Linux 3.6.10
[linux/fpc-iii.git] / fs / ext4 / mballoc.c
blobb26410c8f852496c8b3e71d8685d66118374c950
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <trace/events/ext4.h>
31 * MUSTDO:
32 * - test ext4_ext_search_left() and ext4_ext_search_right()
33 * - search for metadata in few groups
35 * TODO v4:
36 * - normalization should take into account whether file is still open
37 * - discard preallocations if no free space left (policy?)
38 * - don't normalize tails
39 * - quota
40 * - reservation for superuser
42 * TODO v3:
43 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
44 * - track min/max extents in each group for better group selection
45 * - mb_mark_used() may allocate chunk right after splitting buddy
46 * - tree of groups sorted by number of free blocks
47 * - error handling
51 * The allocation request involve request for multiple number of blocks
52 * near to the goal(block) value specified.
54 * During initialization phase of the allocator we decide to use the
55 * group preallocation or inode preallocation depending on the size of
56 * the file. The size of the file could be the resulting file size we
57 * would have after allocation, or the current file size, which ever
58 * is larger. If the size is less than sbi->s_mb_stream_request we
59 * select to use the group preallocation. The default value of
60 * s_mb_stream_request is 16 blocks. This can also be tuned via
61 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
62 * terms of number of blocks.
64 * The main motivation for having small file use group preallocation is to
65 * ensure that we have small files closer together on the disk.
67 * First stage the allocator looks at the inode prealloc list,
68 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
69 * spaces for this particular inode. The inode prealloc space is
70 * represented as:
72 * pa_lstart -> the logical start block for this prealloc space
73 * pa_pstart -> the physical start block for this prealloc space
74 * pa_len -> length for this prealloc space (in clusters)
75 * pa_free -> free space available in this prealloc space (in clusters)
77 * The inode preallocation space is used looking at the _logical_ start
78 * block. If only the logical file block falls within the range of prealloc
79 * space we will consume the particular prealloc space. This makes sure that
80 * we have contiguous physical blocks representing the file blocks
82 * The important thing to be noted in case of inode prealloc space is that
83 * we don't modify the values associated to inode prealloc space except
84 * pa_free.
86 * If we are not able to find blocks in the inode prealloc space and if we
87 * have the group allocation flag set then we look at the locality group
88 * prealloc space. These are per CPU prealloc list represented as
90 * ext4_sb_info.s_locality_groups[smp_processor_id()]
92 * The reason for having a per cpu locality group is to reduce the contention
93 * between CPUs. It is possible to get scheduled at this point.
95 * The locality group prealloc space is used looking at whether we have
96 * enough free space (pa_free) within the prealloc space.
98 * If we can't allocate blocks via inode prealloc or/and locality group
99 * prealloc then we look at the buddy cache. The buddy cache is represented
100 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
101 * mapped to the buddy and bitmap information regarding different
102 * groups. The buddy information is attached to buddy cache inode so that
103 * we can access them through the page cache. The information regarding
104 * each group is loaded via ext4_mb_load_buddy. The information involve
105 * block bitmap and buddy information. The information are stored in the
106 * inode as:
108 * { page }
109 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
112 * one block each for bitmap and buddy information. So for each group we
113 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
114 * blocksize) blocks. So it can have information regarding groups_per_page
115 * which is blocks_per_page/2
117 * The buddy cache inode is not stored on disk. The inode is thrown
118 * away when the filesystem is unmounted.
120 * We look for count number of blocks in the buddy cache. If we were able
121 * to locate that many free blocks we return with additional information
122 * regarding rest of the contiguous physical block available
124 * Before allocating blocks via buddy cache we normalize the request
125 * blocks. This ensure we ask for more blocks that we needed. The extra
126 * blocks that we get after allocation is added to the respective prealloc
127 * list. In case of inode preallocation we follow a list of heuristics
128 * based on file size. This can be found in ext4_mb_normalize_request. If
129 * we are doing a group prealloc we try to normalize the request to
130 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
131 * dependent on the cluster size; for non-bigalloc file systems, it is
132 * 512 blocks. This can be tuned via
133 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
134 * terms of number of blocks. If we have mounted the file system with -O
135 * stripe=<value> option the group prealloc request is normalized to the
136 * the smallest multiple of the stripe value (sbi->s_stripe) which is
137 * greater than the default mb_group_prealloc.
139 * The regular allocator (using the buddy cache) supports a few tunables.
141 * /sys/fs/ext4/<partition>/mb_min_to_scan
142 * /sys/fs/ext4/<partition>/mb_max_to_scan
143 * /sys/fs/ext4/<partition>/mb_order2_req
145 * The regular allocator uses buddy scan only if the request len is power of
146 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
147 * value of s_mb_order2_reqs can be tuned via
148 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
149 * stripe size (sbi->s_stripe), we try to search for contiguous block in
150 * stripe size. This should result in better allocation on RAID setups. If
151 * not, we search in the specific group using bitmap for best extents. The
152 * tunable min_to_scan and max_to_scan control the behaviour here.
153 * min_to_scan indicate how long the mballoc __must__ look for a best
154 * extent and max_to_scan indicates how long the mballoc __can__ look for a
155 * best extent in the found extents. Searching for the blocks starts with
156 * the group specified as the goal value in allocation context via
157 * ac_g_ex. Each group is first checked based on the criteria whether it
158 * can be used for allocation. ext4_mb_good_group explains how the groups are
159 * checked.
161 * Both the prealloc space are getting populated as above. So for the first
162 * request we will hit the buddy cache which will result in this prealloc
163 * space getting filled. The prealloc space is then later used for the
164 * subsequent request.
168 * mballoc operates on the following data:
169 * - on-disk bitmap
170 * - in-core buddy (actually includes buddy and bitmap)
171 * - preallocation descriptors (PAs)
173 * there are two types of preallocations:
174 * - inode
175 * assiged to specific inode and can be used for this inode only.
176 * it describes part of inode's space preallocated to specific
177 * physical blocks. any block from that preallocated can be used
178 * independent. the descriptor just tracks number of blocks left
179 * unused. so, before taking some block from descriptor, one must
180 * make sure corresponded logical block isn't allocated yet. this
181 * also means that freeing any block within descriptor's range
182 * must discard all preallocated blocks.
183 * - locality group
184 * assigned to specific locality group which does not translate to
185 * permanent set of inodes: inode can join and leave group. space
186 * from this type of preallocation can be used for any inode. thus
187 * it's consumed from the beginning to the end.
189 * relation between them can be expressed as:
190 * in-core buddy = on-disk bitmap + preallocation descriptors
192 * this mean blocks mballoc considers used are:
193 * - allocated blocks (persistent)
194 * - preallocated blocks (non-persistent)
196 * consistency in mballoc world means that at any time a block is either
197 * free or used in ALL structures. notice: "any time" should not be read
198 * literally -- time is discrete and delimited by locks.
200 * to keep it simple, we don't use block numbers, instead we count number of
201 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
203 * all operations can be expressed as:
204 * - init buddy: buddy = on-disk + PAs
205 * - new PA: buddy += N; PA = N
206 * - use inode PA: on-disk += N; PA -= N
207 * - discard inode PA buddy -= on-disk - PA; PA = 0
208 * - use locality group PA on-disk += N; PA -= N
209 * - discard locality group PA buddy -= PA; PA = 0
210 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
211 * is used in real operation because we can't know actual used
212 * bits from PA, only from on-disk bitmap
214 * if we follow this strict logic, then all operations above should be atomic.
215 * given some of them can block, we'd have to use something like semaphores
216 * killing performance on high-end SMP hardware. let's try to relax it using
217 * the following knowledge:
218 * 1) if buddy is referenced, it's already initialized
219 * 2) while block is used in buddy and the buddy is referenced,
220 * nobody can re-allocate that block
221 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
222 * bit set and PA claims same block, it's OK. IOW, one can set bit in
223 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
224 * block
226 * so, now we're building a concurrency table:
227 * - init buddy vs.
228 * - new PA
229 * blocks for PA are allocated in the buddy, buddy must be referenced
230 * until PA is linked to allocation group to avoid concurrent buddy init
231 * - use inode PA
232 * we need to make sure that either on-disk bitmap or PA has uptodate data
233 * given (3) we care that PA-=N operation doesn't interfere with init
234 * - discard inode PA
235 * the simplest way would be to have buddy initialized by the discard
236 * - use locality group PA
237 * again PA-=N must be serialized with init
238 * - discard locality group PA
239 * the simplest way would be to have buddy initialized by the discard
240 * - new PA vs.
241 * - use inode PA
242 * i_data_sem serializes them
243 * - discard inode PA
244 * discard process must wait until PA isn't used by another process
245 * - use locality group PA
246 * some mutex should serialize them
247 * - discard locality group PA
248 * discard process must wait until PA isn't used by another process
249 * - use inode PA
250 * - use inode PA
251 * i_data_sem or another mutex should serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * nothing wrong here -- they're different PAs covering different blocks
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
259 * now we're ready to make few consequences:
260 * - PA is referenced and while it is no discard is possible
261 * - PA is referenced until block isn't marked in on-disk bitmap
262 * - PA changes only after on-disk bitmap
263 * - discard must not compete with init. either init is done before
264 * any discard or they're serialized somehow
265 * - buddy init as sum of on-disk bitmap and PAs is done atomically
267 * a special case when we've used PA to emptiness. no need to modify buddy
268 * in this case, but we should care about concurrent init
273 * Logic in few words:
275 * - allocation:
276 * load group
277 * find blocks
278 * mark bits in on-disk bitmap
279 * release group
281 * - use preallocation:
282 * find proper PA (per-inode or group)
283 * load group
284 * mark bits in on-disk bitmap
285 * release group
286 * release PA
288 * - free:
289 * load group
290 * mark bits in on-disk bitmap
291 * release group
293 * - discard preallocations in group:
294 * mark PAs deleted
295 * move them onto local list
296 * load on-disk bitmap
297 * load group
298 * remove PA from object (inode or locality group)
299 * mark free blocks in-core
301 * - discard inode's preallocations:
305 * Locking rules
307 * Locks:
308 * - bitlock on a group (group)
309 * - object (inode/locality) (object)
310 * - per-pa lock (pa)
312 * Paths:
313 * - new pa
314 * object
315 * group
317 * - find and use pa:
318 * pa
320 * - release consumed pa:
321 * pa
322 * group
323 * object
325 * - generate in-core bitmap:
326 * group
327 * pa
329 * - discard all for given object (inode, locality group):
330 * object
331 * pa
332 * group
334 * - discard all for given group:
335 * group
336 * pa
337 * group
338 * object
341 static struct kmem_cache *ext4_pspace_cachep;
342 static struct kmem_cache *ext4_ac_cachep;
343 static struct kmem_cache *ext4_free_data_cachep;
345 /* We create slab caches for groupinfo data structures based on the
346 * superblock block size. There will be one per mounted filesystem for
347 * each unique s_blocksize_bits */
348 #define NR_GRPINFO_CACHES 8
349 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
351 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
352 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
353 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
354 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
357 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
358 ext4_group_t group);
359 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
360 ext4_group_t group);
361 static void ext4_free_data_callback(struct super_block *sb,
362 struct ext4_journal_cb_entry *jce, int rc);
364 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
366 #if BITS_PER_LONG == 64
367 *bit += ((unsigned long) addr & 7UL) << 3;
368 addr = (void *) ((unsigned long) addr & ~7UL);
369 #elif BITS_PER_LONG == 32
370 *bit += ((unsigned long) addr & 3UL) << 3;
371 addr = (void *) ((unsigned long) addr & ~3UL);
372 #else
373 #error "how many bits you are?!"
374 #endif
375 return addr;
378 static inline int mb_test_bit(int bit, void *addr)
381 * ext4_test_bit on architecture like powerpc
382 * needs unsigned long aligned address
384 addr = mb_correct_addr_and_bit(&bit, addr);
385 return ext4_test_bit(bit, addr);
388 static inline void mb_set_bit(int bit, void *addr)
390 addr = mb_correct_addr_and_bit(&bit, addr);
391 ext4_set_bit(bit, addr);
394 static inline void mb_clear_bit(int bit, void *addr)
396 addr = mb_correct_addr_and_bit(&bit, addr);
397 ext4_clear_bit(bit, addr);
400 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
402 int fix = 0, ret, tmpmax;
403 addr = mb_correct_addr_and_bit(&fix, addr);
404 tmpmax = max + fix;
405 start += fix;
407 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
408 if (ret > max)
409 return max;
410 return ret;
413 static inline int mb_find_next_bit(void *addr, int max, int start)
415 int fix = 0, ret, tmpmax;
416 addr = mb_correct_addr_and_bit(&fix, addr);
417 tmpmax = max + fix;
418 start += fix;
420 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
421 if (ret > max)
422 return max;
423 return ret;
426 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
428 char *bb;
430 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
431 BUG_ON(max == NULL);
433 if (order > e4b->bd_blkbits + 1) {
434 *max = 0;
435 return NULL;
438 /* at order 0 we see each particular block */
439 if (order == 0) {
440 *max = 1 << (e4b->bd_blkbits + 3);
441 return e4b->bd_bitmap;
444 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
445 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
447 return bb;
450 #ifdef DOUBLE_CHECK
451 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
452 int first, int count)
454 int i;
455 struct super_block *sb = e4b->bd_sb;
457 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
458 return;
459 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
460 for (i = 0; i < count; i++) {
461 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
462 ext4_fsblk_t blocknr;
464 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
465 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
466 ext4_grp_locked_error(sb, e4b->bd_group,
467 inode ? inode->i_ino : 0,
468 blocknr,
469 "freeing block already freed "
470 "(bit %u)",
471 first + i);
473 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
477 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
479 int i;
481 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
482 return;
483 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
484 for (i = 0; i < count; i++) {
485 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
486 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
490 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
492 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
493 unsigned char *b1, *b2;
494 int i;
495 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
496 b2 = (unsigned char *) bitmap;
497 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
498 if (b1[i] != b2[i]) {
499 ext4_msg(e4b->bd_sb, KERN_ERR,
500 "corruption in group %u "
501 "at byte %u(%u): %x in copy != %x "
502 "on disk/prealloc",
503 e4b->bd_group, i, i * 8, b1[i], b2[i]);
504 BUG();
510 #else
511 static inline void mb_free_blocks_double(struct inode *inode,
512 struct ext4_buddy *e4b, int first, int count)
514 return;
516 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
517 int first, int count)
519 return;
521 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
523 return;
525 #endif
527 #ifdef AGGRESSIVE_CHECK
529 #define MB_CHECK_ASSERT(assert) \
530 do { \
531 if (!(assert)) { \
532 printk(KERN_EMERG \
533 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
534 function, file, line, # assert); \
535 BUG(); \
537 } while (0)
539 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
540 const char *function, int line)
542 struct super_block *sb = e4b->bd_sb;
543 int order = e4b->bd_blkbits + 1;
544 int max;
545 int max2;
546 int i;
547 int j;
548 int k;
549 int count;
550 struct ext4_group_info *grp;
551 int fragments = 0;
552 int fstart;
553 struct list_head *cur;
554 void *buddy;
555 void *buddy2;
558 static int mb_check_counter;
559 if (mb_check_counter++ % 100 != 0)
560 return 0;
563 while (order > 1) {
564 buddy = mb_find_buddy(e4b, order, &max);
565 MB_CHECK_ASSERT(buddy);
566 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
567 MB_CHECK_ASSERT(buddy2);
568 MB_CHECK_ASSERT(buddy != buddy2);
569 MB_CHECK_ASSERT(max * 2 == max2);
571 count = 0;
572 for (i = 0; i < max; i++) {
574 if (mb_test_bit(i, buddy)) {
575 /* only single bit in buddy2 may be 1 */
576 if (!mb_test_bit(i << 1, buddy2)) {
577 MB_CHECK_ASSERT(
578 mb_test_bit((i<<1)+1, buddy2));
579 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
580 MB_CHECK_ASSERT(
581 mb_test_bit(i << 1, buddy2));
583 continue;
586 /* both bits in buddy2 must be 1 */
587 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
588 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
590 for (j = 0; j < (1 << order); j++) {
591 k = (i * (1 << order)) + j;
592 MB_CHECK_ASSERT(
593 !mb_test_bit(k, e4b->bd_bitmap));
595 count++;
597 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
598 order--;
601 fstart = -1;
602 buddy = mb_find_buddy(e4b, 0, &max);
603 for (i = 0; i < max; i++) {
604 if (!mb_test_bit(i, buddy)) {
605 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
606 if (fstart == -1) {
607 fragments++;
608 fstart = i;
610 continue;
612 fstart = -1;
613 /* check used bits only */
614 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
615 buddy2 = mb_find_buddy(e4b, j, &max2);
616 k = i >> j;
617 MB_CHECK_ASSERT(k < max2);
618 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
621 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
622 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
624 grp = ext4_get_group_info(sb, e4b->bd_group);
625 list_for_each(cur, &grp->bb_prealloc_list) {
626 ext4_group_t groupnr;
627 struct ext4_prealloc_space *pa;
628 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
629 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
630 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
631 for (i = 0; i < pa->pa_len; i++)
632 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
634 return 0;
636 #undef MB_CHECK_ASSERT
637 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
638 __FILE__, __func__, __LINE__)
639 #else
640 #define mb_check_buddy(e4b)
641 #endif
644 * Divide blocks started from @first with length @len into
645 * smaller chunks with power of 2 blocks.
