4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
41 #include <linux/uaccess.h>
42 #include <linux/compat.h>
43 #include <asm/unistd.h>
45 #include <generated/timeconst.h>
46 #include "timekeeping.h"
49 * The timezone where the local system is located. Used as a default by some
50 * programs who obtain this value by using gettimeofday.
52 struct timezone sys_tz
;
54 EXPORT_SYMBOL(sys_tz
);
56 #ifdef __ARCH_WANT_SYS_TIME
59 * sys_time() can be implemented in user-level using
60 * sys_gettimeofday(). Is this for backwards compatibility? If so,
61 * why not move it into the appropriate arch directory (for those
62 * architectures that need it).
64 SYSCALL_DEFINE1(time
, time_t __user
*, tloc
)
66 time_t i
= get_seconds();
72 force_successful_syscall_return();
77 * sys_stime() can be implemented in user-level using
78 * sys_settimeofday(). Is this for backwards compatibility? If so,
79 * why not move it into the appropriate arch directory (for those
80 * architectures that need it).
83 SYSCALL_DEFINE1(stime
, time_t __user
*, tptr
)
88 if (get_user(tv
.tv_sec
, tptr
))
93 err
= security_settime64(&tv
, NULL
);
97 do_settimeofday64(&tv
);
101 #endif /* __ARCH_WANT_SYS_TIME */
104 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
106 /* compat_time_t is a 32 bit "long" and needs to get converted. */
107 COMPAT_SYSCALL_DEFINE1(time
, compat_time_t __user
*, tloc
)
112 do_gettimeofday(&tv
);
116 if (put_user(i
,tloc
))
119 force_successful_syscall_return();
123 COMPAT_SYSCALL_DEFINE1(stime
, compat_time_t __user
*, tptr
)
125 struct timespec64 tv
;
128 if (get_user(tv
.tv_sec
, tptr
))
133 err
= security_settime64(&tv
, NULL
);
137 do_settimeofday64(&tv
);
141 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
144 SYSCALL_DEFINE2(gettimeofday
, struct timeval __user
*, tv
,
145 struct timezone __user
*, tz
)
147 if (likely(tv
!= NULL
)) {
149 do_gettimeofday(&ktv
);
150 if (copy_to_user(tv
, &ktv
, sizeof(ktv
)))
153 if (unlikely(tz
!= NULL
)) {
154 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
161 * In case for some reason the CMOS clock has not already been running
162 * in UTC, but in some local time: The first time we set the timezone,
163 * we will warp the clock so that it is ticking UTC time instead of
164 * local time. Presumably, if someone is setting the timezone then we
165 * are running in an environment where the programs understand about
166 * timezones. This should be done at boot time in the /etc/rc script,
167 * as soon as possible, so that the clock can be set right. Otherwise,
168 * various programs will get confused when the clock gets warped.
171 int do_sys_settimeofday64(const struct timespec64
*tv
, const struct timezone
*tz
)
173 static int firsttime
= 1;
176 if (tv
&& !timespec64_valid(tv
))
179 error
= security_settime64(tv
, tz
);
184 /* Verify we're witin the +-15 hrs range */
185 if (tz
->tz_minuteswest
> 15*60 || tz
->tz_minuteswest
< -15*60)
189 update_vsyscall_tz();
193 timekeeping_warp_clock();
197 return do_settimeofday64(tv
);
201 SYSCALL_DEFINE2(settimeofday
, struct timeval __user
*, tv
,
202 struct timezone __user
*, tz
)
204 struct timespec64 new_ts
;
205 struct timeval user_tv
;
206 struct timezone new_tz
;
209 if (copy_from_user(&user_tv
, tv
, sizeof(*tv
)))
212 if (!timeval_valid(&user_tv
))
215 new_ts
.tv_sec
= user_tv
.tv_sec
;
216 new_ts
.tv_nsec
= user_tv
.tv_usec
* NSEC_PER_USEC
;
219 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
223 return do_sys_settimeofday64(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
227 COMPAT_SYSCALL_DEFINE2(gettimeofday
, struct compat_timeval __user
*, tv
,
228 struct timezone __user
*, tz
)
233 do_gettimeofday(&ktv
);
234 if (compat_put_timeval(&ktv
, tv
))
238 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
245 COMPAT_SYSCALL_DEFINE2(settimeofday
, struct compat_timeval __user
*, tv
,
246 struct timezone __user
*, tz
)
248 struct timespec64 new_ts
;
249 struct timeval user_tv
;
250 struct timezone new_tz
;
253 if (compat_get_timeval(&user_tv
, tv
))
255 new_ts
.tv_sec
= user_tv
.tv_sec
;
256 new_ts
.tv_nsec
= user_tv
.tv_usec
* NSEC_PER_USEC
;
259 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
263 return do_sys_settimeofday64(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
267 SYSCALL_DEFINE1(adjtimex
, struct timex __user
*, txc_p
)
269 struct timex txc
; /* Local copy of parameter */
272 /* Copy the user data space into the kernel copy
273 * structure. But bear in mind that the structures
276 if (copy_from_user(&txc
, txc_p
, sizeof(struct timex
)))
278 ret
= do_adjtimex(&txc
);
279 return copy_to_user(txc_p
, &txc
, sizeof(struct timex
)) ? -EFAULT
: ret
;
284 COMPAT_SYSCALL_DEFINE1(adjtimex
, struct compat_timex __user
*, utp
)
289 err
= compat_get_timex(&txc
, utp
);
293 ret
= do_adjtimex(&txc
);
295 err
= compat_put_timex(utp
, &txc
);
304 * Convert jiffies to milliseconds and back.
