2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/acpi.h>
23 #include <linux/amba/bus.h>
24 #include <linux/platform_device.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitmap.h>
27 #include <linux/slab.h>
28 #include <linux/debugfs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/dma-direct.h>
32 #include <linux/iommu-helper.h>
33 #include <linux/iommu.h>
34 #include <linux/delay.h>
35 #include <linux/amd-iommu.h>
36 #include <linux/notifier.h>
37 #include <linux/export.h>
38 #include <linux/irq.h>
39 #include <linux/msi.h>
40 #include <linux/dma-contiguous.h>
41 #include <linux/irqdomain.h>
42 #include <linux/percpu.h>
43 #include <linux/iova.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/io_apic.h>
47 #include <asm/hw_irq.h>
48 #include <asm/msidef.h>
49 #include <asm/proto.h>
50 #include <asm/iommu.h>
54 #include "amd_iommu_proto.h"
55 #include "amd_iommu_types.h"
56 #include "irq_remapping.h"
58 #define AMD_IOMMU_MAPPING_ERROR 0
60 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
62 #define LOOP_TIMEOUT 100000
64 /* IO virtual address start page frame number */
65 #define IOVA_START_PFN (1)
66 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
68 /* Reserved IOVA ranges */
69 #define MSI_RANGE_START (0xfee00000)
70 #define MSI_RANGE_END (0xfeefffff)
71 #define HT_RANGE_START (0xfd00000000ULL)
72 #define HT_RANGE_END (0xffffffffffULL)
75 * This bitmap is used to advertise the page sizes our hardware support
76 * to the IOMMU core, which will then use this information to split
77 * physically contiguous memory regions it is mapping into page sizes
80 * 512GB Pages are not supported due to a hardware bug
82 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
84 static DEFINE_SPINLOCK(amd_iommu_devtable_lock
);
85 static DEFINE_SPINLOCK(pd_bitmap_lock
);
87 /* List of all available dev_data structures */
88 static LLIST_HEAD(dev_data_list
);
90 LIST_HEAD(ioapic_map
);
92 LIST_HEAD(acpihid_map
);
95 * Domain for untranslated devices - only allocated
96 * if iommu=pt passed on kernel cmd line.
98 const struct iommu_ops amd_iommu_ops
;
100 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
101 int amd_iommu_max_glx_val
= -1;
103 static const struct dma_map_ops amd_iommu_dma_ops
;
106 * general struct to manage commands send to an IOMMU
112 struct kmem_cache
*amd_iommu_irq_cache
;
114 static void update_domain(struct protection_domain
*domain
);
115 static int protection_domain_init(struct protection_domain
*domain
);
116 static void detach_device(struct device
*dev
);
117 static void iova_domain_flush_tlb(struct iova_domain
*iovad
);
120 * Data container for a dma_ops specific protection domain
122 struct dma_ops_domain
{
123 /* generic protection domain information */
124 struct protection_domain domain
;
127 struct iova_domain iovad
;
130 static struct iova_domain reserved_iova_ranges
;
131 static struct lock_class_key reserved_rbtree_key
;
133 /****************************************************************************
137 ****************************************************************************/
139 static inline int match_hid_uid(struct device
*dev
,
140 struct acpihid_map_entry
*entry
)
142 const char *hid
, *uid
;
144 hid
= acpi_device_hid(ACPI_COMPANION(dev
));
145 uid
= acpi_device_uid(ACPI_COMPANION(dev
));
151 return strcmp(hid
, entry
->hid
);
154 return strcmp(hid
, entry
->hid
);
156 return (strcmp(hid
, entry
->hid
) || strcmp(uid
, entry
->uid
));
159 static inline u16
get_pci_device_id(struct device
*dev
)
161 struct pci_dev
*pdev
= to_pci_dev(dev
);
163 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
166 static inline int get_acpihid_device_id(struct device
*dev
,
167 struct acpihid_map_entry
**entry
)
169 struct acpihid_map_entry
*p
;
171 list_for_each_entry(p
, &acpihid_map
, list
) {
172 if (!match_hid_uid(dev
, p
)) {
181 static inline int get_device_id(struct device
*dev
)
186 devid
= get_pci_device_id(dev
);
188 devid
= get_acpihid_device_id(dev
, NULL
);
193 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
195 return container_of(dom
, struct protection_domain
, domain
);
198 static struct dma_ops_domain
* to_dma_ops_domain(struct protection_domain
*domain
)
200 BUG_ON(domain
->flags
!= PD_DMA_OPS_MASK
);
201 return container_of(domain
, struct dma_ops_domain
, domain
);
204 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
206 struct iommu_dev_data
*dev_data
;
208 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
212 dev_data
->devid
= devid
;
213 ratelimit_default_init(&dev_data
->rs
);
215 llist_add(&dev_data
->dev_data_list
, &dev_data_list
);
219 static struct iommu_dev_data
*search_dev_data(u16 devid
)
221 struct iommu_dev_data
*dev_data
;
222 struct llist_node
*node
;
224 if (llist_empty(&dev_data_list
))
227 node
= dev_data_list
.first
;
228 llist_for_each_entry(dev_data
, node
, dev_data_list
) {
229 if (dev_data
->devid
== devid
)
236 static int __last_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
238 *(u16
*)data
= alias
;
242 static u16
get_alias(struct device
*dev
)
244 struct pci_dev
*pdev
= to_pci_dev(dev
);
245 u16 devid
, ivrs_alias
, pci_alias
;
247 /* The callers make sure that get_device_id() does not fail here */
248 devid
= get_device_id(dev
);
249 ivrs_alias
= amd_iommu_alias_table
[devid
];
250 pci_for_each_dma_alias(pdev
, __last_alias
, &pci_alias
);
252 if (ivrs_alias
== pci_alias
)
258 * The IVRS is fairly reliable in telling us about aliases, but it
259 * can't know about every screwy device. If we don't have an IVRS
260 * reported alias, use the PCI reported alias. In that case we may
261 * still need to initialize the rlookup and dev_table entries if the
262 * alias is to a non-existent device.
264 if (ivrs_alias
== devid
) {
265 if (!amd_iommu_rlookup_table
[pci_alias
]) {
266 amd_iommu_rlookup_table
[pci_alias
] =
267 amd_iommu_rlookup_table
[devid
];
268 memcpy(amd_iommu_dev_table
[pci_alias
].data
,
269 amd_iommu_dev_table
[devid
].data
,
270 sizeof(amd_iommu_dev_table
[pci_alias
].data
));
276 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
277 "for device %s[%04x:%04x], kernel reported alias "
278 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias
), PCI_SLOT(ivrs_alias
),
279 PCI_FUNC(ivrs_alias
), dev_name(dev
), pdev
->vendor
, pdev
->device
,
280 PCI_BUS_NUM(pci_alias
), PCI_SLOT(pci_alias
),
281 PCI_FUNC(pci_alias
));
284 * If we don't have a PCI DMA alias and the IVRS alias is on the same
285 * bus, then the IVRS table may know about a quirk that we don't.
287 if (pci_alias
== devid
&&
288 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
) {
289 pci_add_dma_alias(pdev
, ivrs_alias
& 0xff);
290 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
291 PCI_SLOT(ivrs_alias
), PCI_FUNC(ivrs_alias
),
298 static struct iommu_dev_data
*find_dev_data(u16 devid
)
300 struct iommu_dev_data
*dev_data
;
301 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
303 dev_data
= search_dev_data(devid
);
305 if (dev_data
== NULL
) {
306 dev_data
= alloc_dev_data(devid
);
310 if (translation_pre_enabled(iommu
))
311 dev_data
->defer_attach
= true;
317 struct iommu_dev_data
*get_dev_data(struct device
*dev
)
319 return dev
->archdata
.iommu
;
321 EXPORT_SYMBOL(get_dev_data
);
324 * Find or create an IOMMU group for a acpihid device.
326 static struct iommu_group
*acpihid_device_group(struct device
*dev
)
328 struct acpihid_map_entry
*p
, *entry
= NULL
;
331 devid
= get_acpihid_device_id(dev
, &entry
);
333 return ERR_PTR(devid
);
335 list_for_each_entry(p
, &acpihid_map
, list
) {
336 if ((devid
== p
->devid
) && p
->group
)
337 entry
->group
= p
->group
;
341 entry
->group
= generic_device_group(dev
);
343 iommu_group_ref_get(entry
->group
);
348 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
350 static const int caps
[] = {
353 PCI_EXT_CAP_ID_PASID
,
357 if (pci_ats_disabled())
360 for (i
= 0; i
< 3; ++i
) {
361 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
369 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
371 struct iommu_dev_data
*dev_data
;
373 dev_data
= get_dev_data(&pdev
->dev
);
375 return dev_data
->errata
& (1 << erratum
) ? true : false;
379 * This function checks if the driver got a valid device from the caller to
380 * avoid dereferencing invalid pointers.
382 static bool check_device(struct device
*dev
)
386 if (!dev
|| !dev
->dma_mask
)
389 devid
= get_device_id(dev
);
393 /* Out of our scope? */
394 if (devid
> amd_iommu_last_bdf
)
397 if (amd_iommu_rlookup_table
[devid
] == NULL
)
403 static void init_iommu_group(struct device
*dev
)
405 struct iommu_group
*group
;
407 group
= iommu_group_get_for_dev(dev
);
411 iommu_group_put(group
);
414 static int iommu_init_device(struct device
*dev
)
416 struct iommu_dev_data
*dev_data
;
417 struct amd_iommu
*iommu
;
420 if (dev
->archdata
.iommu
)
423 devid
= get_device_id(dev
);
427 iommu
= amd_iommu_rlookup_table
[devid
];
429 dev_data
= find_dev_data(devid
);
433 dev_data
->alias
= get_alias(dev
);
435 if (dev_is_pci(dev
) && pci_iommuv2_capable(to_pci_dev(dev
))) {
436 struct amd_iommu
*iommu
;
438 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
439 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
442 dev
->archdata
.iommu
= dev_data
;
444 iommu_device_link(&iommu
->iommu
, dev
);
449 static void iommu_ignore_device(struct device
*dev
)
454 devid
= get_device_id(dev
);
458 alias
= get_alias(dev
);
460 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
461 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
463 amd_iommu_rlookup_table
[devid
] = NULL
;
464 amd_iommu_rlookup_table
[alias
] = NULL
;
467 static void iommu_uninit_device(struct device
*dev
)
469 struct iommu_dev_data
*dev_data
;
470 struct amd_iommu
*iommu
;
473 devid
= get_device_id(dev
);
477 iommu
= amd_iommu_rlookup_table
[devid
];
479 dev_data
= search_dev_data(devid
);
483 if (dev_data
->domain
)
486 iommu_device_unlink(&iommu
->iommu
, dev
);
488 iommu_group_remove_device(dev
);
494 * We keep dev_data around for unplugged devices and reuse it when the
495 * device is re-plugged - not doing so would introduce a ton of races.