646 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
647 * then increase bb_counters[] for corresponded chunk size.
649 static void ext4_mb_mark_free_simple(struct super_block *sb,
650 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
651 struct ext4_group_info *grp)
653 struct ext4_sb_info *sbi = EXT4_SB(sb);
654 ext4_grpblk_t min;
655 ext4_grpblk_t max;
656 ext4_grpblk_t chunk;
657 unsigned short border;
659 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
661 border = 2 << sb->s_blocksize_bits;
663 while (len > 0) {
664 /* find how many blocks can be covered since this position */
665 max = ffs(first | border) - 1;
667 /* find how many blocks of power 2 we need to mark */
668 min = fls(len) - 1;
670 if (max < min)
671 min = max;
672 chunk = 1 << min;
674 /* mark multiblock chunks only */
675 grp->bb_counters[min]++;
676 if (min > 0)
677 mb_clear_bit(first >> min,
678 buddy + sbi->s_mb_offsets[min]);
680 len -= chunk;
681 first += chunk;
686 * Cache the order of the largest free extent we have available in this block
687 * group.
689 static void
690 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
692 int i;
693 int bits;
695 grp->bb_largest_free_order = -1; /* uninit */
697 bits = sb->s_blocksize_bits + 1;
698 for (i = bits; i >= 0; i--) {
699 if (grp->bb_counters[i] > 0) {
700 grp->bb_largest_free_order = i;
701 break;
706 static noinline_for_stack
707 void ext4_mb_generate_buddy(struct super_block *sb,
708 void *buddy, void *bitmap, ext4_group_t group)
710 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
711 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
712 ext4_grpblk_t i = 0;
713 ext4_grpblk_t first;
714 ext4_grpblk_t len;
715 unsigned free = 0;
716 unsigned fragments = 0;
717 unsigned long long period = get_cycles();
719 /* initialize buddy from bitmap which is aggregation
720 * of on-disk bitmap and preallocations */
721 i = mb_find_next_zero_bit(bitmap, max, 0);
722 grp->bb_first_free = i;
723 while (i < max) {
724 fragments++;
725 first = i;
726 i = mb_find_next_bit(bitmap, max, i);
727 len = i - first;
728 free += len;
729 if (len > 1)
730 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
731 else
732 grp->bb_counters[0]++;
733 if (i < max)
734 i = mb_find_next_zero_bit(bitmap, max, i);
736 grp->bb_fragments = fragments;
738 if (free != grp->bb_free) {
739 ext4_grp_locked_error(sb, group, 0, 0,
740 "%u clusters in bitmap, %u in gd",
741 free, grp->bb_free);
743 * If we intent to continue, we consider group descritor
744 * corrupt and update bb_free using bitmap value
746 grp->bb_free = free;
748 mb_set_largest_free_order(sb, grp);
750 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
752 period = get_cycles() - period;
753 spin_lock(&EXT4_SB(sb)->s_bal_lock);
754 EXT4_SB(sb)->s_mb_buddies_generated++;
755 EXT4_SB(sb)->s_mb_generation_time += period;
756 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
759 /* The buddy information is attached the buddy cache inode
760 * for convenience. The information regarding each group
761 * is loaded via ext4_mb_load_buddy. The information involve
762 * block bitmap and buddy information. The information are
763 * stored in the inode as
765 * { page }
766 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
769 * one block each for bitmap and buddy information.
770 * So for each group we take up 2 blocks. A page can
771 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
772 * So it can have information regarding groups_per_page which
773 * is blocks_per_page/2
775 * Locking note: This routine takes the block group lock of all groups
776 * for this page; do not hold this lock when calling this routine!
779 static int ext4_mb_init_cache(struct page *page, char *incore)
781 ext4_group_t ngroups;
782 int blocksize;
783 int blocks_per_page;
784 int groups_per_page;
785 int err = 0;
786 int i;
787 ext4_group_t first_group, group;
788 int first_block;
789 struct super_block *sb;
790 struct buffer_head *bhs;
791 struct buffer_head **bh = NULL;
792 struct inode *inode;
793 char *data;
794 char *bitmap;
795 struct ext4_group_info *grinfo;
797 mb_debug(1, "init page %lu\n", page->index);
799 inode = page->mapping->host;
800 sb = inode->i_sb;
801 ngroups = ext4_get_groups_count(sb);
802 blocksize = 1 << inode->i_blkbits;
803 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
805 groups_per_page = blocks_per_page >> 1;
806 if (groups_per_page == 0)
807 groups_per_page = 1;
809 /* allocate buffer_heads to read bitmaps */
810 if (groups_per_page > 1) {
811 i = sizeof(struct buffer_head *) * groups_per_page;
812 bh = kzalloc(i, GFP_NOFS);
813 if (bh == NULL) {
814 err = -ENOMEM;
815 goto out;
817 } else
818 bh = &bhs;
820 first_group = page->index * blocks_per_page / 2;
822 /* read all groups the page covers into the cache */
823 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
824 if (group >= ngroups)
825 break;
827 grinfo = ext4_get_group_info(sb, group);
829 * If page is uptodate then we came here after online resize
830 * which added some new uninitialized group info structs, so
831 * we must skip all initialized uptodate buddies on the page,
832 * which may be currently in use by an allocating task.
834 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
835 bh[i] = NULL;
836 continue;
838 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
839 err = -ENOMEM;
840 goto out;
842 mb_debug(1, "read bitmap for group %u\n", group);
845 /* wait for I/O completion */
846 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
847 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
848 err = -EIO;
849 goto out;
853 first_block = page->index * blocks_per_page;
854 for (i = 0; i < blocks_per_page; i++) {
855 int group;
857 group = (first_block + i) >> 1;
858 if (group >= ngroups)
859 break;
861 if (!bh[group - first_group])
862 /* skip initialized uptodate buddy */
863 continue;
866 * data carry information regarding this
867 * particular group in the format specified
868 * above
871 data = page_address(page) + (i * blocksize);
872 bitmap = bh[group - first_group]->b_data;
875 * We place the buddy block and bitmap block
876 * close together
878 if ((first_block + i) & 1) {
879 /* this is block of buddy */
880 BUG_ON(incore == NULL);
881 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
882 group, page->index, i * blocksize);
883 trace_ext4_mb_buddy_bitmap_load(sb, group);
884 grinfo = ext4_get_group_info(sb, group);
885 grinfo->bb_fragments = 0;
886 memset(grinfo->bb_counters, 0,
887 sizeof(*grinfo->bb_counters) *
888 (sb->s_blocksize_bits+2));
890 * incore got set to the group block bitmap below
892 ext4_lock_group(sb, group);
893 /* init the buddy */
894 memset(data, 0xff, blocksize);
895 ext4_mb_generate_buddy(sb, data, incore, group);
896 ext4_unlock_group(sb, group);
897 incore = NULL;
898 } else {
899 /* this is block of bitmap */
900 BUG_ON(incore != NULL);
901 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
902 group, page->index, i * blocksize);
903 trace_ext4_mb_bitmap_load(sb, group);
905 /* see comments in ext4_mb_put_pa() */
906 ext4_lock_group(sb, group);
907 memcpy(data, bitmap, blocksize);
909 /* mark all preallocated blks used in in-core bitmap */
910 ext4_mb_generate_from_pa(sb, data, group);
911 ext4_mb_generate_from_freelist(sb, data, group);
912 ext4_unlock_group(sb, group);
914 /* set incore so that the buddy information can be
915 * generated using this
917 incore = data;
920 SetPageUptodate(page);
922 out:
923 if (bh) {
924 for (i = 0; i < groups_per_page; i++)
925 brelse(bh[i]);
926 if (bh != &bhs)
927 kfree(bh);
929 return err;
933 * Lock the buddy and bitmap pages. This make sure other parallel init_group
934 * on the same buddy page doesn't happen whild holding the buddy page lock.
935 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
936 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
938 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
939 ext4_group_t group, struct ext4_buddy *e4b)
941 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
942 int block, pnum, poff;
943 int blocks_per_page;
944 struct page *page;
946 e4b->bd_buddy_page = NULL;
947 e4b->bd_bitmap_page = NULL;
949 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
951 * the buddy cache inode stores the block bitmap
952 * and buddy information in consecutive blocks.
953 * So for each group we need two blocks.
955 block = group * 2;
956 pnum = block / blocks_per_page;
957 poff = block % blocks_per_page;
958 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
959 if (!page)
960 return -EIO;
961 BUG_ON(page->mapping != inode->i_mapping);
962 e4b->bd_bitmap_page = page;
963 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
965 if (blocks_per_page >= 2) {
966 /* buddy and bitmap are on the same page */
967 return 0;
970 block++;
971 pnum = block / blocks_per_page;
972 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
973 if (!page)
974 return -EIO;
975 BUG_ON(page->mapping != inode->i_mapping);
976 e4b->bd_buddy_page = page;
977 return 0;
980 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
982 if (e4b->bd_bitmap_page) {
983 unlock_page(e4b->bd_bitmap_page);
984 page_cache_release(e4b->bd_bitmap_page);
986 if (e4b->bd_buddy_page) {
987 unlock_page(e4b->bd_buddy_page);
988 page_cache_release(e4b->bd_buddy_page);
993 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
994 * block group lock of all groups for this page; do not hold the BG lock when
995 * calling this routine!
997 static noinline_for_stack
998 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1001 struct ext4_group_info *this_grp;
1002 struct ext4_buddy e4b;
1003 struct page *page;
1004 int ret = 0;
1006 mb_debug(1, "init group %u\n", group);
1007 this_grp = ext4_get_group_info(sb, group);
1009 * This ensures that we don't reinit the buddy cache
1010 * page which map to the group from which we are already
1011 * allocating. If we are looking at the buddy cache we would
1012 * have taken a reference using ext4_mb_load_buddy and that
1013 * would have pinned buddy page to page cache.
1015 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1016 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1018 * somebody initialized the group
1019 * return without doing anything
1021 goto err;
1024 page = e4b.bd_bitmap_page;
1025 ret = ext4_mb_init_cache(page, NULL);
1026 if (ret)
1027 goto err;
1028 if (!PageUptodate(page)) {
1029 ret = -EIO;
1030 goto err;
1032 mark_page_accessed(page);
1034 if (e4b.bd_buddy_page == NULL) {
1036 * If both the bitmap and buddy are in
1037 * the same page we don't need to force
1038 * init the buddy
1040 ret = 0;
1041 goto err;
1043 /* init buddy cache */
1044 page = e4b.bd_buddy_page;
1045 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1046 if (ret)
1047 goto err;
1048 if (!PageUptodate(page)) {
1049 ret = -EIO;
1050 goto err;
1052 mark_page_accessed(page);
1053 err:
1054 ext4_mb_put_buddy_page_lock(&e4b);
1055 return ret;
1059 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1060 * block group lock of all groups for this page; do not hold the BG lock when
1061 * calling this routine!
1063 static noinline_for_stack int
1064 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1065 struct ext4_buddy *e4b)
1067 int blocks_per_page;
1068 int block;
1069 int pnum;
1070 int poff;
1071 struct page *page;
1072 int ret;
1073 struct ext4_group_info *grp;
1074 struct ext4_sb_info *sbi = EXT4_SB(sb);
1075 struct inode *inode = sbi->s_buddy_cache;
1077 mb_debug(1, "load group %u\n", group);
1079 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1080 grp = ext4_get_group_info(sb, group);
1082 e4b->bd_blkbits = sb->s_blocksize_bits;
1083 e4b->bd_info = grp;
1084 e4b->bd_sb = sb;
1085 e4b->bd_group = group;
1086 e4b->bd_buddy_page = NULL;
1087 e4b->bd_bitmap_page = NULL;
1089 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1091 * we need full data about the group
1092 * to make a good selection
1094 ret = ext4_mb_init_group(sb, group);
1095 if (ret)
1096 return ret;
1100 * the buddy cache inode stores the block bitmap
1101 * and buddy information in consecutive blocks.
1102 * So for each group we need two blocks.
1104 block = group * 2;
1105 pnum = block / blocks_per_page;
1106 poff = block % blocks_per_page;
1108 /* we could use find_or_create_page(), but it locks page
1109 * what we'd like to avoid in fast path ... */
1110 page = find_get_page(inode->i_mapping, pnum);
1111 if (page == NULL || !PageUptodate(page)) {
1112 if (page)
1114 * drop the page reference and try
1115 * to get the page with lock. If we
1116 * are not uptodate that implies
1117 * somebody just created the page but
1118 * is yet to initialize the same. So
1119 * wait for it to initialize.
1121 page_cache_release(page);
1122 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1123 if (page) {
1124 BUG_ON(page->mapping != inode->i_mapping);
1125 if (!PageUptodate(page)) {
1126 ret = ext4_mb_init_cache(page, NULL);
1127 if (ret) {
1128 unlock_page(page);
1129 goto err;
1131 mb_cmp_bitmaps(e4b, page_address(page) +
1132 (poff * sb->s_blocksize));
1134 unlock_page(page);
1137 if (page == NULL || !PageUptodate(page)) {
1138 ret = -EIO;
1139 goto err;
1141 e4b->bd_bitmap_page = page;
1142 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1143 mark_page_accessed(page);
1145 block++;
1146 pnum = block / blocks_per_page;
1147 poff = block % blocks_per_page;
1149 page = find_get_page(inode->i_mapping, pnum);
1150 if (page == NULL || !PageUptodate(page)) {
1151 if (page)
1152 page_cache_release(page);
1153 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1154 if (page) {
1155 BUG_ON(page->mapping != inode->i_mapping);
1156 if (!PageUptodate(page)) {
1157 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1158 if (ret) {
1159 unlock_page(page);
1160 goto err;
1163 unlock_page(page);
1166 if (page == NULL || !PageUptodate(page)) {
1167 ret = -EIO;
1168 goto err;
1170 e4b->bd_buddy_page = page;
1171 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1172 mark_page_accessed(page);
1174 BUG_ON(e4b->bd_bitmap_page == NULL);
1175 BUG_ON(e4b->bd_buddy_page == NULL);
1177 return 0;
1179 err:
1180 if (page)
1181 page_cache_release(page);
1182 if (e4b->bd_bitmap_page)
1183 page_cache_release(e4b->bd_bitmap_page);
1184 if (e4b->bd_buddy_page)
1185 page_cache_release(e4b->bd_buddy_page);
1186 e4b->bd_buddy = NULL;
1187 e4b->bd_bitmap = NULL;
1188 return ret;
1191 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1193 if (e4b->bd_bitmap_page)
1194 page_cache_release(e4b->bd_bitmap_page);
1195 if (e4b->bd_buddy_page)
1196 page_cache_release(e4b->bd_buddy_page);
1200 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1202 int order = 1;
1203 void *bb;
1205 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1206 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1208 bb = e4b->bd_buddy;
1209 while (order <= e4b->bd_blkbits + 1) {
1210 block = block >> 1;
1211 if (!mb_test_bit(block, bb)) {
1212 /* this block is part of buddy of order 'order' */
1213 return order;
1215 bb += 1 << (e4b->bd_blkbits - order);
1216 order++;
1218 return 0;
1221 static void mb_clear_bits(void *bm, int cur, int len)
1223 __u32 *addr;
1225 len = cur + len;
1226 while (cur < len) {
1227 if ((cur & 31) == 0 && (len - cur) >= 32) {
1228 /* fast path: clear whole word at once */
1229 addr = bm + (cur >> 3);
1230 *addr = 0;
1231 cur += 32;
1232 continue;
1234 mb_clear_bit(cur, bm);
1235 cur++;
1239 void ext4_set_bits(void *bm, int cur, int len)
1241 __u32 *addr;
1243 len = cur + len;
1244 while (cur < len) {
1245 if ((cur & 31) == 0 && (len - cur) >= 32) {
1246 /* fast path: set whole word at once */
1247 addr = bm + (cur >> 3);
1248 *addr = 0xffffffff;
1249 cur += 32;
1250 continue;
1252 mb_set_bit(cur, bm);
1253 cur++;
1257 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1258 int first, int count)
1260 int block = 0;
1261 int max = 0;
1262 int order;
1263 void *buddy;
1264 void *buddy2;
1265 struct super_block *sb = e4b->bd_sb;
1267 BUG_ON(first + count > (sb->s_blocksize << 3));
1268 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1269 mb_check_buddy(e4b);
1270 mb_free_blocks_double(inode, e4b, first, count);
1272 e4b->bd_info->bb_free += count;
1273 if (first < e4b->bd_info->bb_first_free)
1274 e4b->bd_info->bb_first_free = first;
1276 /* let's maintain fragments counter */
1277 if (first != 0)
1278 block = !mb_test_bit(first - 1, e4b->bd_bitmap);
1279 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1280 max = !mb_test_bit(first + count, e4b->bd_bitmap);
1281 if (block && max)
1282 e4b->bd_info->bb_fragments--;
1283 else if (!block && !max)
1284 e4b->bd_info->bb_fragments++;
1286 /* let's maintain buddy itself */
1287 while (count-- > 0) {
1288 block = first++;
1289 order = 0;
1291 if (!mb_test_bit(block, e4b->bd_bitmap)) {
1292 ext4_fsblk_t blocknr;
1294 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1295 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1296 ext4_grp_locked_error(sb, e4b->bd_group,
1297 inode ? inode->i_ino : 0,
1298 blocknr,
1299 "freeing already freed block "
1300 "(bit %u)", block);
1302 mb_clear_bit(block, e4b->bd_bitmap);
1303 e4b->bd_info->bb_counters[order]++;
1305 /* start of the buddy */
1306 buddy = mb_find_buddy(e4b, order, &max);
1308 do {
1309 block &= ~1UL;
1310 if (mb_test_bit(block, buddy) ||
1311 mb_test_bit(block + 1, buddy))
1312 break;
1314 /* both the buddies are free, try to coalesce them */
1315 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1317 if (!buddy2)
1318 break;
1320 if (order > 0) {
1321 /* for special purposes, we don't set
1322 * free bits in bitmap */
1323 mb_set_bit(block, buddy);
1324 mb_set_bit(block + 1, buddy);
1326 e4b->bd_info->bb_counters[order]--;
1327 e4b->bd_info->bb_counters[order]--;
1329 block = block >> 1;
1330 order++;
1331 e4b->bd_info->bb_counters[order]++;
1333 mb_clear_bit(block, buddy2);
1334 buddy = buddy2;
1335 } while (1);
1337 mb_set_largest_free_order(sb, e4b->bd_info);
1338 mb_check_buddy(e4b);
1341 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1342 int needed, struct ext4_free_extent *ex)
1344 int next = block;
1345 int max;
1346 void *buddy;
1348 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1349 BUG_ON(ex == NULL);
1351 buddy = mb_find_buddy(e4b, order, &max);
1352 BUG_ON(buddy == NULL);
1353 BUG_ON(block >= max);
1354 if (mb_test_bit(block, buddy)) {
1355 ex->fe_len = 0;
1356 ex->fe_start = 0;
1357 ex->fe_group = 0;
1358 return 0;
1361 /* FIXME dorp order completely ? */
1362 if (likely(order == 0)) {
1363 /* find actual order */
1364 order = mb_find_order_for_block(e4b, block);
1365 block = block >> order;
1368 ex->fe_len = 1 << order;
1369 ex->fe_start = block << order;
1370 ex->fe_group = e4b->bd_group;
1372 /* calc difference from given start */
1373 next = next - ex->fe_start;
1374 ex->fe_len -= next;
1375 ex->fe_start += next;
1377 while (needed > ex->fe_len &&
1378 (buddy = mb_find_buddy(e4b, order, &max))) {
1380 if (block + 1 >= max)
1381 break;
1383 next = (block + 1) * (1 << order);
1384 if (mb_test_bit(next, e4b->bd_bitmap))
1385 break;
1387 order = mb_find_order_for_block(e4b, next);
1389 block = next >> order;
1390 ex->fe_len += 1 << order;
1393 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1394 return ex->fe_len;
1397 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1399 int ord;
1400 int mlen = 0;
1401 int max = 0;
1402 int cur;
1403 int start = ex->fe_start;
1404 int len = ex->fe_len;
1405 unsigned ret = 0;
1406 int len0 = len;
1407 void *buddy;
1409 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1410 BUG_ON(e4b->bd_group != ex->fe_group);
1411 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1412 mb_check_buddy(e4b);
1413 mb_mark_used_double(e4b, start, len);
1415 e4b->bd_info->bb_free -= len;
1416 if (e4b->bd_info->bb_first_free == start)
1417 e4b->bd_info->bb_first_free += len;
1419 /* let's maintain fragments counter */
1420 if (start != 0)
1421 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1422 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1423 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1424 if (mlen && max)
1425 e4b->bd_info->bb_fragments++;
1426 else if (!mlen && !max)
1427 e4b->bd_info->bb_fragments--;
1429 /* let's maintain buddy itself */
1430 while (len) {
1431 ord = mb_find_order_for_block(e4b, start);
1433 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1434 /* the whole chunk may be allocated at once! */
1435 mlen = 1 << ord;
1436 buddy = mb_find_buddy(e4b, ord, &max);
1437 BUG_ON((start >> ord) >= max);
1438 mb_set_bit(start >> ord, buddy);
1439 e4b->bd_info->bb_counters[ord]--;
1440 start += mlen;
1441 len -= mlen;
1442 BUG_ON(len < 0);
1443 continue;
1446 /* store for history */
1447 if (ret == 0)
1448 ret = len | (ord << 16);
1450 /* we have to split large buddy */
1451 BUG_ON(ord <= 0);
1452 buddy = mb_find_buddy(e4b, ord, &max);
1453 mb_set_bit(start >> ord, buddy);
1454 e4b->bd_info->bb_counters[ord]--;
1456 ord--;
1457 cur = (start >> ord) & ~1U;
1458 buddy = mb_find_buddy(e4b, ord, &max);
1459 mb_clear_bit(cur, buddy);
1460 mb_clear_bit(cur + 1, buddy);
1461 e4b->bd_info->bb_counters[ord]++;
1462 e4b->bd_info->bb_counters[ord]++;
1464 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1466 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1467 mb_check_buddy(e4b);
1469 return ret;
1473 * Must be called under group lock!