306 * Avoid unnecessary multiplications/divisions in the
307 * two most common HZ cases:
309 unsigned int jiffies_to_msecs(const unsigned long j
)
311 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
312 return (MSEC_PER_SEC
/ HZ
) * j
;
313 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
314 return (j
+ (HZ
/ MSEC_PER_SEC
) - 1)/(HZ
/ MSEC_PER_SEC
);
316 # if BITS_PER_LONG == 32
317 return (HZ_TO_MSEC_MUL32
* j
) >> HZ_TO_MSEC_SHR32
;
319 return (j
* HZ_TO_MSEC_NUM
) / HZ_TO_MSEC_DEN
;
323 EXPORT_SYMBOL(jiffies_to_msecs
);
325 unsigned int jiffies_to_usecs(const unsigned long j
)
328 * Hz usually doesn't go much further MSEC_PER_SEC.
329 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
331 BUILD_BUG_ON(HZ
> USEC_PER_SEC
);
333 #if !(USEC_PER_SEC % HZ)
334 return (USEC_PER_SEC
/ HZ
) * j
;
336 # if BITS_PER_LONG == 32
337 return (HZ_TO_USEC_MUL32
* j
) >> HZ_TO_USEC_SHR32
;
339 return (j
* HZ_TO_USEC_NUM
) / HZ_TO_USEC_DEN
;
343 EXPORT_SYMBOL(jiffies_to_usecs
);
346 * timespec_trunc - Truncate timespec to a granularity
348 * @gran: Granularity in ns.
350 * Truncate a timespec to a granularity. Always rounds down. gran must
351 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
353 struct timespec
timespec_trunc(struct timespec t
, unsigned gran
)
355 /* Avoid division in the common cases 1 ns and 1 s. */
358 } else if (gran
== NSEC_PER_SEC
) {
360 } else if (gran
> 1 && gran
< NSEC_PER_SEC
) {
361 t
.tv_nsec
-= t
.tv_nsec
% gran
;
363 WARN(1, "illegal file time granularity: %u", gran
);
367 EXPORT_SYMBOL(timespec_trunc
);
370 * mktime64 - Converts date to seconds.
371 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
372 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
373 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
375 * [For the Julian calendar (which was used in Russia before 1917,
376 * Britain & colonies before 1752, anywhere else before 1582,
377 * and is still in use by some communities) leave out the
378 * -year/100+year/400 terms, and add 10.]
380 * This algorithm was first published by Gauss (I think).
382 * A leap second can be indicated by calling this function with sec as
383 * 60 (allowable under ISO 8601). The leap second is treated the same
384 * as the following second since they don't exist in UNIX time.
386 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
387 * tomorrow - (allowable under ISO 8601) is supported.
389 time64_t
mktime64(const unsigned int year0
, const unsigned int mon0
,
390 const unsigned int day
, const unsigned int hour
,
391 const unsigned int min
, const unsigned int sec
)
393 unsigned int mon
= mon0
, year
= year0
;
395 /* 1..12 -> 11,12,1..10 */
396 if (0 >= (int) (mon
-= 2)) {
397 mon
+= 12; /* Puts Feb last since it has leap day */
402 (year
/4 - year
/100 + year
/400 + 367*mon
/12 + day
) +
404 )*24 + hour
/* now have hours - midnight tomorrow handled here */
405 )*60 + min
/* now have minutes */
406 )*60 + sec
; /* finally seconds */
408 EXPORT_SYMBOL(mktime64
);
410 #if __BITS_PER_LONG == 32
412 * set_normalized_timespec - set timespec sec and nsec parts and normalize
414 * @ts: pointer to timespec variable to be set
415 * @sec: seconds to set
416 * @nsec: nanoseconds to set
418 * Set seconds and nanoseconds field of a timespec variable and
419 * normalize to the timespec storage format
421 * Note: The tv_nsec part is always in the range of
422 * 0 <= tv_nsec < NSEC_PER_SEC
423 * For negative values only the tv_sec field is negative !
