binary from the fabric I_T Nexus now.
348 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
349 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
350 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
351 &buf
[0], PR_REG_ISID_LEN
);
352 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
355 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
357 * The se_nacl->nacl_sess pointer will be set to the
358 * last active I_T Nexus for each struct se_node_acl.
360 se_nacl
->nacl_sess
= se_sess
;
362 list_add_tail(&se_sess
->sess_acl_list
,
363 &se_nacl
->acl_sess_list
);
364 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
366 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
371 EXPORT_SYMBOL(__transport_register_session
);
373 void transport_register_session(
374 struct se_portal_group
*se_tpg
,
375 struct se_node_acl
*se_nacl
,
376 struct se_session
*se_sess
,
377 void *fabric_sess_ptr
)
381 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
382 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
383 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
385 EXPORT_SYMBOL(transport_register_session
);
388 target_alloc_session(struct se_portal_group
*tpg
,
389 unsigned int tag_num
, unsigned int tag_size
,
390 enum target_prot_op prot_op
,
391 const char *initiatorname
, void *private,
392 int (*callback
)(struct se_portal_group
*,
393 struct se_session
*, void *))
395 struct se_session
*sess
;
398 * If the fabric driver is using percpu-ida based pre allocation
399 * of I/O descriptor tags, go ahead and perform that setup now..
402 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
404 sess
= transport_init_session(prot_op
);
409 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
410 (unsigned char *)initiatorname
);
411 if (!sess
->se_node_acl
) {
412 transport_free_session(sess
);
413 return ERR_PTR(-EACCES
);
416 * Go ahead and perform any remaining fabric setup that is
417 * required before transport_register_session().
419 if (callback
!= NULL
) {
420 int rc
= callback(tpg
, sess
, private);
422 transport_free_session(sess
);
427 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
430 EXPORT_SYMBOL(target_alloc_session
);
432 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
434 struct se_session
*se_sess
;
437 spin_lock_bh(&se_tpg
->session_lock
);
438 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
439 if (!se_sess
->se_node_acl
)
441 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
443 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
446 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
447 se_sess
->se_node_acl
->initiatorname
);
448 len
+= 1; /* Include NULL terminator */
450 spin_unlock_bh(&se_tpg
->session_lock
);
454 EXPORT_SYMBOL(target_show_dynamic_sessions
);
456 static void target_complete_nacl(struct kref
*kref
)
458 struct se_node_acl
*nacl
= container_of(kref
,
459 struct se_node_acl
, acl_kref
);
460 struct se_portal_group
*se_tpg
= nacl
->se_tpg
;
462 if (!nacl
->dynamic_stop
) {
463 complete(&nacl
->acl_free_comp
);
467 mutex_lock(&se_tpg
->acl_node_mutex
);
468 list_del(&nacl
->acl_list
);
469 mutex_unlock(&se_tpg
->acl_node_mutex
);
471 core_tpg_wait_for_nacl_pr_ref(nacl
);
472 core_free_device_list_for_node(nacl
, se_tpg
);
476 void target_put_nacl(struct se_node_acl
*nacl
)
478 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
480 EXPORT_SYMBOL(target_put_nacl
);
482 void transport_deregister_session_configfs(struct se_session
*se_sess
)
484 struct se_node_acl
*se_nacl
;
487 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
489 se_nacl
= se_sess
->se_node_acl
;
491 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
492 if (!list_empty(&se_sess
->sess_acl_list
))
493 list_del_init(&se_sess
->sess_acl_list
);
495 * If the session list is empty, then clear the pointer.
496 * Otherwise, set the struct se_session pointer from the tail
497 * element of the per struct se_node_acl active session list.
499 if (list_empty(&se_nacl
->acl_sess_list
))
500 se_nacl
->nacl_sess
= NULL
;
502 se_nacl
->nacl_sess
= container_of(
503 se_nacl
->acl_sess_list
.prev
,
504 struct se_session
, sess_acl_list
);
506 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
509 EXPORT_SYMBOL(transport_deregister_session_configfs
);
511 void transport_free_session(struct se_session
*se_sess
)
513 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
516 * Drop the se_node_acl->nacl_kref obtained from within
517 * core_tpg_get_initiator_node_acl().
520 struct se_portal_group
*se_tpg
= se_nacl
->se_tpg
;
521 const struct target_core_fabric_ops
*se_tfo
= se_tpg
->se_tpg_tfo
;
524 se_sess
->se_node_acl
= NULL
;
527 * Also determine if we need to drop the extra ->cmd_kref if
528 * it had been previously dynamically generated, and
529 * the endpoint is not caching dynamic ACLs.
531 mutex_lock(&se_tpg
->acl_node_mutex
);
532 if (se_nacl
->dynamic_node_acl
&&
533 !se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
534 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
535 if (list_empty(&se_nacl
->acl_sess_list
))
536 se_nacl
->dynamic_stop
= true;
537 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
539 if (se_nacl
->dynamic_stop
)
540 list_del(&se_nacl
->acl_list
);
542 mutex_unlock(&se_tpg
->acl_node_mutex
);
544 if (se_nacl
->dynamic_stop
)
545 target_put_nacl(se_nacl
);
547 target_put_nacl(se_nacl
);
549 if (se_sess
->sess_cmd_map
) {
550 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
551 kvfree(se_sess
->sess_cmd_map
);
553 kmem_cache_free(se_sess_cache
, se_sess
);
555 EXPORT_SYMBOL(transport_free_session
);
557 void transport_deregister_session(struct se_session
*se_sess
)
559 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
563 transport_free_session(se_sess
);
567 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
568 list_del(&se_sess
->sess_list
);
569 se_sess
->se_tpg
= NULL
;
570 se_sess
->fabric_sess_ptr
= NULL
;
571 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
573 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
574 se_tpg
->se_tpg_tfo
->get_fabric_name());
576 * If last kref is dropping now for an explicit NodeACL, awake sleeping
577 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
578 * removal context from within transport_free_session() code.
580 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
581 * to release all remaining generate_node_acl=1 created ACL resources.
584 transport_free_session(se_sess
);
586 EXPORT_SYMBOL(transport_deregister_session
);
588 static void target_remove_from_state_list(struct se_cmd
*cmd
)
590 struct se_device
*dev
= cmd
->se_dev
;
596 if (cmd
->transport_state
& CMD_T_BUSY
)
599 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
600 if (cmd
->state_active
) {
601 list_del(&cmd
->state_list
);
602 cmd
->state_active
= false;
604 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
607 static int transport_cmd_check_stop(struct se_cmd
*cmd
, bool remove_from_lists
,
612 if (remove_from_lists
) {
613 target_remove_from_state_list(cmd
);
616 * Clear struct se_cmd->se_lun before the handoff to FE.
621 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
623 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
626 * Determine if frontend context caller is requesting the stopping of
627 * this command for frontend exceptions.
629 if (cmd
->transport_state
& CMD_T_STOP
) {
630 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
631 __func__
, __LINE__
, cmd
->tag
);
633 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
635 complete_all(&cmd
->t_transport_stop_comp
);
639 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
640 if (remove_from_lists
) {
642 * Some fabric modules like tcm_loop can release
643 * their internally allocated I/O reference now and
646 * Fabric modules are expected to return '1' here if the
647 * se_cmd being passed is released at this point,
648 * or zero if not being released.