1475 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1476 struct ext4_buddy *e4b)
1478 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1479 int ret;
1481 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1482 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1484 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1485 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1486 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1488 /* preallocation can change ac_b_ex, thus we store actually
1489 * allocated blocks for history */
1490 ac->ac_f_ex = ac->ac_b_ex;
1492 ac->ac_status = AC_STATUS_FOUND;
1493 ac->ac_tail = ret & 0xffff;
1494 ac->ac_buddy = ret >> 16;
1497 * take the page reference. We want the page to be pinned
1498 * so that we don't get a ext4_mb_init_cache_call for this
1499 * group until we update the bitmap. That would mean we
1500 * double allocate blocks. The reference is dropped
1501 * in ext4_mb_release_context
1503 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1504 get_page(ac->ac_bitmap_page);
1505 ac->ac_buddy_page = e4b->bd_buddy_page;
1506 get_page(ac->ac_buddy_page);
1507 /* store last allocated for subsequent stream allocation */
1508 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1509 spin_lock(&sbi->s_md_lock);
1510 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1511 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1512 spin_unlock(&sbi->s_md_lock);
1517 * regular allocator, for general purposes allocation
1520 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1521 struct ext4_buddy *e4b,
1522 int finish_group)
1524 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1525 struct ext4_free_extent *bex = &ac->ac_b_ex;
1526 struct ext4_free_extent *gex = &ac->ac_g_ex;
1527 struct ext4_free_extent ex;
1528 int max;
1530 if (ac->ac_status == AC_STATUS_FOUND)
1531 return;
1533 * We don't want to scan for a whole year
1535 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1536 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1537 ac->ac_status = AC_STATUS_BREAK;
1538 return;
1542 * Haven't found good chunk so far, let's continue
1544 if (bex->fe_len < gex->fe_len)
1545 return;
1547 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1548 && bex->fe_group == e4b->bd_group) {
1549 /* recheck chunk's availability - we don't know
1550 * when it was found (within this lock-unlock
1551 * period or not) */
1552 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1553 if (max >= gex->fe_len) {
1554 ext4_mb_use_best_found(ac, e4b);
1555 return;
1561 * The routine checks whether found extent is good enough. If it is,
1562 * then the extent gets marked used and flag is set to the context
1563 * to stop scanning. Otherwise, the extent is compared with the
1564 * previous found extent and if new one is better, then it's stored
1565 * in the context. Later, the best found extent will be used, if
1566 * mballoc can't find good enough extent.
1568 * FIXME: real allocation policy is to be designed yet!
1570 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1571 struct ext4_free_extent *ex,
1572 struct ext4_buddy *e4b)
1574 struct ext4_free_extent *bex = &ac->ac_b_ex;
1575 struct ext4_free_extent *gex = &ac->ac_g_ex;
1577 BUG_ON(ex->fe_len <= 0);
1578 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1579 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1580 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1582 ac->ac_found++;
1585 * The special case - take what you catch first
1587 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1588 *bex = *ex;
1589 ext4_mb_use_best_found(ac, e4b);
1590 return;
1594 * Let's check whether the chuck is good enough
1596 if (ex->fe_len == gex->fe_len) {
1597 *bex = *ex;
1598 ext4_mb_use_best_found(ac, e4b);
1599 return;
1603 * If this is first found extent, just store it in the context
1605 if (bex->fe_len == 0) {
1606 *bex = *ex;
1607 return;
1611 * If new found extent is better, store it in the context
1613 if (bex->fe_len < gex->fe_len) {
1614 /* if the request isn't satisfied, any found extent
1615 * larger than previous best one is better */
1616 if (ex->fe_len > bex->fe_len)
1617 *bex = *ex;
1618 } else if (ex->fe_len > gex->fe_len) {
1619 /* if the request is satisfied, then we try to find
1620 * an extent that still satisfy the request, but is
1621 * smaller than previous one */
1622 if (ex->fe_len < bex->fe_len)
1623 *bex = *ex;
1626 ext4_mb_check_limits(ac, e4b, 0);
1629 static noinline_for_stack
1630 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1631 struct ext4_buddy *e4b)
1633 struct ext4_free_extent ex = ac->ac_b_ex;
1634 ext4_group_t group = ex.fe_group;
1635 int max;
1636 int err;
1638 BUG_ON(ex.fe_len <= 0);
1639 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1640 if (err)
1641 return err;
1643 ext4_lock_group(ac->ac_sb, group);
1644 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1646 if (max > 0) {
1647 ac->ac_b_ex = ex;
1648 ext4_mb_use_best_found(ac, e4b);
1651 ext4_unlock_group(ac->ac_sb, group);
1652 ext4_mb_unload_buddy(e4b);
1654 return 0;
1657 static noinline_for_stack
1658 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1659 struct ext4_buddy *e4b)
1661 ext4_group_t group = ac->ac_g_ex.fe_group;
1662 int max;
1663 int err;
1664 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1665 struct ext4_free_extent ex;
1667 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1668 return 0;
1670 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1671 if (err)
1672 return err;
1674 ext4_lock_group(ac->ac_sb, group);
1675 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1676 ac->ac_g_ex.fe_len, &ex);
1678 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1679 ext4_fsblk_t start;
1681 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1682 ex.fe_start;
1683 /* use do_div to get remainder (would be 64-bit modulo) */
1684 if (do_div(start, sbi->s_stripe) == 0) {
1685 ac->ac_found++;
1686 ac->ac_b_ex = ex;
1687 ext4_mb_use_best_found(ac, e4b);
1689 } else if (max >= ac->ac_g_ex.fe_len) {
1690 BUG_ON(ex.fe_len <= 0);
1691 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1692 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1693 ac->ac_found++;
1694 ac->ac_b_ex = ex;
1695 ext4_mb_use_best_found(ac, e4b);
1696 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1697 /* Sometimes, caller may want to merge even small
1698 * number of blocks to an existing extent */
1699 BUG_ON(ex.fe_len <= 0);
1700 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1701 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1702 ac->ac_found++;
1703 ac->ac_b_ex = ex;
1704 ext4_mb_use_best_found(ac, e4b);
1706 ext4_unlock_group(ac->ac_sb, group);
1707 ext4_mb_unload_buddy(e4b);
1709 return 0;
1713 * The routine scans buddy structures (not bitmap!) from given order
1714 * to max order and tries to find big enough chunk to satisfy the req
1716 static noinline_for_stack
1717 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1718 struct ext4_buddy *e4b)
1720 struct super_block *sb = ac->ac_sb;
1721 struct ext4_group_info *grp = e4b->bd_info;
1722 void *buddy;
1723 int i;
1724 int k;
1725 int max;
1727 BUG_ON(ac->ac_2order <= 0);
1728 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1729 if (grp->bb_counters[i] == 0)
1730 continue;
1732 buddy = mb_find_buddy(e4b, i, &max);
1733 BUG_ON(buddy == NULL);
1735 k = mb_find_next_zero_bit(buddy, max, 0);
1736 BUG_ON(k >= max);
1738 ac->ac_found++;
1740 ac->ac_b_ex.fe_len = 1 << i;
1741 ac->ac_b_ex.fe_start = k << i;
1742 ac->ac_b_ex.fe_group = e4b->bd_group;
1744 ext4_mb_use_best_found(ac, e4b);
1746 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1748 if (EXT4_SB(sb)->s_mb_stats)
1749 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1751 break;
1756 * The routine scans the group and measures all found extents.
1757 * In order to optimize scanning, caller must pass number of
1758 * free blocks in the group, so the routine can know upper limit.
1760 static noinline_for_stack
1761 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1762 struct ext4_buddy *e4b)
1764 struct super_block *sb = ac->ac_sb;
1765 void *bitmap = e4b->bd_bitmap;
1766 struct ext4_free_extent ex;
1767 int i;
1768 int free;
1770 free = e4b->bd_info->bb_free;
1771 BUG_ON(free <= 0);
1773 i = e4b->bd_info->bb_first_free;
1775 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1776 i = mb_find_next_zero_bit(bitmap,
1777 EXT4_CLUSTERS_PER_GROUP(sb), i);
1778 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1780 * IF we have corrupt bitmap, we won't find any
1781 * free blocks even though group info says we
1782 * we have free blocks
1784 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1785 "%d free clusters as per "
1786 "group info. But bitmap says 0",
1787 free);
1788 break;
1791 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1792 BUG_ON(ex.fe_len <= 0);
1793 if (free < ex.fe_len) {
1794 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1795 "%d free clusters as per "
1796 "group info. But got %d blocks",
1797 free, ex.fe_len);
1799 * The number of free blocks differs. This mostly
1800 * indicate that the bitmap is corrupt. So exit
1801 * without claiming the space.
1803 break;
1806 ext4_mb_measure_extent(ac, &ex, e4b);
1808 i += ex.fe_len;
1809 free -= ex.fe_len;
1812 ext4_mb_check_limits(ac, e4b, 1);
1816 * This is a special case for storages like raid5
1817 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1819 static noinline_for_stack
1820 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1821 struct ext4_buddy *e4b)
1823 struct super_block *sb = ac->ac_sb;
1824 struct ext4_sb_info *sbi = EXT4_SB(sb);
1825 void *bitmap = e4b->bd_bitmap;
1826 struct ext4_free_extent ex;
1827 ext4_fsblk_t first_group_block;
1828 ext4_fsblk_t a;
1829 ext4_grpblk_t i;
1830 int max;
1832 BUG_ON(sbi->s_stripe == 0);
1834 /* find first stripe-aligned block in group */
1835 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1837 a = first_group_block + sbi->s_stripe - 1;
1838 do_div(a, sbi->s_stripe);
1839 i = (a * sbi->s_stripe) - first_group_block;
1841 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1842 if (!mb_test_bit(i, bitmap)) {
1843 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1844 if (max >= sbi->s_stripe) {
1845 ac->ac_found++;
1846 ac->ac_b_ex = ex;
1847 ext4_mb_use_best_found(ac, e4b);
1848 break;
1851 i += sbi->s_stripe;
1855 /* This is now called BEFORE we load the buddy bitmap. */
1856 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1857 ext4_group_t group, int cr)
1859 unsigned free, fragments;
1860 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1861 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1863 BUG_ON(cr < 0 || cr >= 4);
1865 /* We only do this if the grp has never been initialized */
1866 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1867 int ret = ext4_mb_init_group(ac->ac_sb, group);
1868 if (ret)
1869 return 0;
1872 free = grp->bb_free;
1873 fragments = grp->bb_fragments;
1874 if (free == 0)
1875 return 0;
1876 if (fragments == 0)
1877 return 0;
1879 switch (cr) {
1880 case 0:
1881 BUG_ON(ac->ac_2order == 0);
1883 if (grp->bb_largest_free_order < ac->ac_2order)
1884 return 0;
1886 /* Avoid using the first bg of a flexgroup for data files */
1887 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1888 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1889 ((group % flex_size) == 0))
1890 return 0;
1892 return 1;
1893 case 1:
1894 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1895 return 1;
1896 break;
1897 case 2:
1898 if (free >= ac->ac_g_ex.fe_len)
1899 return 1;
1900 break;
1901 case 3:
1902 return 1;
1903 default:
1904 BUG();
1907 return 0;
1910 static noinline_for_stack int
1911 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1913 ext4_group_t ngroups, group, i;
1914 int cr;
1915 int err = 0;
1916 struct ext4_sb_info *sbi;
1917 struct super_block *sb;
1918 struct ext4_buddy e4b;
1920 sb = ac->ac_sb;
1921 sbi = EXT4_SB(sb);
1922 ngroups = ext4_get_groups_count(sb);
1923 /* non-extent files are limited to low blocks/groups */
1924 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1925 ngroups = sbi->s_blockfile_groups;
1927 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1929 /* first, try the goal */
1930 err = ext4_mb_find_by_goal(ac, &e4b);
1931 if (err || ac->ac_status == AC_STATUS_FOUND)
1932 goto out;
1934 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1935 goto out;
1938 * ac->ac2_order is set only if the fe_len is a power of 2
1939 * if ac2_order is set we also set criteria to 0 so that we
1940 * try exact allocation using buddy.