499 /****************************************************************************
501 * Interrupt handling functions
503 ****************************************************************************/
505 static void dump_dte_entry(u16 devid
)
509 for (i
= 0; i
< 4; ++i
)
510 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
511 amd_iommu_dev_table
[devid
].data
[i
]);
514 static void dump_command(unsigned long phys_addr
)
516 struct iommu_cmd
*cmd
= iommu_phys_to_virt(phys_addr
);
519 for (i
= 0; i
< 4; ++i
)
520 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
523 static void amd_iommu_report_page_fault(u16 devid
, u16 domain_id
,
524 u64 address
, int flags
)
526 struct iommu_dev_data
*dev_data
= NULL
;
527 struct pci_dev
*pdev
;
529 pdev
= pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid
),
532 dev_data
= get_dev_data(&pdev
->dev
);
534 if (dev_data
&& __ratelimit(&dev_data
->rs
)) {
535 dev_err(&pdev
->dev
, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
536 domain_id
, address
, flags
);
537 } else if (printk_ratelimit()) {
538 pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
539 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
540 domain_id
, address
, flags
);
547 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
549 struct device
*dev
= iommu
->iommu
.dev
;
550 int type
, devid
, pasid
, flags
, tag
;
551 volatile u32
*event
= __evt
;
556 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
557 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
558 pasid
= PPR_PASID(*(u64
*)&event
[0]);
559 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
560 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
563 /* Did we hit the erratum? */
564 if (++count
== LOOP_TIMEOUT
) {
565 pr_err("AMD-Vi: No event written to event log\n");
572 if (type
== EVENT_TYPE_IO_FAULT
) {
573 amd_iommu_report_page_fault(devid
, pasid
, address
, flags
);
576 dev_err(dev
, "AMD-Vi: Event logged [");
580 case EVENT_TYPE_ILL_DEV
:
581 dev_err(dev
, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
582 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
583 pasid
, address
, flags
);
584 dump_dte_entry(devid
);
586 case EVENT_TYPE_DEV_TAB_ERR
:
587 dev_err(dev
, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
588 "address=0x%016llx flags=0x%04x]\n",
589 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
592 case EVENT_TYPE_PAGE_TAB_ERR
:
593 dev_err(dev
, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
594 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
595 pasid
, address
, flags
);
597 case EVENT_TYPE_ILL_CMD
:
598 dev_err(dev
, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
599 dump_command(address
);
601 case EVENT_TYPE_CMD_HARD_ERR
:
602 dev_err(dev
, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
605 case EVENT_TYPE_IOTLB_INV_TO
:
606 dev_err(dev
, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
607 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
610 case EVENT_TYPE_INV_DEV_REQ
:
611 dev_err(dev
, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
612 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
613 pasid
, address
, flags
);
615 case EVENT_TYPE_INV_PPR_REQ
:
616 pasid
= ((event
[0] >> 16) & 0xFFFF)
617 | ((event
[1] << 6) & 0xF0000);
618 tag
= event
[1] & 0x03FF;
619 dev_err(dev
, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
620 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
621 pasid
, address
, flags
);
624 dev_err(dev
, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
625 event
[0], event
[1], event
[2], event
[3]);
628 memset(__evt
, 0, 4 * sizeof(u32
));
631 static void iommu_poll_events(struct amd_iommu
*iommu
)
635 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
636 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
638 while (head
!= tail
) {
639 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
640 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
643 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
646 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
648 struct amd_iommu_fault fault
;
650 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
651 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
655 fault
.address
= raw
[1];
656 fault
.pasid
= PPR_PASID(raw
[0]);
657 fault
.device_id
= PPR_DEVID(raw
[0]);
658 fault
.tag
= PPR_TAG(raw
[0]);
659 fault
.flags
= PPR_FLAGS(raw
[0]);
661 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
664 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
668 if (iommu
->ppr_log
== NULL
)
671 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
672 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
674 while (head
!= tail
) {
679 raw
= (u64
*)(iommu
->ppr_log
+ head
);
682 * Hardware bug: Interrupt may arrive before the entry is
683 * written to memory. If this happens we need to wait for the
686 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
687 if (PPR_REQ_TYPE(raw
[0]) != 0)
692 /* Avoid memcpy function-call overhead */
697 * To detect the hardware bug we need to clear the entry
700 raw
[0] = raw
[1] = 0UL;
702 /* Update head pointer of hardware ring-buffer */
703 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
704 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
706 /* Handle PPR entry */
707 iommu_handle_ppr_entry(iommu
, entry
);
709 /* Refresh ring-buffer information */
710 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
711 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
715 #ifdef CONFIG_IRQ_REMAP
716 static int (*iommu_ga_log_notifier
)(u32
);
718 int amd_iommu_register_ga_log_notifier(int (*notifier
)(u32
))
720 iommu_ga_log_notifier
= notifier
;
724 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier
);
726 static void iommu_poll_ga_log(struct amd_iommu
*iommu
)
728 u32 head
, tail
, cnt
= 0;
730 if (iommu
->ga_log
== NULL
)
733 head
= readl(iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
734 tail
= readl(iommu
->mmio_base
+ MMIO_GA_TAIL_OFFSET
);
736 while (head
!= tail
) {
740 raw
= (u64
*)(iommu
->ga_log
+ head
);
743 /* Avoid memcpy function-call overhead */
746 /* Update head pointer of hardware ring-buffer */
747 head
= (head
+ GA_ENTRY_SIZE
) % GA_LOG_SIZE
;
748 writel(head
, iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
750 /* Handle GA entry */
751 switch (GA_REQ_TYPE(log_entry
)) {
753 if (!iommu_ga_log_notifier
)
756 pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
757 __func__
, GA_DEVID(log_entry
),
760 if (iommu_ga_log_notifier(GA_TAG(log_entry
)) != 0)
761 pr_err("AMD-Vi: GA log notifier failed.\n");
768 #endif /* CONFIG_IRQ_REMAP */
770 #define AMD_IOMMU_INT_MASK \
771 (MMIO_STATUS_EVT_INT_MASK | \
772 MMIO_STATUS_PPR_INT_MASK | \
773 MMIO_STATUS_GALOG_INT_MASK)
775 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
777 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
778 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
780 while (status
& AMD_IOMMU_INT_MASK
) {
781 /* Enable EVT and PPR and GA interrupts again */
782 writel(AMD_IOMMU_INT_MASK
,
783 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
785 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
786 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
787 iommu_poll_events(iommu
);
790 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
791 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
792 iommu_poll_ppr_log(iommu
);
795 #ifdef CONFIG_IRQ_REMAP
796 if (status
& MMIO_STATUS_GALOG_INT_MASK
) {
797 pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
798 iommu_poll_ga_log(iommu
);
803 * Hardware bug: ERBT1312
804 * When re-enabling interrupt (by writing 1
805 * to clear the bit), the hardware might also try to set
806 * the interrupt bit in the event status register.
807 * In this scenario, the bit will be set, and disable
808 * subsequent interrupts.
810 * Workaround: The IOMMU driver should read back the
811 * status register and check if the interrupt bits are cleared.
812 * If not, driver will need to go through the interrupt handler
813 * again and re-clear the bits
815 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
820 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
822 return IRQ_WAKE_THREAD
;
825 /****************************************************************************
827 * IOMMU command queuing functions
829 ****************************************************************************/
831 static int wait_on_sem(volatile u64
*sem
)
835 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
840 if (i
== LOOP_TIMEOUT
) {
841 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
848 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
849 struct iommu_cmd
*cmd
)
853 target
= iommu
->cmd_buf
+ iommu
->cmd_buf_tail
;
855 iommu
->cmd_buf_tail
+= sizeof(*cmd
);
856 iommu
->cmd_buf_tail
%= CMD_BUFFER_SIZE
;
858 /* Copy command to buffer */
859 memcpy(target
, cmd
, sizeof(*cmd
));
861 /* Tell the IOMMU about it */
862 writel(iommu
->cmd_buf_tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
865 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
867 u64 paddr
= iommu_virt_to_phys((void *)address
);
869 WARN_ON(address
& 0x7ULL
);
871 memset(cmd
, 0, sizeof(*cmd
));
872 cmd
->data
[0] = lower_32_bits(paddr
) | CMD_COMPL_WAIT_STORE_MASK
;
873 cmd
->data
[1] = upper_32_bits(paddr
);
875 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
878 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
880 memset(cmd
, 0, sizeof(*cmd
));
881 cmd
->data
[0] = devid
;
882 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
885 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
886 size_t size
, u16 domid
, int pde
)
891 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
896 * If we have to flush more than one page, flush all
897 * TLB entries for this domain
899 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
903 address
&= PAGE_MASK
;
905 memset(cmd
, 0, sizeof(*cmd
));
906 cmd
->data
[1] |= domid
;
907 cmd
->data
[2] = lower_32_bits(address
);
908 cmd
->data
[3] = upper_32_bits(address
);
909 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
910 if (s
) /* size bit - we flush more than one 4kb page */
911 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
912 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
913 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
916 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
917 u64 address
, size_t size
)
922 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
927 * If we have to flush more than one page, flush all
928 * TLB entries for this domain
930 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
934 address
&= PAGE_MASK
;
936 memset(cmd
, 0, sizeof(*cmd
));
937 cmd
->data
[0] = devid
;
938 cmd
->data
[0] |= (qdep
& 0xff) << 24;
939 cmd
->data
[1] = devid
;
940 cmd
->data
[2] = lower_32_bits(address
);
941 cmd
->data
[3] = upper_32_bits(address
);
942 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
944 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
947 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
948 u64 address
, bool size
)
950 memset(cmd
, 0, sizeof(*cmd
));
952 address
&= ~(0xfffULL
);
954 cmd
->data
[0] = pasid
;
955 cmd
->data
[1] = domid
;
956 cmd
->data
[2] = lower_32_bits(address
);
957 cmd
->data
[3] = upper_32_bits(address
);
958 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
959 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
961 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
962 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
965 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
966 int qdep
, u64 address
, bool size
)
968 memset(cmd
, 0, sizeof(*cmd
));
970 address
&= ~(0xfffULL
);
972 cmd
->data
[0] = devid
;
973 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
974 cmd
->data
[0] |= (qdep
& 0xff) << 24;
975 cmd
->data
[1] = devid
;
976 cmd
->data
[1] |= (pasid
& 0xff) << 16;
977 cmd
->data
[2] = lower_32_bits(address
);
978 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
979 cmd
->data
[3] = upper_32_bits(address
);
981 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
982 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
985 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
986 int status
, int tag
, bool gn
)
988 memset(cmd
, 0, sizeof(*cmd
));
990 cmd
->data
[0] = devid
;
992 cmd
->data
[1] = pasid
;
993 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
995 cmd
->data
[3] = tag
& 0x1ff;
996 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
998 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
1001 static void build_inv_all(struct iommu_cmd
*cmd
)
1003 memset(cmd
, 0, sizeof(*cmd
));
1004 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
1007 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
1009 memset(cmd
, 0, sizeof(*cmd
));
1010 cmd
->data
[0] = devid
;
1011 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
1015 * Writes the command to the IOMMUs command buffer and informs the
1016 * hardware about the new command.
1018 static int __iommu_queue_command_sync(struct amd_iommu
*iommu
,
1019 struct iommu_cmd
*cmd
,
1022 unsigned int count
= 0;
1023 u32 left
, next_tail
;
1025 next_tail
= (iommu
->cmd_buf_tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
1027 left
= (iommu
->cmd_buf_head
- next_tail
) % CMD_BUFFER_SIZE
;
1030 /* Skip udelay() the first time around */
1032 if (count
== LOOP_TIMEOUT
) {
1033 pr_err("AMD-Vi: Command buffer timeout\n");
1040 /* Update head and recheck remaining space */
1041 iommu
->cmd_buf_head
= readl(iommu
->mmio_base
+
1042 MMIO_CMD_HEAD_OFFSET
);
1047 copy_cmd_to_buffer(iommu
, cmd
);
1049 /* Do we need to make sure all commands are processed? */
1050 iommu
->need_sync
= sync
;
1055 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
1056 struct iommu_cmd
*cmd
,
1059 unsigned long flags
;
1062 raw_spin_lock_irqsave(&iommu
->lock
, flags
);
1063 ret
= __iommu_queue_command_sync(iommu
, cmd
, sync
);
1064 raw_spin_unlock_irqrestore(&iommu
->lock
, flags
);
1069 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
1071 return iommu_queue_command_sync(iommu
, cmd
, true);
1075 * This function queues a completion wait command into the command
1076 * buffer of an IOMMU
1078 static int iommu_completion_wait(struct amd_iommu
*iommu
)
1080 struct iommu_cmd cmd
;
1081 unsigned long flags
;
1084 if (!iommu
->need_sync
)
1088 build_completion_wait(&cmd
, (u64
)&iommu
->cmd_sem
);
1090 raw_spin_lock_irqsave(&iommu
->lock
, flags
);
1094 ret
= __iommu_queue_command_sync(iommu
, &cmd
, false);
1098 ret
= wait_on_sem(&iommu
->cmd_sem
);
1101 raw_spin_unlock_irqrestore(&iommu
->lock
, flags
);
1106 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1108 struct iommu_cmd cmd
;
1110 build_inv_dte(&cmd
, devid
);
1112 return iommu_queue_command(iommu
, &cmd
);
1115 static void amd_iommu_flush_dte_all(struct amd_iommu
*iommu
)
1119 for (devid
= 0; devid
<= 0xffff; ++devid
)
1120 iommu_flush_dte(iommu
, devid
);
1122 iommu_completion_wait(iommu
);
1126 * This function uses heavy locking and may disable irqs for some time. But
1127 * this is no issue because it is only called during resume.
1129 static void amd_iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1133 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1134 struct iommu_cmd cmd
;
1135 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1137 iommu_queue_command(iommu
, &cmd
);
1140 iommu_completion_wait(iommu
);
1143 static void amd_iommu_flush_all(struct amd_iommu
*iommu
)
1145 struct iommu_cmd cmd
;
1147 build_inv_all(&cmd
);
1149 iommu_queue_command(iommu
, &cmd
);
1150 iommu_completion_wait(iommu
);
1153 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1155 struct iommu_cmd cmd
;
1157 build_inv_irt(&cmd
, devid
);
1159 iommu_queue_command(iommu
, &cmd
);
1162 static void amd_iommu_flush_irt_all(struct amd_iommu
*iommu
)
1166 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1167 iommu_flush_irt(iommu
, devid
);
1169 iommu_completion_wait(iommu
);
1172 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1174 if (iommu_feature(iommu
, FEATURE_IA
)) {
1175 amd_iommu_flush_all(iommu
);
1177 amd_iommu_flush_dte_all(iommu
);
1178 amd_iommu_flush_irt_all(iommu
);
1179 amd_iommu_flush_tlb_all(iommu
);
1184 * Command send function for flushing on-device TLB
1186 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1187 u64 address
, size_t size
)
1189 struct amd_iommu
*iommu
;
1190 struct iommu_cmd cmd
;
1193 qdep
= dev_data
->ats
.qdep
;
1194 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1196 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1198 return iommu_queue_command(iommu
, &cmd
);
1202 * Command send function for invalidating a device table entry
1204 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1206 struct amd_iommu
*iommu
;
1210 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1211 alias
= dev_data
->alias
;
1213 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1214 if (!ret
&& alias
!= dev_data
->devid
)
1215 ret
= iommu_flush_dte(iommu
, alias
);
1219 if (dev_data
->ats
.enabled
)
1220 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1226 * TLB invalidation function which is called from the mapping functions.