425 void set_normalized_timespec(struct timespec
*ts
, time_t sec
, s64 nsec
)
427 while (nsec
>= NSEC_PER_SEC
) {
429 * The following asm() prevents the compiler from
430 * optimising this loop into a modulo operation. See
431 * also __iter_div_u64_rem() in include/linux/time.h
433 asm("" : "+rm"(nsec
));
434 nsec
-= NSEC_PER_SEC
;
438 asm("" : "+rm"(nsec
));
439 nsec
+= NSEC_PER_SEC
;
445 EXPORT_SYMBOL(set_normalized_timespec
);
448 * ns_to_timespec - Convert nanoseconds to timespec
449 * @nsec: the nanoseconds value to be converted
451 * Returns the timespec representation of the nsec parameter.
453 struct timespec
ns_to_timespec(const s64 nsec
)
459 return (struct timespec
) {0, 0};
461 ts
.tv_sec
= div_s64_rem(nsec
, NSEC_PER_SEC
, &rem
);
462 if (unlikely(rem
< 0)) {
470 EXPORT_SYMBOL(ns_to_timespec
);
474 * ns_to_timeval - Convert nanoseconds to timeval
475 * @nsec: the nanoseconds value to be converted
477 * Returns the timeval representation of the nsec parameter.
479 struct timeval
ns_to_timeval(const s64 nsec
)
481 struct timespec ts
= ns_to_timespec(nsec
);
484 tv
.tv_sec
= ts
.tv_sec
;
485 tv
.tv_usec
= (suseconds_t
) ts
.tv_nsec
/ 1000;
489 EXPORT_SYMBOL(ns_to_timeval
);
492 * set_normalized_timespec - set timespec sec and nsec parts and normalize
494 * @ts: pointer to timespec variable to be set
495 * @sec: seconds to set
496 * @nsec: nanoseconds to set
498 * Set seconds and nanoseconds field of a timespec variable and
499 * normalize to the timespec storage format
501 * Note: The tv_nsec part is always in the range of
502 * 0 <= tv_nsec < NSEC_PER_SEC
503 * For negative values only the tv_sec field is negative !
505 void set_normalized_timespec64(struct timespec64
*ts
, time64_t sec
, s64 nsec
)
507 while (nsec
>= NSEC_PER_SEC
) {
509 * The following asm() prevents the compiler from
510 * optimising this loop into a modulo operation. See
511 * also __iter_div_u64_rem() in include/linux/time.h
513 asm("" : "+rm"(nsec
));
514 nsec
-= NSEC_PER_SEC
;
518 asm("" : "+rm"(nsec
));
519 nsec
+= NSEC_PER_SEC
;
525 EXPORT_SYMBOL(set_normalized_timespec64
);
528 * ns_to_timespec64 - Convert nanoseconds to timespec64
529 * @nsec: the nanoseconds value to be converted
531 * Returns the timespec64 representation of the nsec parameter.
533 struct timespec64
ns_to_timespec64(const s64 nsec
)
535 struct timespec64 ts
;
539 return (struct timespec64
) {0, 0};
541 ts
.tv_sec
= div_s64_rem(nsec
, NSEC_PER_SEC
, &rem
);
542 if (unlikely(rem
< 0)) {
550 EXPORT_SYMBOL(ns_to_timespec64
);
553 * msecs_to_jiffies: - convert milliseconds to jiffies
554 * @m: time in milliseconds
556 * conversion is done as follows:
558 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
560 * - 'too large' values [that would result in larger than
561 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
563 * - all other values are converted to jiffies by either multiplying
564 * the input value by a factor or dividing it with a factor and
565 * handling any 32-bit overflows.