1942 i = fls(ac->ac_g_ex.fe_len);
1943 ac->ac_2order = 0;
1945 * We search using buddy data only if the order of the request
1946 * is greater than equal to the sbi_s_mb_order2_reqs
1947 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1949 if (i >= sbi->s_mb_order2_reqs) {
1951 * This should tell if fe_len is exactly power of 2
1953 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1954 ac->ac_2order = i - 1;
1957 /* if stream allocation is enabled, use global goal */
1958 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1959 /* TBD: may be hot point */
1960 spin_lock(&sbi->s_md_lock);
1961 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1962 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1963 spin_unlock(&sbi->s_md_lock);
1966 /* Let's just scan groups to find more-less suitable blocks */
1967 cr = ac->ac_2order ? 0 : 1;
1969 * cr == 0 try to get exact allocation,
1970 * cr == 3 try to get anything
1972 repeat:
1973 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1974 ac->ac_criteria = cr;
1976 * searching for the right group start
1977 * from the goal value specified
1979 group = ac->ac_g_ex.fe_group;
1981 for (i = 0; i < ngroups; group++, i++) {
1982 if (group == ngroups)
1983 group = 0;
1985 /* This now checks without needing the buddy page */
1986 if (!ext4_mb_good_group(ac, group, cr))
1987 continue;
1989 err = ext4_mb_load_buddy(sb, group, &e4b);
1990 if (err)
1991 goto out;
1993 ext4_lock_group(sb, group);
1996 * We need to check again after locking the
1997 * block group
1999 if (!ext4_mb_good_group(ac, group, cr)) {
2000 ext4_unlock_group(sb, group);
2001 ext4_mb_unload_buddy(&e4b);
2002 continue;
2005 ac->ac_groups_scanned++;
2006 if (cr == 0)
2007 ext4_mb_simple_scan_group(ac, &e4b);
2008 else if (cr == 1 && sbi->s_stripe &&
2009 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2010 ext4_mb_scan_aligned(ac, &e4b);
2011 else
2012 ext4_mb_complex_scan_group(ac, &e4b);
2014 ext4_unlock_group(sb, group);
2015 ext4_mb_unload_buddy(&e4b);
2017 if (ac->ac_status != AC_STATUS_CONTINUE)
2018 break;
2022 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2023 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2025 * We've been searching too long. Let's try to allocate
2026 * the best chunk we've found so far
2029 ext4_mb_try_best_found(ac, &e4b);
2030 if (ac->ac_status != AC_STATUS_FOUND) {
2032 * Someone more lucky has already allocated it.
2033 * The only thing we can do is just take first
2034 * found block(s)
2035 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2037 ac->ac_b_ex.fe_group = 0;
2038 ac->ac_b_ex.fe_start = 0;
2039 ac->ac_b_ex.fe_len = 0;
2040 ac->ac_status = AC_STATUS_CONTINUE;
2041 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2042 cr = 3;
2043 atomic_inc(&sbi->s_mb_lost_chunks);
2044 goto repeat;
2047 out:
2048 return err;
2051 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2053 struct super_block *sb = seq->private;
2054 ext4_group_t group;
2056 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2057 return NULL;
2058 group = *pos + 1;
2059 return (void *) ((unsigned long) group);
2062 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2064 struct super_block *sb = seq->private;
2065 ext4_group_t group;
2067 ++*pos;
2068 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2069 return NULL;
2070 group = *pos + 1;
2071 return (void *) ((unsigned long) group);
2074 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2076 struct super_block *sb = seq->private;
2077 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2078 int i;
2079 int err, buddy_loaded = 0;
2080 struct ext4_buddy e4b;
2081 struct ext4_group_info *grinfo;
2082 struct sg {
2083 struct ext4_group_info info;
2084 ext4_grpblk_t counters[16];
2085 } sg;
2087 group--;
2088 if (group == 0)
2089 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2090 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2091 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2092 "group", "free", "frags", "first",
2093 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2094 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2096 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2097 sizeof(struct ext4_group_info);
2098 grinfo = ext4_get_group_info(sb, group);
2099 /* Load the group info in memory only if not already loaded. */
2100 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2101 err = ext4_mb_load_buddy(sb, group, &e4b);
2102 if (err) {
2103 seq_printf(seq, "#%-5u: I/O error\n", group);
2104 return 0;
2106 buddy_loaded = 1;
2109 memcpy(&sg, ext4_get_group_info(sb, group), i);
2111 if (buddy_loaded)
2112 ext4_mb_unload_buddy(&e4b);
2114 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2115 sg.info.bb_fragments, sg.info.bb_first_free);
2116 for (i = 0; i <= 13; i++)
2117 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2118 sg.info.bb_counters[i] : 0);
2119 seq_printf(seq, " ]\n");
2121 return 0;
2124 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2128 static const struct seq_operations ext4_mb_seq_groups_ops = {
2129 .start = ext4_mb_seq_groups_start,
2130 .next = ext4_mb_seq_groups_next,
2131 .stop = ext4_mb_seq_groups_stop,
2132 .show = ext4_mb_seq_groups_show,
2135 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2137 struct super_block *sb = PDE(inode)->data;
2138 int rc;
2140 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2141 if (rc == 0) {
2142 struct seq_file *m = file->private_data;
2143 m->private = sb;
2145 return rc;
2149 static const struct file_operations ext4_mb_seq_groups_fops = {
2150 .owner = THIS_MODULE,
2151 .open = ext4_mb_seq_groups_open,
2152 .read = seq_read,
2153 .llseek = seq_lseek,
2154 .release = seq_release,
2157 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2159 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2160 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2162 BUG_ON(!cachep);
2163 return cachep;
2166 /* Create and initialize ext4_group_info data for the given group. */
2167 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2168 struct ext4_group_desc *desc)
2170 int i;
2171 int metalen = 0;
2172 struct ext4_sb_info *sbi = EXT4_SB(sb);
2173 struct ext4_group_info **meta_group_info;
2174 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2177 * First check if this group is the first of a reserved block.
2178 * If it's true, we have to allocate a new table of pointers
2179 * to ext4_group_info structures
2181 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2182 metalen = sizeof(*meta_group_info) <<
2183 EXT4_DESC_PER_BLOCK_BITS(sb);
2184 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2185 if (meta_group_info == NULL) {
2186 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2187 "for a buddy group");
2188 goto exit_meta_group_info;
2190 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2191 meta_group_info;
2194 meta_group_info =
2195 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2196 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2198 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2199 if (meta_group_info[i] == NULL) {
2200 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2201 goto exit_group_info;
2203 memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2204 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2205 &(meta_group_info[i]->bb_state));
2208 * initialize bb_free to be able to skip
2209 * empty groups without initialization
2211 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2212 meta_group_info[i]->bb_free =
2213 ext4_free_clusters_after_init(sb, group, desc);
2214 } else {
2215 meta_group_info[i]->bb_free =
2216 ext4_free_group_clusters(sb, desc);
2219 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2220 init_rwsem(&meta_group_info[i]->alloc_sem);
2221 meta_group_info[i]->bb_free_root = RB_ROOT;
2222 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2224 #ifdef DOUBLE_CHECK
2226 struct buffer_head *bh;
2227 meta_group_info[i]->bb_bitmap =
2228 kmalloc(sb->s_blocksize, GFP_KERNEL);
2229 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2230 bh = ext4_read_block_bitmap(sb, group);
2231 BUG_ON(bh == NULL);
2232 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2233 sb->s_blocksize);
2234 put_bh(bh);
2236 #endif
2238 return 0;
2240 exit_group_info:
2241 /* If a meta_group_info table has been allocated, release it now */
2242 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2243 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2244 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2246 exit_meta_group_info:
2247 return -ENOMEM;
2248 } /* ext4_mb_add_groupinfo */
2250 static int ext4_mb_init_backend(struct super_block *sb)
2252 ext4_group_t ngroups = ext4_get_groups_count(sb);
2253 ext4_group_t i;
2254 struct ext4_sb_info *sbi = EXT4_SB(sb);
2255 struct ext4_super_block *es = sbi->s_es;
2256 int num_meta_group_infos;
2257 int num_meta_group_infos_max;
2258 int array_size;
2259 struct ext4_group_desc *desc;
2260 struct kmem_cache *cachep;
2262 /* This is the number of blocks used by GDT */
2263 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2264 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2267 * This is the total number of blocks used by GDT including
2268 * the number of reserved blocks for GDT.
2269 * The s_group_info array is allocated with this value
2270 * to allow a clean online resize without a complex
2271 * manipulation of pointer.
2272 * The drawback is the unused memory when no resize
2273 * occurs but it's very low in terms of pages
2274 * (see comments below)
2275 * Need to handle this properly when META_BG resizing is allowed
2277 num_meta_group_infos_max = num_meta_group_infos +
2278 le16_to_cpu(es->s_reserved_gdt_blocks);
2281 * array_size is the size of s_group_info array. We round it
2282 * to the next power of two because this approximation is done
2283 * internally by kmalloc so we can have some more memory
2284 * for free here (e.g. may be used for META_BG resize).
2286 array_size = 1;
2287 while (array_size < sizeof(*sbi->s_group_info) *
2288 num_meta_group_infos_max)
2289 array_size = array_size << 1;
2290 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2291 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2292 * So a two level scheme suffices for now. */
2293 sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL);
2294 if (sbi->s_group_info == NULL) {
2295 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2296 return -ENOMEM;
2298 sbi->s_buddy_cache = new_inode(sb);
2299 if (sbi->s_buddy_cache == NULL) {
2300 ext4_msg(sb, KERN_ERR, "can't get new inode");
2301 goto err_freesgi;
2303 /* To avoid potentially colliding with an valid on-disk inode number,
2304 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2305 * not in the inode hash, so it should never be found by iget(), but
2306 * this will avoid confusion if it ever shows up during debugging. */
2307 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2308 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2309 for (i = 0; i < ngroups; i++) {
2310 desc = ext4_get_group_desc(sb, i, NULL);
2311 if (desc == NULL) {
2312 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2313 goto err_freebuddy;
2315 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2316 goto err_freebuddy;
2319 return 0;
2321 err_freebuddy:
2322 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2323 while (i-- > 0)
2324 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2325 i = num_meta_group_infos;
2326 while (i-- > 0)
2327 kfree(sbi->s_group_info[i]);
2328 iput(sbi->s_buddy_cache);
2329 err_freesgi:
2330 ext4_kvfree(sbi->s_group_info);
2331 return -ENOMEM;
2334 static void ext4_groupinfo_destroy_slabs(void)
2336 int i;
2338 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2339 if (ext4_groupinfo_caches[i])
2340 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2341 ext4_groupinfo_caches[i] = NULL;
2345 static int ext4_groupinfo_create_slab(size_t size)
2347 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2348 int slab_size;
2349 int blocksize_bits = order_base_2(size);
2350 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2351 struct kmem_cache *cachep;
2353 if (cache_index >= NR_GRPINFO_CACHES)
2354 return -EINVAL;
2356 if (unlikely(cache_index < 0))
2357 cache_index = 0;
2359 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2360 if (ext4_groupinfo_caches[cache_index]) {
2361 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2362 return 0; /* Already created */
2365 slab_size = offsetof(struct ext4_group_info,
2366 bb_counters[blocksize_bits + 2]);
2368 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2369 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2370 NULL);
2372 ext4_groupinfo_caches[cache_index] = cachep;
2374 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2375 if (!cachep) {
2376 printk(KERN_EMERG
2377 "EXT4-fs: no memory for groupinfo slab cache\n");
2378 return -ENOMEM;
2381 return 0;
2384 int ext4_mb_init(struct super_block *sb)
2386 struct ext4_sb_info *sbi = EXT4_SB(sb);
2387 unsigned i, j;
2388 unsigned offset;
2389 unsigned max;
2390 int ret;
2392 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2394 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2395 if (sbi->s_mb_offsets == NULL) {
2396 ret = -ENOMEM;
2397 goto out;
2400 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2401 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2402 if (sbi->s_mb_maxs == NULL) {
2403 ret = -ENOMEM;
2404 goto out;
2407 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2408 if (ret < 0)
2409 goto out;
2411 /* order 0 is regular bitmap */
2412 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2413 sbi->s_mb_offsets[0] = 0;
2415 i = 1;
2416 offset = 0;
2417 max = sb->s_blocksize << 2;
2418 do {
2419 sbi->s_mb_offsets[i] = offset;
2420 sbi->s_mb_maxs[i] = max;
2421 offset += 1 << (sb->s_blocksize_bits - i);
2422 max = max >> 1;
2423 i++;
2424 } while (i <= sb->s_blocksize_bits + 1);
2426 spin_lock_init(&sbi->s_md_lock);
2427 spin_lock_init(&sbi->s_bal_lock);
2429 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2430 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2431 sbi->s_mb_stats = MB_DEFAULT_STATS;
2432 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2433 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2435 * The default group preallocation is 512, which for 4k block
2436 * sizes translates to 2 megabytes. However for bigalloc file
2437 * systems, this is probably too big (i.e, if the cluster size
2438 * is 1 megabyte, then group preallocation size becomes half a
2439 * gigabyte!). As a default, we will keep a two megabyte
2440 * group pralloc size for cluster sizes up to 64k, and after
2441 * that, we will force a minimum group preallocation size of
2442 * 32 clusters. This translates to 8 megs when the cluster
2443 * size is 256k, and 32 megs when the cluster size is 1 meg,
2444 * which seems reasonable as a default.
2446 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2447 sbi->s_cluster_bits, 32);
2449 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2450 * to the lowest multiple of s_stripe which is bigger than
2451 * the s_mb_group_prealloc as determined above. We want
2452 * the preallocation size to be an exact multiple of the
2453 * RAID stripe size so that preallocations don't fragment
2454 * the stripes.
2456 if (sbi->s_stripe > 1) {
2457 sbi->s_mb_group_prealloc = roundup(
2458 sbi->s_mb_group_prealloc, sbi->s_stripe);
2461 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2462 if (sbi->s_locality_groups == NULL) {
2463 ret = -ENOMEM;
2464 goto out_free_groupinfo_slab;
2466 for_each_possible_cpu(i) {
2467 struct ext4_locality_group *lg;
2468 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2469 mutex_init(&lg->lg_mutex);
2470 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2471 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2472 spin_lock_init(&lg->lg_prealloc_lock);
2475 /* init file for buddy data */
2476 ret = ext4_mb_init_backend(sb);
2477 if (ret != 0)
2478 goto out_free_locality_groups;
2480 if (sbi->s_proc)
2481 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2482 &ext4_mb_seq_groups_fops, sb);
2484 return 0;
2486 out_free_locality_groups:
2487 free_percpu(sbi->s_locality_groups);
2488 sbi->s_locality_groups = NULL;
2489 out_free_groupinfo_slab:
2490 ext4_groupinfo_destroy_slabs();
2491 out:
2492 kfree(sbi->s_mb_offsets);
2493 sbi->s_mb_offsets = NULL;
2494 kfree(sbi->s_mb_maxs);
2495 sbi->s_mb_maxs = NULL;
2496 return ret;
2499 /* need to called with the ext4 group lock held */
2500 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2502 struct ext4_prealloc_space *pa;
2503 struct list_head *cur, *tmp;
2504 int count = 0;
2506 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2507 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2508 list_del(&pa->pa_group_list);
2509 count++;
2510 kmem_cache_free(ext4_pspace_cachep, pa);
2512 if (count)
2513 mb_debug(1, "mballoc: %u PAs left\n", count);
2517 int ext4_mb_release(struct super_block *sb)
2519 ext4_group_t ngroups = ext4_get_groups_count(sb);
2520 ext4_group_t i;
2521 int num_meta_group_infos;
2522 struct ext4_group_info *grinfo;
2523 struct ext4_sb_info *sbi = EXT4_SB(sb);
2524 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2526 if (sbi->s_proc)
2527 remove_proc_entry("mb_groups", sbi->s_proc);
2529 if (sbi->s_group_info) {
2530 for (i = 0; i < ngroups; i++) {
2531 grinfo = ext4_get_group_info(sb, i);
2532 #ifdef DOUBLE_CHECK
2533 kfree(grinfo->bb_bitmap);
2534 #endif
2535 ext4_lock_group(sb, i);
2536 ext4_mb_cleanup_pa(grinfo);
2537 ext4_unlock_group(sb, i);
2538 kmem_cache_free(cachep, grinfo);
2540 num_meta_group_infos = (ngroups +
2541 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2542 EXT4_DESC_PER_BLOCK_BITS(sb);
2543 for (i = 0; i < num_meta_group_infos; i++)
2544 kfree(sbi->s_group_info[i]);
2545 ext4_kvfree(sbi->s_group_info);
2547 kfree(sbi->s_mb_offsets);
2548 kfree(sbi->s_mb_maxs);
2549 if (sbi->s_buddy_cache)
2550 iput(sbi->s_buddy_cache);
2551 if (sbi->s_mb_stats) {
2552 ext4_msg(sb, KERN_INFO,
2553 "mballoc: %u blocks %u reqs (%u success)",
2554 atomic_read(&sbi->s_bal_allocated),
2555 atomic_read(&sbi->s_bal_reqs),
2556 atomic_read(&sbi->s_bal_success));
2557 ext4_msg(sb, KERN_INFO,
2558 "mballoc: %u extents scanned, %u goal hits, "
2559 "%u 2^N hits, %u breaks, %u lost",
2560 atomic_read(&sbi->s_bal_ex_scanned),
2561 atomic_read(&sbi->s_bal_goals),
2562 atomic_read(&sbi->s_bal_2orders),
2563 atomic_read(&sbi->s_bal_breaks),
2564 atomic_read(&sbi->s_mb_lost_chunks));
2565 ext4_msg(sb, KERN_INFO,
2566 "mballoc: %lu generated and it took %Lu",
2567 sbi->s_mb_buddies_generated,
2568 sbi->s_mb_generation_time);
2569 ext4_msg(sb, KERN_INFO,
2570 "mballoc: %u preallocated, %u discarded",
2571 atomic_read(&sbi->s_mb_preallocated),
2572 atomic_read(&sbi->s_mb_discarded));
2575 free_percpu(sbi->s_locality_groups);
2577 return 0;
2580 static inline int ext4_issue_discard(struct super_block *sb,
2581 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2583 ext4_fsblk_t discard_block;
2585 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2586 ext4_group_first_block_no(sb, block_group));
2587 count = EXT4_C2B(EXT4_SB(sb), count);
2588 trace_ext4_discard_blocks(sb,
2589 (unsigned long long) discard_block, count);
2590 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2594 * This function is called by the jbd2 layer once the commit has finished,
2595 * so we know we can free the blocks that were released with that commit.