1227 * It invalidates a single PTE if the range to flush is within a single
1228 * page. Otherwise it flushes the whole TLB of the IOMMU.
1230 static void __domain_flush_pages(struct protection_domain
*domain
,
1231 u64 address
, size_t size
, int pde
)
1233 struct iommu_dev_data
*dev_data
;
1234 struct iommu_cmd cmd
;
1237 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1239 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1240 if (!domain
->dev_iommu
[i
])
1244 * Devices of this domain are behind this IOMMU
1245 * We need a TLB flush
1247 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1250 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1252 if (!dev_data
->ats
.enabled
)
1255 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1261 static void domain_flush_pages(struct protection_domain
*domain
,
1262 u64 address
, size_t size
)
1264 __domain_flush_pages(domain
, address
, size
, 0);
1267 /* Flush the whole IO/TLB for a given protection domain */
1268 static void domain_flush_tlb(struct protection_domain
*domain
)
1270 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1273 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1274 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1276 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1279 static void domain_flush_complete(struct protection_domain
*domain
)
1283 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1284 if (domain
&& !domain
->dev_iommu
[i
])
1288 * Devices of this domain are behind this IOMMU
1289 * We need to wait for completion of all commands.
1291 iommu_completion_wait(amd_iommus
[i
]);
1297 * This function flushes the DTEs for all devices in domain
1299 static void domain_flush_devices(struct protection_domain
*domain
)
1301 struct iommu_dev_data
*dev_data
;
1303 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1304 device_flush_dte(dev_data
);
1307 /****************************************************************************
1309 * The functions below are used the create the page table mappings for
1310 * unity mapped regions.
1312 ****************************************************************************/
1315 * This function is used to add another level to an IO page table. Adding
1316 * another level increases the size of the address space by 9 bits to a size up
1319 static bool increase_address_space(struct protection_domain
*domain
,
1324 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
1325 /* address space already 64 bit large */
1328 pte
= (void *)get_zeroed_page(gfp
);
1332 *pte
= PM_LEVEL_PDE(domain
->mode
,
1333 iommu_virt_to_phys(domain
->pt_root
));
1334 domain
->pt_root
= pte
;
1336 domain
->updated
= true;
1341 static u64
*alloc_pte(struct protection_domain
*domain
,
1342 unsigned long address
,
1343 unsigned long page_size
,
1350 BUG_ON(!is_power_of_2(page_size
));
1352 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1353 increase_address_space(domain
, gfp
);
1355 level
= domain
->mode
- 1;
1356 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1357 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1358 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1360 while (level
> end_lvl
) {
1365 if (!IOMMU_PTE_PRESENT(__pte
)) {
1366 page
= (u64
*)get_zeroed_page(gfp
);
1370 __npte
= PM_LEVEL_PDE(level
, iommu_virt_to_phys(page
));
1372 /* pte could have been changed somewhere. */
1373 if (cmpxchg64(pte
, __pte
, __npte
) != __pte
) {
1374 free_page((unsigned long)page
);
1379 /* No level skipping support yet */
1380 if (PM_PTE_LEVEL(*pte
) != level
)
1385 pte
= IOMMU_PTE_PAGE(*pte
);
1387 if (pte_page
&& level
== end_lvl
)
1390 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1397 * This function checks if there is a PTE for a given dma address. If
1398 * there is one, it returns the pointer to it.
1400 static u64
*fetch_pte(struct protection_domain
*domain
,
1401 unsigned long address
,
1402 unsigned long *page_size
)
1407 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1410 level
= domain
->mode
- 1;
1411 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1412 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1417 if (!IOMMU_PTE_PRESENT(*pte
))
1421 if (PM_PTE_LEVEL(*pte
) == 7 ||
1422 PM_PTE_LEVEL(*pte
) == 0)
1425 /* No level skipping support yet */
1426 if (PM_PTE_LEVEL(*pte
) != level
)
1431 /* Walk to the next level */
1432 pte
= IOMMU_PTE_PAGE(*pte
);
1433 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1434 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1437 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1438 unsigned long pte_mask
;
1441 * If we have a series of large PTEs, make
1442 * sure to return a pointer to the first one.
1444 *page_size
= pte_mask
= PTE_PAGE_SIZE(*pte
);
1445 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1446 pte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
1453 * Generic mapping functions. It maps a physical address into a DMA
1454 * address space. It allocates the page table pages if necessary.
1455 * In the future it can be extended to a generic mapping function
1456 * supporting all features of AMD IOMMU page tables like level skipping
1457 * and full 64 bit address spaces.
1459 static int iommu_map_page(struct protection_domain
*dom
,
1460 unsigned long bus_addr
,
1461 unsigned long phys_addr
,
1462 unsigned long page_size
,
1469 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1470 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1472 if (!(prot
& IOMMU_PROT_MASK
))
1475 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1476 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, gfp
);
1481 for (i
= 0; i
< count
; ++i
)
1482 if (IOMMU_PTE_PRESENT(pte
[i
]))
1486 __pte
= PAGE_SIZE_PTE(__sme_set(phys_addr
), page_size
);
1487 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_PR
| IOMMU_PTE_FC
;
1489 __pte
= __sme_set(phys_addr
) | IOMMU_PTE_PR
| IOMMU_PTE_FC
;
1491 if (prot
& IOMMU_PROT_IR
)
1492 __pte
|= IOMMU_PTE_IR
;
1493 if (prot
& IOMMU_PROT_IW
)
1494 __pte
|= IOMMU_PTE_IW
;
1496 for (i
= 0; i
< count
; ++i
)
1504 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1505 unsigned long bus_addr
,
1506 unsigned long page_size
)
1508 unsigned long long unmapped
;
1509 unsigned long unmap_size
;
1512 BUG_ON(!is_power_of_2(page_size
));
1516 while (unmapped
< page_size
) {
1518 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1523 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1524 for (i
= 0; i
< count
; i
++)
1528 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1529 unmapped
+= unmap_size
;
1532 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1537 /****************************************************************************
1539 * The next functions belong to the address allocator for the dma_ops
1540 * interface functions.
1542 ****************************************************************************/
1545 static unsigned long dma_ops_alloc_iova(struct device
*dev
,
1546 struct dma_ops_domain
*dma_dom
,
1547 unsigned int pages
, u64 dma_mask
)
1549 unsigned long pfn
= 0;
1551 pages
= __roundup_pow_of_two(pages
);
1553 if (dma_mask
> DMA_BIT_MASK(32))
1554 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1555 IOVA_PFN(DMA_BIT_MASK(32)), false);
1558 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1559 IOVA_PFN(dma_mask
), true);
1561 return (pfn
<< PAGE_SHIFT
);
1564 static void dma_ops_free_iova(struct dma_ops_domain
*dma_dom
,
1565 unsigned long address
,
1568 pages
= __roundup_pow_of_two(pages
);
1569 address
>>= PAGE_SHIFT
;
1571 free_iova_fast(&dma_dom
->iovad
, address
, pages
);
1574 /****************************************************************************
1576 * The next functions belong to the domain allocation. A domain is
1577 * allocated for every IOMMU as the default domain. If device isolation
1578 * is enabled, every device get its own domain. The most important thing
1579 * about domains is the page table mapping the DMA address space they
1582 ****************************************************************************/
1585 * This function adds a protection domain to the global protection domain list
1587 static void add_domain_to_list(struct protection_domain
*domain
)
1589 unsigned long flags
;
1591 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1592 list_add(&domain
->list
, &amd_iommu_pd_list
);
1593 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1597 * This function removes a protection domain to the global
1598 * protection domain list
1600 static void del_domain_from_list(struct protection_domain
*domain
)
1602 unsigned long flags
;
1604 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1605 list_del(&domain
->list
);
1606 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1609 static u16
domain_id_alloc(void)
1613 spin_lock(&pd_bitmap_lock
);
1614 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1616 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1617 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1620 spin_unlock(&pd_bitmap_lock
);
1625 static void domain_id_free(int id
)
1627 spin_lock(&pd_bitmap_lock
);
1628 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1629 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1630 spin_unlock(&pd_bitmap_lock
);
1633 #define DEFINE_FREE_PT_FN(LVL, FN) \
1634 static void free_pt_##LVL (unsigned long __pt) \
1642 for (i = 0; i < 512; ++i) { \
1643 /* PTE present? */ \
1644 if (!IOMMU_PTE_PRESENT(pt[i])) \
1648 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1649 PM_PTE_LEVEL(pt[i]) == 7) \
1652 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1655 free_page((unsigned long)pt); \
1658 DEFINE_FREE_PT_FN(l2
, free_page
)
1659 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1660 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1661 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1662 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1664 static void free_pagetable(struct protection_domain
*domain
)
1666 unsigned long root
= (unsigned long)domain
->pt_root
;
1668 switch (domain
->mode
) {
1669 case PAGE_MODE_NONE
:
1671 case PAGE_MODE_1_LEVEL
:
1674 case PAGE_MODE_2_LEVEL
:
1677 case PAGE_MODE_3_LEVEL
:
1680 case PAGE_MODE_4_LEVEL
:
1683 case PAGE_MODE_5_LEVEL
:
1686 case PAGE_MODE_6_LEVEL
:
1694 static void free_gcr3_tbl_level1(u64
*tbl
)
1699 for (i
= 0; i
< 512; ++i
) {
1700 if (!(tbl
[i
] & GCR3_VALID
))
1703 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1705 free_page((unsigned long)ptr
);
1709 static void free_gcr3_tbl_level2(u64
*tbl
)
1714 for (i
= 0; i
< 512; ++i
) {
1715 if (!(tbl
[i
] & GCR3_VALID
))
1718 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1720 free_gcr3_tbl_level1(ptr
);
1724 static void free_gcr3_table(struct protection_domain
*domain
)
1726 if (domain
->glx
== 2)
1727 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1728 else if (domain
->glx
== 1)
1729 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1731 BUG_ON(domain
->glx
!= 0);
1733 free_page((unsigned long)domain
->gcr3_tbl
);
1736 static void dma_ops_domain_flush_tlb(struct dma_ops_domain
*dom
)
1738 domain_flush_tlb(&dom
->domain
);
1739 domain_flush_complete(&dom
->domain
);
1742 static void iova_domain_flush_tlb(struct iova_domain
*iovad
)
1744 struct dma_ops_domain
*dom
;
1746 dom
= container_of(iovad
, struct dma_ops_domain
, iovad
);
1748 dma_ops_domain_flush_tlb(dom
);
1752 * Free a domain, only used if something went wrong in the
1753 * allocation path and we need to free an already allocated page table
1755 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1760 del_domain_from_list(&dom
->domain
);
1762 put_iova_domain(&dom
->iovad
);
1764 free_pagetable(&dom
->domain
);
1767 domain_id_free(dom
->domain
.id
);
1773 * Allocates a new protection domain usable for the dma_ops functions.
