usb: xhci: add USB2 Link power management BESL support
[linux/fpc-iii.git] / drivers / dma / imx-sdma.c
blob092867bf795c0d939b57ef3a9e4622c833f463a1
1 /*
2 * drivers/dma/imx-sdma.c
4 * This file contains a driver for the Freescale Smart DMA engine
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 * Based on code from Freescale:
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
40 #include <asm/irq.h>
41 #include <linux/platform_data/dma-imx-sdma.h>
42 #include <linux/platform_data/dma-imx.h>
44 #include "dmaengine.h"
46 /* SDMA registers */
47 #define SDMA_H_C0PTR 0x000
48 #define SDMA_H_INTR 0x004
49 #define SDMA_H_STATSTOP 0x008
50 #define SDMA_H_START 0x00c
51 #define SDMA_H_EVTOVR 0x010
52 #define SDMA_H_DSPOVR 0x014
53 #define SDMA_H_HOSTOVR 0x018
54 #define SDMA_H_EVTPEND 0x01c
55 #define SDMA_H_DSPENBL 0x020
56 #define SDMA_H_RESET 0x024
57 #define SDMA_H_EVTERR 0x028
58 #define SDMA_H_INTRMSK 0x02c
59 #define SDMA_H_PSW 0x030
60 #define SDMA_H_EVTERRDBG 0x034
61 #define SDMA_H_CONFIG 0x038
62 #define SDMA_ONCE_ENB 0x040
63 #define SDMA_ONCE_DATA 0x044
64 #define SDMA_ONCE_INSTR 0x048
65 #define SDMA_ONCE_STAT 0x04c
66 #define SDMA_ONCE_CMD 0x050
67 #define SDMA_EVT_MIRROR 0x054
68 #define SDMA_ILLINSTADDR 0x058
69 #define SDMA_CHN0ADDR 0x05c
70 #define SDMA_ONCE_RTB 0x060
71 #define SDMA_XTRIG_CONF1 0x070
72 #define SDMA_XTRIG_CONF2 0x074
73 #define SDMA_CHNENBL0_IMX35 0x200
74 #define SDMA_CHNENBL0_IMX31 0x080
75 #define SDMA_CHNPRI_0 0x100
78 * Buffer descriptor status values.
80 #define BD_DONE 0x01
81 #define BD_WRAP 0x02
82 #define BD_CONT 0x04
83 #define BD_INTR 0x08
84 #define BD_RROR 0x10
85 #define BD_LAST 0x20
86 #define BD_EXTD 0x80
89 * Data Node descriptor status values.
91 #define DND_END_OF_FRAME 0x80
92 #define DND_END_OF_XFER 0x40
93 #define DND_DONE 0x20
94 #define DND_UNUSED 0x01
97 * IPCV2 descriptor status values.
99 #define BD_IPCV2_END_OF_FRAME 0x40
101 #define IPCV2_MAX_NODES 50
103 * Error bit set in the CCB status field by the SDMA,
104 * in setbd routine, in case of a transfer error
106 #define DATA_ERROR 0x10000000
109 * Buffer descriptor commands.
111 #define C0_ADDR 0x01
112 #define C0_LOAD 0x02
113 #define C0_DUMP 0x03
114 #define C0_SETCTX 0x07
115 #define C0_GETCTX 0x03
116 #define C0_SETDM 0x01
117 #define C0_SETPM 0x04
118 #define C0_GETDM 0x02
119 #define C0_GETPM 0x08
121 * Change endianness indicator in the BD command field
123 #define CHANGE_ENDIANNESS 0x80
126 * Mode/Count of data node descriptors - IPCv2
128 struct sdma_mode_count {
129 u32 count : 16; /* size of the buffer pointed by this BD */
130 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
131 u32 command : 8; /* command mostlky used for channel 0 */
135 * Buffer descriptor
137 struct sdma_buffer_descriptor {
138 struct sdma_mode_count mode;
139 u32 buffer_addr; /* address of the buffer described */
140 u32 ext_buffer_addr; /* extended buffer address */
141 } __attribute__ ((packed));
144 * struct sdma_channel_control - Channel control Block
146 * @current_bd_ptr current buffer descriptor processed
147 * @base_bd_ptr first element of buffer descriptor array
148 * @unused padding. The SDMA engine expects an array of 128 byte
149 * control blocks
151 struct sdma_channel_control {
152 u32 current_bd_ptr;
153 u32 base_bd_ptr;
154 u32 unused[2];
155 } __attribute__ ((packed));
158 * struct sdma_state_registers - SDMA context for a channel
160 * @pc: program counter
161 * @t: test bit: status of arithmetic & test instruction
162 * @rpc: return program counter