650 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
651 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
652 return cmd
->se_tfo
->check_stop_free(cmd
);
656 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
660 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
662 return transport_cmd_check_stop(cmd
, true, false);
665 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
667 struct se_lun
*lun
= cmd
->se_lun
;
672 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
673 percpu_ref_put(&lun
->lun_ref
);
676 int transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
678 bool ack_kref
= (cmd
->se_cmd_flags
& SCF_ACK_KREF
);
681 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
682 transport_lun_remove_cmd(cmd
);
684 * Allow the fabric driver to unmap any resources before
685 * releasing the descriptor via TFO->release_cmd()
688 cmd
->se_tfo
->aborted_task(cmd
);
690 if (transport_cmd_check_stop_to_fabric(cmd
))
692 if (remove
&& ack_kref
)
693 ret
= transport_put_cmd(cmd
);
698 static void target_complete_failure_work(struct work_struct
*work
)
700 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
702 transport_generic_request_failure(cmd
,
703 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
707 * Used when asking transport to copy Sense Data from the underlying
708 * Linux/SCSI struct scsi_cmnd
710 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
712 struct se_device
*dev
= cmd
->se_dev
;
714 WARN_ON(!cmd
->se_lun
);
719 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
722 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
724 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
725 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
726 return cmd
->sense_buffer
;
729 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
731 struct se_device
*dev
= cmd
->se_dev
;
732 int success
= scsi_status
== GOOD
;
735 cmd
->scsi_status
= scsi_status
;
738 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
739 cmd
->transport_state
&= ~CMD_T_BUSY
;
741 if (dev
&& dev
->transport
->transport_complete
) {
742 dev
->transport
->transport_complete(cmd
,
744 transport_get_sense_buffer(cmd
));
745 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
750 * Check for case where an explicit ABORT_TASK has been received
751 * and transport_wait_for_tasks() will be waiting for completion..
753 if (cmd
->transport_state
& CMD_T_ABORTED
||
754 cmd
->transport_state
& CMD_T_STOP
) {
755 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
756 complete_all(&cmd
->t_transport_stop_comp
);
758 } else if (!success
) {
759 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
761 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
764 cmd
->t_state
= TRANSPORT_COMPLETE
;
765 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
766 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
768 if (cmd
->se_cmd_flags
& SCF_USE_CPUID
)
769 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
771 queue_work(target_completion_wq
, &cmd
->work
);
773 EXPORT_SYMBOL(target_complete_cmd
);
775 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
777 if (scsi_status
== SAM_STAT_GOOD
&& length
< cmd
->data_length
) {
778 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
779 cmd
->residual_count
+= cmd
->data_length
- length
;
781 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
782 cmd
->residual_count
= cmd
->data_length
- length
;
785 cmd
->data_length
= length
;
788 target_complete_cmd(cmd
, scsi_status
);
790 EXPORT_SYMBOL(target_complete_cmd_with_length
);
792 static void target_add_to_state_list(struct se_cmd
*cmd
)
794 struct se_device
*dev
= cmd
->se_dev
;
797 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
798 if (!cmd
->state_active
) {
799 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
800 cmd
->state_active
= true;
802 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
806 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
808 static void transport_write_pending_qf(struct se_cmd
*cmd
);
809 static void transport_complete_qf(struct se_cmd
*cmd
);
811 void target_qf_do_work(struct work_struct
*work
)
813 struct se_device
*dev
= container_of(work
, struct se_device
,
815 LIST_HEAD(qf_cmd_list
);
816 struct se_cmd
*cmd
, *cmd_tmp
;
818 spin_lock_irq(&dev
->qf_cmd_lock
);
819 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
820 spin_unlock_irq(&dev
->qf_cmd_lock
);
822 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
823 list_del(&cmd
->se_qf_node
);
824 atomic_dec_mb(&dev
->dev_qf_count
);
826 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
827 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
828 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
829 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
832 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
833 transport_write_pending_qf(cmd
);
834 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
)
835 transport_complete_qf(cmd
);
839 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
841 switch (cmd
->data_direction
) {
844 case DMA_FROM_DEVICE
:
848 case DMA_BIDIRECTIONAL
:
857 void transport_dump_dev_state(
858 struct se_device
*dev
,
862 *bl
+= sprintf(b
+ *bl
, "Status: ");
863 if (dev
->export_count
)
864 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
866 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
868 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
869 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
870 dev
->dev_attrib
.block_size
,
871 dev
->dev_attrib
.hw_max_sectors
);
872 *bl
+= sprintf(b
+ *bl
, " ");
875 void transport_dump_vpd_proto_id(
877 unsigned char *p_buf
,
880 unsigned char buf
[VPD_TMP_BUF_SIZE
];
883 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
884 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
886 switch (vpd
->protocol_identifier
) {
888 sprintf(buf
+len
, "Fibre Channel\n");
891 sprintf(buf
+len
, "Parallel SCSI\n");
894 sprintf(buf
+len
, "SSA\n");
897 sprintf(buf
+len
, "IEEE 1394\n");
900 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
904 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
907 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
910 sprintf(buf
+len
, "Automation/Drive Interface Transport"
914 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
917 sprintf(buf
+len
, "Unknown 0x%02x\n",
918 vpd
->protocol_identifier
);
923 strncpy(p_buf
, buf
, p_buf_len
);
929 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
932 * Check if the Protocol Identifier Valid (PIV) bit is set..
934 * from spc3r23.pdf section 7.5.1
936 if (page_83
[1] & 0x80) {
937 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
938 vpd
->protocol_identifier_set
= 1;
939 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
942 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
944 int transport_dump_vpd_assoc(
946 unsigned char *p_buf
,
949 unsigned char buf
[VPD_TMP_BUF_SIZE
];
953 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
954 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
956 switch (vpd
->association
) {
958 sprintf(buf
+len
, "addressed logical unit\n");
961 sprintf(buf
+len
, "target port\n");
964 sprintf(buf
+len
, "SCSI target device\n");
967 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
973 strncpy(p_buf
, buf
, p_buf_len
);
980 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
983 * The VPD identification association..
985 * from spc3r23.pdf Section 7.6.3.1 Table 297
987 vpd
->association
= (page_83
[1] & 0x30);
988 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
990 EXPORT_SYMBOL(transport_set_vpd_assoc
);
992 int transport_dump_vpd_ident_type(
994 unsigned char *p_buf
,
997 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1001 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1002 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1004 switch (vpd
->device_identifier_type
) {
1006 sprintf(buf
+len
, "Vendor specific\n");
1009 sprintf(buf
+len
, "T10 Vendor ID based\n");
1012 sprintf(buf
+len
, "EUI-64 based\n");
1015 sprintf(buf
+len
, "NAA\n");
1018 sprintf(buf
+len
, "Relative target port identifier\n");
1021 sprintf(buf
+len
, "SCSI name string\n");
1024 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1025 vpd
->device_identifier_type
);
1031 if (p_buf_len
< strlen(buf
)+1)
1033 strncpy(p_buf
, buf
, p_buf_len
);
1035 pr_debug("%s", buf
);
1041 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1044 * The VPD identifier type..
1046 * from spc3r23.pdf Section 7.6.3.1 Table 298
1048 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1049 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1051 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1053 int transport_dump_vpd_ident(
1054 struct t10_vpd
*vpd
,
1055 unsigned char *p_buf
,
1058 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1061 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1063 switch (vpd
->device_identifier_code_set
) {
1064 case 0x01: /* Binary */
1065 snprintf(buf
, sizeof(buf
),
1066 "T10 VPD Binary Device Identifier: %s\n",
1067 &vpd
->device_identifier
[0]);
1069 case 0x02: /* ASCII */
1070 snprintf(buf
, sizeof(buf
),
1071 "T10 VPD ASCII Device Identifier: %s\n",
1072 &vpd
->device_identifier
[0]);
1074 case 0x03: /* UTF-8 */
1075 snprintf(buf
, sizeof(buf
),
1076 "T10 VPD UTF-8 Device Identifier: %s\n",
1077 &vpd
->device_identifier
[0]);
1080 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1081 " 0x%02x", vpd
->device_identifier_code_set
);
1087 strncpy(p_buf
, buf
, p_buf_len
);
1089 pr_debug("%s", buf
);
1095 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1097 static const char hex_str
[] = "0123456789abcdef";
1098 int j
= 0, i
= 4; /* offset to start of the identifier */
1101 * The VPD Code Set (encoding)
1103 * from spc3r23.pdf Section 7.6.3.1 Table 296
1105 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1106 switch (vpd
->device_identifier_code_set
) {
1107 case 0x01: /* Binary */
1108 vpd
->device_identifier
[j
++] =
1109 hex_str
[vpd
->device_identifier_type
];
1110 while (i
< (4 + page_83
[3])) {
1111 vpd
->device_identifier
[j
++] =
1112 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1113 vpd
->device_identifier
[j
++] =
1114 hex_str
[page_83
[i
] & 0x0f];
1118 case 0x02: /* ASCII */
1119 case 0x03: /* UTF-8 */
1120 while (i
< (4 + page_83
[3]))
1121 vpd
->device_identifier
[j
++] = page_83
[i
++];
1127 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1129 EXPORT_SYMBOL(transport_set_vpd_ident
);
1131 static sense_reason_t
1132 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1137 if (!cmd
->se_tfo
->max_data_sg_nents
)
1138 return TCM_NO_SENSE
;
1140 * Check if fabric enforced maximum SGL entries per I/O descriptor
1141 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1142 * residual_count and reduce original cmd->data_length to maximum
1143 * length based on single PAGE_SIZE entry scatter-lists.