1774 * It also initializes the page table and the address allocator data
1775 * structures required for the dma_ops interface
1777 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1779 struct dma_ops_domain
*dma_dom
;
1781 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1785 if (protection_domain_init(&dma_dom
->domain
))
1788 dma_dom
->domain
.mode
= PAGE_MODE_3_LEVEL
;
1789 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
1790 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
1791 if (!dma_dom
->domain
.pt_root
)
1794 init_iova_domain(&dma_dom
->iovad
, PAGE_SIZE
, IOVA_START_PFN
);
1796 if (init_iova_flush_queue(&dma_dom
->iovad
, iova_domain_flush_tlb
, NULL
))
1799 /* Initialize reserved ranges */
1800 copy_reserved_iova(&reserved_iova_ranges
, &dma_dom
->iovad
);
1802 add_domain_to_list(&dma_dom
->domain
);
1807 dma_ops_domain_free(dma_dom
);
1813 * little helper function to check whether a given protection domain is a
1816 static bool dma_ops_domain(struct protection_domain
*domain
)
1818 return domain
->flags
& PD_DMA_OPS_MASK
;
1821 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
,
1827 if (domain
->mode
!= PAGE_MODE_NONE
)
1828 pte_root
= iommu_virt_to_phys(domain
->pt_root
);
1830 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
1831 << DEV_ENTRY_MODE_SHIFT
;
1832 pte_root
|= DTE_FLAG_IR
| DTE_FLAG_IW
| DTE_FLAG_V
| DTE_FLAG_TV
;
1834 flags
= amd_iommu_dev_table
[devid
].data
[1];
1837 flags
|= DTE_FLAG_IOTLB
;
1840 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
1842 if (iommu_feature(iommu
, FEATURE_EPHSUP
))
1843 pte_root
|= 1ULL << DEV_ENTRY_PPR
;
1846 if (domain
->flags
& PD_IOMMUV2_MASK
) {
1847 u64 gcr3
= iommu_virt_to_phys(domain
->gcr3_tbl
);
1848 u64 glx
= domain
->glx
;
1851 pte_root
|= DTE_FLAG_GV
;
1852 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
1854 /* First mask out possible old values for GCR3 table */
1855 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
1858 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
1861 /* Encode GCR3 table into DTE */
1862 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
1865 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
1868 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
1872 flags
&= ~DEV_DOMID_MASK
;
1873 flags
|= domain
->id
;
1875 amd_iommu_dev_table
[devid
].data
[1] = flags
;
1876 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
1879 static void clear_dte_entry(u16 devid
)
1881 /* remove entry from the device table seen by the hardware */
1882 amd_iommu_dev_table
[devid
].data
[0] = DTE_FLAG_V
| DTE_FLAG_TV
;
1883 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
1885 amd_iommu_apply_erratum_63(devid
);
1888 static void do_attach(struct iommu_dev_data
*dev_data
,
1889 struct protection_domain
*domain
)
1891 struct amd_iommu
*iommu
;
1895 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1896 alias
= dev_data
->alias
;
1897 ats
= dev_data
->ats
.enabled
;
1899 /* Update data structures */
1900 dev_data
->domain
= domain
;
1901 list_add(&dev_data
->list
, &domain
->dev_list
);
1903 /* Do reference counting */
1904 domain
->dev_iommu
[iommu
->index
] += 1;
1905 domain
->dev_cnt
+= 1;
1907 /* Update device table */
1908 set_dte_entry(dev_data
->devid
, domain
, ats
, dev_data
->iommu_v2
);
1909 if (alias
!= dev_data
->devid
)
1910 set_dte_entry(alias
, domain
, ats
, dev_data
->iommu_v2
);
1912 device_flush_dte(dev_data
);
1915 static void do_detach(struct iommu_dev_data
*dev_data
)
1917 struct amd_iommu
*iommu
;
1920 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1921 alias
= dev_data
->alias
;
1923 /* decrease reference counters */
1924 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
1925 dev_data
->domain
->dev_cnt
-= 1;
1927 /* Update data structures */
1928 dev_data
->domain
= NULL
;
1929 list_del(&dev_data
->list
);
1930 clear_dte_entry(dev_data
->devid
);
1931 if (alias
!= dev_data
->devid
)
1932 clear_dte_entry(alias
);
1934 /* Flush the DTE entry */
1935 device_flush_dte(dev_data
);
1939 * If a device is not yet associated with a domain, this function makes the
1940 * device visible in the domain
1942 static int __attach_device(struct iommu_dev_data
*dev_data
,
1943 struct protection_domain
*domain
)
1948 * Must be called with IRQs disabled. Warn here to detect early
1951 WARN_ON(!irqs_disabled());
1954 spin_lock(&domain
->lock
);
1957 if (dev_data
->domain
!= NULL
)
1960 /* Attach alias group root */
1961 do_attach(dev_data
, domain
);
1968 spin_unlock(&domain
->lock
);
1974 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
1976 pci_disable_ats(pdev
);
1977 pci_disable_pri(pdev
);
1978 pci_disable_pasid(pdev
);
1981 /* FIXME: Change generic reset-function to do the same */
1982 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
1987 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
1991 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
1992 control
|= PCI_PRI_CTRL_RESET
;
1993 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
1998 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
2003 /* FIXME: Hardcode number of outstanding requests for now */
2005 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
2007 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
2009 /* Only allow access to user-accessible pages */
2010 ret
= pci_enable_pasid(pdev
, 0);
2014 /* First reset the PRI state of the device */
2015 ret
= pci_reset_pri(pdev
);
2020 ret
= pci_enable_pri(pdev
, reqs
);
2025 ret
= pri_reset_while_enabled(pdev
);
2030 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2037 pci_disable_pri(pdev
);
2038 pci_disable_pasid(pdev
);
2043 /* FIXME: Move this to PCI code */
2044 #define PCI_PRI_TLP_OFF (1 << 15)
2046 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
2051 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2055 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
2057 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
2061 * If a device is not yet associated with a domain, this function makes the
2062 * device visible in the domain
2064 static int attach_device(struct device
*dev
,
2065 struct protection_domain
*domain
)
2067 struct pci_dev
*pdev
;
2068 struct iommu_dev_data
*dev_data
;
2069 unsigned long flags
;
2072 dev_data
= get_dev_data(dev
);
2074 if (!dev_is_pci(dev
))
2075 goto skip_ats_check
;
2077 pdev
= to_pci_dev(dev
);
2078 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2079 if (!dev_data
->passthrough
)
2082 if (dev_data
->iommu_v2
) {
2083 if (pdev_iommuv2_enable(pdev
) != 0)
2086 dev_data
->ats
.enabled
= true;
2087 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2088 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
2090 } else if (amd_iommu_iotlb_sup
&&
2091 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2092 dev_data
->ats
.enabled
= true;
2093 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2097 spin_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2098 ret
= __attach_device(dev_data
, domain
);
2099 spin_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2102 * We might boot into a crash-kernel here. The crashed kernel
2103 * left the caches in the IOMMU dirty. So we have to flush
2104 * here to evict all dirty stuff.
2106 domain_flush_tlb_pde(domain
);
2112 * Removes a device from a protection domain (unlocked)
2114 static void __detach_device(struct iommu_dev_data
*dev_data
)
2116 struct protection_domain
*domain
;
2119 * Must be called with IRQs disabled. Warn here to detect early
2122 WARN_ON(!irqs_disabled());
2124 domain
= dev_data
->domain
;
2126 spin_lock(&domain
->lock
);
2128 do_detach(dev_data
);
2130 spin_unlock(&domain
->lock
);
2134 * Removes a device from a protection domain (with devtable_lock held)
2136 static void detach_device(struct device
*dev
)
2138 struct protection_domain
*domain
;
2139 struct iommu_dev_data
*dev_data
;
2140 unsigned long flags
;
2142 dev_data
= get_dev_data(dev
);
2143 domain
= dev_data
->domain
;
2146 * First check if the device is still attached. It might already
2147 * be detached from its domain because the generic
2148 * iommu_detach_group code detached it and we try again here in
2149 * our alias handling.
2151 if (WARN_ON(!dev_data
->domain
))
2154 /* lock device table */
2155 spin_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2156 __detach_device(dev_data
);
2157 spin_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2159 if (!dev_is_pci(dev
))
2162 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2163 pdev_iommuv2_disable(to_pci_dev(dev
));
2164 else if (dev_data
->ats
.enabled
)
2165 pci_disable_ats(to_pci_dev(dev
));
2167 dev_data
->ats
.enabled
= false;
2170 static int amd_iommu_add_device(struct device
*dev
)
2172 struct iommu_dev_data
*dev_data
;
2173 struct iommu_domain
*domain
;
2174 struct amd_iommu
*iommu
;
2177 if (!check_device(dev
) || get_dev_data(dev
))
2180 devid
= get_device_id(dev
);
2184 iommu
= amd_iommu_rlookup_table
[devid
];
2186 ret
= iommu_init_device(dev
);
2188 if (ret
!= -ENOTSUPP
)
2189 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2192 iommu_ignore_device(dev
);
2193 dev
->dma_ops
= &dma_direct_ops
;
2196 init_iommu_group(dev
);
2198 dev_data
= get_dev_data(dev
);
2202 if (iommu_pass_through
|| dev_data
->iommu_v2
)
2203 iommu_request_dm_for_dev(dev
);
2205 /* Domains are initialized for this device - have a look what we ended up with */
2206 domain
= iommu_get_domain_for_dev(dev
);
2207 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2208 dev_data
->passthrough
= true;
2210 dev
->dma_ops
= &amd_iommu_dma_ops
;
2213 iommu_completion_wait(iommu
);
2218 static void amd_iommu_remove_device(struct device
*dev
)
2220 struct amd_iommu
*iommu
;
2223 if (!check_device(dev
))
2226 devid
= get_device_id(dev
);
2230 iommu
= amd_iommu_rlookup_table
[devid
];
2232 iommu_uninit_device(dev
);
2233 iommu_completion_wait(iommu
);
2236 static struct iommu_group
*amd_iommu_device_group(struct device
*dev
)
2238 if (dev_is_pci(dev
))
2239 return pci_device_group(dev
);
2241 return acpihid_device_group(dev
);
2244 /*****************************************************************************
2246 * The next functions belong to the dma_ops mapping/unmapping code.
2248 *****************************************************************************/
2251 * In the dma_ops path we only have the struct device. This function
2252 * finds the corresponding IOMMU, the protection domain and the
2253 * requestor id for a given device.
2254 * If the device is not yet associated with a domain this is also done
2257 static struct protection_domain
*get_domain(struct device
*dev
)
2259 struct protection_domain
*domain
;
2260 struct iommu_domain
*io_domain
;
2262 if (!check_device(dev
))
2263 return ERR_PTR(-EINVAL
);
2265 domain
= get_dev_data(dev
)->domain
;
2266 if (domain
== NULL
&& get_dev_data(dev
)->defer_attach
) {
2267 get_dev_data(dev
)->defer_attach
= false;
2268 io_domain
= iommu_get_domain_for_dev(dev
);
2269 domain
= to_pdomain(io_domain
);
2270 attach_device(dev
, domain
);
2273 return ERR_PTR(-EBUSY
);
2275 if (!dma_ops_domain(domain
))
2276 return ERR_PTR(-EBUSY
);
2281 static void update_device_table(struct protection_domain
*domain
)
2283 struct iommu_dev_data
*dev_data
;
2285 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
2286 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
,
2287 dev_data
->iommu_v2
);
2289 if (dev_data
->devid
== dev_data
->alias
)
2292 /* There is an alias, update device table entry for it */
2293 set_dte_entry(dev_data
->alias
, domain
, dev_data
->ats
.enabled
,
2294 dev_data
->iommu_v2
);
2298 static void update_domain(struct protection_domain
*domain
)
2300 if (!domain
->updated
)
2303 update_device_table(domain
);
2305 domain_flush_devices(domain
);
2306 domain_flush_tlb_pde(domain
);
2308 domain
->updated
= false;
2311 static int dir2prot(enum dma_data_direction direction
)
2313 if (direction
== DMA_TO_DEVICE
)
2314 return IOMMU_PROT_IR
;
2315 else if (direction
== DMA_FROM_DEVICE
)
2316 return IOMMU_PROT_IW
;
2317 else if (direction
== DMA_BIDIRECTIONAL
)
2318 return IOMMU_PROT_IW
| IOMMU_PROT_IR
;
2324 * This function contains common code for mapping of a physically
2325 * contiguous memory region into DMA address space. It is used by all
2326 * mapping functions provided with this IOMMU driver.
2327 * Must be called with the domain lock held.
2329 static dma_addr_t
__map_single(struct device
*dev
,
2330 struct dma_ops_domain
*dma_dom
,
2333 enum dma_data_direction direction
,
2336 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2337 dma_addr_t address
, start
, ret
;
2342 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2345 address
= dma_ops_alloc_iova(dev
, dma_dom
, pages
, dma_mask
);
2346 if (address
== AMD_IOMMU_MAPPING_ERROR
)
2349 prot
= dir2prot(direction
);
2352 for (i
= 0; i
< pages
; ++i
) {
2353 ret
= iommu_map_page(&dma_dom
->domain
, start
, paddr
,
2354 PAGE_SIZE
, prot
, GFP_ATOMIC
);
2363 if (unlikely(amd_iommu_np_cache
)) {
2364 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2365 domain_flush_complete(&dma_dom
->domain
);
2373 for (--i
; i
>= 0; --i
) {
2375 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2378 domain_flush_tlb(&dma_dom
->domain
);
2379 domain_flush_complete(&dma_dom
->domain
);
2381 dma_ops_free_iova(dma_dom
, address
, pages
);
2383 return AMD_IOMMU_MAPPING_ERROR
;
2387 * Does the reverse of the __map_single function. Must be called with
2388 * the domain lock held too
2390 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2391 dma_addr_t dma_addr
,
2395 dma_addr_t i
, start
;
2398 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2399 dma_addr
&= PAGE_MASK
;
2402 for (i
= 0; i
< pages
; ++i
) {
2403 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2407 if (amd_iommu_unmap_flush
) {
2408 dma_ops_free_iova(dma_dom
, dma_addr
, pages
);
2409 domain_flush_tlb(&dma_dom
->domain
);
2410 domain_flush_complete(&dma_dom
->domain
);
2412 pages
= __roundup_pow_of_two(pages
);
2413 queue_iova(&dma_dom
->iovad
, dma_addr
>> PAGE_SHIFT
, pages
, 0);
2418 * The exported map_single function for dma_ops.