163 * @sf: source fault while loading data
164 * @spc: loop start program counter
165 * @df: destination fault while storing data
166 * @epc: loop end program counter
167 * @lm: loop mode
169 struct sdma_state_registers {
170 u32 pc :14;
171 u32 unused1: 1;
172 u32 t : 1;
173 u32 rpc :14;
174 u32 unused0: 1;
175 u32 sf : 1;
176 u32 spc :14;
177 u32 unused2: 1;
178 u32 df : 1;
179 u32 epc :14;
180 u32 lm : 2;
181 } __attribute__ ((packed));
184 * struct sdma_context_data - sdma context specific to a channel
186 * @channel_state: channel state bits
187 * @gReg: general registers
188 * @mda: burst dma destination address register
189 * @msa: burst dma source address register
190 * @ms: burst dma status register
191 * @md: burst dma data register
192 * @pda: peripheral dma destination address register
193 * @psa: peripheral dma source address register
194 * @ps: peripheral dma status register
195 * @pd: peripheral dma data register
196 * @ca: CRC polynomial register
197 * @cs: CRC accumulator register
198 * @dda: dedicated core destination address register
199 * @dsa: dedicated core source address register
200 * @ds: dedicated core status register
201 * @dd: dedicated core data register
203 struct sdma_context_data {
204 struct sdma_state_registers channel_state;
205 u32 gReg[8];
206 u32 mda;
207 u32 msa;
208 u32 ms;
209 u32 md;
210 u32 pda;
211 u32 psa;
212 u32 ps;
213 u32 pd;
214 u32 ca;
215 u32 cs;
216 u32 dda;
217 u32 dsa;
218 u32 ds;
219 u32 dd;
220 u32 scratch0;
221 u32 scratch1;
222 u32 scratch2;
223 u32 scratch3;
224 u32 scratch4;
225 u32 scratch5;
226 u32 scratch6;
227 u32 scratch7;
228 } __attribute__ ((packed));
230 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232 struct sdma_engine;
235 * struct sdma_channel - housekeeping for a SDMA channel
237 * @sdma pointer to the SDMA engine for this channel
238 * @channel the channel number, matches dmaengine chan_id + 1
239 * @direction transfer type. Needed for setting SDMA script
240 * @peripheral_type Peripheral type. Needed for setting SDMA script
241 * @event_id0 aka dma request line
242 * @event_id1 for channels that use 2 events
243 * @word_size peripheral access size
244 * @buf_tail ID of the buffer that was processed
245 * @done channel completion
246 * @num_bd max NUM_BD. number of descriptors currently handling
248 struct sdma_channel {
249 struct sdma_engine *sdma;
250 unsigned int channel;
251 enum dma_transfer_direction direction;
252 enum sdma_peripheral_type peripheral_type;
253 unsigned int event_id0;
254 unsigned int event_id1;
255 enum dma_slave_buswidth word_size;
256 unsigned int buf_tail;
257 struct completion done;
258 unsigned int num_bd;
259 struct sdma_buffer_descriptor *bd;
260 dma_addr_t bd_phys;
261 unsigned int pc_from_device, pc_to_device;
262 unsigned long flags;
263 dma_addr_t per_address;
264 unsigned long event_mask[2];
265 unsigned long watermark_level;
266 u32 shp_addr, per_addr;
267 struct dma_chan chan;
268 spinlock_t lock;
269 struct dma_async_tx_descriptor desc;
270 enum dma_status status;
271 unsigned int chn_count;
272 unsigned int chn_real_count;
273 struct tasklet_struct tasklet;
276 #define IMX_DMA_SG_LOOP BIT(0)
278 #define MAX_DMA_CHANNELS 32
279 #define MXC_SDMA_DEFAULT_PRIORITY 1
280 #define MXC_SDMA_MIN_PRIORITY 1
281 #define MXC_SDMA_MAX_PRIORITY 7
283 #define SDMA_FIRMWARE_MAGIC 0x414d4453
286 * struct sdma_firmware_header - Layout of the firmware image
288 * @magic "SDMA"
289 * @version_major increased whenever layout of struct sdma_script_start_addrs
290 * changes.