1145 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1146 if (cmd
->data_length
> mtl
) {
1148 * If an existing CDB overflow is present, calculate new residual
1149 * based on CDB size minus fabric maximum transfer length.
1151 * If an existing CDB underflow is present, calculate new residual
1152 * based on original cmd->data_length minus fabric maximum transfer
1155 * Otherwise, set the underflow residual based on cmd->data_length
1156 * minus fabric maximum transfer length.
1158 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1159 cmd
->residual_count
= (size
- mtl
);
1160 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1161 u32 orig_dl
= size
+ cmd
->residual_count
;
1162 cmd
->residual_count
= (orig_dl
- mtl
);
1164 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1165 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1167 cmd
->data_length
= mtl
;
1169 * Reset sbc_check_prot() calculated protection payload
1170 * length based upon the new smaller MTL.
1172 if (cmd
->prot_length
) {
1173 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1174 cmd
->prot_length
= dev
->prot_length
* sectors
;
1177 return TCM_NO_SENSE
;
1181 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1183 struct se_device
*dev
= cmd
->se_dev
;
1185 if (cmd
->unknown_data_length
) {
1186 cmd
->data_length
= size
;
1187 } else if (size
!= cmd
->data_length
) {
1188 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1189 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1190 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1191 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1193 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1194 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1195 pr_err_ratelimited("Rejecting underflow/overflow"
1196 " for WRITE data CDB\n");
1197 return TCM_INVALID_CDB_FIELD
;
1200 * Some fabric drivers like iscsi-target still expect to
1201 * always reject overflow writes. Reject this case until
1202 * full fabric driver level support for overflow writes
1203 * is introduced tree-wide.
1205 if (size
> cmd
->data_length
) {
1206 pr_err_ratelimited("Rejecting overflow for"
1207 " WRITE control CDB\n");
1208 return TCM_INVALID_CDB_FIELD
;
1212 * Reject READ_* or WRITE_* with overflow/underflow for
1213 * type SCF_SCSI_DATA_CDB.
1215 if (dev
->dev_attrib
.block_size
!= 512) {
1216 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1217 " CDB on non 512-byte sector setup subsystem"
1218 " plugin: %s\n", dev
->transport
->name
);
1219 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1220 return TCM_INVALID_CDB_FIELD
;
1223 * For the overflow case keep the existing fabric provided
1224 * ->data_length. Otherwise for the underflow case, reset
1225 * ->data_length to the smaller SCSI expected data transfer
1228 if (size
> cmd
->data_length
) {
1229 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1230 cmd
->residual_count
= (size
- cmd
->data_length
);
1232 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1233 cmd
->residual_count
= (cmd
->data_length
- size
);
1234 cmd
->data_length
= size
;
1238 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1243 * Used by fabric modules containing a local struct se_cmd within their
1244 * fabric dependent per I/O descriptor.
1246 * Preserves the value of @cmd->tag.
1248 void transport_init_se_cmd(
1250 const struct target_core_fabric_ops
*tfo
,
1251 struct se_session
*se_sess
,
1255 unsigned char *sense_buffer
)
1257 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1258 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1259 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1260 INIT_LIST_HEAD(&cmd
->state_list
);
1261 init_completion(&cmd
->t_transport_stop_comp
);
1262 init_completion(&cmd
->cmd_wait_comp
);
1263 spin_lock_init(&cmd
->t_state_lock
);
1264 kref_init(&cmd
->cmd_kref
);
1265 cmd
->transport_state
= CMD_T_DEV_ACTIVE
;
1268 cmd
->se_sess
= se_sess
;
1269 cmd
->data_length
= data_length
;
1270 cmd
->data_direction
= data_direction
;
1271 cmd
->sam_task_attr
= task_attr
;
1272 cmd
->sense_buffer
= sense_buffer
;
1274 cmd
->state_active
= false;
1276 EXPORT_SYMBOL(transport_init_se_cmd
);
1278 static sense_reason_t
1279 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1281 struct se_device
*dev
= cmd
->se_dev
;
1284 * Check if SAM Task Attribute emulation is enabled for this
1285 * struct se_device storage object
1287 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1290 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1291 pr_debug("SAM Task Attribute ACA"
1292 " emulation is not supported\n");
1293 return TCM_INVALID_CDB_FIELD
;
1300 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1302 struct se_device
*dev
= cmd
->se_dev
;
1306 * Ensure that the received CDB is less than the max (252 + 8) bytes
1307 * for VARIABLE_LENGTH_CMD
1309 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1310 pr_err("Received SCSI CDB with command_size: %d that"
1311 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1312 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1313 return TCM_INVALID_CDB_FIELD
;
1316 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1317 * allocate the additional extended CDB buffer now.. Otherwise
1318 * setup the pointer from __t_task_cdb to t_task_cdb.
1320 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1321 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1323 if (!cmd
->t_task_cdb
) {
1324 pr_err("Unable to allocate cmd->t_task_cdb"
1325 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1326 scsi_command_size(cdb
),
1327 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1328 return TCM_OUT_OF_RESOURCES
;
1331 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1333 * Copy the original CDB into cmd->
1335 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1337 trace_target_sequencer_start(cmd
);
1339 ret
= dev
->transport
->parse_cdb(cmd
);
1340 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1341 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1342 cmd
->se_tfo
->get_fabric_name(),
1343 cmd
->se_sess
->se_node_acl
->initiatorname
,
1344 cmd
->t_task_cdb
[0]);
1348 ret
= transport_check_alloc_task_attr(cmd
);
1352 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1353 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1356 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1359 * Used by fabric module frontends to queue tasks directly.
1360 * May only be used from process context.
1362 int transport_handle_cdb_direct(
1369 pr_err("cmd->se_lun is NULL\n");
1372 if (in_interrupt()) {
1374 pr_err("transport_generic_handle_cdb cannot be called"
1375 " from interrupt context\n");
1379 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1380 * outstanding descriptors are handled correctly during shutdown via
1381 * transport_wait_for_tasks()
1383 * Also, we don't take cmd->t_state_lock here as we only expect
1384 * this to be called for initial descriptor submission.
1386 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1387 cmd
->transport_state
|= CMD_T_ACTIVE
;
1390 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1391 * so follow TRANSPORT_NEW_CMD processing thread context usage
1392 * and call transport_generic_request_failure() if necessary..
1394 ret
= transport_generic_new_cmd(cmd
);
1396 transport_generic_request_failure(cmd
, ret
);
1399 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1402 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1403 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1405 if (!sgl
|| !sgl_count
)
1409 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1410 * scatterlists already have been set to follow what the fabric
1411 * passes for the original expected data transfer length.