2420 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2421 unsigned long offset
, size_t size
,
2422 enum dma_data_direction dir
,
2423 unsigned long attrs
)
2425 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2426 struct protection_domain
*domain
;
2427 struct dma_ops_domain
*dma_dom
;
2430 domain
= get_domain(dev
);
2431 if (PTR_ERR(domain
) == -EINVAL
)
2432 return (dma_addr_t
)paddr
;
2433 else if (IS_ERR(domain
))
2434 return AMD_IOMMU_MAPPING_ERROR
;
2436 dma_mask
= *dev
->dma_mask
;
2437 dma_dom
= to_dma_ops_domain(domain
);
2439 return __map_single(dev
, dma_dom
, paddr
, size
, dir
, dma_mask
);
2443 * The exported unmap_single function for dma_ops.
2445 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2446 enum dma_data_direction dir
, unsigned long attrs
)
2448 struct protection_domain
*domain
;
2449 struct dma_ops_domain
*dma_dom
;
2451 domain
= get_domain(dev
);
2455 dma_dom
= to_dma_ops_domain(domain
);
2457 __unmap_single(dma_dom
, dma_addr
, size
, dir
);
2460 static int sg_num_pages(struct device
*dev
,
2461 struct scatterlist
*sglist
,
2464 unsigned long mask
, boundary_size
;
2465 struct scatterlist
*s
;
2468 mask
= dma_get_seg_boundary(dev
);
2469 boundary_size
= mask
+ 1 ? ALIGN(mask
+ 1, PAGE_SIZE
) >> PAGE_SHIFT
:
2470 1UL << (BITS_PER_LONG
- PAGE_SHIFT
);
2472 for_each_sg(sglist
, s
, nelems
, i
) {
2475 s
->dma_address
= npages
<< PAGE_SHIFT
;
2476 p
= npages
% boundary_size
;
2477 n
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2478 if (p
+ n
> boundary_size
)
2479 npages
+= boundary_size
- p
;
2487 * The exported map_sg function for dma_ops (handles scatter-gather
2490 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2491 int nelems
, enum dma_data_direction direction
,
2492 unsigned long attrs
)
2494 int mapped_pages
= 0, npages
= 0, prot
= 0, i
;
2495 struct protection_domain
*domain
;
2496 struct dma_ops_domain
*dma_dom
;
2497 struct scatterlist
*s
;
2498 unsigned long address
;
2501 domain
= get_domain(dev
);
2505 dma_dom
= to_dma_ops_domain(domain
);
2506 dma_mask
= *dev
->dma_mask
;
2508 npages
= sg_num_pages(dev
, sglist
, nelems
);
2510 address
= dma_ops_alloc_iova(dev
, dma_dom
, npages
, dma_mask
);
2511 if (address
== AMD_IOMMU_MAPPING_ERROR
)
2514 prot
= dir2prot(direction
);
2516 /* Map all sg entries */
2517 for_each_sg(sglist
, s
, nelems
, i
) {
2518 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2520 for (j
= 0; j
< pages
; ++j
) {
2521 unsigned long bus_addr
, phys_addr
;
2524 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2525 phys_addr
= (sg_phys(s
) & PAGE_MASK
) + (j
<< PAGE_SHIFT
);
2526 ret
= iommu_map_page(domain
, bus_addr
, phys_addr
, PAGE_SIZE
, prot
, GFP_ATOMIC
);
2534 /* Everything is mapped - write the right values into s->dma_address */
2535 for_each_sg(sglist
, s
, nelems
, i
) {
2536 s
->dma_address
+= address
+ s
->offset
;
2537 s
->dma_length
= s
->length
;
2543 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2544 dev_name(dev
), npages
);
2546 for_each_sg(sglist
, s
, nelems
, i
) {
2547 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2549 for (j
= 0; j
< pages
; ++j
) {
2550 unsigned long bus_addr
;
2552 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2553 iommu_unmap_page(domain
, bus_addr
, PAGE_SIZE
);
2561 free_iova_fast(&dma_dom
->iovad
, address
, npages
);
2568 * The exported map_sg function for dma_ops (handles scatter-gather
2571 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2572 int nelems
, enum dma_data_direction dir
,
2573 unsigned long attrs
)
2575 struct protection_domain
*domain
;
2576 struct dma_ops_domain
*dma_dom
;
2577 unsigned long startaddr
;
2580 domain
= get_domain(dev
);
2584 startaddr
= sg_dma_address(sglist
) & PAGE_MASK
;
2585 dma_dom
= to_dma_ops_domain(domain
);
2586 npages
= sg_num_pages(dev
, sglist
, nelems
);
2588 __unmap_single(dma_dom
, startaddr
, npages
<< PAGE_SHIFT
, dir
);
2592 * The exported alloc_coherent function for dma_ops.
2594 static void *alloc_coherent(struct device
*dev
, size_t size
,
2595 dma_addr_t
*dma_addr
, gfp_t flag
,
2596 unsigned long attrs
)
2598 u64 dma_mask
= dev
->coherent_dma_mask
;
2599 struct protection_domain
*domain
;
2600 struct dma_ops_domain
*dma_dom
;
2603 domain
= get_domain(dev
);
2604 if (PTR_ERR(domain
) == -EINVAL
) {
2605 page
= alloc_pages(flag
, get_order(size
));
2606 *dma_addr
= page_to_phys(page
);
2607 return page_address(page
);
2608 } else if (IS_ERR(domain
))
2611 dma_dom
= to_dma_ops_domain(domain
);
2612 size
= PAGE_ALIGN(size
);
2613 dma_mask
= dev
->coherent_dma_mask
;
2614 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2617 page
= alloc_pages(flag
| __GFP_NOWARN
, get_order(size
));
2619 if (!gfpflags_allow_blocking(flag
))
2622 page
= dma_alloc_from_contiguous(dev
, size
>> PAGE_SHIFT
,
2623 get_order(size
), flag
);
2629 dma_mask
= *dev
->dma_mask
;
2631 *dma_addr
= __map_single(dev
, dma_dom
, page_to_phys(page
),
2632 size
, DMA_BIDIRECTIONAL
, dma_mask
);
2634 if (*dma_addr
== AMD_IOMMU_MAPPING_ERROR
)
2637 return page_address(page
);
2641 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2642 __free_pages(page
, get_order(size
));
2648 * The exported free_coherent function for dma_ops.
2650 static void free_coherent(struct device
*dev
, size_t size
,
2651 void *virt_addr
, dma_addr_t dma_addr
,
2652 unsigned long attrs
)
2654 struct protection_domain
*domain
;
2655 struct dma_ops_domain
*dma_dom
;
2658 page
= virt_to_page(virt_addr
);
2659 size
= PAGE_ALIGN(size
);
2661 domain
= get_domain(dev
);
2665 dma_dom
= to_dma_ops_domain(domain
);
2667 __unmap_single(dma_dom
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2670 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2671 __free_pages(page
, get_order(size
));
2675 * This function is called by the DMA layer to find out if we can handle a
2676 * particular device. It is part of the dma_ops.
2678 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2680 if (!dma_direct_supported(dev
, mask
))
2682 return check_device(dev
);
2685 static int amd_iommu_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
2687 return dma_addr
== AMD_IOMMU_MAPPING_ERROR
;
2690 static const struct dma_map_ops amd_iommu_dma_ops
= {
2691 .alloc
= alloc_coherent
,
2692 .free
= free_coherent
,
2693 .map_page
= map_page
,
2694 .unmap_page
= unmap_page
,
2696 .unmap_sg
= unmap_sg
,
2697 .dma_supported
= amd_iommu_dma_supported
,
2698 .mapping_error
= amd_iommu_mapping_error
,
2701 static int init_reserved_iova_ranges(void)
2703 struct pci_dev
*pdev
= NULL
;
2706 init_iova_domain(&reserved_iova_ranges
, PAGE_SIZE
, IOVA_START_PFN
);
2708 lockdep_set_class(&reserved_iova_ranges
.iova_rbtree_lock
,
2709 &reserved_rbtree_key
);
2711 /* MSI memory range */
2712 val
= reserve_iova(&reserved_iova_ranges
,
2713 IOVA_PFN(MSI_RANGE_START
), IOVA_PFN(MSI_RANGE_END
));
2715 pr_err("Reserving MSI range failed\n");
2719 /* HT memory range */
2720 val
= reserve_iova(&reserved_iova_ranges
,
2721 IOVA_PFN(HT_RANGE_START
), IOVA_PFN(HT_RANGE_END
));
2723 pr_err("Reserving HT range failed\n");
2728 * Memory used for PCI resources
2729 * FIXME: Check whether we can reserve the PCI-hole completly
2731 for_each_pci_dev(pdev
) {
2734 for (i
= 0; i
< PCI_NUM_RESOURCES
; ++i
) {
2735 struct resource
*r
= &pdev
->resource
[i
];
2737 if (!(r
->flags
& IORESOURCE_MEM
))
2740 val
= reserve_iova(&reserved_iova_ranges
,
2744 pr_err("Reserve pci-resource range failed\n");
2753 int __init
amd_iommu_init_api(void)
2757 ret
= iova_cache_get();
2761 ret
= init_reserved_iova_ranges();
2765 err
= bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2768 #ifdef CONFIG_ARM_AMBA
2769 err
= bus_set_iommu(&amba_bustype
, &amd_iommu_ops
);
2773 err
= bus_set_iommu(&platform_bus_type
, &amd_iommu_ops
);
2780 int __init
amd_iommu_init_dma_ops(void)
2782 swiotlb
= (iommu_pass_through
|| sme_me_mask
) ? 1 : 0;
2786 * In case we don't initialize SWIOTLB (actually the common case
2787 * when AMD IOMMU is enabled and SME is not active), make sure there
2788 * are global dma_ops set as a fall-back for devices not handled by
2789 * this driver (for example non-PCI devices). When SME is active,
2790 * make sure that swiotlb variable remains set so the global dma_ops
2791 * continue to be SWIOTLB.
2794 dma_ops
= &dma_direct_ops
;
2796 if (amd_iommu_unmap_flush
)
2797 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2799 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2805 /*****************************************************************************
2807 * The following functions belong to the exported interface of AMD IOMMU
2809 * This interface allows access to lower level functions of the IOMMU
2810 * like protection domain handling and assignement of devices to domains
2811 * which is not possible with the dma_ops interface.