2597 static void ext4_free_data_callback(struct super_block *sb,
2598 struct ext4_journal_cb_entry *jce,
2599 int rc)
2601 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2602 struct ext4_buddy e4b;
2603 struct ext4_group_info *db;
2604 int err, count = 0, count2 = 0;
2606 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2607 entry->efd_count, entry->efd_group, entry);
2609 if (test_opt(sb, DISCARD))
2610 ext4_issue_discard(sb, entry->efd_group,
2611 entry->efd_start_cluster, entry->efd_count);
2613 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2614 /* we expect to find existing buddy because it's pinned */
2615 BUG_ON(err != 0);
2618 db = e4b.bd_info;
2619 /* there are blocks to put in buddy to make them really free */
2620 count += entry->efd_count;
2621 count2++;
2622 ext4_lock_group(sb, entry->efd_group);
2623 /* Take it out of per group rb tree */
2624 rb_erase(&entry->efd_node, &(db->bb_free_root));
2625 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2628 * Clear the trimmed flag for the group so that the next
2629 * ext4_trim_fs can trim it.
2630 * If the volume is mounted with -o discard, online discard
2631 * is supported and the free blocks will be trimmed online.
2633 if (!test_opt(sb, DISCARD))
2634 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2636 if (!db->bb_free_root.rb_node) {
2637 /* No more items in the per group rb tree
2638 * balance refcounts from ext4_mb_free_metadata()
2640 page_cache_release(e4b.bd_buddy_page);
2641 page_cache_release(e4b.bd_bitmap_page);
2643 ext4_unlock_group(sb, entry->efd_group);
2644 kmem_cache_free(ext4_free_data_cachep, entry);
2645 ext4_mb_unload_buddy(&e4b);
2647 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2650 #ifdef CONFIG_EXT4_DEBUG
2651 u8 mb_enable_debug __read_mostly;
2653 static struct dentry *debugfs_dir;
2654 static struct dentry *debugfs_debug;
2656 static void __init ext4_create_debugfs_entry(void)
2658 debugfs_dir = debugfs_create_dir("ext4", NULL);
2659 if (debugfs_dir)
2660 debugfs_debug = debugfs_create_u8("mballoc-debug",
2661 S_IRUGO | S_IWUSR,
2662 debugfs_dir,
2663 &mb_enable_debug);
2666 static void ext4_remove_debugfs_entry(void)
2668 debugfs_remove(debugfs_debug);
2669 debugfs_remove(debugfs_dir);
2672 #else
2674 static void __init ext4_create_debugfs_entry(void)
2678 static void ext4_remove_debugfs_entry(void)
2682 #endif
2684 int __init ext4_init_mballoc(void)
2686 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2687 SLAB_RECLAIM_ACCOUNT);
2688 if (ext4_pspace_cachep == NULL)
2689 return -ENOMEM;
2691 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2692 SLAB_RECLAIM_ACCOUNT);
2693 if (ext4_ac_cachep == NULL) {
2694 kmem_cache_destroy(ext4_pspace_cachep);
2695 return -ENOMEM;
2698 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2699 SLAB_RECLAIM_ACCOUNT);
2700 if (ext4_free_data_cachep == NULL) {
2701 kmem_cache_destroy(ext4_pspace_cachep);
2702 kmem_cache_destroy(ext4_ac_cachep);
2703 return -ENOMEM;
2705 ext4_create_debugfs_entry();
2706 return 0;
2709 void ext4_exit_mballoc(void)
2712 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2713 * before destroying the slab cache.
2715 rcu_barrier();
2716 kmem_cache_destroy(ext4_pspace_cachep);
2717 kmem_cache_destroy(ext4_ac_cachep);
2718 kmem_cache_destroy(ext4_free_data_cachep);
2719 ext4_groupinfo_destroy_slabs();
2720 ext4_remove_debugfs_entry();
2725 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2726 * Returns 0 if success or error code
2728 static noinline_for_stack int
2729 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2730 handle_t *handle, unsigned int reserv_clstrs)
2732 struct buffer_head *bitmap_bh = NULL;
2733 struct ext4_group_desc *gdp;
2734 struct buffer_head *gdp_bh;
2735 struct ext4_sb_info *sbi;
2736 struct super_block *sb;
2737 ext4_fsblk_t block;
2738 int err, len;
2740 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2741 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2743 sb = ac->ac_sb;
2744 sbi = EXT4_SB(sb);
2746 err = -EIO;
2747 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2748 if (!bitmap_bh)
2749 goto out_err;
2751 err = ext4_journal_get_write_access(handle, bitmap_bh);
2752 if (err)
2753 goto out_err;
2755 err = -EIO;
2756 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2757 if (!gdp)
2758 goto out_err;
2760 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2761 ext4_free_group_clusters(sb, gdp));
2763 err = ext4_journal_get_write_access(handle, gdp_bh);
2764 if (err)
2765 goto out_err;
2767 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2769 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2770 if (!ext4_data_block_valid(sbi, block, len)) {
2771 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2772 "fs metadata", block, block+len);
2773 /* File system mounted not to panic on error
2774 * Fix the bitmap and repeat the block allocation
2775 * We leak some of the blocks here.
2777 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2778 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2779 ac->ac_b_ex.fe_len);
2780 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2781 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2782 if (!err)
2783 err = -EAGAIN;
2784 goto out_err;
2787 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2788 #ifdef AGGRESSIVE_CHECK
2790 int i;
2791 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2792 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2793 bitmap_bh->b_data));
2796 #endif
2797 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2798 ac->ac_b_ex.fe_len);
2799 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2800 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2801 ext4_free_group_clusters_set(sb, gdp,
2802 ext4_free_clusters_after_init(sb,
2803 ac->ac_b_ex.fe_group, gdp));
2805 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2806 ext4_free_group_clusters_set(sb, gdp, len);
2807 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2808 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2810 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2811 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2813 * Now reduce the dirty block count also. Should not go negative
2815 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2816 /* release all the reserved blocks if non delalloc */
2817 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2818 reserv_clstrs);
2820 if (sbi->s_log_groups_per_flex) {
2821 ext4_group_t flex_group = ext4_flex_group(sbi,
2822 ac->ac_b_ex.fe_group);
2823 atomic_sub(ac->ac_b_ex.fe_len,
2824 &sbi->s_flex_groups[flex_group].free_clusters);
2827 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2828 if (err)
2829 goto out_err;
2830 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2832 out_err:
2833 brelse(bitmap_bh);
2834 return err;
2838 * here we normalize request for locality group
2839 * Group request are normalized to s_mb_group_prealloc, which goes to
2840 * s_strip if we set the same via mount option.
2841 * s_mb_group_prealloc can be configured via
2842 * /sys/fs/ext4/<partition>/mb_group_prealloc
2844 * XXX: should we try to preallocate more than the group has now?
2846 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2848 struct super_block *sb = ac->ac_sb;
2849 struct ext4_locality_group *lg = ac->ac_lg;
2851 BUG_ON(lg == NULL);
2852 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2853 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2854 current->pid, ac->ac_g_ex.fe_len);
2858 * Normalization means making request better in terms of
2859 * size and alignment
2861 static noinline_for_stack void
2862 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2863 struct ext4_allocation_request *ar)
2865 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2866 int bsbits, max;
2867 ext4_lblk_t end;
2868 loff_t size, start_off;
2869 loff_t orig_size __maybe_unused;
2870 ext4_lblk_t start;
2871 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2872 struct ext4_prealloc_space *pa;
2874 /* do normalize only data requests, metadata requests
2875 do not need preallocation */
2876 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2877 return;
2879 /* sometime caller may want exact blocks */
2880 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2881 return;
2883 /* caller may indicate that preallocation isn't
2884 * required (it's a tail, for example) */
2885 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2886 return;
2888 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2889 ext4_mb_normalize_group_request(ac);
2890 return ;
2893 bsbits = ac->ac_sb->s_blocksize_bits;
2895 /* first, let's learn actual file size
2896 * given current request is allocated */
2897 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2898 size = size << bsbits;
2899 if (size < i_size_read(ac->ac_inode))
2900 size = i_size_read(ac->ac_inode);
2901 orig_size = size;
2903 /* max size of free chunks */
2904 max = 2 << bsbits;
2906 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2907 (req <= (size) || max <= (chunk_size))
2909 /* first, try to predict filesize */
2910 /* XXX: should this table be tunable? */
2911 start_off = 0;
2912 if (size <= 16 * 1024) {
2913 size = 16 * 1024;
2914 } else if (size <= 32 * 1024) {
2915 size = 32 * 1024;
2916 } else if (size <= 64 * 1024) {
2917 size = 64 * 1024;
2918 } else if (size <= 128 * 1024) {
2919 size = 128 * 1024;
2920 } else if (size <= 256 * 1024) {
2921 size = 256 * 1024;
2922 } else if (size <= 512 * 1024) {
2923 size = 512 * 1024;
2924 } else if (size <= 1024 * 1024) {
2925 size = 1024 * 1024;
2926 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2927 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2928 (21 - bsbits)) << 21;
2929 size = 2 * 1024 * 1024;
2930 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2931 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2932 (22 - bsbits)) << 22;
2933 size = 4 * 1024 * 1024;
2934 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2935 (8<<20)>>bsbits, max, 8 * 1024)) {
2936 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2937 (23 - bsbits)) << 23;
2938 size = 8 * 1024 * 1024;
2939 } else {
2940 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2941 size = ac->ac_o_ex.fe_len << bsbits;
2943 size = size >> bsbits;
2944 start = start_off >> bsbits;
2946 /* don't cover already allocated blocks in selected range */
2947 if (ar->pleft && start <= ar->lleft) {
2948 size -= ar->lleft + 1 - start;
2949 start = ar->lleft + 1;
2951 if (ar->pright && start + size - 1 >= ar->lright)
2952 size -= start + size - ar->lright;
2954 end = start + size;
2956 /* check we don't cross already preallocated blocks */
2957 rcu_read_lock();
2958 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2959 ext4_lblk_t pa_end;
2961 if (pa->pa_deleted)
2962 continue;
2963 spin_lock(&pa->pa_lock);
2964 if (pa->pa_deleted) {
2965 spin_unlock(&pa->pa_lock);
2966 continue;
2969 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
2970 pa->pa_len);
2972 /* PA must not overlap original request */
2973 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2974 ac->ac_o_ex.fe_logical < pa->pa_lstart));
2976 /* skip PAs this normalized request doesn't overlap with */
2977 if (pa->pa_lstart >= end || pa_end <= start) {
2978 spin_unlock(&pa->pa_lock);
2979 continue;
2981 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2983 /* adjust start or end to be adjacent to this pa */
2984 if (pa_end <= ac->ac_o_ex.fe_logical) {
2985 BUG_ON(pa_end < start);
2986 start = pa_end;
2987 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2988 BUG_ON(pa->pa_lstart > end);
2989 end = pa->pa_lstart;
2991 spin_unlock(&pa->pa_lock);
2993 rcu_read_unlock();
2994 size = end - start;
2996 /* XXX: extra loop to check we really don't overlap preallocations */
2997 rcu_read_lock();
2998 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2999 ext4_lblk_t pa_end;
3001 spin_lock(&pa->pa_lock);
3002 if (pa->pa_deleted == 0) {
3003 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3004 pa->pa_len);
3005 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3007 spin_unlock(&pa->pa_lock);
3009 rcu_read_unlock();
3011 if (start + size <= ac->ac_o_ex.fe_logical &&
3012 start > ac->ac_o_ex.fe_logical) {
3013 ext4_msg(ac->ac_sb, KERN_ERR,
3014 "start %lu, size %lu, fe_logical %lu",
3015 (unsigned long) start, (unsigned long) size,
3016 (unsigned long) ac->ac_o_ex.fe_logical);
3018 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3019 start > ac->ac_o_ex.fe_logical);
3020 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3022 /* now prepare goal request */
3024 /* XXX: is it better to align blocks WRT to logical
3025 * placement or satisfy big request as is */
3026 ac->ac_g_ex.fe_logical = start;
3027 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3029 /* define goal start in order to merge */
3030 if (ar->pright && (ar->lright == (start + size))) {
3031 /* merge to the right */
3032 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3033 &ac->ac_f_ex.fe_group,
3034 &ac->ac_f_ex.fe_start);
3035 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3037 if (ar->pleft && (ar->lleft + 1 == start)) {
3038 /* merge to the left */
3039 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3040 &ac->ac_f_ex.fe_group,
3041 &ac->ac_f_ex.fe_start);
3042 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3045 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3046 (unsigned) orig_size, (unsigned) start);
3049 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3051 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3053 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3054 atomic_inc(&sbi->s_bal_reqs);
3055 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3056 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3057 atomic_inc(&sbi->s_bal_success);
3058 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3059 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3060 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3061 atomic_inc(&sbi->s_bal_goals);
3062 if (ac->ac_found > sbi->s_mb_max_to_scan)
3063 atomic_inc(&sbi->s_bal_breaks);
3066 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3067 trace_ext4_mballoc_alloc(ac);
3068 else
3069 trace_ext4_mballoc_prealloc(ac);
3073 * Called on failure; free up any blocks from the inode PA for this
3074 * context. We don't need this for MB_GROUP_PA because we only change
3075 * pa_free in ext4_mb_release_context(), but on failure, we've already
3076 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3078 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3080 struct ext4_prealloc_space *pa = ac->ac_pa;
3082 if (pa && pa->pa_type == MB_INODE_PA)
3083 pa->pa_free += ac->ac_b_ex.fe_len;
3087 * use blocks preallocated to inode
3089 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3090 struct ext4_prealloc_space *pa)
3092 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3093 ext4_fsblk_t start;
3094 ext4_fsblk_t end;
3095 int len;
3097 /* found preallocated blocks, use them */
3098 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3099 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3100 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3101 len = EXT4_NUM_B2C(sbi, end - start);
3102 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3103 &ac->ac_b_ex.fe_start);
3104 ac->ac_b_ex.fe_len = len;
3105 ac->ac_status = AC_STATUS_FOUND;
3106 ac->ac_pa = pa;
3108 BUG_ON(start < pa->pa_pstart);
3109 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3110 BUG_ON(pa->pa_free < len);
3111 pa->pa_free -= len;
3113 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3117 * use blocks preallocated to locality group
3119 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3120 struct ext4_prealloc_space *pa)
3122 unsigned int len = ac->ac_o_ex.fe_len;
3124 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3125 &ac->ac_b_ex.fe_group,
3126 &ac->ac_b_ex.fe_start);
3127 ac->ac_b_ex.fe_len = len;
3128 ac->ac_status = AC_STATUS_FOUND;
3129 ac->ac_pa = pa;
3131 /* we don't correct pa_pstart or pa_plen here to avoid
3132 * possible race when the group is being loaded concurrently
3133 * instead we correct pa later, after blocks are marked
3134 * in on-disk bitmap -- see ext4_mb_release_context()
3135 * Other CPUs are prevented from allocating from this pa by lg_mutex
3137 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3141 * Return the prealloc space that have minimal distance
3142 * from the goal block. @cpa is the prealloc
3143 * space that is having currently known minimal distance
3144 * from the goal block.
3146 static struct ext4_prealloc_space *
3147 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3148 struct ext4_prealloc_space *pa,
3149 struct ext4_prealloc_space *cpa)
3151 ext4_fsblk_t cur_distance, new_distance;
3153 if (cpa == NULL) {
3154 atomic_inc(&pa->pa_count);
3155 return pa;
3157 cur_distance = abs(goal_block - cpa->pa_pstart);
3158 new_distance = abs(goal_block - pa->pa_pstart);
3160 if (cur_distance <= new_distance)
3161 return cpa;
3163 /* drop the previous reference */
3164 atomic_dec(&cpa->pa_count);
3165 atomic_inc(&pa->pa_count);
3166 return pa;
3170 * search goal blocks in preallocated space
3172 static noinline_for_stack int
3173 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3175 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3176 int order, i;
3177 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3178 struct ext4_locality_group *lg;
3179 struct ext4_prealloc_space *pa, *cpa = NULL;
3180 ext4_fsblk_t goal_block;
3182 /* only data can be preallocated */
3183 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3184 return 0;
3186 /* first, try per-file preallocation */
3187 rcu_read_lock();
3188 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3190 /* all fields in this condition don't change,
3191 * so we can skip locking for them */
3192 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3193 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3194 EXT4_C2B(sbi, pa->pa_len)))
3195 continue;
3197 /* non-extent files can't have physical blocks past 2^32 */
3198 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3199 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3200 EXT4_MAX_BLOCK_FILE_PHYS))
3201 continue;
3203 /* found preallocated blocks, use them */
3204 spin_lock(&pa->pa_lock);
3205 if (pa->pa_deleted == 0 && pa->pa_free) {
3206 atomic_inc(&pa->pa_count);
3207 ext4_mb_use_inode_pa(ac, pa);
3208 spin_unlock(&pa->pa_lock);
3209 ac->ac_criteria = 10;
3210 rcu_read_unlock();
3211 return 1;
3213 spin_unlock(&pa->pa_lock);
3215 rcu_read_unlock();
3217 /* can we use group allocation? */
3218 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3219 return 0;
3221 /* inode may have no locality group for some reason */
3222 lg = ac->ac_lg;
3223 if (lg == NULL)
3224 return 0;
3225 order = fls(ac->ac_o_ex.fe_len) - 1;
3226 if (order > PREALLOC_TB_SIZE - 1)
3227 /* The max size of hash table is PREALLOC_TB_SIZE */
3228 order = PREALLOC_TB_SIZE - 1;
3230 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3232 * search for the prealloc space that is having
3233 * minimal distance from the goal block.