291 * @version_minor firmware minor version (for binary compatible changes)
292 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
293 * @num_script_addrs Number of script addresses in this image
294 * @ram_code_start offset of SDMA ram image in this firmware image
295 * @ram_code_size size of SDMA ram image
296 * @script_addrs Stores the start address of the SDMA scripts
297 * (in SDMA memory space)
299 struct sdma_firmware_header {
300 u32 magic;
301 u32 version_major;
302 u32 version_minor;
303 u32 script_addrs_start;
304 u32 num_script_addrs;
305 u32 ram_code_start;
306 u32 ram_code_size;
309 enum sdma_devtype {
310 IMX31_SDMA, /* runs on i.mx31 */
311 IMX35_SDMA, /* runs on i.mx35 and later */
314 struct sdma_engine {
315 struct device *dev;
316 struct device_dma_parameters dma_parms;
317 struct sdma_channel channel[MAX_DMA_CHANNELS];
318 struct sdma_channel_control *channel_control;
319 void __iomem *regs;
320 enum sdma_devtype devtype;
321 unsigned int num_events;
322 struct sdma_context_data *context;
323 dma_addr_t context_phys;
324 struct dma_device dma_device;
325 struct clk *clk_ipg;
326 struct clk *clk_ahb;
327 spinlock_t channel_0_lock;
328 struct sdma_script_start_addrs *script_addrs;
331 static struct platform_device_id sdma_devtypes[] = {
333 .name = "imx31-sdma",
334 .driver_data = IMX31_SDMA,
335 }, {
336 .name = "imx35-sdma",
337 .driver_data = IMX35_SDMA,
338 }, {
339 /* sentinel */
342 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
344 static const struct of_device_id sdma_dt_ids[] = {
345 { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
346 { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
347 { /* sentinel */ }
349 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
351 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
352 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
353 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
354 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
356 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
358 u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
359 SDMA_CHNENBL0_IMX35);
360 return chnenbl0 + event * 4;
363 static int sdma_config_ownership(struct sdma_channel *sdmac,
364 bool event_override, bool mcu_override, bool dsp_override)
366 struct sdma_engine *sdma = sdmac->sdma;
367 int channel = sdmac->channel;
368 unsigned long evt, mcu, dsp;
370 if (event_override && mcu_override && dsp_override)
371 return -EINVAL;
373 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
374 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
375 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
377 if (dsp_override)
378 __clear_bit(channel, &dsp);
379 else
380 __set_bit(channel, &dsp);
382 if (event_override)
383 __clear_bit(channel, &evt);
384 else
385 __set_bit(channel, &evt);
387 if (mcu_override)
388 __clear_bit(channel, &mcu);
389 else
390 __set_bit(channel, &mcu);
392 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
393 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
394 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
396 return 0;
399 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
401 writel(BIT(channel), sdma->regs + SDMA_H_START);
405 * sdma_run_channel0 - run a channel and wait till it's done
407 static int sdma_run_channel0(struct sdma_engine *sdma)
409 int ret;
410 unsigned long timeout = 500;
412 sdma_enable_channel(sdma, 0);
414 while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
415 if (timeout-- <= 0)
416 break;
417 udelay(1);
420 if (ret) {
421 /* Clear the interrupt status */
422 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
423 } else {
424 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
427 return ret ? 0 : -ETIMEDOUT;
430 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
431 u32 address)
433 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
434 void *buf_virt;
435 dma_addr_t buf_phys;
436 int ret;
437 unsigned long flags;
439 buf_virt = dma_alloc_coherent(NULL,
440 size,
441 &buf_phys, GFP_KERNEL);
442 if (!buf_virt) {
443 return -ENOMEM;
446 spin_lock_irqsave(&sdma->channel_0_lock, flags);
448 bd0->mode.command = C0_SETPM;
449 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
450 bd0->mode.count = size / 2;
451 bd0->buffer_addr = buf_phys;
452 bd0->ext_buffer_addr = address;
454 memcpy(buf_virt, buf, size);
456 ret = sdma_run_channel0(sdma);
458 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
460 dma_free_coherent(NULL, size, buf_virt, buf_phys);
462 return ret;
465 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
467 struct sdma_engine *sdma = sdmac->sdma;
468 int channel = sdmac->channel;
469 unsigned long val;
470 u32 chnenbl = chnenbl_ofs(sdma, event);
472 val = readl_relaxed(sdma->regs + chnenbl);
473 __set_bit(channel, &val);
474 writel_relaxed(val, sdma->regs + chnenbl);
477 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
479 struct sdma_engine *sdma = sdmac->sdma;
480 int channel = sdmac->channel;
481 u32 chnenbl = chnenbl_ofs(sdma, event);
482 unsigned long val;
484 val = readl_relaxed(sdma->regs + chnenbl);
485 __clear_bit(channel, &val);
486 writel_relaxed(val, sdma->regs + chnenbl);
489 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
491 struct sdma_buffer_descriptor *bd;
494 * loop mode. Iterate over descriptors, re-setup them and
495 * call callback function.