2813 *****************************************************************************/
2815 static void cleanup_domain(struct protection_domain
*domain
)
2817 struct iommu_dev_data
*entry
;
2818 unsigned long flags
;
2820 spin_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2822 while (!list_empty(&domain
->dev_list
)) {
2823 entry
= list_first_entry(&domain
->dev_list
,
2824 struct iommu_dev_data
, list
);
2825 BUG_ON(!entry
->domain
);
2826 __detach_device(entry
);
2829 spin_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2832 static void protection_domain_free(struct protection_domain
*domain
)
2837 del_domain_from_list(domain
);
2840 domain_id_free(domain
->id
);
2845 static int protection_domain_init(struct protection_domain
*domain
)
2847 spin_lock_init(&domain
->lock
);
2848 mutex_init(&domain
->api_lock
);
2849 domain
->id
= domain_id_alloc();
2852 INIT_LIST_HEAD(&domain
->dev_list
);
2857 static struct protection_domain
*protection_domain_alloc(void)
2859 struct protection_domain
*domain
;
2861 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
2865 if (protection_domain_init(domain
))
2868 add_domain_to_list(domain
);
2878 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
2880 struct protection_domain
*pdomain
;
2881 struct dma_ops_domain
*dma_domain
;
2884 case IOMMU_DOMAIN_UNMANAGED
:
2885 pdomain
= protection_domain_alloc();
2889 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
2890 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2891 if (!pdomain
->pt_root
) {
2892 protection_domain_free(pdomain
);
2896 pdomain
->domain
.geometry
.aperture_start
= 0;
2897 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
2898 pdomain
->domain
.geometry
.force_aperture
= true;
2901 case IOMMU_DOMAIN_DMA
:
2902 dma_domain
= dma_ops_domain_alloc();
2904 pr_err("AMD-Vi: Failed to allocate\n");
2907 pdomain
= &dma_domain
->domain
;
2909 case IOMMU_DOMAIN_IDENTITY
:
2910 pdomain
= protection_domain_alloc();
2914 pdomain
->mode
= PAGE_MODE_NONE
;
2920 return &pdomain
->domain
;
2923 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
2925 struct protection_domain
*domain
;
2926 struct dma_ops_domain
*dma_dom
;
2928 domain
= to_pdomain(dom
);
2930 if (domain
->dev_cnt
> 0)
2931 cleanup_domain(domain
);
2933 BUG_ON(domain
->dev_cnt
!= 0);
2938 switch (dom
->type
) {
2939 case IOMMU_DOMAIN_DMA
:
2940 /* Now release the domain */
2941 dma_dom
= to_dma_ops_domain(domain
);
2942 dma_ops_domain_free(dma_dom
);
2945 if (domain
->mode
!= PAGE_MODE_NONE
)
2946 free_pagetable(domain
);
2948 if (domain
->flags
& PD_IOMMUV2_MASK
)
2949 free_gcr3_table(domain
);
2951 protection_domain_free(domain
);
2956 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
2959 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
2960 struct amd_iommu
*iommu
;
2963 if (!check_device(dev
))
2966 devid
= get_device_id(dev
);
2970 if (dev_data
->domain
!= NULL
)
2973 iommu
= amd_iommu_rlookup_table
[devid
];
2977 #ifdef CONFIG_IRQ_REMAP
2978 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) &&
2979 (dom
->type
== IOMMU_DOMAIN_UNMANAGED
))
2980 dev_data
->use_vapic
= 0;
2983 iommu_completion_wait(iommu
);
2986 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
2989 struct protection_domain
*domain
= to_pdomain(dom
);
2990 struct iommu_dev_data
*dev_data
;
2991 struct amd_iommu
*iommu
;
2994 if (!check_device(dev
))
2997 dev_data
= dev
->archdata
.iommu
;
2999 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3003 if (dev_data
->domain
)
3006 ret
= attach_device(dev
, domain
);
3008 #ifdef CONFIG_IRQ_REMAP
3009 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
3010 if (dom
->type
== IOMMU_DOMAIN_UNMANAGED
)
3011 dev_data
->use_vapic
= 1;
3013 dev_data
->use_vapic
= 0;
3017 iommu_completion_wait(iommu
);
3022 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
3023 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
3025 struct protection_domain
*domain
= to_pdomain(dom
);
3029 if (domain
->mode
== PAGE_MODE_NONE
)
3032 if (iommu_prot
& IOMMU_READ
)
3033 prot
|= IOMMU_PROT_IR
;
3034 if (iommu_prot
& IOMMU_WRITE
)
3035 prot
|= IOMMU_PROT_IW
;
3037 mutex_lock(&domain
->api_lock
);
3038 ret
= iommu_map_page(domain
, iova
, paddr
, page_size
, prot
, GFP_KERNEL
);
3039 mutex_unlock(&domain
->api_lock
);
3044 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3047 struct protection_domain
*domain
= to_pdomain(dom
);
3050 if (domain
->mode
== PAGE_MODE_NONE
)
3053 mutex_lock(&domain
->api_lock
);
3054 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3055 mutex_unlock(&domain
->api_lock
);
3060 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3063 struct protection_domain
*domain
= to_pdomain(dom
);
3064 unsigned long offset_mask
, pte_pgsize
;
3067 if (domain
->mode
== PAGE_MODE_NONE
)
3070 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
3072 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3075 offset_mask
= pte_pgsize
- 1;
3076 __pte
= *pte
& PM_ADDR_MASK
;
3078 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3081 static bool amd_iommu_capable(enum iommu_cap cap
)
3084 case IOMMU_CAP_CACHE_COHERENCY
:
3086 case IOMMU_CAP_INTR_REMAP
:
3087 return (irq_remapping_enabled
== 1);
3088 case IOMMU_CAP_NOEXEC
:
3095 static void amd_iommu_get_resv_regions(struct device
*dev
,
3096 struct list_head
*head
)
3098 struct iommu_resv_region
*region
;
3099 struct unity_map_entry
*entry
;
3102 devid
= get_device_id(dev
);
3106 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
3110 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
3113 length
= entry
->address_end
- entry
->address_start
;
3114 if (entry
->prot
& IOMMU_PROT_IR
)
3116 if (entry
->prot
& IOMMU_PROT_IW
)
3117 prot
|= IOMMU_WRITE
;
3119 region
= iommu_alloc_resv_region(entry
->address_start
,
3123 pr_err("Out of memory allocating dm-regions for %s\n",
3127 list_add_tail(®ion
->list
, head
);
3130 region
= iommu_alloc_resv_region(MSI_RANGE_START
,
3131 MSI_RANGE_END
- MSI_RANGE_START
+ 1,
3135 list_add_tail(®ion
->list
, head
);
3137 region
= iommu_alloc_resv_region(HT_RANGE_START
,
3138 HT_RANGE_END
- HT_RANGE_START
+ 1,
3139 0, IOMMU_RESV_RESERVED
);
3142 list_add_tail(®ion
->list
, head
);
3145 static void amd_iommu_put_resv_regions(struct device
*dev
,
3146 struct list_head
*head
)
3148 struct iommu_resv_region
*entry
, *next
;
3150 list_for_each_entry_safe(entry
, next
, head
, list
)
3154 static void amd_iommu_apply_resv_region(struct device
*dev
,
3155 struct iommu_domain
*domain
,
3156 struct iommu_resv_region
*region
)
3158 struct dma_ops_domain
*dma_dom
= to_dma_ops_domain(to_pdomain(domain
));
3159 unsigned long start
, end
;
3161 start
= IOVA_PFN(region
->start
);
3162 end
= IOVA_PFN(region
->start
+ region
->length
- 1);
3164 WARN_ON_ONCE(reserve_iova(&dma_dom
->iovad
, start
, end
) == NULL
);
3167 static bool amd_iommu_is_attach_deferred(struct iommu_domain
*domain
,
3170 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3171 return dev_data
->defer_attach
;
3174 static void amd_iommu_flush_iotlb_all(struct iommu_domain
*domain
)
3176 struct protection_domain
*dom
= to_pdomain(domain
);
3178 domain_flush_tlb_pde(dom
);
3179 domain_flush_complete(dom
);
3182 static void amd_iommu_iotlb_range_add(struct iommu_domain
*domain
,
3183 unsigned long iova
, size_t size
)
3187 const struct iommu_ops amd_iommu_ops
= {
3188 .capable
= amd_iommu_capable
,
3189 .domain_alloc
= amd_iommu_domain_alloc
,
3190 .domain_free
= amd_iommu_domain_free
,
3191 .attach_dev
= amd_iommu_attach_device
,
3192 .detach_dev
= amd_iommu_detach_device
,
3193 .map
= amd_iommu_map
,
3194 .unmap
= amd_iommu_unmap
,
3195 .map_sg
= default_iommu_map_sg
,
3196 .iova_to_phys
= amd_iommu_iova_to_phys
,
3197 .add_device
= amd_iommu_add_device
,
3198 .remove_device
= amd_iommu_remove_device
,
3199 .device_group
= amd_iommu_device_group
,
3200 .get_resv_regions
= amd_iommu_get_resv_regions
,
3201 .put_resv_regions
= amd_iommu_put_resv_regions
,
3202 .apply_resv_region
= amd_iommu_apply_resv_region
,
3203 .is_attach_deferred
= amd_iommu_is_attach_deferred
,
3204 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3205 .flush_iotlb_all
= amd_iommu_flush_iotlb_all
,
3206 .iotlb_range_add
= amd_iommu_iotlb_range_add
,
3207 .iotlb_sync
= amd_iommu_flush_iotlb_all
,
3210 /*****************************************************************************
3212 * The next functions do a basic initialization of IOMMU for pass through
3215 * In passthrough mode the IOMMU is initialized and enabled but not used for
3216 * DMA-API translation.
3218 *****************************************************************************/
3220 /* IOMMUv2 specific functions */
3221 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3223 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3225 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3227 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3229 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3231 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3233 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3235 struct protection_domain
*domain
= to_pdomain(dom
);
3236 unsigned long flags
;
3238 spin_lock_irqsave(&domain
->lock
, flags
);
3240 /* Update data structure */
3241 domain
->mode
= PAGE_MODE_NONE
;
3242 domain
->updated
= true;
3244 /* Make changes visible to IOMMUs */
3245 update_domain(domain
);
3247 /* Page-table is not visible to IOMMU anymore, so free it */
3248 free_pagetable(domain
);
3250 spin_unlock_irqrestore(&domain
->lock
, flags
);
3252 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3254 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3256 struct protection_domain
*domain
= to_pdomain(dom
);
3257 unsigned long flags
;
3260 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3263 /* Number of GCR3 table levels required */
3264 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3267 if (levels
> amd_iommu_max_glx_val
)
3270 spin_lock_irqsave(&domain
->lock
, flags
);
3273 * Save us all sanity checks whether devices already in the
3274 * domain support IOMMUv2. Just force that the domain has no
3275 * devices attached when it is switched into IOMMUv2 mode.