3235 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3236 rcu_read_lock();
3237 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3238 pa_inode_list) {
3239 spin_lock(&pa->pa_lock);
3240 if (pa->pa_deleted == 0 &&
3241 pa->pa_free >= ac->ac_o_ex.fe_len) {
3243 cpa = ext4_mb_check_group_pa(goal_block,
3244 pa, cpa);
3246 spin_unlock(&pa->pa_lock);
3248 rcu_read_unlock();
3250 if (cpa) {
3251 ext4_mb_use_group_pa(ac, cpa);
3252 ac->ac_criteria = 20;
3253 return 1;
3255 return 0;
3259 * the function goes through all block freed in the group
3260 * but not yet committed and marks them used in in-core bitmap.
3261 * buddy must be generated from this bitmap
3262 * Need to be called with the ext4 group lock held
3264 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3265 ext4_group_t group)
3267 struct rb_node *n;
3268 struct ext4_group_info *grp;
3269 struct ext4_free_data *entry;
3271 grp = ext4_get_group_info(sb, group);
3272 n = rb_first(&(grp->bb_free_root));
3274 while (n) {
3275 entry = rb_entry(n, struct ext4_free_data, efd_node);
3276 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3277 n = rb_next(n);
3279 return;
3283 * the function goes through all preallocation in this group and marks them
3284 * used in in-core bitmap. buddy must be generated from this bitmap
3285 * Need to be called with ext4 group lock held
3287 static noinline_for_stack
3288 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3289 ext4_group_t group)
3291 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3292 struct ext4_prealloc_space *pa;
3293 struct list_head *cur;
3294 ext4_group_t groupnr;
3295 ext4_grpblk_t start;
3296 int preallocated = 0;
3297 int len;
3299 /* all form of preallocation discards first load group,
3300 * so the only competing code is preallocation use.
3301 * we don't need any locking here
3302 * notice we do NOT ignore preallocations with pa_deleted
3303 * otherwise we could leave used blocks available for
3304 * allocation in buddy when concurrent ext4_mb_put_pa()
3305 * is dropping preallocation
3307 list_for_each(cur, &grp->bb_prealloc_list) {
3308 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3309 spin_lock(&pa->pa_lock);
3310 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3311 &groupnr, &start);
3312 len = pa->pa_len;
3313 spin_unlock(&pa->pa_lock);
3314 if (unlikely(len == 0))
3315 continue;
3316 BUG_ON(groupnr != group);
3317 ext4_set_bits(bitmap, start, len);
3318 preallocated += len;
3320 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3323 static void ext4_mb_pa_callback(struct rcu_head *head)
3325 struct ext4_prealloc_space *pa;
3326 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3327 kmem_cache_free(ext4_pspace_cachep, pa);
3331 * drops a reference to preallocated space descriptor
3332 * if this was the last reference and the space is consumed
3334 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3335 struct super_block *sb, struct ext4_prealloc_space *pa)
3337 ext4_group_t grp;
3338 ext4_fsblk_t grp_blk;
3340 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3341 return;
3343 /* in this short window concurrent discard can set pa_deleted */
3344 spin_lock(&pa->pa_lock);
3345 if (pa->pa_deleted == 1) {
3346 spin_unlock(&pa->pa_lock);
3347 return;
3350 pa->pa_deleted = 1;
3351 spin_unlock(&pa->pa_lock);
3353 grp_blk = pa->pa_pstart;
3355 * If doing group-based preallocation, pa_pstart may be in the
3356 * next group when pa is used up
3358 if (pa->pa_type == MB_GROUP_PA)
3359 grp_blk--;
3361 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3364 * possible race:
3366 * P1 (buddy init) P2 (regular allocation)
3367 * find block B in PA
3368 * copy on-disk bitmap to buddy
3369 * mark B in on-disk bitmap
3370 * drop PA from group
3371 * mark all PAs in buddy
3373 * thus, P1 initializes buddy with B available. to prevent this
3374 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3375 * against that pair
3377 ext4_lock_group(sb, grp);
3378 list_del(&pa->pa_group_list);
3379 ext4_unlock_group(sb, grp);
3381 spin_lock(pa->pa_obj_lock);
3382 list_del_rcu(&pa->pa_inode_list);
3383 spin_unlock(pa->pa_obj_lock);
3385 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3389 * creates new preallocated space for given inode
3391 static noinline_for_stack int
3392 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3394 struct super_block *sb = ac->ac_sb;
3395 struct ext4_sb_info *sbi = EXT4_SB(sb);
3396 struct ext4_prealloc_space *pa;
3397 struct ext4_group_info *grp;
3398 struct ext4_inode_info *ei;
3400 /* preallocate only when found space is larger then requested */
3401 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3402 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3403 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3405 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3406 if (pa == NULL)
3407 return -ENOMEM;
3409 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3410 int winl;
3411 int wins;
3412 int win;
3413 int offs;
3415 /* we can't allocate as much as normalizer wants.
3416 * so, found space must get proper lstart
3417 * to cover original request */
3418 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3419 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3421 /* we're limited by original request in that
3422 * logical block must be covered any way
3423 * winl is window we can move our chunk within */
3424 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3426 /* also, we should cover whole original request */
3427 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3429 /* the smallest one defines real window */
3430 win = min(winl, wins);
3432 offs = ac->ac_o_ex.fe_logical %
3433 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3434 if (offs && offs < win)
3435 win = offs;
3437 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3438 EXT4_B2C(sbi, win);
3439 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3440 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3443 /* preallocation can change ac_b_ex, thus we store actually
3444 * allocated blocks for history */
3445 ac->ac_f_ex = ac->ac_b_ex;
3447 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3448 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3449 pa->pa_len = ac->ac_b_ex.fe_len;
3450 pa->pa_free = pa->pa_len;
3451 atomic_set(&pa->pa_count, 1);
3452 spin_lock_init(&pa->pa_lock);
3453 INIT_LIST_HEAD(&pa->pa_inode_list);
3454 INIT_LIST_HEAD(&pa->pa_group_list);
3455 pa->pa_deleted = 0;
3456 pa->pa_type = MB_INODE_PA;
3458 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3459 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3460 trace_ext4_mb_new_inode_pa(ac, pa);
3462 ext4_mb_use_inode_pa(ac, pa);
3463 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3465 ei = EXT4_I(ac->ac_inode);
3466 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3468 pa->pa_obj_lock = &ei->i_prealloc_lock;
3469 pa->pa_inode = ac->ac_inode;
3471 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3472 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3473 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3475 spin_lock(pa->pa_obj_lock);
3476 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3477 spin_unlock(pa->pa_obj_lock);
3479 return 0;
3483 * creates new preallocated space for locality group inodes belongs to
3485 static noinline_for_stack int
3486 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3488 struct super_block *sb = ac->ac_sb;
3489 struct ext4_locality_group *lg;
3490 struct ext4_prealloc_space *pa;
3491 struct ext4_group_info *grp;
3493 /* preallocate only when found space is larger then requested */
3494 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3495 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3496 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3498 BUG_ON(ext4_pspace_cachep == NULL);
3499 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3500 if (pa == NULL)
3501 return -ENOMEM;
3503 /* preallocation can change ac_b_ex, thus we store actually
3504 * allocated blocks for history */
3505 ac->ac_f_ex = ac->ac_b_ex;
3507 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3508 pa->pa_lstart = pa->pa_pstart;
3509 pa->pa_len = ac->ac_b_ex.fe_len;
3510 pa->pa_free = pa->pa_len;
3511 atomic_set(&pa->pa_count, 1);
3512 spin_lock_init(&pa->pa_lock);
3513 INIT_LIST_HEAD(&pa->pa_inode_list);
3514 INIT_LIST_HEAD(&pa->pa_group_list);
3515 pa->pa_deleted = 0;
3516 pa->pa_type = MB_GROUP_PA;
3518 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3519 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3520 trace_ext4_mb_new_group_pa(ac, pa);
3522 ext4_mb_use_group_pa(ac, pa);
3523 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3525 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3526 lg = ac->ac_lg;
3527 BUG_ON(lg == NULL);
3529 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3530 pa->pa_inode = NULL;
3532 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3533 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3534 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3537 * We will later add the new pa to the right bucket
3538 * after updating the pa_free in ext4_mb_release_context
3540 return 0;
3543 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3545 int err;
3547 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3548 err = ext4_mb_new_group_pa(ac);
3549 else
3550 err = ext4_mb_new_inode_pa(ac);
3551 return err;
3555 * finds all unused blocks in on-disk bitmap, frees them in
3556 * in-core bitmap and buddy.
3557 * @pa must be unlinked from inode and group lists, so that
3558 * nobody else can find/use it.
3559 * the caller MUST hold group/inode locks.
3560 * TODO: optimize the case when there are no in-core structures yet
3562 static noinline_for_stack int
3563 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3564 struct ext4_prealloc_space *pa)
3566 struct super_block *sb = e4b->bd_sb;
3567 struct ext4_sb_info *sbi = EXT4_SB(sb);
3568 unsigned int end;
3569 unsigned int next;
3570 ext4_group_t group;
3571 ext4_grpblk_t bit;
3572 unsigned long long grp_blk_start;
3573 int err = 0;
3574 int free = 0;
3576 BUG_ON(pa->pa_deleted == 0);
3577 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3578 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3579 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3580 end = bit + pa->pa_len;
3582 while (bit < end) {
3583 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3584 if (bit >= end)
3585 break;
3586 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3587 mb_debug(1, " free preallocated %u/%u in group %u\n",
3588 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3589 (unsigned) next - bit, (unsigned) group);
3590 free += next - bit;
3592 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3593 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3594 EXT4_C2B(sbi, bit)),
3595 next - bit);
3596 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3597 bit = next + 1;
3599 if (free != pa->pa_free) {
3600 ext4_msg(e4b->bd_sb, KERN_CRIT,
3601 "pa %p: logic %lu, phys. %lu, len %lu",
3602 pa, (unsigned long) pa->pa_lstart,
3603 (unsigned long) pa->pa_pstart,
3604 (unsigned long) pa->pa_len);
3605 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3606 free, pa->pa_free);
3608 * pa is already deleted so we use the value obtained
3609 * from the bitmap and continue.
3612 atomic_add(free, &sbi->s_mb_discarded);
3614 return err;
3617 static noinline_for_stack int
3618 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3619 struct ext4_prealloc_space *pa)
3621 struct super_block *sb = e4b->bd_sb;
3622 ext4_group_t group;
3623 ext4_grpblk_t bit;
3625 trace_ext4_mb_release_group_pa(sb, pa);
3626 BUG_ON(pa->pa_deleted == 0);
3627 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3628 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3629 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3630 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3631 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3633 return 0;
3637 * releases all preallocations in given group
3639 * first, we need to decide discard policy:
3640 * - when do we discard
3641 * 1) ENOSPC
3642 * - how many do we discard
3643 * 1) how many requested
3645 static noinline_for_stack int
3646 ext4_mb_discard_group_preallocations(struct super_block *sb,
3647 ext4_group_t group, int needed)
3649 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3650 struct buffer_head *bitmap_bh = NULL;
3651 struct ext4_prealloc_space *pa, *tmp;
3652 struct list_head list;
3653 struct ext4_buddy e4b;
3654 int err;
3655 int busy = 0;
3656 int free = 0;
3658 mb_debug(1, "discard preallocation for group %u\n", group);
3660 if (list_empty(&grp->bb_prealloc_list))
3661 return 0;
3663 bitmap_bh = ext4_read_block_bitmap(sb, group);
3664 if (bitmap_bh == NULL) {
3665 ext4_error(sb, "Error reading block bitmap for %u", group);
3666 return 0;
3669 err = ext4_mb_load_buddy(sb, group, &e4b);
3670 if (err) {
3671 ext4_error(sb, "Error loading buddy information for %u", group);
3672 put_bh(bitmap_bh);
3673 return 0;
3676 if (needed == 0)
3677 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3679 INIT_LIST_HEAD(&list);
3680 repeat:
3681 ext4_lock_group(sb, group);
3682 list_for_each_entry_safe(pa, tmp,
3683 &grp->bb_prealloc_list, pa_group_list) {
3684 spin_lock(&pa->pa_lock);
3685 if (atomic_read(&pa->pa_count)) {
3686 spin_unlock(&pa->pa_lock);
3687 busy = 1;
3688 continue;
3690 if (pa->pa_deleted) {
3691 spin_unlock(&pa->pa_lock);
3692 continue;
3695 /* seems this one can be freed ... */
3696 pa->pa_deleted = 1;
3698 /* we can trust pa_free ... */
3699 free += pa->pa_free;
3701 spin_unlock(&pa->pa_lock);
3703 list_del(&pa->pa_group_list);
3704 list_add(&pa->u.pa_tmp_list, &list);
3707 /* if we still need more blocks and some PAs were used, try again */
3708 if (free < needed && busy) {
3709 busy = 0;
3710 ext4_unlock_group(sb, group);
3712 * Yield the CPU here so that we don't get soft lockup
3713 * in non preempt case.
3715 yield();
3716 goto repeat;
3719 /* found anything to free? */
3720 if (list_empty(&list)) {
3721 BUG_ON(free != 0);
3722 goto out;
3725 /* now free all selected PAs */
3726 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3728 /* remove from object (inode or locality group) */
3729 spin_lock(pa->pa_obj_lock);
3730 list_del_rcu(&pa->pa_inode_list);
3731 spin_unlock(pa->pa_obj_lock);
3733 if (pa->pa_type == MB_GROUP_PA)
3734 ext4_mb_release_group_pa(&e4b, pa);
3735 else
3736 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3738 list_del(&pa->u.pa_tmp_list);
3739 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3742 out:
3743 ext4_unlock_group(sb, group);
3744 ext4_mb_unload_buddy(&e4b);
3745 put_bh(bitmap_bh);
3746 return free;
3750 * releases all non-used preallocated blocks for given inode
3752 * It's important to discard preallocations under i_data_sem
3753 * We don't want another block to be served from the prealloc
3754 * space when we are discarding the inode prealloc space.