497 while (1) {
498 bd = &sdmac->bd[sdmac->buf_tail];
500 if (bd->mode.status & BD_DONE)
501 break;
503 if (bd->mode.status & BD_RROR)
504 sdmac->status = DMA_ERROR;
505 else
506 sdmac->status = DMA_IN_PROGRESS;
508 bd->mode.status |= BD_DONE;
509 sdmac->buf_tail++;
510 sdmac->buf_tail %= sdmac->num_bd;
512 if (sdmac->desc.callback)
513 sdmac->desc.callback(sdmac->desc.callback_param);
517 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
519 struct sdma_buffer_descriptor *bd;
520 int i, error = 0;
522 sdmac->chn_real_count = 0;
524 * non loop mode. Iterate over all descriptors, collect
525 * errors and call callback function
527 for (i = 0; i < sdmac->num_bd; i++) {
528 bd = &sdmac->bd[i];
530 if (bd->mode.status & (BD_DONE | BD_RROR))
531 error = -EIO;
532 sdmac->chn_real_count += bd->mode.count;
535 if (error)
536 sdmac->status = DMA_ERROR;
537 else
538 sdmac->status = DMA_SUCCESS;
540 dma_cookie_complete(&sdmac->desc);
541 if (sdmac->desc.callback)
542 sdmac->desc.callback(sdmac->desc.callback_param);
545 static void sdma_tasklet(unsigned long data)
547 struct sdma_channel *sdmac = (struct sdma_channel *) data;
549 complete(&sdmac->done);
551 if (sdmac->flags & IMX_DMA_SG_LOOP)
552 sdma_handle_channel_loop(sdmac);
553 else
554 mxc_sdma_handle_channel_normal(sdmac);
557 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
559 struct sdma_engine *sdma = dev_id;
560 unsigned long stat;
562 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
563 /* not interested in channel 0 interrupts */
564 stat &= ~1;
565 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
567 while (stat) {
568 int channel = fls(stat) - 1;
569 struct sdma_channel *sdmac = &sdma->channel[channel];
571 tasklet_schedule(&sdmac->tasklet);
573 __clear_bit(channel, &stat);
576 return IRQ_HANDLED;
580 * sets the pc of SDMA script according to the peripheral type
582 static void sdma_get_pc(struct sdma_channel *sdmac,
583 enum sdma_peripheral_type peripheral_type)
585 struct sdma_engine *sdma = sdmac->sdma;
586 int per_2_emi = 0, emi_2_per = 0;
588 * These are needed once we start to support transfers between
589 * two peripherals or memory-to-memory transfers
591 int per_2_per = 0, emi_2_emi = 0;
593 sdmac->pc_from_device = 0;
594 sdmac->pc_to_device = 0;
596 switch (peripheral_type) {
597 case IMX_DMATYPE_MEMORY:
598 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
599 break;
600 case IMX_DMATYPE_DSP:
601 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
602 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
603 break;
604 case IMX_DMATYPE_FIRI:
605 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
606 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
607 break;
608 case IMX_DMATYPE_UART:
609 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
610 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
611 break;
612 case IMX_DMATYPE_UART_SP:
613 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
614 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
615 break;
616 case IMX_DMATYPE_ATA:
617 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
618 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
619 break;
620 case IMX_DMATYPE_CSPI:
621 case IMX_DMATYPE_EXT:
622 case IMX_DMATYPE_SSI:
623 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
624 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
625 break;
626 case IMX_DMATYPE_SSI_SP:
627 case IMX_DMATYPE_MMC:
628 case IMX_DMATYPE_SDHC:
629 case IMX_DMATYPE_CSPI_SP:
630 case IMX_DMATYPE_ESAI:
631 case IMX_DMATYPE_MSHC_SP:
632 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
633 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
634 break;
635 case IMX_DMATYPE_ASRC:
636 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
637 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
638 per_2_per = sdma->script_addrs->per_2_per_addr;
639 break;
640 case IMX_DMATYPE_MSHC:
641 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
642 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
643 break;
644 case IMX_DMATYPE_CCM:
645 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
646 break;
647 case IMX_DMATYPE_SPDIF:
648 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
649 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
650 break;
651 case IMX_DMATYPE_IPU_MEMORY:
652 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
653 break;
654 default:
655 break;
658 sdmac->pc_from_device = per_2_emi;
659 sdmac->pc_to_device = emi_2_per;
662 static int sdma_load_context(struct sdma_channel *sdmac)
664 struct sdma_engine *sdma = sdmac->sdma;
665 int channel = sdmac->channel;
666 int load_address;
667 struct sdma_context_data *context = sdma->context;
668 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
669 int ret;
670 unsigned long flags;
672 if (sdmac->direction == DMA_DEV_TO_MEM) {
673 load_address = sdmac->pc_from_device;
674 } else {
675 load_address = sdmac->pc_to_device;
678 if (load_address < 0)
679 return load_address;
681 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
682 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
683 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