3278 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3282 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3283 if (domain
->gcr3_tbl
== NULL
)
3286 domain
->glx
= levels
;
3287 domain
->flags
|= PD_IOMMUV2_MASK
;
3288 domain
->updated
= true;
3290 update_domain(domain
);
3295 spin_unlock_irqrestore(&domain
->lock
, flags
);
3299 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3301 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3302 u64 address
, bool size
)
3304 struct iommu_dev_data
*dev_data
;
3305 struct iommu_cmd cmd
;
3308 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3311 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3314 * IOMMU TLB needs to be flushed before Device TLB to
3315 * prevent device TLB refill from IOMMU TLB
3317 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
3318 if (domain
->dev_iommu
[i
] == 0)
3321 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3326 /* Wait until IOMMU TLB flushes are complete */
3327 domain_flush_complete(domain
);
3329 /* Now flush device TLBs */
3330 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3331 struct amd_iommu
*iommu
;
3335 There might be non-IOMMUv2 capable devices in an IOMMUv2
3338 if (!dev_data
->ats
.enabled
)
3341 qdep
= dev_data
->ats
.qdep
;
3342 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3344 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3345 qdep
, address
, size
);
3347 ret
= iommu_queue_command(iommu
, &cmd
);
3352 /* Wait until all device TLBs are flushed */
3353 domain_flush_complete(domain
);
3362 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3365 return __flush_pasid(domain
, pasid
, address
, false);
3368 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3371 struct protection_domain
*domain
= to_pdomain(dom
);
3372 unsigned long flags
;
3375 spin_lock_irqsave(&domain
->lock
, flags
);
3376 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3377 spin_unlock_irqrestore(&domain
->lock
, flags
);
3381 EXPORT_SYMBOL(amd_iommu_flush_page
);
3383 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3385 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3389 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3391 struct protection_domain
*domain
= to_pdomain(dom
);
3392 unsigned long flags
;
3395 spin_lock_irqsave(&domain
->lock
, flags
);
3396 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3397 spin_unlock_irqrestore(&domain
->lock
, flags
);
3401 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3403 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3410 index
= (pasid
>> (9 * level
)) & 0x1ff;
3416 if (!(*pte
& GCR3_VALID
)) {
3420 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3424 *pte
= iommu_virt_to_phys(root
) | GCR3_VALID
;
3427 root
= iommu_phys_to_virt(*pte
& PAGE_MASK
);
3435 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3440 if (domain
->mode
!= PAGE_MODE_NONE
)
3443 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3447 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3449 return __amd_iommu_flush_tlb(domain
, pasid
);
3452 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3456 if (domain
->mode
!= PAGE_MODE_NONE
)
3459 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3465 return __amd_iommu_flush_tlb(domain
, pasid
);
3468 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3471 struct protection_domain
*domain
= to_pdomain(dom
);
3472 unsigned long flags
;
3475 spin_lock_irqsave(&domain
->lock
, flags
);
3476 ret
= __set_gcr3(domain
, pasid
, cr3
);
3477 spin_unlock_irqrestore(&domain
->lock
, flags
);
3481 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3483 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3485 struct protection_domain
*domain
= to_pdomain(dom
);
3486 unsigned long flags
;
3489 spin_lock_irqsave(&domain
->lock
, flags
);
3490 ret
= __clear_gcr3(domain
, pasid
);
3491 spin_unlock_irqrestore(&domain
->lock
, flags
);
3495 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3497 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3498 int status
, int tag
)
3500 struct iommu_dev_data
*dev_data
;
3501 struct amd_iommu
*iommu
;
3502 struct iommu_cmd cmd
;
3504 dev_data
= get_dev_data(&pdev
->dev
);
3505 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3507 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3508 tag
, dev_data
->pri_tlp
);
3510 return iommu_queue_command(iommu
, &cmd
);
3512 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3514 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3516 struct protection_domain
*pdomain
;
3518 pdomain
= get_domain(&pdev
->dev
);
3519 if (IS_ERR(pdomain
))
3522 /* Only return IOMMUv2 domains */
3523 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3526 return &pdomain
->domain
;
3528 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3530 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3532 struct iommu_dev_data
*dev_data
;
3534 if (!amd_iommu_v2_supported())
3537 dev_data
= get_dev_data(&pdev
->dev
);
3538 dev_data
->errata
|= (1 << erratum
);
3540 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3542 int amd_iommu_device_info(struct pci_dev
*pdev
,
3543 struct amd_iommu_device_info
*info
)
3548 if (pdev
== NULL
|| info
== NULL
)
3551 if (!amd_iommu_v2_supported())
3554 memset(info
, 0, sizeof(*info
));
3556 if (!pci_ats_disabled()) {
3557 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3559 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3562 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3564 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3566 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3570 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3571 max_pasids
= min(max_pasids
, (1 << 20));
3573 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3574 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3576 features
= pci_pasid_features(pdev
);
3577 if (features
& PCI_PASID_CAP_EXEC
)
3578 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3579 if (features
& PCI_PASID_CAP_PRIV
)
3580 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3585 EXPORT_SYMBOL(amd_iommu_device_info
);
3587 #ifdef CONFIG_IRQ_REMAP
3589 /*****************************************************************************
3591 * Interrupt Remapping Implementation
3593 *****************************************************************************/
3595 static struct irq_chip amd_ir_chip
;
3596 static DEFINE_SPINLOCK(iommu_table_lock
);
3598 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3602 dte
= amd_iommu_dev_table
[devid
].data
[2];
3603 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3604 dte
|= iommu_virt_to_phys(table
->table
);
3605 dte
|= DTE_IRQ_REMAP_INTCTL
;
3606 dte
|= DTE_IRQ_TABLE_LEN
;
3607 dte
|= DTE_IRQ_REMAP_ENABLE
;
3609 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3612 static struct irq_remap_table
*get_irq_table(u16 devid
)
3614 struct irq_remap_table
*table
;
3616 if (WARN_ONCE(!amd_iommu_rlookup_table
[devid
],
3617 "%s: no iommu for devid %x\n", __func__
, devid
))
3620 table
= irq_lookup_table
[devid
];
3621 if (WARN_ONCE(!table
, "%s: no table for devid %x\n", __func__
, devid
))
3627 static struct irq_remap_table
*__alloc_irq_table(void)
3629 struct irq_remap_table
*table
;
3631 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
3635 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_KERNEL
);
3636 if (!table
->table
) {
3640 raw_spin_lock_init(&table
->lock
);
3642 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
3643 memset(table
->table
, 0,
3644 MAX_IRQS_PER_TABLE
* sizeof(u32
));
3646 memset(table
->table
, 0,
3647 (MAX_IRQS_PER_TABLE
* (sizeof(u64
) * 2)));
3651 static void set_remap_table_entry(struct amd_iommu
*iommu
, u16 devid
,
3652 struct irq_remap_table
*table
)
3654 irq_lookup_table
[devid
] = table
;
3655 set_dte_irq_entry(devid
, table
);
3656 iommu_flush_dte(iommu
, devid
);
3659 static struct irq_remap_table
*alloc_irq_table(u16 devid
)
3661 struct irq_remap_table
*table
= NULL
;
3662 struct irq_remap_table
*new_table
= NULL
;
3663 struct amd_iommu
*iommu
;
3664 unsigned long flags
;
3667 spin_lock_irqsave(&iommu_table_lock
, flags
);
3669 iommu
= amd_iommu_rlookup_table
[devid
];
3673 table
= irq_lookup_table
[devid
];
3677 alias
= amd_iommu_alias_table
[devid
];
3678 table
= irq_lookup_table
[alias
];
3680 set_remap_table_entry(iommu
, devid
, table
);
3683 spin_unlock_irqrestore(&iommu_table_lock
, flags
);
3685 /* Nothing there yet, allocate new irq remapping table */
3686 new_table
= __alloc_irq_table();
3690 spin_lock_irqsave(&iommu_table_lock
, flags
);
3692 table
= irq_lookup_table
[devid
];
3696 table
= irq_lookup_table
[alias
];
3698 set_remap_table_entry(iommu
, devid
, table
);
3705 set_remap_table_entry(iommu
, devid
, table
);
3707 set_remap_table_entry(iommu
, alias
, table
);
3710 iommu_completion_wait(iommu
);
3713 spin_unlock_irqrestore(&iommu_table_lock
, flags
);
3716 kmem_cache_free(amd_iommu_irq_cache
, new_table
->table
);
3722 static int alloc_irq_index(u16 devid
, int count
, bool align
)
3724 struct irq_remap_table
*table
;
3725 int index
, c
, alignment
= 1;
3726 unsigned long flags
;
3727 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
3732 table
= alloc_irq_table(devid
);
3737 alignment
= roundup_pow_of_two(count
);
3739 raw_spin_lock_irqsave(&table
->lock
, flags
);
3741 /* Scan table for free entries */
3742 for (index
= ALIGN(table
->min_index
, alignment
), c
= 0;
3743 index
< MAX_IRQS_PER_TABLE
;) {
3744 if (!iommu
->irte_ops
->is_allocated(table
, index
)) {
3748 index
= ALIGN(index
+ 1, alignment
);
3754 iommu
->irte_ops
->set_allocated(table
, index
- c
+ 1);
3766 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3771 static int modify_irte_ga(u16 devid
, int index
, struct irte_ga
*irte
,
3772 struct amd_ir_data
*data
)
3774 struct irq_remap_table
*table
;
3775 struct amd_iommu
*iommu
;
3776 unsigned long flags
;
3777 struct irte_ga
*entry
;
3779 iommu
= amd_iommu_rlookup_table
[devid
];
3783 table
= get_irq_table(devid
);
3787 raw_spin_lock_irqsave(&table
->lock
, flags
);
3789 entry
= (struct irte_ga
*)table
->table
;
3790 entry
= &entry
[index
];
3791 entry
->lo
.fields_remap
.valid
= 0;
3792 entry
->hi
.val
= irte
->hi
.val
;
3793 entry
->lo
.val
= irte
->lo
.val
;
3794 entry
->lo
.fields_remap
.valid
= 1;
3798 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3800 iommu_flush_irt(iommu
, devid
);
3801 iommu_completion_wait(iommu
);
3806 static int modify_irte(u16 devid
, int index
, union irte
*irte
)
3808 struct irq_remap_table
*table
;
3809 struct amd_iommu
*iommu
;
3810 unsigned long flags
;
3812 iommu
= amd_iommu_rlookup_table
[devid
];
3816 table
= get_irq_table(devid
);
3820 raw_spin_lock_irqsave(&table
->lock
, flags
);
3821 table
->table
[index
] = irte
->val
;
3822 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3824 iommu_flush_irt(iommu
, devid
);
3825 iommu_completion_wait(iommu
);
3830 static void free_irte(u16 devid
, int index
)
3832 struct irq_remap_table
*table
;
3833 struct amd_iommu
*iommu
;
3834 unsigned long flags
;
3836 iommu
= amd_iommu_rlookup_table
[devid
];
3840 table
= get_irq_table(devid
);
3844 raw_spin_lock_irqsave(&table
->lock
, flags
);
3845 iommu
->irte_ops
->clear_allocated(table
, index
);
3846 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3848 iommu_flush_irt(iommu
, devid
);
3849 iommu_completion_wait(iommu
);
3852 static void irte_prepare(void *entry
,
3853 u32 delivery_mode
, u32 dest_mode
,
3854 u8 vector
, u32 dest_apicid
, int devid
)
3856 union irte
*irte
= (union irte
*) entry
;
3859 irte
->fields
.vector
= vector
;
3860 irte
->fields
.int_type
= delivery_mode
;
3861 irte
->fields
.destination
= dest_apicid
;
3862 irte
->fields
.dm
= dest_mode
;
3863 irte
->fields
.valid
= 1;
3866 static void irte_ga_prepare(void *entry
,
3867 u32 delivery_mode
, u32 dest_mode
,
3868 u8 vector
, u32 dest_apicid
, int devid
)
3870 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3874 irte
->lo
.fields_remap
.int_type
= delivery_mode
;
3875 irte
->lo
.fields_remap
.dm
= dest_mode
;
3876 irte
->hi
.fields
.vector
= vector
;
3877 irte
->lo
.fields_remap
.destination
= dest_apicid
;
3878 irte
->lo
.fields_remap
.valid
= 1;
3881 static void irte_activate(void *entry
, u16 devid
, u16 index
)
3883 union irte
*irte
= (union irte
*) entry
;
3885 irte
->fields
.valid
= 1;
3886 modify_irte(devid
, index
, irte
);
3889 static void irte_ga_activate(void *entry
, u16 devid
, u16 index
)
3891 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3893 irte
->lo
.fields_remap
.valid
= 1;
3894 modify_irte_ga(devid
, index
, irte
, NULL
);
3897 static void irte_deactivate(void *entry
, u16 devid
, u16 index
)
3899 union irte
*irte
= (union irte
*) entry
;
3901 irte
->fields
.valid
= 0;
3902 modify_irte(devid
, index
, irte
);
3905 static void irte_ga_deactivate(void *entry
, u16 devid
, u16 index
)
3907 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3909 irte
->lo
.fields_remap
.valid
= 0;
3910 modify_irte_ga(devid
, index
, irte
, NULL
);
3913 static void irte_set_affinity(void *entry
, u16 devid
, u16 index
,
3914 u8 vector
, u32 dest_apicid
)
3916 union irte
*irte
= (union irte
*) entry
;
3918 irte
->fields
.vector
= vector
;
3919 irte
->fields
.destination
= dest_apicid
;
3920 modify_irte(devid
, index
, irte
);
3923 static void irte_ga_set_affinity(void *entry
, u16 devid
, u16 index
,
3924 u8 vector
, u32 dest_apicid
)
3926 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3928 if (!irte
->lo
.fields_remap
.guest_mode
) {
3929 irte
->hi
.fields
.vector
= vector
;
3930 irte
->lo
.fields_remap
.destination
= dest_apicid
;
3931 modify_irte_ga(devid
, index
, irte
, NULL
);
3935 #define IRTE_ALLOCATED (~1U)
3936 static void irte_set_allocated(struct irq_remap_table
*table
, int index
)
3938 table
->table
[index
] = IRTE_ALLOCATED
;
3941 static void irte_ga_set_allocated(struct irq_remap_table
*table
, int index
)
3943 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3944 struct irte_ga
*irte
= &ptr
[index
];
3946 memset(&irte
->lo
.val
, 0, sizeof(u64
));
3947 memset(&irte
->hi
.val
, 0, sizeof(u64
));
3948 irte
->hi
.fields
.vector
= 0xff;
3951 static bool irte_is_allocated(struct irq_remap_table
*table
, int index
)
3953 union irte
*ptr
= (union irte
*)table
->table
;
3954 union irte
*irte
= &ptr
[index
];
3956 return irte
->val
!= 0;
3959 static bool irte_ga_is_allocated(struct irq_remap_table
*table
, int index
)
3961 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3962 struct irte_ga
*irte
= &ptr
[index
];
3964 return irte
->hi
.fields
.vector
!= 0;
3967 static void irte_clear_allocated(struct irq_remap_table
*table
, int index
)
3969 table
->table
[index
] = 0;
3972 static void irte_ga_clear_allocated(struct irq_remap_table
*table
, int index
)
3974 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3975 struct irte_ga
*irte
= &ptr
[index
];
3977 memset(&irte
->lo
.val
, 0, sizeof(u64
));
3978 memset(&irte
->hi
.val
, 0, sizeof(u64
));
3981 static int get_devid(struct irq_alloc_info
*info
)
3985 switch (info
->type
) {
3986 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3987 devid
= get_ioapic_devid(info
->ioapic_id
);
3989 case X86_IRQ_ALLOC_TYPE_HPET
:
3990 devid
= get_hpet_devid(info
->hpet_id
);
3992 case X86_IRQ_ALLOC_TYPE_MSI
:
3993 case X86_IRQ_ALLOC_TYPE_MSIX
:
3994 devid
= get_device_id(&info
->msi_dev
->dev
);
4004 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
4006 struct amd_iommu
*iommu
;
4012 devid
= get_devid(info
);
4014 iommu
= amd_iommu_rlookup_table
[devid
];
4016 return iommu
->ir_domain
;
4022 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
4024 struct amd_iommu
*iommu
;
4030 switch (info
->type
) {
4031 case X86_IRQ_ALLOC_TYPE_MSI
:
4032 case X86_IRQ_ALLOC_TYPE_MSIX
:
4033 devid
= get_device_id(&info
->msi_dev
->dev
);
4037 iommu
= amd_iommu_rlookup_table
[devid
];
4039 return iommu
->msi_domain
;
4048 struct irq_remap_ops amd_iommu_irq_ops
= {
4049 .prepare
= amd_iommu_prepare
,
4050 .enable
= amd_iommu_enable
,
4051 .disable
= amd_iommu_disable
,
4052 .reenable
= amd_iommu_reenable
,
4053 .enable_faulting
= amd_iommu_enable_faulting
,
4054 .get_ir_irq_domain
= get_ir_irq_domain
,
4055 .get_irq_domain
= get_irq_domain
,
4058 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
4059 struct irq_cfg
*irq_cfg
,
4060 struct irq_alloc_info
*info
,
4061 int devid
, int index
, int sub_handle
)
4063 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4064 struct msi_msg
*msg
= &data
->msi_entry
;
4065 struct IO_APIC_route_entry
*entry
;
4066 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
4071 data
->irq_2_irte
.devid
= devid
;
4072 data
->irq_2_irte
.index
= index
+ sub_handle
;
4073 iommu
->irte_ops
->prepare(data
->entry
, apic
->irq_delivery_mode
,
4074 apic
->irq_dest_mode
, irq_cfg
->vector
,
4075 irq_cfg
->dest_apicid
, devid
);
4077 switch (info
->type
) {
4078 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
4079 /* Setup IOAPIC entry */
4080 entry
= info
->ioapic_entry
;
4081 info
->ioapic_entry
= NULL
;
4082 memset(entry
, 0, sizeof(*entry
));
4083 entry
->vector
= index
;
4085 entry
->trigger
= info
->ioapic_trigger
;
4086 entry
->polarity
= info
->ioapic_polarity
;
4087 /* Mask level triggered irqs. */
4088 if (info
->ioapic_trigger
)
4092 case X86_IRQ_ALLOC_TYPE_HPET
:
4093 case X86_IRQ_ALLOC_TYPE_MSI
:
4094 case X86_IRQ_ALLOC_TYPE_MSIX
:
4095 msg
->address_hi
= MSI_ADDR_BASE_HI
;
4096 msg
->address_lo
= MSI_ADDR_BASE_LO
;
4097 msg
->data
= irte_info
->index
;
4106 struct amd_irte_ops irte_32_ops
= {
4107 .prepare
= irte_prepare
,
4108 .activate
= irte_activate
,
4109 .deactivate
= irte_deactivate
,
4110 .set_affinity
= irte_set_affinity
,
4111 .set_allocated
= irte_set_allocated
,
4112 .is_allocated
= irte_is_allocated
,
4113 .clear_allocated
= irte_clear_allocated
,
4116 struct amd_irte_ops irte_128_ops
= {
4117 .prepare
= irte_ga_prepare
,
4118 .activate
= irte_ga_activate
,
4119 .deactivate
= irte_ga_deactivate
,
4120 .set_affinity
= irte_ga_set_affinity
,
4121 .set_allocated
= irte_ga_set_allocated
,
4122 .is_allocated
= irte_ga_is_allocated
,
4123 .clear_allocated
= irte_ga_clear_allocated
,
4126 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
4127 unsigned int nr_irqs
, void *arg
)
4129 struct irq_alloc_info
*info
= arg
;
4130 struct irq_data
*irq_data
;
4131 struct amd_ir_data
*data
= NULL
;
4132 struct irq_cfg
*cfg
;
4138 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
4139 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
4143 * With IRQ remapping enabled, don't need contiguous CPU vectors
4144 * to support multiple MSI interrupts.