3756 * FIXME!! Make sure it is valid at all the call sites
3758 void ext4_discard_preallocations(struct inode *inode)
3760 struct ext4_inode_info *ei = EXT4_I(inode);
3761 struct super_block *sb = inode->i_sb;
3762 struct buffer_head *bitmap_bh = NULL;
3763 struct ext4_prealloc_space *pa, *tmp;
3764 ext4_group_t group = 0;
3765 struct list_head list;
3766 struct ext4_buddy e4b;
3767 int err;
3769 if (!S_ISREG(inode->i_mode)) {
3770 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3771 return;
3774 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3775 trace_ext4_discard_preallocations(inode);
3777 INIT_LIST_HEAD(&list);
3779 repeat:
3780 /* first, collect all pa's in the inode */
3781 spin_lock(&ei->i_prealloc_lock);
3782 while (!list_empty(&ei->i_prealloc_list)) {
3783 pa = list_entry(ei->i_prealloc_list.next,
3784 struct ext4_prealloc_space, pa_inode_list);
3785 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3786 spin_lock(&pa->pa_lock);
3787 if (atomic_read(&pa->pa_count)) {
3788 /* this shouldn't happen often - nobody should
3789 * use preallocation while we're discarding it */
3790 spin_unlock(&pa->pa_lock);
3791 spin_unlock(&ei->i_prealloc_lock);
3792 ext4_msg(sb, KERN_ERR,
3793 "uh-oh! used pa while discarding");
3794 WARN_ON(1);
3795 schedule_timeout_uninterruptible(HZ);
3796 goto repeat;
3799 if (pa->pa_deleted == 0) {
3800 pa->pa_deleted = 1;
3801 spin_unlock(&pa->pa_lock);
3802 list_del_rcu(&pa->pa_inode_list);
3803 list_add(&pa->u.pa_tmp_list, &list);
3804 continue;
3807 /* someone is deleting pa right now */
3808 spin_unlock(&pa->pa_lock);
3809 spin_unlock(&ei->i_prealloc_lock);
3811 /* we have to wait here because pa_deleted
3812 * doesn't mean pa is already unlinked from
3813 * the list. as we might be called from
3814 * ->clear_inode() the inode will get freed
3815 * and concurrent thread which is unlinking
3816 * pa from inode's list may access already
3817 * freed memory, bad-bad-bad */
3819 /* XXX: if this happens too often, we can
3820 * add a flag to force wait only in case
3821 * of ->clear_inode(), but not in case of
3822 * regular truncate */
3823 schedule_timeout_uninterruptible(HZ);
3824 goto repeat;
3826 spin_unlock(&ei->i_prealloc_lock);
3828 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3829 BUG_ON(pa->pa_type != MB_INODE_PA);
3830 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3832 err = ext4_mb_load_buddy(sb, group, &e4b);
3833 if (err) {
3834 ext4_error(sb, "Error loading buddy information for %u",
3835 group);
3836 continue;
3839 bitmap_bh = ext4_read_block_bitmap(sb, group);
3840 if (bitmap_bh == NULL) {
3841 ext4_error(sb, "Error reading block bitmap for %u",
3842 group);
3843 ext4_mb_unload_buddy(&e4b);
3844 continue;
3847 ext4_lock_group(sb, group);
3848 list_del(&pa->pa_group_list);
3849 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3850 ext4_unlock_group(sb, group);
3852 ext4_mb_unload_buddy(&e4b);
3853 put_bh(bitmap_bh);
3855 list_del(&pa->u.pa_tmp_list);
3856 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3860 #ifdef CONFIG_EXT4_DEBUG
3861 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3863 struct super_block *sb = ac->ac_sb;
3864 ext4_group_t ngroups, i;
3866 if (!mb_enable_debug ||
3867 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3868 return;
3870 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3871 " Allocation context details:");
3872 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3873 ac->ac_status, ac->ac_flags);
3874 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3875 "goal %lu/%lu/%lu@%lu, "
3876 "best %lu/%lu/%lu@%lu cr %d",
3877 (unsigned long)ac->ac_o_ex.fe_group,
3878 (unsigned long)ac->ac_o_ex.fe_start,
3879 (unsigned long)ac->ac_o_ex.fe_len,
3880 (unsigned long)ac->ac_o_ex.fe_logical,
3881 (unsigned long)ac->ac_g_ex.fe_group,
3882 (unsigned long)ac->ac_g_ex.fe_start,
3883 (unsigned long)ac->ac_g_ex.fe_len,
3884 (unsigned long)ac->ac_g_ex.fe_logical,
3885 (unsigned long)ac->ac_b_ex.fe_group,
3886 (unsigned long)ac->ac_b_ex.fe_start,
3887 (unsigned long)ac->ac_b_ex.fe_len,
3888 (unsigned long)ac->ac_b_ex.fe_logical,
3889 (int)ac->ac_criteria);
3890 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3891 ac->ac_ex_scanned, ac->ac_found);
3892 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3893 ngroups = ext4_get_groups_count(sb);
3894 for (i = 0; i < ngroups; i++) {
3895 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3896 struct ext4_prealloc_space *pa;
3897 ext4_grpblk_t start;
3898 struct list_head *cur;
3899 ext4_lock_group(sb, i);
3900 list_for_each(cur, &grp->bb_prealloc_list) {
3901 pa = list_entry(cur, struct ext4_prealloc_space,
3902 pa_group_list);
3903 spin_lock(&pa->pa_lock);
3904 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3905 NULL, &start);
3906 spin_unlock(&pa->pa_lock);
3907 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3908 start, pa->pa_len);
3910 ext4_unlock_group(sb, i);
3912 if (grp->bb_free == 0)
3913 continue;
3914 printk(KERN_ERR "%u: %d/%d \n",
3915 i, grp->bb_free, grp->bb_fragments);
3917 printk(KERN_ERR "\n");
3919 #else
3920 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3922 return;
3924 #endif
3927 * We use locality group preallocation for small size file. The size of the
3928 * file is determined by the current size or the resulting size after
3929 * allocation which ever is larger
3931 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3933 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3935 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3936 int bsbits = ac->ac_sb->s_blocksize_bits;
3937 loff_t size, isize;
3939 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3940 return;
3942 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3943 return;
3945 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3946 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3947 >> bsbits;
3949 if ((size == isize) &&
3950 !ext4_fs_is_busy(sbi) &&
3951 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3952 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3953 return;
3956 if (sbi->s_mb_group_prealloc <= 0) {
3957 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3958 return;
3961 /* don't use group allocation for large files */
3962 size = max(size, isize);
3963 if (size > sbi->s_mb_stream_request) {
3964 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3965 return;
3968 BUG_ON(ac->ac_lg != NULL);
3970 * locality group prealloc space are per cpu. The reason for having
3971 * per cpu locality group is to reduce the contention between block
3972 * request from multiple CPUs.
3974 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3976 /* we're going to use group allocation */
3977 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3979 /* serialize all allocations in the group */
3980 mutex_lock(&ac->ac_lg->lg_mutex);
3983 static noinline_for_stack int
3984 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3985 struct ext4_allocation_request *ar)
3987 struct super_block *sb = ar->inode->i_sb;
3988 struct ext4_sb_info *sbi = EXT4_SB(sb);
3989 struct ext4_super_block *es = sbi->s_es;
3990 ext4_group_t group;
3991 unsigned int len;
3992 ext4_fsblk_t goal;
3993 ext4_grpblk_t block;
3995 /* we can't allocate > group size */
3996 len = ar->len;
3998 /* just a dirty hack to filter too big requests */
3999 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
4000 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
4002 /* start searching from the goal */
4003 goal = ar->goal;
4004 if (goal < le32_to_cpu(es->s_first_data_block) ||
4005 goal >= ext4_blocks_count(es))
4006 goal = le32_to_cpu(es->s_first_data_block);
4007 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4009 /* set up allocation goals */
4010 memset(ac, 0, sizeof(struct ext4_allocation_context));
4011 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4012 ac->ac_status = AC_STATUS_CONTINUE;
4013 ac->ac_sb = sb;
4014 ac->ac_inode = ar->inode;
4015 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4016 ac->ac_o_ex.fe_group = group;
4017 ac->ac_o_ex.fe_start = block;
4018 ac->ac_o_ex.fe_len = len;
4019 ac->ac_g_ex = ac->ac_o_ex;
4020 ac->ac_flags = ar->flags;
4022 /* we have to define context: we'll we work with a file or
4023 * locality group. this is a policy, actually */
4024 ext4_mb_group_or_file(ac);
4026 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4027 "left: %u/%u, right %u/%u to %swritable\n",
4028 (unsigned) ar->len, (unsigned) ar->logical,
4029 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4030 (unsigned) ar->lleft, (unsigned) ar->pleft,
4031 (unsigned) ar->lright, (unsigned) ar->pright,
4032 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4033 return 0;
4037 static noinline_for_stack void
4038 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4039 struct ext4_locality_group *lg,
4040 int order, int total_entries)
4042 ext4_group_t group = 0;
4043 struct ext4_buddy e4b;
4044 struct list_head discard_list;
4045 struct ext4_prealloc_space *pa, *tmp;
4047 mb_debug(1, "discard locality group preallocation\n");
4049 INIT_LIST_HEAD(&discard_list);
4051 spin_lock(&lg->lg_prealloc_lock);
4052 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4053 pa_inode_list) {
4054 spin_lock(&pa->pa_lock);
4055 if (atomic_read(&pa->pa_count)) {
4057 * This is the pa that we just used
4058 * for block allocation. So don't
4059 * free that
4061 spin_unlock(&pa->pa_lock);
4062 continue;
4064 if (pa->pa_deleted) {
4065 spin_unlock(&pa->pa_lock);
4066 continue;
4068 /* only lg prealloc space */
4069 BUG_ON(pa->pa_type != MB_GROUP_PA);
4071 /* seems this one can be freed ... */
4072 pa->pa_deleted = 1;
4073 spin_unlock(&pa->pa_lock);
4075 list_del_rcu(&pa->pa_inode_list);
4076 list_add(&pa->u.pa_tmp_list, &discard_list);
4078 total_entries--;
4079 if (total_entries <= 5) {
4081 * we want to keep only 5 entries
4082 * allowing it to grow to 8. This
4083 * mak sure we don't call discard
4084 * soon for this list.
4086 break;
4089 spin_unlock(&lg->lg_prealloc_lock);
4091 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4093 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4094 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4095 ext4_error(sb, "Error loading buddy information for %u",
4096 group);
4097 continue;
4099 ext4_lock_group(sb, group);
4100 list_del(&pa->pa_group_list);
4101 ext4_mb_release_group_pa(&e4b, pa);
4102 ext4_unlock_group(sb, group);
4104 ext4_mb_unload_buddy(&e4b);
4105 list_del(&pa->u.pa_tmp_list);
4106 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4111 * We have incremented pa_count. So it cannot be freed at this
4112 * point. Also we hold lg_mutex. So no parallel allocation is
4113 * possible from this lg. That means pa_free cannot be updated.
4115 * A parallel ext4_mb_discard_group_preallocations is possible.
4116 * which can cause the lg_prealloc_list to be updated.
4119 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4121 int order, added = 0, lg_prealloc_count = 1;
4122 struct super_block *sb = ac->ac_sb;
4123 struct ext4_locality_group *lg = ac->ac_lg;
4124 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4126 order = fls(pa->pa_free) - 1;
4127 if (order > PREALLOC_TB_SIZE - 1)
4128 /* The max size of hash table is PREALLOC_TB_SIZE */
4129 order = PREALLOC_TB_SIZE - 1;
4130 /* Add the prealloc space to lg */
4131 rcu_read_lock();
4132 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4133 pa_inode_list) {
4134 spin_lock(&tmp_pa->pa_lock);
4135 if (tmp_pa->pa_deleted) {
4136 spin_unlock(&tmp_pa->pa_lock);
4137 continue;
4139 if (!added && pa->pa_free < tmp_pa->pa_free) {
4140 /* Add to the tail of the previous entry */
4141 list_add_tail_rcu(&pa->pa_inode_list,
4142 &tmp_pa->pa_inode_list);
4143 added = 1;
4145 * we want to count the total
4146 * number of entries in the list
4149 spin_unlock(&tmp_pa->pa_lock);
4150 lg_prealloc_count++;
4152 if (!added)
4153 list_add_tail_rcu(&pa->pa_inode_list,
4154 &lg->lg_prealloc_list[order]);
4155 rcu_read_unlock();
4157 /* Now trim the list to be not more than 8 elements */
4158 if (lg_prealloc_count > 8) {
4159 ext4_mb_discard_lg_preallocations(sb, lg,
4160 order, lg_prealloc_count);
4161 return;
4163 return ;
4167 * release all resource we used in allocation
4169 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4171 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4172 struct ext4_prealloc_space *pa = ac->ac_pa;
4173 if (pa) {
4174 if (pa->pa_type == MB_GROUP_PA) {
4175 /* see comment in ext4_mb_use_group_pa() */
4176 spin_lock(&pa->pa_lock);
4177 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4178 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4179 pa->pa_free -= ac->ac_b_ex.fe_len;
4180 pa->pa_len -= ac->ac_b_ex.fe_len;
4181 spin_unlock(&pa->pa_lock);
4184 if (pa) {
4186 * We want to add the pa to the right bucket.
4187 * Remove it from the list and while adding
4188 * make sure the list to which we are adding
4189 * doesn't grow big.
4191 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4192 spin_lock(pa->pa_obj_lock);
4193 list_del_rcu(&pa->pa_inode_list);
4194 spin_unlock(pa->pa_obj_lock);
4195 ext4_mb_add_n_trim(ac);
4197 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4199 if (ac->ac_bitmap_page)
4200 page_cache_release(ac->ac_bitmap_page);
4201 if (ac->ac_buddy_page)
4202 page_cache_release(ac->ac_buddy_page);
4203 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4204 mutex_unlock(&ac->ac_lg->lg_mutex);
4205 ext4_mb_collect_stats(ac);
4206 return 0;
4209 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4211 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4212 int ret;
4213 int freed = 0;
4215 trace_ext4_mb_discard_preallocations(sb, needed);
4216 for (i = 0; i < ngroups && needed > 0; i++) {
4217 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4218 freed += ret;
4219 needed -= ret;
4222 return freed;
4226 * Main entry point into mballoc to allocate blocks
4227 * it tries to use preallocation first, then falls back
4228 * to usual allocation
4230 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4231 struct ext4_allocation_request *ar, int *errp)
4233 int freed;
4234 struct ext4_allocation_context *ac = NULL;
4235 struct ext4_sb_info *sbi;
4236 struct super_block *sb;
4237 ext4_fsblk_t block = 0;
4238 unsigned int inquota = 0;
4239 unsigned int reserv_clstrs = 0;
4241 sb = ar->inode->i_sb;
4242 sbi = EXT4_SB(sb);
4244 trace_ext4_request_blocks(ar);
4246 /* Allow to use superuser reservation for quota file */
4247 if (IS_NOQUOTA(ar->inode))
4248 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4251 * For delayed allocation, we could skip the ENOSPC and
4252 * EDQUOT check, as blocks and quotas have been already
4253 * reserved when data being copied into pagecache.
4255 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4256 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4257 else {
4258 /* Without delayed allocation we need to verify
4259 * there is enough free blocks to do block allocation
4260 * and verify allocation doesn't exceed the quota limits.
4262 while (ar->len &&
4263 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4265 /* let others to free the space */
4266 yield();
4267 ar->len = ar->len >> 1;
4269 if (!ar->len) {
4270 *errp = -ENOSPC;
4271 return 0;
4273 reserv_clstrs = ar->len;
4274 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4275 dquot_alloc_block_nofail(ar->inode,
4276 EXT4_C2B(sbi, ar->len));
4277 } else {
4278 while (ar->len &&
4279 dquot_alloc_block(ar->inode,
4280 EXT4_C2B(sbi, ar->len))) {
4282 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4283 ar->len--;
4286 inquota = ar->len;
4287 if (ar->len == 0) {
4288 *errp = -EDQUOT;
4289 goto out;
4293 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4294 if (!ac) {
4295 ar->len = 0;
4296 *errp = -ENOMEM;
4297 goto out;
4300 *errp = ext4_mb_initialize_context(ac, ar);
4301 if (*errp) {
4302 ar->len = 0;
4303 goto out;
4306 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4307 if (!ext4_mb_use_preallocated(ac)) {
4308 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4309 ext4_mb_normalize_request(ac, ar);
4310 repeat:
4311 /* allocate space in core */
4312 *errp = ext4_mb_regular_allocator(ac);
4313 if (*errp)
4314 goto errout;
4316 /* as we've just preallocated more space than
4317 * user requested orinally, we store allocated
4318 * space in a special descriptor */
4319 if (ac->ac_status == AC_STATUS_FOUND &&
4320 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4321 ext4_mb_new_preallocation(ac);
4323 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4324 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4325 if (*errp == -EAGAIN) {
4327 * drop the reference that we took
4328 * in ext4_mb_use_best_found
4330 ext4_mb_release_context(ac);
4331 ac->ac_b_ex.fe_group = 0;
4332 ac->ac_b_ex.fe_start = 0;
4333 ac->ac_b_ex.fe_len = 0;
4334 ac->ac_status = AC_STATUS_CONTINUE;
4335 goto repeat;
4336 } else if (*errp)
4337 errout:
4338 ext4_discard_allocated_blocks(ac);
4339 else {
4340 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4341 ar->len = ac->ac_b_ex.fe_len;
4343 } else {
4344 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4345 if (freed)
4346 goto repeat;
4347 *errp = -ENOSPC;
4350 if (*errp) {
4351 ac->ac_b_ex.fe_len = 0;
4352 ar->len = 0;
4353 ext4_mb_show_ac(ac);
4355 ext4_mb_release_context(ac);
4356 out:
4357 if (ac)
4358 kmem_cache_free(ext4_ac_cachep, ac);
4359 if (inquota && ar->len < inquota)
4360 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4361 if (!ar->len) {
4362 if (!ext4_test_inode_state(ar->inode,
4363 EXT4_STATE_DELALLOC_RESERVED))
4364 /* release all the reserved blocks if non delalloc */
4365 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4366 reserv_clstrs);
4369 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4371 return block;
4375 * We can merge two free data extents only if the physical blocks
4376 * are contiguous, AND the extents were freed by the same transaction,
4377 * AND the blocks are associated with the same group.