684 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
685 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
686 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
688 spin_lock_irqsave(&sdma->channel_0_lock, flags);
690 memset(context, 0, sizeof(*context));
691 context->channel_state.pc = load_address;
693 /* Send by context the event mask,base address for peripheral
694 * and watermark level
696 context->gReg[0] = sdmac->event_mask[1];
697 context->gReg[1] = sdmac->event_mask[0];
698 context->gReg[2] = sdmac->per_addr;
699 context->gReg[6] = sdmac->shp_addr;
700 context->gReg[7] = sdmac->watermark_level;
702 bd0->mode.command = C0_SETDM;
703 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
704 bd0->mode.count = sizeof(*context) / 4;
705 bd0->buffer_addr = sdma->context_phys;
706 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
707 ret = sdma_run_channel0(sdma);
709 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
711 return ret;
714 static void sdma_disable_channel(struct sdma_channel *sdmac)
716 struct sdma_engine *sdma = sdmac->sdma;
717 int channel = sdmac->channel;
719 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
720 sdmac->status = DMA_ERROR;
723 static int sdma_config_channel(struct sdma_channel *sdmac)
725 int ret;
727 sdma_disable_channel(sdmac);
729 sdmac->event_mask[0] = 0;
730 sdmac->event_mask[1] = 0;
731 sdmac->shp_addr = 0;
732 sdmac->per_addr = 0;
734 if (sdmac->event_id0) {
735 if (sdmac->event_id0 >= sdmac->sdma->num_events)
736 return -EINVAL;
737 sdma_event_enable(sdmac, sdmac->event_id0);
740 switch (sdmac->peripheral_type) {
741 case IMX_DMATYPE_DSP:
742 sdma_config_ownership(sdmac, false, true, true);
743 break;
744 case IMX_DMATYPE_MEMORY:
745 sdma_config_ownership(sdmac, false, true, false);
746 break;
747 default:
748 sdma_config_ownership(sdmac, true, true, false);
749 break;
752 sdma_get_pc(sdmac, sdmac->peripheral_type);
754 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
755 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
756 /* Handle multiple event channels differently */
757 if (sdmac->event_id1) {
758 sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
759 if (sdmac->event_id1 > 31)
760 __set_bit(31, &sdmac->watermark_level);
761 sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
762 if (sdmac->event_id0 > 31)
763 __set_bit(30, &sdmac->watermark_level);
764 } else {
765 __set_bit(sdmac->event_id0, sdmac->event_mask);
767 /* Watermark Level */
768 sdmac->watermark_level |= sdmac->watermark_level;
769 /* Address */
770 sdmac->shp_addr = sdmac->per_address;
771 } else {
772 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
775 ret = sdma_load_context(sdmac);
777 return ret;
780 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
781 unsigned int priority)
783 struct sdma_engine *sdma = sdmac->sdma;
784 int channel = sdmac->channel;
786 if (priority < MXC_SDMA_MIN_PRIORITY
787 || priority > MXC_SDMA_MAX_PRIORITY) {
788 return -EINVAL;
791 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
793 return 0;
796 static int sdma_request_channel(struct sdma_channel *sdmac)
798 struct sdma_engine *sdma = sdmac->sdma;
799 int channel = sdmac->channel;
800 int ret = -EBUSY;
802 sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
803 if (!sdmac->bd) {
804 ret = -ENOMEM;
805 goto out;
808 memset(sdmac->bd, 0, PAGE_SIZE);
810 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
811 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
813 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
815 init_completion(&sdmac->done);
817 return 0;
818 out:
820 return ret;
823 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
825 return container_of(chan, struct sdma_channel, chan);
828 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
830 unsigned long flags;
831 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
832 dma_cookie_t cookie;
834 spin_lock_irqsave(&sdmac->lock, flags);
836 cookie = dma_cookie_assign(tx);
838 spin_unlock_irqrestore(&sdmac->lock, flags);
840 return cookie;
843 static int sdma_alloc_chan_resources(struct dma_chan *chan)
845 struct sdma_channel *sdmac = to_sdma_chan(chan);
846 struct imx_dma_data *data = chan->private;
847 int prio, ret;
849 if (!data)
850 return -EINVAL;
852 switch (data->priority) {
853 case DMA_PRIO_HIGH:
854 prio = 3;
855 break;
856 case DMA_PRIO_MEDIUM:
857 prio = 2;
858 break;
859 case DMA_PRIO_LOW:
860 default:
861 prio = 1;
862 break;
865 sdmac->peripheral_type = data->peripheral_type;
866 sdmac->event_id0 = data->dma_request;
868 clk_enable(sdmac->sdma->clk_ipg);
869 clk_enable(sdmac->sdma->clk_ahb);
871 ret = sdma_request_channel(sdmac);
872 if (ret)
873 return ret;
875 ret = sdma_set_channel_priority(sdmac, prio);
876 if (ret)
877 return ret;
879 dma_async_tx_descriptor_init(&sdmac->desc, chan);
880 sdmac->desc.tx_submit = sdma_tx_submit;
881 /* txd.flags will be overwritten in prep funcs */
882 sdmac->desc.flags = DMA_CTRL_ACK;
884 return 0;
887 static void sdma_free_chan_resources(struct dma_chan *chan)
889 struct sdma_channel *sdmac = to_sdma_chan(chan);
890 struct sdma_engine *sdma = sdmac->sdma;
892 sdma_disable_channel(sdmac);