1413 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1414 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1415 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1416 return TCM_INVALID_CDB_FIELD
;
1419 cmd
->t_data_sg
= sgl
;
1420 cmd
->t_data_nents
= sgl_count
;
1421 cmd
->t_bidi_data_sg
= sgl_bidi
;
1422 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1424 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1429 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1430 * se_cmd + use pre-allocated SGL memory.
1432 * @se_cmd: command descriptor to submit
1433 * @se_sess: associated se_sess for endpoint
1434 * @cdb: pointer to SCSI CDB
1435 * @sense: pointer to SCSI sense buffer
1436 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1437 * @data_length: fabric expected data transfer length
1438 * @task_addr: SAM task attribute
1439 * @data_dir: DMA data direction
1440 * @flags: flags for command submission from target_sc_flags_tables
1441 * @sgl: struct scatterlist memory for unidirectional mapping
1442 * @sgl_count: scatterlist count for unidirectional mapping
1443 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1444 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1445 * @sgl_prot: struct scatterlist memory protection information
1446 * @sgl_prot_count: scatterlist count for protection information
1448 * Task tags are supported if the caller has set @se_cmd->tag.
1450 * Returns non zero to signal active I/O shutdown failure. All other
1451 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1452 * but still return zero here.
1454 * This may only be called from process context, and also currently
1455 * assumes internal allocation of fabric payload buffer by target-core.
1457 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1458 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1459 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1460 struct scatterlist
*sgl
, u32 sgl_count
,
1461 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1462 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1464 struct se_portal_group
*se_tpg
;
1468 se_tpg
= se_sess
->se_tpg
;
1470 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1471 BUG_ON(in_interrupt());
1473 * Initialize se_cmd for target operation. From this point
1474 * exceptions are handled by sending exception status via
1475 * target_core_fabric_ops->queue_status() callback
1477 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1478 data_length
, data_dir
, task_attr
, sense
);
1480 if (flags
& TARGET_SCF_USE_CPUID
)
1481 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1483 se_cmd
->cpuid
= WORK_CPU_UNBOUND
;
1485 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1486 se_cmd
->unknown_data_length
= 1;
1488 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1489 * se_sess->sess_cmd_list. A second kref_get here is necessary
1490 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1491 * kref_put() to happen during fabric packet acknowledgement.
1493 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1497 * Signal bidirectional data payloads to target-core
1499 if (flags
& TARGET_SCF_BIDI_OP
)
1500 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1502 * Locate se_lun pointer and attach it to struct se_cmd
1504 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1506 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1507 target_put_sess_cmd(se_cmd
);
1511 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1513 transport_generic_request_failure(se_cmd
, rc
);
1518 * Save pointers for SGLs containing protection information,
1521 if (sgl_prot_count
) {
1522 se_cmd
->t_prot_sg
= sgl_prot
;
1523 se_cmd
->t_prot_nents
= sgl_prot_count
;
1524 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1528 * When a non zero sgl_count has been passed perform SGL passthrough
1529 * mapping for pre-allocated fabric memory instead of having target
1530 * core perform an internal SGL allocation..
1532 if (sgl_count
!= 0) {
1536 * A work-around for tcm_loop as some userspace code via
1537 * scsi-generic do not memset their associated read buffers,
1538 * so go ahead and do that here for type non-data CDBs. Also
1539 * note that this is currently guaranteed to be a single SGL
1540 * for this case by target core in target_setup_cmd_from_cdb()
1541 * -> transport_generic_cmd_sequencer().
1543 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1544 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1545 unsigned char *buf
= NULL
;
1548 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1551 memset(buf
, 0, sgl
->length
);
1552 kunmap(sg_page(sgl
));
1556 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1557 sgl_bidi
, sgl_bidi_count
);
1559 transport_generic_request_failure(se_cmd
, rc
);
1565 * Check if we need to delay processing because of ALUA
1566 * Active/NonOptimized primary access state..
1568 core_alua_check_nonop_delay(se_cmd
);
1570 transport_handle_cdb_direct(se_cmd
);
1573 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1576 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1578 * @se_cmd: command descriptor to submit
1579 * @se_sess: associated se_sess for endpoint
1580 * @cdb: pointer to SCSI CDB
1581 * @sense: pointer to SCSI sense buffer
1582 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1583 * @data_length: fabric expected data transfer length
1584 * @task_addr: SAM task attribute
1585 * @data_dir: DMA data direction
1586 * @flags: flags for command submission from target_sc_flags_tables
1588 * Task tags are supported if the caller has set @se_cmd->tag.
1590 * Returns non zero to signal active I/O shutdown failure. All other
1591 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1592 * but still return zero here.
1594 * This may only be called from process context, and also currently
1595 * assumes internal allocation of fabric payload buffer by target-core.
1597 * It also assumes interal target core SGL memory allocation.
1599 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1600 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1601 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1603 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1604 unpacked_lun
, data_length
, task_attr
, data_dir
,
1605 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1607 EXPORT_SYMBOL(target_submit_cmd
);
1609 static void target_complete_tmr_failure(struct work_struct
*work
)
1611 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1613 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1614 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1616 transport_cmd_check_stop_to_fabric(se_cmd
);
1620 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1623 * @se_cmd: command descriptor to submit
1624 * @se_sess: associated se_sess for endpoint
1625 * @sense: pointer to SCSI sense buffer
1626 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1627 * @fabric_context: fabric context for TMR req
1628 * @tm_type: Type of TM request
1629 * @gfp: gfp type for caller
1630 * @tag: referenced task tag for TMR_ABORT_TASK
1631 * @flags: submit cmd flags
1633 * Callable from all contexts.
1636 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1637 unsigned char *sense
, u64 unpacked_lun
,
1638 void *fabric_tmr_ptr
, unsigned char tm_type
,
1639 gfp_t gfp
, u64 tag
, int flags
)
1641 struct se_portal_group
*se_tpg
;
1644 se_tpg
= se_sess
->se_tpg
;
1647 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1648 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1650 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1651 * allocation failure.
1653 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1657 if (tm_type
== TMR_ABORT_TASK
)
1658 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1660 /* See target_submit_cmd for commentary */
1661 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1663 core_tmr_release_req(se_cmd
->se_tmr_req
);
1667 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1670 * For callback during failure handling, push this work off
1671 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1673 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1674 schedule_work(&se_cmd
->work
);
1677 transport_generic_handle_tmr(se_cmd
);
1680 EXPORT_SYMBOL(target_submit_tmr
);
1683 * Handle SAM-esque emulation for generic transport request failures.
1685 void transport_generic_request_failure(struct se_cmd
*cmd
,
1686 sense_reason_t sense_reason
)
1688 int ret
= 0, post_ret
= 0;
1690 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1691 " CDB: 0x%02x\n", cmd
, cmd
->tag
, cmd
->t_task_cdb
[0]);
1692 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1693 cmd
->se_tfo
->get_cmd_state(cmd
),
1694 cmd
->t_state
, sense_reason
);
1695 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1696 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1697 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1698 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1701 * For SAM Task Attribute emulation for failed struct se_cmd
1703 transport_complete_task_attr(cmd
);
1705 * Handle special case for COMPARE_AND_WRITE failure, where the
1706 * callback is expected to drop the per device ->caw_sem.
1708 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1709 cmd
->transport_complete_callback
)
1710 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1712 switch (sense_reason
) {
1713 case TCM_NON_EXISTENT_LUN
:
1714 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1715 case TCM_INVALID_CDB_FIELD
:
1716 case TCM_INVALID_PARAMETER_LIST
:
1717 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1718 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1719 case TCM_UNKNOWN_MODE_PAGE
:
1720 case TCM_WRITE_PROTECTED
:
1721 case TCM_ADDRESS_OUT_OF_RANGE
:
1722 case TCM_CHECK_CONDITION_ABORT_CMD
:
1723 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1724 case TCM_CHECK_CONDITION_NOT_READY
:
1725 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1726 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1727 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1728 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
:
1730 case TCM_OUT_OF_RESOURCES
:
1731 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1733 case TCM_RESERVATION_CONFLICT
:
1735 * No SENSE Data payload for this case, set SCSI Status
1736 * and queue the response to $FABRIC_MOD.