4146 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
4147 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
4149 devid
= get_devid(info
);
4153 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
4157 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
4158 struct irq_remap_table
*table
;
4159 struct amd_iommu
*iommu
;
4161 table
= alloc_irq_table(devid
);
4163 if (!table
->min_index
) {
4165 * Keep the first 32 indexes free for IOAPIC
4168 table
->min_index
= 32;
4169 iommu
= amd_iommu_rlookup_table
[devid
];
4170 for (i
= 0; i
< 32; ++i
)
4171 iommu
->irte_ops
->set_allocated(table
, i
);
4173 WARN_ON(table
->min_index
!= 32);
4174 index
= info
->ioapic_pin
;
4179 bool align
= (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
);
4181 index
= alloc_irq_index(devid
, nr_irqs
, align
);
4184 pr_warn("Failed to allocate IRTE\n");
4186 goto out_free_parent
;
4189 for (i
= 0; i
< nr_irqs
; i
++) {
4190 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4191 cfg
= irqd_cfg(irq_data
);
4192 if (!irq_data
|| !cfg
) {
4198 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
4202 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
4203 data
->entry
= kzalloc(sizeof(union irte
), GFP_KERNEL
);
4205 data
->entry
= kzalloc(sizeof(struct irte_ga
),
4212 irq_data
->hwirq
= (devid
<< 16) + i
;
4213 irq_data
->chip_data
= data
;
4214 irq_data
->chip
= &amd_ir_chip
;
4215 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
4216 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
4222 for (i
--; i
>= 0; i
--) {
4223 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4225 kfree(irq_data
->chip_data
);
4227 for (i
= 0; i
< nr_irqs
; i
++)
4228 free_irte(devid
, index
+ i
);
4230 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4234 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
4235 unsigned int nr_irqs
)
4237 struct irq_2_irte
*irte_info
;
4238 struct irq_data
*irq_data
;
4239 struct amd_ir_data
*data
;
4242 for (i
= 0; i
< nr_irqs
; i
++) {
4243 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4244 if (irq_data
&& irq_data
->chip_data
) {
4245 data
= irq_data
->chip_data
;
4246 irte_info
= &data
->irq_2_irte
;
4247 free_irte(irte_info
->devid
, irte_info
->index
);
4252 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4255 static void amd_ir_update_irte(struct irq_data
*irqd
, struct amd_iommu
*iommu
,
4256 struct amd_ir_data
*ir_data
,
4257 struct irq_2_irte
*irte_info
,
4258 struct irq_cfg
*cfg
);
4260 static int irq_remapping_activate(struct irq_domain
*domain
,
4261 struct irq_data
*irq_data
, bool reserve
)
4263 struct amd_ir_data
*data
= irq_data
->chip_data
;
4264 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4265 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4266 struct irq_cfg
*cfg
= irqd_cfg(irq_data
);
4271 iommu
->irte_ops
->activate(data
->entry
, irte_info
->devid
,
4273 amd_ir_update_irte(irq_data
, iommu
, data
, irte_info
, cfg
);
4277 static void irq_remapping_deactivate(struct irq_domain
*domain
,
4278 struct irq_data
*irq_data
)
4280 struct amd_ir_data
*data
= irq_data
->chip_data
;
4281 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4282 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4285 iommu
->irte_ops
->deactivate(data
->entry
, irte_info
->devid
,
4289 static const struct irq_domain_ops amd_ir_domain_ops
= {
4290 .alloc
= irq_remapping_alloc
,
4291 .free
= irq_remapping_free
,
4292 .activate
= irq_remapping_activate
,
4293 .deactivate
= irq_remapping_deactivate
,
4296 static int amd_ir_set_vcpu_affinity(struct irq_data
*data
, void *vcpu_info
)
4298 struct amd_iommu
*iommu
;
4299 struct amd_iommu_pi_data
*pi_data
= vcpu_info
;
4300 struct vcpu_data
*vcpu_pi_info
= pi_data
->vcpu_data
;
4301 struct amd_ir_data
*ir_data
= data
->chip_data
;
4302 struct irte_ga
*irte
= (struct irte_ga
*) ir_data
->entry
;
4303 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4304 struct iommu_dev_data
*dev_data
= search_dev_data(irte_info
->devid
);
4307 * This device has never been set up for guest mode.
4308 * we should not modify the IRTE
4310 if (!dev_data
|| !dev_data
->use_vapic
)
4313 pi_data
->ir_data
= ir_data
;
4316 * SVM tries to set up for VAPIC mode, but we are in
4317 * legacy mode. So, we force legacy mode instead.
4319 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
4320 pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4322 pi_data
->is_guest_mode
= false;
4325 iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4329 pi_data
->prev_ga_tag
= ir_data
->cached_ga_tag
;
4330 if (pi_data
->is_guest_mode
) {
4332 irte
->hi
.fields
.ga_root_ptr
= (pi_data
->base
>> 12);
4333 irte
->hi
.fields
.vector
= vcpu_pi_info
->vector
;
4334 irte
->lo
.fields_vapic
.ga_log_intr
= 1;
4335 irte
->lo
.fields_vapic
.guest_mode
= 1;
4336 irte
->lo
.fields_vapic
.ga_tag
= pi_data
->ga_tag
;
4338 ir_data
->cached_ga_tag
= pi_data
->ga_tag
;
4341 struct irq_cfg
*cfg
= irqd_cfg(data
);
4345 irte
->hi
.fields
.vector
= cfg
->vector
;
4346 irte
->lo
.fields_remap
.guest_mode
= 0;
4347 irte
->lo
.fields_remap
.destination
= cfg
->dest_apicid
;
4348 irte
->lo
.fields_remap
.int_type
= apic
->irq_delivery_mode
;
4349 irte
->lo
.fields_remap
.dm
= apic
->irq_dest_mode
;
4352 * This communicates the ga_tag back to the caller
4353 * so that it can do all the necessary clean up.
4355 ir_data
->cached_ga_tag
= 0;
4358 return modify_irte_ga(irte_info
->devid
, irte_info
->index
, irte
, ir_data
);
4362 static void amd_ir_update_irte(struct irq_data
*irqd
, struct amd_iommu
*iommu
,
4363 struct amd_ir_data
*ir_data
,
4364 struct irq_2_irte
*irte_info
,
4365 struct irq_cfg
*cfg
)
4369 * Atomically updates the IRTE with the new destination, vector
4370 * and flushes the interrupt entry cache.
4372 iommu
->irte_ops
->set_affinity(ir_data
->entry
, irte_info
->devid
,
4373 irte_info
->index
, cfg
->vector
,
4377 static int amd_ir_set_affinity(struct irq_data
*data
,
4378 const struct cpumask
*mask
, bool force
)
4380 struct amd_ir_data
*ir_data
= data
->chip_data
;
4381 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4382 struct irq_cfg
*cfg
= irqd_cfg(data
);
4383 struct irq_data
*parent
= data
->parent_data
;
4384 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4390 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
4391 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
4394 amd_ir_update_irte(data
, iommu
, ir_data
, irte_info
, cfg
);
4396 * After this point, all the interrupts will start arriving
4397 * at the new destination. So, time to cleanup the previous
4398 * vector allocation.
4400 send_cleanup_vector(cfg
);
4402 return IRQ_SET_MASK_OK_DONE
;
4405 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
4407 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
4409 *msg
= ir_data
->msi_entry
;
4412 static struct irq_chip amd_ir_chip
= {
4414 .irq_ack
= apic_ack_irq
,
4415 .irq_set_affinity
= amd_ir_set_affinity
,
4416 .irq_set_vcpu_affinity
= amd_ir_set_vcpu_affinity
,
4417 .irq_compose_msi_msg
= ir_compose_msi_msg
,
4420 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
4422 struct fwnode_handle
*fn
;
4424 fn
= irq_domain_alloc_named_id_fwnode("AMD-IR", iommu
->index
);
4427 iommu
->ir_domain
= irq_domain_create_tree(fn
, &amd_ir_domain_ops
, iommu
);
4428 irq_domain_free_fwnode(fn
);
4429 if (!iommu
->ir_domain
)
4432 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
4433 iommu
->msi_domain
= arch_create_remap_msi_irq_domain(iommu
->ir_domain
,
4439 int amd_iommu_update_ga(int cpu
, bool is_run
, void *data
)
4441 unsigned long flags
;
4442 struct amd_iommu
*iommu
;
4443 struct irq_remap_table
*table
;
4444 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
4445 int devid
= ir_data
->irq_2_irte
.devid
;
4446 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
4447 struct irte_ga
*ref
= (struct irte_ga
*) ir_data
->ref
;
4449 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
4450 !ref
|| !entry
|| !entry
->lo
.fields_vapic
.guest_mode
)
4453 iommu
= amd_iommu_rlookup_table
[devid
];
4457 table
= get_irq_table(devid
);
4461 raw_spin_lock_irqsave(&table
->lock
, flags
);
4463 if (ref
->lo
.fields_vapic
.guest_mode
) {
4465 ref
->lo
.fields_vapic
.destination
= cpu
;
4466 ref
->lo
.fields_vapic
.is_run
= is_run
;
4470 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
4472 iommu_flush_irt(iommu
, devid
);
4473 iommu_completion_wait(iommu
);
4476 EXPORT_SYMBOL(amd_iommu_update_ga
);