566 * for the details see __msecs_to_jiffies()
568 * msecs_to_jiffies() checks for the passed in value being a constant
569 * via __builtin_constant_p() allowing gcc to eliminate most of the
570 * code, __msecs_to_jiffies() is called if the value passed does not
571 * allow constant folding and the actual conversion must be done at
573 * the _msecs_to_jiffies helpers are the HZ dependent conversion
574 * routines found in include/linux/jiffies.h
576 unsigned long __msecs_to_jiffies(const unsigned int m
)
579 * Negative value, means infinite timeout:
582 return MAX_JIFFY_OFFSET
;
583 return _msecs_to_jiffies(m
);
585 EXPORT_SYMBOL(__msecs_to_jiffies
);
587 unsigned long __usecs_to_jiffies(const unsigned int u
)
589 if (u
> jiffies_to_usecs(MAX_JIFFY_OFFSET
))
590 return MAX_JIFFY_OFFSET
;
591 return _usecs_to_jiffies(u
);
593 EXPORT_SYMBOL(__usecs_to_jiffies
);
596 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
597 * that a remainder subtract here would not do the right thing as the
598 * resolution values don't fall on second boundries. I.e. the line:
599 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
600 * Note that due to the small error in the multiplier here, this
601 * rounding is incorrect for sufficiently large values of tv_nsec, but
602 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
605 * Rather, we just shift the bits off the right.
607 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
608 * value to a scaled second value.
611 __timespec64_to_jiffies(u64 sec
, long nsec
)
613 nsec
= nsec
+ TICK_NSEC
- 1;
615 if (sec
>= MAX_SEC_IN_JIFFIES
){
616 sec
= MAX_SEC_IN_JIFFIES
;
619 return ((sec
* SEC_CONVERSION
) +
620 (((u64
)nsec
* NSEC_CONVERSION
) >>
621 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
626 __timespec_to_jiffies(unsigned long sec
, long nsec
)
628 return __timespec64_to_jiffies((u64
)sec
, nsec
);
632 timespec64_to_jiffies(const struct timespec64
*value
)
634 return __timespec64_to_jiffies(value
->tv_sec
, value
->tv_nsec
);
636 EXPORT_SYMBOL(timespec64_to_jiffies
);
639 jiffies_to_timespec64(const unsigned long jiffies
, struct timespec64
*value
)
642 * Convert jiffies to nanoseconds and separate with
646 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
648 value
->tv_nsec
= rem
;
650 EXPORT_SYMBOL(jiffies_to_timespec64
);
653 * We could use a similar algorithm to timespec_to_jiffies (with a
654 * different multiplier for usec instead of nsec). But this has a
655 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
656 * usec value, since it's not necessarily integral.
658 * We could instead round in the intermediate scaled representation
659 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
660 * perilous: the scaling introduces a small positive error, which
661 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
662 * units to the intermediate before shifting) leads to accidental
663 * overflow and overestimates.
665 * At the cost of one additional multiplication by a constant, just
666 * use the timespec implementation.
669 timeval_to_jiffies(const struct timeval
*value
)
671 return __timespec_to_jiffies(value
->tv_sec
,
672 value
->tv_usec
* NSEC_PER_USEC
);
674 EXPORT_SYMBOL(timeval_to_jiffies
);
676 void jiffies_to_timeval(const unsigned long jiffies
, struct timeval
*value
)
679 * Convert jiffies to nanoseconds and separate with
684 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
686 value
->tv_usec
= rem
/ NSEC_PER_USEC
;
688 EXPORT_SYMBOL(jiffies_to_timeval
);
691 * Convert jiffies/jiffies_64 to clock_t and back.
693 clock_t jiffies_to_clock_t(unsigned long x
)
695 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
697 return x
* (USER_HZ
/ HZ
);
699 return x
/ (HZ
/ USER_HZ
);
702 return div_u64((u64
)x
* TICK_NSEC
, NSEC_PER_SEC
/ USER_HZ
);
705 EXPORT_SYMBOL(jiffies_to_clock_t
);
707 unsigned long clock_t_to_jiffies(unsigned long x
)
709 #if (HZ % USER_HZ)==0
710 if (x
>= ~0UL / (HZ
/ USER_HZ
))
712 return x
* (HZ
/ USER_HZ
);
714 /* Don't worry about loss of precision here .. */
715 if (x
>= ~0UL / HZ
* USER_HZ
)
718 /* .. but do try to contain it here */
719 return div_u64((u64
)x
* HZ
, USER_HZ
);
722 EXPORT_SYMBOL(clock_t_to_jiffies
);
724 u64
jiffies_64_to_clock_t(u64 x
)
726 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
728 x
= div_u64(x
* USER_HZ
, HZ
);
730 x
= div_u64(x
, HZ
/ USER_HZ
);
736 * There are better ways that don't overflow early,
737 * but even this doesn't overflow in hundreds of years
740 x
= div_u64(x
* TICK_NSEC
, (NSEC_PER_SEC
/ USER_HZ
));
744 EXPORT_SYMBOL(jiffies_64_to_clock_t
);
746 u64
nsec_to_clock_t(u64 x
)
748 #if (NSEC_PER_SEC % USER_HZ) == 0
749 return div_u64(x
, NSEC_PER_SEC
/ USER_HZ
);
750 #elif (USER_HZ % 512) == 0
751 return div_u64(x
* USER_HZ
/ 512, NSEC_PER_SEC
/ 512);
754 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
755 * overflow after 64.99 years.