1738 * Uses linux/include/scsi/scsi.h SAM status codes defs
1740 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1742 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1743 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1746 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1749 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1750 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1751 cmd
->orig_fe_lun
, 0x2C,
1752 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1754 trace_target_cmd_complete(cmd
);
1755 ret
= cmd
->se_tfo
->queue_status(cmd
);
1756 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1760 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1761 cmd
->t_task_cdb
[0], sense_reason
);
1762 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1766 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1767 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1771 transport_lun_remove_cmd(cmd
);
1772 transport_cmd_check_stop_to_fabric(cmd
);
1776 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1777 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1779 EXPORT_SYMBOL(transport_generic_request_failure
);
1781 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
1785 if (!cmd
->execute_cmd
) {
1786 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1791 * Check for an existing UNIT ATTENTION condition after
1792 * target_handle_task_attr() has done SAM task attr
1793 * checking, and possibly have already defered execution
1794 * out to target_restart_delayed_cmds() context.
1796 ret
= target_scsi3_ua_check(cmd
);
1800 ret
= target_alua_state_check(cmd
);
1804 ret
= target_check_reservation(cmd
);
1806 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1811 ret
= cmd
->execute_cmd(cmd
);
1815 spin_lock_irq(&cmd
->t_state_lock
);
1816 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1817 spin_unlock_irq(&cmd
->t_state_lock
);
1819 transport_generic_request_failure(cmd
, ret
);
1822 static int target_write_prot_action(struct se_cmd
*cmd
)
1826 * Perform WRITE_INSERT of PI using software emulation when backend
1827 * device has PI enabled, if the transport has not already generated
1828 * PI using hardware WRITE_INSERT offload.
1830 switch (cmd
->prot_op
) {
1831 case TARGET_PROT_DOUT_INSERT
:
1832 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1833 sbc_dif_generate(cmd
);
1835 case TARGET_PROT_DOUT_STRIP
:
1836 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1839 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1840 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1841 sectors
, 0, cmd
->t_prot_sg
, 0);
1842 if (unlikely(cmd
->pi_err
)) {
1843 spin_lock_irq(&cmd
->t_state_lock
);
1844 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1845 spin_unlock_irq(&cmd
->t_state_lock
);
1846 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1857 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1859 struct se_device
*dev
= cmd
->se_dev
;
1861 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1864 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
1867 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1868 * to allow the passed struct se_cmd list of tasks to the front of the list.
1870 switch (cmd
->sam_task_attr
) {
1872 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1873 cmd
->t_task_cdb
[0]);
1875 case TCM_ORDERED_TAG
:
1876 atomic_inc_mb(&dev
->dev_ordered_sync
);
1878 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1879 cmd
->t_task_cdb
[0]);
1882 * Execute an ORDERED command if no other older commands
1883 * exist that need to be completed first.
1885 if (!atomic_read(&dev
->simple_cmds
))
1890 * For SIMPLE and UNTAGGED Task Attribute commands
1892 atomic_inc_mb(&dev
->simple_cmds
);
1896 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1899 spin_lock(&dev
->delayed_cmd_lock
);
1900 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1901 spin_unlock(&dev
->delayed_cmd_lock
);
1903 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1904 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
1908 static int __transport_check_aborted_status(struct se_cmd
*, int);
1910 void target_execute_cmd(struct se_cmd
*cmd
)
1913 * Determine if frontend context caller is requesting the stopping of
1914 * this command for frontend exceptions.
1916 * If the received CDB has aleady been aborted stop processing it here.
1918 spin_lock_irq(&cmd
->t_state_lock
);
1919 if (__transport_check_aborted_status(cmd
, 1)) {
1920 spin_unlock_irq(&cmd
->t_state_lock
);
1923 if (cmd
->transport_state
& CMD_T_STOP
) {
1924 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1925 __func__
, __LINE__
, cmd
->tag
);
1927 spin_unlock_irq(&cmd
->t_state_lock
);
1928 complete_all(&cmd
->t_transport_stop_comp
);
1932 cmd
->t_state
= TRANSPORT_PROCESSING
;
1933 cmd
->transport_state
|= CMD_T_ACTIVE
|CMD_T_BUSY
|CMD_T_SENT
;
1934 spin_unlock_irq(&cmd
->t_state_lock
);
1936 if (target_write_prot_action(cmd
))
1939 if (target_handle_task_attr(cmd
)) {
1940 spin_lock_irq(&cmd
->t_state_lock
);
1941 cmd
->transport_state
&= ~(CMD_T_BUSY
| CMD_T_SENT
);
1942 spin_unlock_irq(&cmd
->t_state_lock
);
1946 __target_execute_cmd(cmd
, true);
1948 EXPORT_SYMBOL(target_execute_cmd
);
1951 * Process all commands up to the last received ORDERED task attribute which
1952 * requires another blocking boundary
1954 static void target_restart_delayed_cmds(struct se_device
*dev
)
1959 spin_lock(&dev
->delayed_cmd_lock
);
1960 if (list_empty(&dev
->delayed_cmd_list
)) {
1961 spin_unlock(&dev
->delayed_cmd_lock
);
1965 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
1966 struct se_cmd
, se_delayed_node
);
1967 list_del(&cmd
->se_delayed_node
);
1968 spin_unlock(&dev
->delayed_cmd_lock
);
1970 __target_execute_cmd(cmd
, true);
1972 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
1978 * Called from I/O completion to determine which dormant/delayed
1979 * and ordered cmds need to have their tasks added to the execution queue.
1981 static void transport_complete_task_attr(struct se_cmd
*cmd
)
1983 struct se_device
*dev
= cmd
->se_dev
;
1985 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1988 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
1991 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
1992 atomic_dec_mb(&dev
->simple_cmds
);
1993 dev
->dev_cur_ordered_id
++;
1994 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1995 dev
->dev_cur_ordered_id
);
1996 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
1997 dev
->dev_cur_ordered_id
++;
1998 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1999 dev
->dev_cur_ordered_id
);
2000 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
2001 atomic_dec_mb(&dev
->dev_ordered_sync
);
2003 dev
->dev_cur_ordered_id
++;
2004 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2005 dev
->dev_cur_ordered_id
);
2008 target_restart_delayed_cmds(dev
);
2011 static void transport_complete_qf(struct se_cmd
*cmd
)
2015 transport_complete_task_attr(cmd
);
2017 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2018 trace_target_cmd_complete(cmd
);
2019 ret
= cmd
->se_tfo
->queue_status(cmd
);
2023 switch (cmd
->data_direction
) {
2024 case DMA_FROM_DEVICE
:
2025 if (cmd
->scsi_status
)
2028 trace_target_cmd_complete(cmd
);
2029 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2032 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2033 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2036 /* Fall through for DMA_TO_DEVICE */
2039 trace_target_cmd_complete(cmd
);
2040 ret
= cmd
->se_tfo
->queue_status(cmd
);
2048 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2051 transport_lun_remove_cmd(cmd
);
2052 transport_cmd_check_stop_to_fabric(cmd
);
2055 static void transport_handle_queue_full(
2057 struct se_device
*dev
)
2059 spin_lock_irq(&dev
->qf_cmd_lock
);
2060 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2061 atomic_inc_mb(&dev
->dev_qf_count
);
2062 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2064 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2067 static bool target_read_prot_action(struct se_cmd
*cmd
)
2069 switch (cmd
->prot_op
) {
2070 case TARGET_PROT_DIN_STRIP
:
2071 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2072 u32 sectors
= cmd
->data_length
>>
2073 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2075 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2076 sectors
, 0, cmd
->t_prot_sg
,
2082 case TARGET_PROT_DIN_INSERT
:
2083 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2086 sbc_dif_generate(cmd
);
2095 static void target_complete_ok_work(struct work_struct
*work
)
2097 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2101 * Check if we need to move delayed/dormant tasks from cmds on the
2102 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2105 transport_complete_task_attr(cmd
);
2108 * Check to schedule QUEUE_FULL work, or execute an existing
2109 * cmd->transport_qf_callback()
2111 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2112 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2115 * Check if we need to send a sense buffer from
2116 * the struct se_cmd in question.