894 if (sdmac->event_id0)
895 sdma_event_disable(sdmac, sdmac->event_id0);
896 if (sdmac->event_id1)
897 sdma_event_disable(sdmac, sdmac->event_id1);
899 sdmac->event_id0 = 0;
900 sdmac->event_id1 = 0;
902 sdma_set_channel_priority(sdmac, 0);
904 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
906 clk_disable(sdma->clk_ipg);
907 clk_disable(sdma->clk_ahb);
910 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
911 struct dma_chan *chan, struct scatterlist *sgl,
912 unsigned int sg_len, enum dma_transfer_direction direction,
913 unsigned long flags, void *context)
915 struct sdma_channel *sdmac = to_sdma_chan(chan);
916 struct sdma_engine *sdma = sdmac->sdma;
917 int ret, i, count;
918 int channel = sdmac->channel;
919 struct scatterlist *sg;
921 if (sdmac->status == DMA_IN_PROGRESS)
922 return NULL;
923 sdmac->status = DMA_IN_PROGRESS;
925 sdmac->flags = 0;
927 sdmac->buf_tail = 0;
929 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
930 sg_len, channel);
932 sdmac->direction = direction;
933 ret = sdma_load_context(sdmac);
934 if (ret)
935 goto err_out;
937 if (sg_len > NUM_BD) {
938 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
939 channel, sg_len, NUM_BD);
940 ret = -EINVAL;
941 goto err_out;
944 sdmac->chn_count = 0;
945 for_each_sg(sgl, sg, sg_len, i) {
946 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
947 int param;
949 bd->buffer_addr = sg->dma_address;
951 count = sg_dma_len(sg);
953 if (count > 0xffff) {
954 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
955 channel, count, 0xffff);
956 ret = -EINVAL;
957 goto err_out;
960 bd->mode.count = count;
961 sdmac->chn_count += count;
963 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
964 ret = -EINVAL;
965 goto err_out;
968 switch (sdmac->word_size) {
969 case DMA_SLAVE_BUSWIDTH_4_BYTES:
970 bd->mode.command = 0;
971 if (count & 3 || sg->dma_address & 3)
972 return NULL;
973 break;
974 case DMA_SLAVE_BUSWIDTH_2_BYTES:
975 bd->mode.command = 2;
976 if (count & 1 || sg->dma_address & 1)
977 return NULL;
978 break;
979 case DMA_SLAVE_BUSWIDTH_1_BYTE:
980 bd->mode.command = 1;
981 break;
982 default:
983 return NULL;
986 param = BD_DONE | BD_EXTD | BD_CONT;
988 if (i + 1 == sg_len) {
989 param |= BD_INTR;
990 param |= BD_LAST;
991 param &= ~BD_CONT;
994 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
995 i, count, sg->dma_address,
996 param & BD_WRAP ? "wrap" : "",
997 param & BD_INTR ? " intr" : "");
999 bd->mode.status = param;
1002 sdmac->num_bd = sg_len;
1003 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1005 return &sdmac->desc;
1006 err_out:
1007 sdmac->status = DMA_ERROR;
1008 return NULL;
1011 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1012 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1013 size_t period_len, enum dma_transfer_direction direction,
1014 unsigned long flags, void *context)
1016 struct sdma_channel *sdmac = to_sdma_chan(chan);
1017 struct sdma_engine *sdma = sdmac->sdma;
1018 int num_periods = buf_len / period_len;
1019 int channel = sdmac->channel;
1020 int ret, i = 0, buf = 0;
1022 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1024 if (sdmac->status == DMA_IN_PROGRESS)
1025 return NULL;
1027 sdmac->status = DMA_IN_PROGRESS;
1029 sdmac->buf_tail = 0;
1031 sdmac->flags |= IMX_DMA_SG_LOOP;
1032 sdmac->direction = direction;
1033 ret = sdma_load_context(sdmac);
1034 if (ret)
1035 goto err_out;
1037 if (num_periods > NUM_BD) {
1038 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1039 channel, num_periods, NUM_BD);
1040 goto err_out;
1043 if (period_len > 0xffff) {
1044 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1045 channel, period_len, 0xffff);
1046 goto err_out;
1049 while (buf < buf_len) {
1050 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1051 int param;
1053 bd->buffer_addr = dma_addr;
1055 bd->mode.count = period_len;
1057 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1058 goto err_out;
1059 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1060 bd->mode.command = 0;
1061 else
1062 bd->mode.command = sdmac->word_size;
1064 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1065 if (i + 1 == num_periods)
1066 param |= BD_WRAP;
1068 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1069 i, period_len, dma_addr,
1070 param & BD_WRAP ? "wrap" : "",
1071 param & BD_INTR ? " intr" : "");
1073 bd->mode.status = param;
1075 dma_addr += period_len;
1076 buf += period_len;
1078 i++;
1081 sdmac->num_bd = num_periods;
1082 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1084 return &sdmac->desc;
1085 err_out:
1086 sdmac->status = DMA_ERROR;
1087 return NULL;
1090 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1091 unsigned long arg)
1093 struct sdma_channel *sdmac = to_sdma_chan(chan);
1094 struct dma_slave_config *dmaengine_cfg = (void *)arg;
1096 switch (cmd) {
1097 case DMA_TERMINATE_ALL:
1098 sdma_disable_channel(sdmac);
1099 return 0;
1100 case DMA_SLAVE_CONFIG:
1101 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1102 sdmac->per_address = dmaengine_cfg->src_addr;
1103 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1104 dmaengine_cfg->src_addr_width;
1105 sdmac->word_size = dmaengine_cfg->src_addr_width;