4379 static int can_merge(struct ext4_free_data *entry1,
4380 struct ext4_free_data *entry2)
4382 if ((entry1->efd_tid == entry2->efd_tid) &&
4383 (entry1->efd_group == entry2->efd_group) &&
4384 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4385 return 1;
4386 return 0;
4389 static noinline_for_stack int
4390 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4391 struct ext4_free_data *new_entry)
4393 ext4_group_t group = e4b->bd_group;
4394 ext4_grpblk_t cluster;
4395 struct ext4_free_data *entry;
4396 struct ext4_group_info *db = e4b->bd_info;
4397 struct super_block *sb = e4b->bd_sb;
4398 struct ext4_sb_info *sbi = EXT4_SB(sb);
4399 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4400 struct rb_node *parent = NULL, *new_node;
4402 BUG_ON(!ext4_handle_valid(handle));
4403 BUG_ON(e4b->bd_bitmap_page == NULL);
4404 BUG_ON(e4b->bd_buddy_page == NULL);
4406 new_node = &new_entry->efd_node;
4407 cluster = new_entry->efd_start_cluster;
4409 if (!*n) {
4410 /* first free block exent. We need to
4411 protect buddy cache from being freed,
4412 * otherwise we'll refresh it from
4413 * on-disk bitmap and lose not-yet-available
4414 * blocks */
4415 page_cache_get(e4b->bd_buddy_page);
4416 page_cache_get(e4b->bd_bitmap_page);
4418 while (*n) {
4419 parent = *n;
4420 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4421 if (cluster < entry->efd_start_cluster)
4422 n = &(*n)->rb_left;
4423 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4424 n = &(*n)->rb_right;
4425 else {
4426 ext4_grp_locked_error(sb, group, 0,
4427 ext4_group_first_block_no(sb, group) +
4428 EXT4_C2B(sbi, cluster),
4429 "Block already on to-be-freed list");
4430 return 0;
4434 rb_link_node(new_node, parent, n);
4435 rb_insert_color(new_node, &db->bb_free_root);
4437 /* Now try to see the extent can be merged to left and right */
4438 node = rb_prev(new_node);
4439 if (node) {
4440 entry = rb_entry(node, struct ext4_free_data, efd_node);
4441 if (can_merge(entry, new_entry)) {
4442 new_entry->efd_start_cluster = entry->efd_start_cluster;
4443 new_entry->efd_count += entry->efd_count;
4444 rb_erase(node, &(db->bb_free_root));
4445 ext4_journal_callback_del(handle, &entry->efd_jce);
4446 kmem_cache_free(ext4_free_data_cachep, entry);
4450 node = rb_next(new_node);
4451 if (node) {
4452 entry = rb_entry(node, struct ext4_free_data, efd_node);
4453 if (can_merge(new_entry, entry)) {
4454 new_entry->efd_count += entry->efd_count;
4455 rb_erase(node, &(db->bb_free_root));
4456 ext4_journal_callback_del(handle, &entry->efd_jce);
4457 kmem_cache_free(ext4_free_data_cachep, entry);
4460 /* Add the extent to transaction's private list */
4461 ext4_journal_callback_add(handle, ext4_free_data_callback,
4462 &new_entry->efd_jce);
4463 return 0;
4467 * ext4_free_blocks() -- Free given blocks and update quota
4468 * @handle: handle for this transaction
4469 * @inode: inode
4470 * @block: start physical block to free
4471 * @count: number of blocks to count
4472 * @flags: flags used by ext4_free_blocks
4474 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4475 struct buffer_head *bh, ext4_fsblk_t block,
4476 unsigned long count, int flags)
4478 struct buffer_head *bitmap_bh = NULL;
4479 struct super_block *sb = inode->i_sb;
4480 struct ext4_group_desc *gdp;
4481 unsigned long freed = 0;
4482 unsigned int overflow;
4483 ext4_grpblk_t bit;
4484 struct buffer_head *gd_bh;
4485 ext4_group_t block_group;
4486 struct ext4_sb_info *sbi;
4487 struct ext4_buddy e4b;
4488 unsigned int count_clusters;
4489 int err = 0;
4490 int ret;
4492 if (bh) {
4493 if (block)
4494 BUG_ON(block != bh->b_blocknr);
4495 else
4496 block = bh->b_blocknr;
4499 sbi = EXT4_SB(sb);
4500 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4501 !ext4_data_block_valid(sbi, block, count)) {
4502 ext4_error(sb, "Freeing blocks not in datazone - "
4503 "block = %llu, count = %lu", block, count);
4504 goto error_return;
4507 ext4_debug("freeing block %llu\n", block);
4508 trace_ext4_free_blocks(inode, block, count, flags);
4510 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4511 struct buffer_head *tbh = bh;
4512 int i;
4514 BUG_ON(bh && (count > 1));
4516 for (i = 0; i < count; i++) {
4517 if (!bh)
4518 tbh = sb_find_get_block(inode->i_sb,
4519 block + i);
4520 if (unlikely(!tbh))
4521 continue;
4522 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4523 inode, tbh, block + i);
4528 * We need to make sure we don't reuse the freed block until
4529 * after the transaction is committed, which we can do by
4530 * treating the block as metadata, below. We make an
4531 * exception if the inode is to be written in writeback mode
4532 * since writeback mode has weak data consistency guarantees.
4534 if (!ext4_should_writeback_data(inode))
4535 flags |= EXT4_FREE_BLOCKS_METADATA;
4538 * If the extent to be freed does not begin on a cluster
4539 * boundary, we need to deal with partial clusters at the
4540 * beginning and end of the extent. Normally we will free
4541 * blocks at the beginning or the end unless we are explicitly
4542 * requested to avoid doing so.
4544 overflow = block & (sbi->s_cluster_ratio - 1);
4545 if (overflow) {
4546 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4547 overflow = sbi->s_cluster_ratio - overflow;
4548 block += overflow;
4549 if (count > overflow)
4550 count -= overflow;
4551 else
4552 return;
4553 } else {
4554 block -= overflow;
4555 count += overflow;
4558 overflow = count & (sbi->s_cluster_ratio - 1);
4559 if (overflow) {
4560 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4561 if (count > overflow)
4562 count -= overflow;
4563 else
4564 return;
4565 } else
4566 count += sbi->s_cluster_ratio - overflow;
4569 do_more:
4570 overflow = 0;
4571 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4574 * Check to see if we are freeing blocks across a group
4575 * boundary.
4577 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4578 overflow = EXT4_C2B(sbi, bit) + count -
4579 EXT4_BLOCKS_PER_GROUP(sb);
4580 count -= overflow;
4582 count_clusters = EXT4_B2C(sbi, count);
4583 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4584 if (!bitmap_bh) {
4585 err = -EIO;
4586 goto error_return;
4588 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4589 if (!gdp) {
4590 err = -EIO;
4591 goto error_return;
4594 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4595 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4596 in_range(block, ext4_inode_table(sb, gdp),
4597 EXT4_SB(sb)->s_itb_per_group) ||
4598 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4599 EXT4_SB(sb)->s_itb_per_group)) {
4601 ext4_error(sb, "Freeing blocks in system zone - "
4602 "Block = %llu, count = %lu", block, count);
4603 /* err = 0. ext4_std_error should be a no op */
4604 goto error_return;
4607 BUFFER_TRACE(bitmap_bh, "getting write access");
4608 err = ext4_journal_get_write_access(handle, bitmap_bh);
4609 if (err)
4610 goto error_return;
4613 * We are about to modify some metadata. Call the journal APIs
4614 * to unshare ->b_data if a currently-committing transaction is
4615 * using it
4617 BUFFER_TRACE(gd_bh, "get_write_access");
4618 err = ext4_journal_get_write_access(handle, gd_bh);
4619 if (err)
4620 goto error_return;
4621 #ifdef AGGRESSIVE_CHECK
4623 int i;
4624 for (i = 0; i < count_clusters; i++)
4625 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4627 #endif
4628 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4630 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4631 if (err)
4632 goto error_return;
4634 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4635 struct ext4_free_data *new_entry;
4637 * blocks being freed are metadata. these blocks shouldn't
4638 * be used until this transaction is committed
4640 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4641 if (!new_entry) {
4642 ext4_mb_unload_buddy(&e4b);
4643 err = -ENOMEM;
4644 goto error_return;
4646 new_entry->efd_start_cluster = bit;
4647 new_entry->efd_group = block_group;
4648 new_entry->efd_count = count_clusters;
4649 new_entry->efd_tid = handle->h_transaction->t_tid;
4651 ext4_lock_group(sb, block_group);
4652 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4653 ext4_mb_free_metadata(handle, &e4b, new_entry);
4654 } else {
4655 /* need to update group_info->bb_free and bitmap
4656 * with group lock held. generate_buddy look at
4657 * them with group lock_held
4659 ext4_lock_group(sb, block_group);
4660 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4661 mb_free_blocks(inode, &e4b, bit, count_clusters);
4664 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4665 ext4_free_group_clusters_set(sb, gdp, ret);
4666 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4667 ext4_group_desc_csum_set(sb, block_group, gdp);
4668 ext4_unlock_group(sb, block_group);
4669 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4671 if (sbi->s_log_groups_per_flex) {
4672 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4673 atomic_add(count_clusters,
4674 &sbi->s_flex_groups[flex_group].free_clusters);
4677 ext4_mb_unload_buddy(&e4b);
4679 freed += count;
4681 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4682 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4684 /* We dirtied the bitmap block */
4685 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4686 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4688 /* And the group descriptor block */
4689 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4690 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4691 if (!err)
4692 err = ret;
4694 if (overflow && !err) {
4695 block += count;
4696 count = overflow;
4697 put_bh(bitmap_bh);
4698 goto do_more;
4700 error_return:
4701 brelse(bitmap_bh);
4702 ext4_std_error(sb, err);
4703 return;
4707 * ext4_group_add_blocks() -- Add given blocks to an existing group
4708 * @handle: handle to this transaction
4709 * @sb: super block
4710 * @block: start physcial block to add to the block group
4711 * @count: number of blocks to free
4713 * This marks the blocks as free in the bitmap and buddy.
4715 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4716 ext4_fsblk_t block, unsigned long count)
4718 struct buffer_head *bitmap_bh = NULL;
4719 struct buffer_head *gd_bh;
4720 ext4_group_t block_group;
4721 ext4_grpblk_t bit;
4722 unsigned int i;
4723 struct ext4_group_desc *desc;
4724 struct ext4_sb_info *sbi = EXT4_SB(sb);
4725 struct ext4_buddy e4b;
4726 int err = 0, ret, blk_free_count;
4727 ext4_grpblk_t blocks_freed;
4729 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4731 if (count == 0)
4732 return 0;
4734 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4736 * Check to see if we are freeing blocks across a group
4737 * boundary.
4739 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4740 ext4_warning(sb, "too much blocks added to group %u\n",
4741 block_group);
4742 err = -EINVAL;
4743 goto error_return;
4746 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4747 if (!bitmap_bh) {
4748 err = -EIO;
4749 goto error_return;
4752 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4753 if (!desc) {
4754 err = -EIO;
4755 goto error_return;
4758 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4759 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4760 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4761 in_range(block + count - 1, ext4_inode_table(sb, desc),
4762 sbi->s_itb_per_group)) {
4763 ext4_error(sb, "Adding blocks in system zones - "
4764 "Block = %llu, count = %lu",
4765 block, count);
4766 err = -EINVAL;
4767 goto error_return;
4770 BUFFER_TRACE(bitmap_bh, "getting write access");
4771 err = ext4_journal_get_write_access(handle, bitmap_bh);
4772 if (err)
4773 goto error_return;
4776 * We are about to modify some metadata. Call the journal APIs
4777 * to unshare ->b_data if a currently-committing transaction is
4778 * using it
4780 BUFFER_TRACE(gd_bh, "get_write_access");
4781 err = ext4_journal_get_write_access(handle, gd_bh);
4782 if (err)
4783 goto error_return;
4785 for (i = 0, blocks_freed = 0; i < count; i++) {
4786 BUFFER_TRACE(bitmap_bh, "clear bit");
4787 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4788 ext4_error(sb, "bit already cleared for block %llu",
4789 (ext4_fsblk_t)(block + i));
4790 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4791 } else {
4792 blocks_freed++;
4796 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4797 if (err)
4798 goto error_return;
4801 * need to update group_info->bb_free and bitmap
4802 * with group lock held. generate_buddy look at
4803 * them with group lock_held
4805 ext4_lock_group(sb, block_group);
4806 mb_clear_bits(bitmap_bh->b_data, bit, count);
4807 mb_free_blocks(NULL, &e4b, bit, count);
4808 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4809 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4810 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4811 ext4_group_desc_csum_set(sb, block_group, desc);
4812 ext4_unlock_group(sb, block_group);
4813 percpu_counter_add(&sbi->s_freeclusters_counter,
4814 EXT4_B2C(sbi, blocks_freed));
4816 if (sbi->s_log_groups_per_flex) {
4817 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4818 atomic_add(EXT4_B2C(sbi, blocks_freed),
4819 &sbi->s_flex_groups[flex_group].free_clusters);
4822 ext4_mb_unload_buddy(&e4b);
4824 /* We dirtied the bitmap block */
4825 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4826 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4828 /* And the group descriptor block */
4829 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4830 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4831 if (!err)
4832 err = ret;
4834 error_return:
4835 brelse(bitmap_bh);
4836 ext4_std_error(sb, err);
4837 return err;
4841 * ext4_trim_extent -- function to TRIM one single free extent in the group
4842 * @sb: super block for the file system
4843 * @start: starting block of the free extent in the alloc. group
4844 * @count: number of blocks to TRIM
4845 * @group: alloc. group we are working with
4846 * @e4b: ext4 buddy for the group
4848 * Trim "count" blocks starting at "start" in the "group". To assure that no
4849 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4850 * be called with under the group lock.
4852 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4853 ext4_group_t group, struct ext4_buddy *e4b)
4855 struct ext4_free_extent ex;
4857 trace_ext4_trim_extent(sb, group, start, count);
4859 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4861 ex.fe_start = start;
4862 ex.fe_group = group;
4863 ex.fe_len = count;
4866 * Mark blocks used, so no one can reuse them while
4867 * being trimmed.
4869 mb_mark_used(e4b, &ex);
4870 ext4_unlock_group(sb, group);
4871 ext4_issue_discard(sb, group, start, count);
4872 ext4_lock_group(sb, group);
4873 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4877 * ext4_trim_all_free -- function to trim all free space in alloc. group
4878 * @sb: super block for file system
4879 * @group: group to be trimmed
4880 * @start: first group block to examine
4881 * @max: last group block to examine
4882 * @minblocks: minimum extent block count
4884 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4885 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4886 * the extent.
4889 * ext4_trim_all_free walks through group's block bitmap searching for free
4890 * extents. When the free extent is found, mark it as used in group buddy
4891 * bitmap. Then issue a TRIM command on this extent and free the extent in
4892 * the group buddy bitmap. This is done until whole group is scanned.
4894 static ext4_grpblk_t
4895 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4896 ext4_grpblk_t start, ext4_grpblk_t max,
4897 ext4_grpblk_t minblocks)
4899 void *bitmap;
4900 ext4_grpblk_t next, count = 0, free_count = 0;
4901 struct ext4_buddy e4b;
4902 int ret;
4904 trace_ext4_trim_all_free(sb, group, start, max);
4906 ret = ext4_mb_load_buddy(sb, group, &e4b);
4907 if (ret) {
4908 ext4_error(sb, "Error in loading buddy "
4909 "information for %u", group);
4910 return ret;
4912 bitmap = e4b.bd_bitmap;
4914 ext4_lock_group(sb, group);
4915 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
4916 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
4917 goto out;
4919 start = (e4b.bd_info->bb_first_free > start) ?
4920 e4b.bd_info->bb_first_free : start;
4922 while (start <= max) {
4923 start = mb_find_next_zero_bit(bitmap, max + 1, start);
4924 if (start > max)
4925 break;
4926 next = mb_find_next_bit(bitmap, max + 1, start);
4928 if ((next - start) >= minblocks) {
4929 ext4_trim_extent(sb, start,
4930 next - start, group, &e4b);
4931 count += next - start;
4933 free_count += next - start;
4934 start = next + 1;
4936 if (fatal_signal_pending(current)) {
4937 count = -ERESTARTSYS;
4938 break;
4941 if (need_resched()) {
4942 ext4_unlock_group(sb, group);
4943 cond_resched();
4944 ext4_lock_group(sb, group);
4947 if ((e4b.bd_info->bb_free - free_count) < minblocks)
4948 break;
4951 if (!ret)
4952 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
4953 out:
4954 ext4_unlock_group(sb, group);
4955 ext4_mb_unload_buddy(&e4b);
4957 ext4_debug("trimmed %d blocks in the group %d\n",
4958 count, group);
4960 return count;
4964 * ext4_trim_fs() -- trim ioctl handle function
4965 * @sb: superblock for filesystem
4966 * @range: fstrim_range structure
4968 * start: First Byte to trim
4969 * len: number of Bytes to trim from start
4970 * minlen: minimum extent length in Bytes
4971 * ext4_trim_fs goes through all allocation groups containing Bytes from
4972 * start to start+len. For each such a group ext4_trim_all_free function
4973 * is invoked to trim all free space.
4975 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4977 struct ext4_group_info *grp;
4978 ext4_group_t group, first_group, last_group;
4979 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
4980 uint64_t start, end, minlen, trimmed = 0;
4981 ext4_fsblk_t first_data_blk =
4982 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4983 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
4984 int ret = 0;
4986 start = range->start >> sb->s_blocksize_bits;
4987 end = start + (range->len >> sb->s_blocksize_bits) - 1;
4988 minlen = range->minlen >> sb->s_blocksize_bits;
4990 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
4991 start >= max_blks ||
4992 range->len < sb->s_blocksize)
4993 return -EINVAL;
4994 if (end >= max_blks)
4995 end = max_blks - 1;
4996 if (end <= first_data_blk)
4997 goto out;
4998 if (start < first_data_blk)
4999 start = first_data_blk;
5001 /* Determine first and last group to examine based on start and end */
5002 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5003 &first_group, &first_cluster);
5004 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5005 &last_group, &last_cluster);
5007 /* end now represents the last cluster to discard in this group */
5008 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5010 for (group = first_group; group <= last_group; group++) {
5011 grp = ext4_get_group_info(sb, group);
5012 /* We only do this if the grp has never been initialized */
5013 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5014 ret = ext4_mb_init_group(sb, group);
5015 if (ret)
5016 break;
5020 * For all the groups except the last one, last cluster will
5021 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5022 * change it for the last group, note that last_cluster is
5023 * already computed earlier by ext4_get_group_no_and_offset()
5025 if (group == last_group)
5026 end = last_cluster;
5028 if (grp->bb_free >= minlen) {
5029 cnt = ext4_trim_all_free(sb, group, first_cluster,
5030 end, minlen);
5031 if (cnt < 0) {
5032 ret = cnt;
5033 break;
5035 trimmed += cnt;
5039 * For every group except the first one, we are sure
5040 * that the first cluster to discard will be cluster #0.
5042 first_cluster = 0;
5045 if (!ret)
5046 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5048 out:
5049 range->len = trimmed * sb->s_blocksize;
5050 return ret;