756 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
758 return div_u64(x
* 9, (9ull * NSEC_PER_SEC
+ (USER_HZ
/ 2)) / USER_HZ
);
762 u64
jiffies64_to_nsecs(u64 j
)
764 #if !(NSEC_PER_SEC % HZ)
765 return (NSEC_PER_SEC
/ HZ
) * j
;
767 return div_u64(j
* HZ_TO_NSEC_NUM
, HZ_TO_NSEC_DEN
);
770 EXPORT_SYMBOL(jiffies64_to_nsecs
);
773 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
777 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
778 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
779 * for scheduler, not for use in device drivers to calculate timeout value.
782 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
783 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
785 u64
nsecs_to_jiffies64(u64 n
)
787 #if (NSEC_PER_SEC % HZ) == 0
788 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
789 return div_u64(n
, NSEC_PER_SEC
/ HZ
);
790 #elif (HZ % 512) == 0
791 /* overflow after 292 years if HZ = 1024 */
792 return div_u64(n
* HZ
/ 512, NSEC_PER_SEC
/ 512);
795 * Generic case - optimized for cases where HZ is a multiple of 3.
796 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
798 return div_u64(n
* 9, (9ull * NSEC_PER_SEC
+ HZ
/ 2) / HZ
);
801 EXPORT_SYMBOL(nsecs_to_jiffies64
);
804 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
808 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
809 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
810 * for scheduler, not for use in device drivers to calculate timeout value.
813 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
814 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
816 unsigned long nsecs_to_jiffies(u64 n
)
818 return (unsigned long)nsecs_to_jiffies64(n
);
820 EXPORT_SYMBOL_GPL(nsecs_to_jiffies
);
823 * Add two timespec64 values and do a safety check for overflow.
824 * It's assumed that both values are valid (>= 0).
825 * And, each timespec64 is in normalized form.
827 struct timespec64
timespec64_add_safe(const struct timespec64 lhs
,
828 const struct timespec64 rhs
)
830 struct timespec64 res
;
832 set_normalized_timespec64(&res
, (timeu64_t
) lhs
.tv_sec
+ rhs
.tv_sec
,
833 lhs
.tv_nsec
+ rhs
.tv_nsec
);
835 if (unlikely(res
.tv_sec
< lhs
.tv_sec
|| res
.tv_sec
< rhs
.tv_sec
)) {
836 res
.tv_sec
= TIME64_MAX
;
843 int get_timespec64(struct timespec64
*ts
,
844 const struct timespec __user
*uts
)
849 ret
= copy_from_user(&kts
, uts
, sizeof(kts
));
853 ts
->tv_sec
= kts
.tv_sec
;
854 ts
->tv_nsec
= kts
.tv_nsec
;
858 EXPORT_SYMBOL_GPL(get_timespec64
);
860 int put_timespec64(const struct timespec64
*ts
,
861 struct timespec __user
*uts
)
863 struct timespec kts
= {
864 .tv_sec
= ts
->tv_sec
,
865 .tv_nsec
= ts
->tv_nsec
867 return copy_to_user(uts
, &kts
, sizeof(kts
)) ? -EFAULT
: 0;
869 EXPORT_SYMBOL_GPL(put_timespec64
);
871 int get_itimerspec64(struct itimerspec64
*it
,
872 const struct itimerspec __user
*uit
)
876 ret
= get_timespec64(&it
->it_interval
, &uit
->it_interval
);
880 ret
= get_timespec64(&it
->it_value
, &uit
->it_value
);
884 EXPORT_SYMBOL_GPL(get_itimerspec64
);
886 int put_itimerspec64(const struct itimerspec64
*it
,
887 struct itimerspec __user
*uit
)
891 ret
= put_timespec64(&it
->it_interval
, &uit
->it_interval
);
895 ret
= put_timespec64(&it
->it_value
, &uit
->it_value
);
899 EXPORT_SYMBOL_GPL(put_itimerspec64
);