1106 } else {
1107 sdmac->per_address = dmaengine_cfg->dst_addr;
1108 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1109 dmaengine_cfg->dst_addr_width;
1110 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1112 sdmac->direction = dmaengine_cfg->direction;
1113 return sdma_config_channel(sdmac);
1114 default:
1115 return -ENOSYS;
1118 return -EINVAL;
1121 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1122 dma_cookie_t cookie,
1123 struct dma_tx_state *txstate)
1125 struct sdma_channel *sdmac = to_sdma_chan(chan);
1126 dma_cookie_t last_used;
1128 last_used = chan->cookie;
1130 dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1131 sdmac->chn_count - sdmac->chn_real_count);
1133 return sdmac->status;
1136 static void sdma_issue_pending(struct dma_chan *chan)
1138 struct sdma_channel *sdmac = to_sdma_chan(chan);
1139 struct sdma_engine *sdma = sdmac->sdma;
1141 if (sdmac->status == DMA_IN_PROGRESS)
1142 sdma_enable_channel(sdma, sdmac->channel);
1145 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1147 static void sdma_add_scripts(struct sdma_engine *sdma,
1148 const struct sdma_script_start_addrs *addr)
1150 s32 *addr_arr = (u32 *)addr;
1151 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1152 int i;
1154 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1155 if (addr_arr[i] > 0)
1156 saddr_arr[i] = addr_arr[i];
1159 static void sdma_load_firmware(const struct firmware *fw, void *context)
1161 struct sdma_engine *sdma = context;
1162 const struct sdma_firmware_header *header;
1163 const struct sdma_script_start_addrs *addr;
1164 unsigned short *ram_code;
1166 if (!fw) {
1167 dev_err(sdma->dev, "firmware not found\n");
1168 return;
1171 if (fw->size < sizeof(*header))
1172 goto err_firmware;
1174 header = (struct sdma_firmware_header *)fw->data;
1176 if (header->magic != SDMA_FIRMWARE_MAGIC)
1177 goto err_firmware;
1178 if (header->ram_code_start + header->ram_code_size > fw->size)
1179 goto err_firmware;
1181 addr = (void *)header + header->script_addrs_start;
1182 ram_code = (void *)header + header->ram_code_start;
1184 clk_enable(sdma->clk_ipg);
1185 clk_enable(sdma->clk_ahb);
1186 /* download the RAM image for SDMA */
1187 sdma_load_script(sdma, ram_code,
1188 header->ram_code_size,
1189 addr->ram_code_start_addr);
1190 clk_disable(sdma->clk_ipg);
1191 clk_disable(sdma->clk_ahb);
1193 sdma_add_scripts(sdma, addr);
1195 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1196 header->version_major,
1197 header->version_minor);
1199 err_firmware:
1200 release_firmware(fw);
1203 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1204 const char *fw_name)
1206 int ret;
1208 ret = request_firmware_nowait(THIS_MODULE,
1209 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1210 GFP_KERNEL, sdma, sdma_load_firmware);
1212 return ret;
1215 static int __init sdma_init(struct sdma_engine *sdma)
1217 int i, ret;
1218 dma_addr_t ccb_phys;
1220 switch (sdma->devtype) {
1221 case IMX31_SDMA:
1222 sdma->num_events = 32;
1223 break;
1224 case IMX35_SDMA:
1225 sdma->num_events = 48;
1226 break;
1227 default:
1228 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1229 sdma->devtype);
1230 return -ENODEV;
1233 clk_enable(sdma->clk_ipg);
1234 clk_enable(sdma->clk_ahb);
1236 /* Be sure SDMA has not started yet */
1237 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1239 sdma->channel_control = dma_alloc_coherent(NULL,
1240 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1241 sizeof(struct sdma_context_data),
1242 &ccb_phys, GFP_KERNEL);
1244 if (!sdma->channel_control) {
1245 ret = -ENOMEM;
1246 goto err_dma_alloc;
1249 sdma->context = (void *)sdma->channel_control +
1250 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1251 sdma->context_phys = ccb_phys +
1252 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1254 /* Zero-out the CCB structures array just allocated */
1255 memset(sdma->channel_control, 0,
1256 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1258 /* disable all channels */
1259 for (i = 0; i < sdma->num_events; i++)
1260 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1262 /* All channels have priority 0 */
1263 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1264 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1266 ret = sdma_request_channel(&sdma->channel[0]);
1267 if (ret)
1268 goto err_dma_alloc;
1270 sdma_config_ownership(&sdma->channel[0], false, true, false);
1272 /* Set Command Channel (Channel Zero) */
1273 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1275 /* Set bits of CONFIG register but with static context switching */
1276 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1277 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1279 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1281 /* Set bits of CONFIG register with given context switching mode */
1282 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1284 /* Initializes channel's priorities */
1285 sdma_set_channel_priority(&sdma->channel[0], 7);
1287 clk_disable(sdma->clk_ipg);
1288 clk_disable(sdma->clk_ahb);
1290 return 0;
1292 err_dma_alloc:
1293 clk_disable(sdma->clk_ipg);