2118 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2119 WARN_ON(!cmd
->scsi_status
);
2120 ret
= transport_send_check_condition_and_sense(
2122 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2125 transport_lun_remove_cmd(cmd
);
2126 transport_cmd_check_stop_to_fabric(cmd
);
2130 * Check for a callback, used by amongst other things
2131 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2133 if (cmd
->transport_complete_callback
) {
2135 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2136 bool zero_dl
= !(cmd
->data_length
);
2139 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2140 if (!rc
&& !post_ret
) {
2146 ret
= transport_send_check_condition_and_sense(cmd
,
2148 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2151 transport_lun_remove_cmd(cmd
);
2152 transport_cmd_check_stop_to_fabric(cmd
);
2158 switch (cmd
->data_direction
) {
2159 case DMA_FROM_DEVICE
:
2160 if (cmd
->scsi_status
)
2163 atomic_long_add(cmd
->data_length
,
2164 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2166 * Perform READ_STRIP of PI using software emulation when
2167 * backend had PI enabled, if the transport will not be
2168 * performing hardware READ_STRIP offload.
2170 if (target_read_prot_action(cmd
)) {
2171 ret
= transport_send_check_condition_and_sense(cmd
,
2173 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2176 transport_lun_remove_cmd(cmd
);
2177 transport_cmd_check_stop_to_fabric(cmd
);
2181 trace_target_cmd_complete(cmd
);
2182 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2183 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2187 atomic_long_add(cmd
->data_length
,
2188 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2190 * Check if we need to send READ payload for BIDI-COMMAND
2192 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2193 atomic_long_add(cmd
->data_length
,
2194 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2195 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2196 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2200 /* Fall through for DMA_TO_DEVICE */
2203 trace_target_cmd_complete(cmd
);
2204 ret
= cmd
->se_tfo
->queue_status(cmd
);
2205 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2212 transport_lun_remove_cmd(cmd
);
2213 transport_cmd_check_stop_to_fabric(cmd
);
2217 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2218 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2219 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
2220 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2223 void target_free_sgl(struct scatterlist
*sgl
, int nents
)
2225 struct scatterlist
*sg
;
2228 for_each_sg(sgl
, sg
, nents
, count
)
2229 __free_page(sg_page(sg
));
2233 EXPORT_SYMBOL(target_free_sgl
);
2235 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2238 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2239 * emulation, and free + reset pointers if necessary..
2241 if (!cmd
->t_data_sg_orig
)
2244 kfree(cmd
->t_data_sg
);
2245 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2246 cmd
->t_data_sg_orig
= NULL
;
2247 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2248 cmd
->t_data_nents_orig
= 0;
2251 static inline void transport_free_pages(struct se_cmd
*cmd
)
2253 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2254 target_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2255 cmd
->t_prot_sg
= NULL
;
2256 cmd
->t_prot_nents
= 0;
2259 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2261 * Release special case READ buffer payload required for
2262 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2264 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2265 target_free_sgl(cmd
->t_bidi_data_sg
,
2266 cmd
->t_bidi_data_nents
);
2267 cmd
->t_bidi_data_sg
= NULL
;
2268 cmd
->t_bidi_data_nents
= 0;
2270 transport_reset_sgl_orig(cmd
);
2273 transport_reset_sgl_orig(cmd
);
2275 target_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2276 cmd
->t_data_sg
= NULL
;
2277 cmd
->t_data_nents
= 0;
2279 target_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2280 cmd
->t_bidi_data_sg
= NULL
;
2281 cmd
->t_bidi_data_nents
= 0;
2285 * transport_put_cmd - release a reference to a command
2286 * @cmd: command to release
2288 * This routine releases our reference to the command and frees it if possible.
2290 static int transport_put_cmd(struct se_cmd
*cmd
)
2292 BUG_ON(!cmd
->se_tfo
);
2294 * If this cmd has been setup with target_get_sess_cmd(), drop
2295 * the kref and call ->release_cmd() in kref callback.
2297 return target_put_sess_cmd(cmd
);
2300 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2302 struct scatterlist
*sg
= cmd
->t_data_sg
;
2303 struct page
**pages
;
2307 * We need to take into account a possible offset here for fabrics like
2308 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2309 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2311 if (!cmd
->t_data_nents
)
2315 if (cmd
->t_data_nents
== 1)
2316 return kmap(sg_page(sg
)) + sg
->offset
;
2318 /* >1 page. use vmap */
2319 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
2323 /* convert sg[] to pages[] */
2324 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2325 pages
[i
] = sg_page(sg
);
2328 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2330 if (!cmd
->t_data_vmap
)
2333 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2335 EXPORT_SYMBOL(transport_kmap_data_sg
);
2337 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2339 if (!cmd
->t_data_nents
) {
2341 } else if (cmd
->t_data_nents
== 1) {
2342 kunmap(sg_page(cmd
->t_data_sg
));
2346 vunmap(cmd
->t_data_vmap
);
2347 cmd
->t_data_vmap
= NULL
;
2349 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2352 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2353 bool zero_page
, bool chainable
)
2355 struct scatterlist
*sg
;
2357 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2358 unsigned int nalloc
, nent
;
2361 nalloc
= nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2364 sg
= kmalloc_array(nalloc
, sizeof(struct scatterlist
), GFP_KERNEL
);
2368 sg_init_table(sg
, nalloc
);
2371 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2372 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2376 sg_set_page(&sg
[i
], page
, page_len
, 0);
2387 __free_page(sg_page(&sg
[i
]));
2392 EXPORT_SYMBOL(target_alloc_sgl
);
2395 * Allocate any required resources to execute the command. For writes we
2396 * might not have the payload yet, so notify the fabric via a call to
2397 * ->write_pending instead. Otherwise place it on the execution queue.
2400 transport_generic_new_cmd(struct se_cmd
*cmd
)
2403 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2405 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2406 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2407 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2408 cmd
->prot_length
, true, false);
2410 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2414 * Determine is the TCM fabric module has already allocated physical
2415 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2418 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2421 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2422 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2425 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2426 bidi_length
= cmd
->t_task_nolb
*
2427 cmd
->se_dev
->dev_attrib
.block_size
;
2429 bidi_length
= cmd
->data_length
;
2431 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2432 &cmd
->t_bidi_data_nents
,
2433 bidi_length
, zero_flag
, false);
2435 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2438 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2439 cmd
->data_length
, zero_flag
, false);
2441 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2442 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2445 * Special case for COMPARE_AND_WRITE with fabrics
2446 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2448 u32 caw_length
= cmd
->t_task_nolb
*
2449 cmd
->se_dev
->dev_attrib
.block_size
;
2451 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2452 &cmd
->t_bidi_data_nents
,
2453 caw_length
, zero_flag
, false);
2455 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2458 * If this command is not a write we can execute it right here,
2459 * for write buffers we need to notify the fabric driver first
2460 * and let it call back once the write buffers are ready.