1294 clk_disable(sdma->clk_ahb);
1295 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1296 return ret;
1299 static int __init sdma_probe(struct platform_device *pdev)
1301 const struct of_device_id *of_id =
1302 of_match_device(sdma_dt_ids, &pdev->dev);
1303 struct device_node *np = pdev->dev.of_node;
1304 const char *fw_name;
1305 int ret;
1306 int irq;
1307 struct resource *iores;
1308 struct sdma_platform_data *pdata = pdev->dev.platform_data;
1309 int i;
1310 struct sdma_engine *sdma;
1311 s32 *saddr_arr;
1313 sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1314 if (!sdma)
1315 return -ENOMEM;
1317 spin_lock_init(&sdma->channel_0_lock);
1319 sdma->dev = &pdev->dev;
1321 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1322 irq = platform_get_irq(pdev, 0);
1323 if (!iores || irq < 0) {
1324 ret = -EINVAL;
1325 goto err_irq;
1328 if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1329 ret = -EBUSY;
1330 goto err_request_region;
1333 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1334 if (IS_ERR(sdma->clk_ipg)) {
1335 ret = PTR_ERR(sdma->clk_ipg);
1336 goto err_clk;
1339 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1340 if (IS_ERR(sdma->clk_ahb)) {
1341 ret = PTR_ERR(sdma->clk_ahb);
1342 goto err_clk;
1345 clk_prepare(sdma->clk_ipg);
1346 clk_prepare(sdma->clk_ahb);
1348 sdma->regs = ioremap(iores->start, resource_size(iores));
1349 if (!sdma->regs) {
1350 ret = -ENOMEM;
1351 goto err_ioremap;
1354 ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1355 if (ret)
1356 goto err_request_irq;
1358 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1359 if (!sdma->script_addrs) {
1360 ret = -ENOMEM;
1361 goto err_alloc;
1364 /* initially no scripts available */
1365 saddr_arr = (s32 *)sdma->script_addrs;
1366 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1367 saddr_arr[i] = -EINVAL;
1369 if (of_id)
1370 pdev->id_entry = of_id->data;
1371 sdma->devtype = pdev->id_entry->driver_data;
1373 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1374 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1376 INIT_LIST_HEAD(&sdma->dma_device.channels);
1377 /* Initialize channel parameters */
1378 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1379 struct sdma_channel *sdmac = &sdma->channel[i];
1381 sdmac->sdma = sdma;
1382 spin_lock_init(&sdmac->lock);
1384 sdmac->chan.device = &sdma->dma_device;
1385 dma_cookie_init(&sdmac->chan);
1386 sdmac->channel = i;
1388 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1389 (unsigned long) sdmac);
1391 * Add the channel to the DMAC list. Do not add channel 0 though
1392 * because we need it internally in the SDMA driver. This also means
1393 * that channel 0 in dmaengine counting matches sdma channel 1.
1395 if (i)
1396 list_add_tail(&sdmac->chan.device_node,
1397 &sdma->dma_device.channels);
1400 ret = sdma_init(sdma);
1401 if (ret)
1402 goto err_init;
1404 if (pdata && pdata->script_addrs)
1405 sdma_add_scripts(sdma, pdata->script_addrs);
1407 if (pdata) {
1408 ret = sdma_get_firmware(sdma, pdata->fw_name);
1409 if (ret)
1410 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1411 } else {
1413 * Because that device tree does not encode ROM script address,
1414 * the RAM script in firmware is mandatory for device tree
1415 * probe, otherwise it fails.
1417 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1418 &fw_name);
1419 if (ret)
1420 dev_warn(&pdev->dev, "failed to get firmware name\n");
1421 else {
1422 ret = sdma_get_firmware(sdma, fw_name);
1423 if (ret)
1424 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1428 sdma->dma_device.dev = &pdev->dev;
1430 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1431 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1432 sdma->dma_device.device_tx_status = sdma_tx_status;
1433 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1434 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1435 sdma->dma_device.device_control = sdma_control;
1436 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1437 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1438 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1440 ret = dma_async_device_register(&sdma->dma_device);
1441 if (ret) {
1442 dev_err(&pdev->dev, "unable to register\n");
1443 goto err_init;
1446 dev_info(sdma->dev, "initialized\n");
1448 return 0;
1450 err_init:
1451 kfree(sdma->script_addrs);
1452 err_alloc:
1453 free_irq(irq, sdma);
1454 err_request_irq:
1455 iounmap(sdma->regs);
1456 err_ioremap:
1457 err_clk:
1458 release_mem_region(iores->start, resource_size(iores));
1459 err_request_region:
1460 err_irq:
1461 kfree(sdma);
1462 return ret;
1465 static int sdma_remove(struct platform_device *pdev)
1467 return -EBUSY;
1470 static struct platform_driver sdma_driver = {
1471 .driver = {
1472 .name = "imx-sdma",
1473 .of_match_table = sdma_dt_ids,
1475 .id_table = sdma_devtypes,
1476 .remove = sdma_remove,
1479 static int __init sdma_module_init(void)
1481 return platform_driver_probe(&sdma_driver, sdma_probe);
1483 module_init(sdma_module_init);
1485 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1486 MODULE_DESCRIPTION("i.MX SDMA driver");
1487 MODULE_LICENSE("GPL");