2462 target_add_to_state_list(cmd
);
2463 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2464 target_execute_cmd(cmd
);
2467 transport_cmd_check_stop(cmd
, false, true);
2469 ret
= cmd
->se_tfo
->write_pending(cmd
);
2470 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2473 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2476 return (!ret
) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2479 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2480 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
2481 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2484 EXPORT_SYMBOL(transport_generic_new_cmd
);
2486 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2490 ret
= cmd
->se_tfo
->write_pending(cmd
);
2491 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
2492 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2494 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2499 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2500 unsigned long *flags
);
2502 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2504 unsigned long flags
;
2506 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2507 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2508 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2511 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2514 bool aborted
= false, tas
= false;
2516 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2517 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2518 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2520 if (!aborted
|| tas
)
2521 ret
= transport_put_cmd(cmd
);
2524 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2526 * Handle WRITE failure case where transport_generic_new_cmd()
2527 * has already added se_cmd to state_list, but fabric has
2528 * failed command before I/O submission.
2530 if (cmd
->state_active
)
2531 target_remove_from_state_list(cmd
);
2534 transport_lun_remove_cmd(cmd
);
2536 if (!aborted
|| tas
)
2537 ret
= transport_put_cmd(cmd
);
2540 * If the task has been internally aborted due to TMR ABORT_TASK
2541 * or LUN_RESET, target_core_tmr.c is responsible for performing
2542 * the remaining calls to target_put_sess_cmd(), and not the
2543 * callers of this function.
2546 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2547 wait_for_completion(&cmd
->cmd_wait_comp
);
2548 cmd
->se_tfo
->release_cmd(cmd
);
2553 EXPORT_SYMBOL(transport_generic_free_cmd
);
2555 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2556 * @se_cmd: command descriptor to add
2557 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2559 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2561 struct se_session
*se_sess
= se_cmd
->se_sess
;
2562 unsigned long flags
;
2566 * Add a second kref if the fabric caller is expecting to handle
2567 * fabric acknowledgement that requires two target_put_sess_cmd()
2568 * invocations before se_cmd descriptor release.
2571 if (!kref_get_unless_zero(&se_cmd
->cmd_kref
))
2574 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2577 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2578 if (se_sess
->sess_tearing_down
) {
2582 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2584 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2586 if (ret
&& ack_kref
)
2587 target_put_sess_cmd(se_cmd
);
2591 EXPORT_SYMBOL(target_get_sess_cmd
);
2593 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2595 transport_free_pages(cmd
);
2597 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2598 core_tmr_release_req(cmd
->se_tmr_req
);
2599 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2600 kfree(cmd
->t_task_cdb
);
2603 static void target_release_cmd_kref(struct kref
*kref
)
2605 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2606 struct se_session
*se_sess
= se_cmd
->se_sess
;
2607 unsigned long flags
;
2610 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2612 spin_lock(&se_cmd
->t_state_lock
);
2613 fabric_stop
= (se_cmd
->transport_state
& CMD_T_FABRIC_STOP
) &&
2614 (se_cmd
->transport_state
& CMD_T_ABORTED
);
2615 spin_unlock(&se_cmd
->t_state_lock
);
2617 if (se_cmd
->cmd_wait_set
|| fabric_stop
) {
2618 list_del_init(&se_cmd
->se_cmd_list
);
2619 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2620 target_free_cmd_mem(se_cmd
);
2621 complete(&se_cmd
->cmd_wait_comp
);
2624 list_del_init(&se_cmd
->se_cmd_list
);
2625 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2627 target_free_cmd_mem(se_cmd
);
2628 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2631 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2632 * @se_cmd: command descriptor to drop
2634 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2636 struct se_session
*se_sess
= se_cmd
->se_sess
;
2639 target_free_cmd_mem(se_cmd
);
2640 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2643 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2645 EXPORT_SYMBOL(target_put_sess_cmd
);
2647 /* target_sess_cmd_list_set_waiting - Flag all commands in
2648 * sess_cmd_list to complete cmd_wait_comp. Set
2649 * sess_tearing_down so no more commands are queued.
2650 * @se_sess: session to flag
2652 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2654 struct se_cmd
*se_cmd
, *tmp_cmd
;
2655 unsigned long flags
;
2658 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2659 if (se_sess
->sess_tearing_down
) {
2660 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2663 se_sess
->sess_tearing_down
= 1;
2664 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2666 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2667 &se_sess
->sess_wait_list
, se_cmd_list
) {
2668 rc
= kref_get_unless_zero(&se_cmd
->cmd_kref
);
2670 se_cmd
->cmd_wait_set
= 1;
2671 spin_lock(&se_cmd
->t_state_lock
);
2672 se_cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2673 spin_unlock(&se_cmd
->t_state_lock
);
2675 list_del_init(&se_cmd
->se_cmd_list
);
2678 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2680 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2682 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2683 * @se_sess: session to wait for active I/O
2685 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2687 struct se_cmd
*se_cmd
, *tmp_cmd
;
2688 unsigned long flags
;
2691 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2692 &se_sess
->sess_wait_list
, se_cmd_list
) {
2693 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2694 " %d\n", se_cmd
, se_cmd
->t_state
,
2695 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2697 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2698 tas
= (se_cmd
->transport_state
& CMD_T_TAS
);
2699 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2701 if (!target_put_sess_cmd(se_cmd
)) {
2703 target_put_sess_cmd(se_cmd
);
2706 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2707 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2708 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2709 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2711 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2714 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2715 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2716 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2719 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2721 static void target_lun_confirm(struct percpu_ref
*ref
)
2723 struct se_lun
*lun
= container_of(ref
, struct se_lun
, lun_ref
);
2725 complete(&lun
->lun_ref_comp
);
2728 void transport_clear_lun_ref(struct se_lun
*lun
)
2731 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2732 * the initial reference and schedule confirm kill to be
2733 * executed after one full RCU grace period has completed.
2735 percpu_ref_kill_and_confirm(&lun
->lun_ref
, target_lun_confirm
);
2737 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2738 * to call target_lun_confirm after lun->lun_ref has been marked
2739 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2740 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2741 * fails for all new incoming I/O.
2743 wait_for_completion(&lun
->lun_ref_comp
);
2745 * The second completion waits for percpu_ref_put_many() to
2746 * invoke ->release() after lun->lun_ref has switched to
2747 * atomic_t mode, and lun->lun_ref.count has reached zero.
2749 * At this point all target-core lun->lun_ref references have
2750 * been dropped via transport_lun_remove_cmd(), and it's safe
2751 * to proceed with the remaining LUN shutdown.
2753 wait_for_completion(&lun
->lun_shutdown_comp
);
2757 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2758 bool *aborted
, bool *tas
, unsigned long *flags
)
2759 __releases(&cmd
->t_state_lock
)
2760 __acquires(&cmd
->t_state_lock
)
2763 assert_spin_locked(&cmd
->t_state_lock
);
2764 WARN_ON_ONCE(!irqs_disabled());
2767 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2769 if (cmd
->transport_state
& CMD_T_ABORTED
)
2772 if (cmd
->transport_state
& CMD_T_TAS
)
2775 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2776 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2779 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2780 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2783 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2786 if (fabric_stop
&& *aborted
)
2789 cmd
->transport_state
|= CMD_T_STOP
;
2791 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2792 " t_state: %d, CMD_T_STOP\n", cmd
, cmd
->tag
,
2793 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2795 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
2797 wait_for_completion(&cmd
->t_transport_stop_comp
);
2799 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
2800 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2802 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2803 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
2809 * transport_wait_for_tasks - wait for completion to occur
2810 * @cmd: command to wait
2812 * Called from frontend fabric context to wait for storage engine
2813 * to pause and/or release frontend generated struct se_cmd.
2815 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2817 unsigned long flags
;
2818 bool ret
, aborted
= false, tas
= false;
2820 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2821 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
2822 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2826 EXPORT_SYMBOL(transport_wait_for_tasks
);
2832 bool add_sector_info
;
2835 static const struct sense_info sense_info_table
[] = {
2839 [TCM_NON_EXISTENT_LUN
] = {
2840 .key
= ILLEGAL_REQUEST
,
2841 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2843 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
2844 .key
= ILLEGAL_REQUEST
,
2845 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2847 [TCM_SECTOR_COUNT_TOO_MANY
] = {
2848 .key
= ILLEGAL_REQUEST
,
2849 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2851 [TCM_UNKNOWN_MODE_PAGE
] = {
2852 .key
= ILLEGAL_REQUEST
,
2853 .asc
= 0x24, /* INVALID FIELD IN CDB */
2855 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
2856 .key
= ABORTED_COMMAND
,
2857 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2860 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
2861 .key
= ABORTED_COMMAND
,
2862 .asc
= 0x0c, /* WRITE ERROR */
2863 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2865 [TCM_INVALID_CDB_FIELD
] = {
2866 .key
= ILLEGAL_REQUEST
,
2867 .asc
= 0x24, /* INVALID FIELD IN CDB */
2869 [TCM_INVALID_PARAMETER_LIST
] = {
2870 .key
= ILLEGAL_REQUEST
,
2871 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
2873 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
2874 .key
= ILLEGAL_REQUEST
,
2875 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
2877 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
2878 .key
= ILLEGAL_REQUEST
,
2879 .asc
= 0x0c, /* WRITE ERROR */
2880 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2882 [TCM_SERVICE_CRC_ERROR
] = {
2883 .key
= ABORTED_COMMAND
,
2884 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
2885 .ascq
= 0x05, /* N/A */
2887 [TCM_SNACK_REJECTED
] = {
2888 .key
= ABORTED_COMMAND
,
2889 .asc
= 0x11, /* READ ERROR */
2890 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
2892 [TCM_WRITE_PROTECTED
] = {
2893 .key
= DATA_PROTECT
,
2894 .asc
= 0x27, /* WRITE PROTECTED */
2896 [TCM_ADDRESS_OUT_OF_RANGE
] = {
2897 .key
= ILLEGAL_REQUEST
,
2898 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2900 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
2901 .key
= UNIT_ATTENTION
,
2903 [TCM_CHECK_CONDITION_NOT_READY
] = {
2906 [TCM_MISCOMPARE_VERIFY
] = {
2908 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2911 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
2912 .key
= ABORTED_COMMAND
,
2914 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2915 .add_sector_info
= true,
2917 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
2918 .key
= ABORTED_COMMAND
,
2920 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2921 .add_sector_info
= true,
2923 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
2924 .key
= ABORTED_COMMAND
,
2926 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2927 .add_sector_info
= true,
2929 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
] = {
2930 .key
= COPY_ABORTED
,
2932 .ascq
= 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2935 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
2937 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2938 * Solaris initiators. Returning NOT READY instead means the
2939 * operations will be retried a finite number of times and we
2940 * can survive intermittent errors.
2943 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2947 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
2949 const struct sense_info
*si
;
2950 u8
*buffer
= cmd
->sense_buffer
;
2951 int r
= (__force
int)reason
;
2953 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
2955 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
2956 si
= &sense_info_table
[r
];
2958 si
= &sense_info_table
[(__force
int)
2959 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
2961 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
2962 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
2963 WARN_ON_ONCE(asc
== 0);
2964 } else if (si
->asc
== 0) {
2965 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
2966 asc
= cmd
->scsi_asc
;
2967 ascq
= cmd
->scsi_ascq
;
2973 scsi_build_sense_buffer(desc_format
, buffer
, si
->key
, asc
, ascq
);
2974 if (si
->add_sector_info
)
2975 return scsi_set_sense_information(buffer
,
2976 cmd
->scsi_sense_length
,
2983 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
2984 sense_reason_t reason
, int from_transport
)
2986 unsigned long flags
;
2988 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2989 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2990 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2993 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
2994 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2996 if (!from_transport
) {
2999 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
3000 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
3001 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
3002 rc
= translate_sense_reason(cmd
, reason
);
3007 trace_target_cmd_complete(cmd
);
3008 return cmd
->se_tfo
->queue_status(cmd
);
3010 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
3012 static int __transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3013 __releases(&cmd
->t_state_lock
)
3014 __acquires(&cmd
->t_state_lock
)
3016 assert_spin_locked(&cmd
->t_state_lock
);
3017 WARN_ON_ONCE(!irqs_disabled());
3019 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
3022 * If cmd has been aborted but either no status is to be sent or it has
3023 * already been sent, just return
3025 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
)) {
3027 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3031 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3032 " 0x%02x ITT: 0x%08llx\n", cmd
->t_task_cdb
[0], cmd
->tag
);
3034 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
3035 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3036 trace_target_cmd_complete(cmd
);
3038 spin_unlock_irq(&cmd
->t_state_lock
);
3039 cmd
->se_tfo
->queue_status(cmd
);
3040 spin_lock_irq(&cmd
->t_state_lock
);
3045 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3049 spin_lock_irq(&cmd
->t_state_lock
);
3050 ret
= __transport_check_aborted_status(cmd
, send_status
);
3051 spin_unlock_irq(&cmd
->t_state_lock
);
3055 EXPORT_SYMBOL(transport_check_aborted_status
);
3057 void transport_send_task_abort(struct se_cmd
*cmd
)
3059 unsigned long flags
;
3061 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3062 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
3063 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3066 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3069 * If there are still expected incoming fabric WRITEs, we wait
3070 * until until they have completed before sending a TASK_ABORTED
3071 * response. This response with TASK_ABORTED status will be
3072 * queued back to fabric module by transport_check_aborted_status().
3074 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3075 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
3076 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3077 if (cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
) {
3078 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3081 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3082 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3087 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3089 transport_lun_remove_cmd(cmd
);
3091 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3092 cmd
->t_task_cdb
[0], cmd
->tag
);
3094 trace_target_cmd_complete(cmd
);
3095 cmd
->se_tfo
->queue_status(cmd
);
3098 static void target_tmr_work(struct work_struct
*work
)
3100 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3101 struct se_device
*dev
= cmd
->se_dev
;
3102 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3103 unsigned long flags
;
3106 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3107 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3108 tmr
->response
= TMR_FUNCTION_REJECTED
;
3109 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3112 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3114 switch (tmr
->function
) {
3115 case TMR_ABORT_TASK
:
3116 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3118 case TMR_ABORT_TASK_SET
:
3120 case TMR_CLEAR_TASK_SET
:
3121 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3124 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3125 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3126 TMR_FUNCTION_REJECTED
;
3127 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3128 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3129 cmd
->orig_fe_lun
, 0x29,
3130 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3133 case TMR_TARGET_WARM_RESET
:
3134 tmr
->response
= TMR_FUNCTION_REJECTED
;
3136 case TMR_TARGET_COLD_RESET
:
3137 tmr
->response
= TMR_FUNCTION_REJECTED
;
3140 pr_err("Uknown TMR function: 0x%02x.\n",
3142 tmr
->response
= TMR_FUNCTION_REJECTED
;
3146 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3147 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3148 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3151 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3153 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3156 transport_cmd_check_stop_to_fabric(cmd
);
3159 int transport_generic_handle_tmr(
3162 unsigned long flags
;
3163 bool aborted
= false;
3165 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3166 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3169 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3170 cmd
->transport_state
|= CMD_T_ACTIVE
;
3172 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3175 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3176 "ref_tag: %llu tag: %llu\n", cmd
->se_tmr_req
->function
,
3177 cmd
->se_tmr_req
->ref_task_tag
, cmd
->tag
);
3178 transport_cmd_check_stop_to_fabric(cmd
);
3182 INIT_WORK(&cmd
->work
, target_tmr_work
);
3183 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3186 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3189 target_check_wce(struct se_device
*dev
)
3193 if (dev
->transport
->get_write_cache
)
3194 wce
= dev
->transport
->get_write_cache(dev
);
3195 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3202 target_check_fua(struct se_device
*dev
)
3204 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;